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The Toda Lattice The perturbed system Results for u(r) = r*, e = 0.05, with Toda soliton initial data (k=0.6)

Consider the doubly infinite chain of particles with nearest neighbor interaction, We now consider potentials obtained via perturbing the Toda potential: V.(r) = Vy(r) + cu(r).
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Understand how long-time asymptotics for these perturbed systems compare to the long-time et
asymptotics for the Toda lattice. i
Ultimately, for a fixed perturbation v and £*, we hope to prove that under some conditions |
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e Infinitely many constants of motion

e Soliton solutions
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Using the change of variables

L fai(B—au(0)/2 1 : : Figure 1: We first observed that the emerging solitary wave in the perturbed system travels faster than the Toda soliton which is the initial
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introduced by Flaschka one obtains a first-order system equivalent to the Toda lattice: For the perturbed case, the eigenvalues of L are no longer constant in time. Instead, we have large enough to compensate for the loss of speed due to the evolution of ((t) under the perturbed dynamics.
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