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The Toda Lattice
Consider the doubly infinite chain of particles with nearest neighbor interaction,

qn(t): displacement of the nth particle
pn(t): momentum of the nth particle

· · ·· · ·
n− 1 n n + 1 · · ·· · ·

nonlinear springs

where the interaction potential is V0(r) = e−r + r − 1, the Toda potential. In this case, the
equations of motion read

d

dt
pn(t) = −e−(qn+1(t)−qn(t)) + e−(qn(t)−qn−1(t)), and d

dt
qn(t) = pn(t).

An infinite dimensional completely integrable system!
• Solvable by direct-inverse scattering
• Infinitely many constants of motion
• Soliton solutions

1-soliton solution is given by qn(t) = log
(

1+e−2kn+2σ sinh (k)t

1+e−2k(n+1)+2σ sinh (k)t

)
, with speed c = sinh k

k > 1, k > 0,
and σ = ±1.

Complete integrability
Using the change of variables

an(t) = 1
2
e−(qn+1(t)−qn(t))/2, bn(t) = −1

2
pn(t),

introduced by Flaschka one obtains a first-order system equivalent to the Toda lattice:
d

dt
an(t) = an(t)

(
bn+1(t)− bn(t)

)
,

d

dt
bn(t) = 2

(
an(t)2 − an−1(t)2

)
.

(1)

Then it is seen that there exists a pair of linear operators (L(t), P (t)),

L =


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, P =


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
,

such that the Toda lattice equations are equivalent to the Lax equation
d

dt
L(t) = [P (t), L(t)] = P (t)L(t)− L(t)P (t),

which, in this case, implies that σ(L(t)) = σ(L(0)). In particular, the eigenvalues of L, all of
which are real and simple, remain constant in time.
At any time t ∈ R, (a(t), b(t)) is uniquely determined by the scattering data S(L(t)) of L(t):

S(L) =


Eigenvalues of L : λj, j = 1, 2, . . . , N.

Norming constants : γj, j = 1, 2, . . . , N.
Reflection coefficient : R(λ), λ ∈ σac(L).


Initial data with N eigenvalues implies resolution into N 1-solitons as t→∞.(
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The perturbed system
We now consider potentials obtained via perturbing the Toda potential: Vε(r) = V0(r) + εu(r).
Then, the perturbed system reads

d

dt
an(t) = an(t) (bn+1(t)− bn(t)) ,
d

dt
bn(t) = 2

(
an(t)2 − an−1(t)2

)
+ ε

1
2

(
u′
(

log
(

1
4an−1(t)2

))
− u′

(
log

(
1

4an(t)2

)))
.

Equivalently, we have
d

dt
L(t) = [P (t), L(t)] + εU(t),

where U is a diagonal operator with the diagonal

Un(t) = 1
2

(
u′
(

log
(

1
4an−1(t)2

))
− u′

(
log

(
1

4an(t)2

)))
.

Goal
Understand how long-time asymptotics for these perturbed systems compare to the long-time
asymptotics for the Toda lattice.
Ultimately, for a fixed perturbation u and ε∗, we hope to prove that under some conditions
on the initial data (a norm threshold), the solutions of the perturbed system will be close to
solutions of the Toda lattice, as t→∞, for any ε ∈ (0, ε∗).

Question: Can one predict the long-time behavior of these nearly-integrable systems by looking at
the initial data?

Evolution of scattering data
For the perturbed case, the eigenvalues of L are no longer constant in time. Instead, we have

d

dt
λ(t) = ε

(
ψ(t), U(t)ψ(t)

)
`2(Z)

.

We set λ = 1
2

(
z + 1

z

)
implying σac(L) = D and λj = 1

2

(
ζj + 1

ζj

)
, with ζj ∈ (−1, 0) ∪ (0, 1).

Considering the problem Lϕ = z+z−1

2 ϕ, we have the Jost solutions ϕ±(z) uniquely determined by
their asymptotics

lim
n→±∞

ϕ±(z;n)z∓n = 1, |z| = 1.

Then we have the following evolution equation for the reflection coefficient:

R+(z; t) = R+(z)e(z−z−1)t − ε 2
z − z−1

t∫
0

e(z−z−1)(t−τ )
∞∑

j=−∞

Uj(τ )
(
ϕ−(z; j, τ )

∆(z; τ )

)2
 dτ ,

with ∆(z) = 1
T (z), where T stands for the transmission coefficient.

If ζ ∈ (−1, 1) such that λ = 1
2

(
ζ + 1

ζ

)
is an eigenvalue of L, then the right norming constant γ+

is defined by γ+(ζ) = 1
‖ϕ+(ζ ;·)‖2

`2(Z)
, and the evolution equation reads

γ+(ζ ; t) =e(ζ−ζ−1)tγ+(ζ)+

− 2ε
ζ − ζ−1γ+(ζ, t)2

∫ t

0
e(ζ−ζ−1)(t−τ ) ∑

n∈Z
ϕ+(ζ ;n, τ )

∞∑
j=n

Uj(τ )ϕ+(ζ ; j, τ )K(j, n, τ ) dτ ,

where K(j, n) = ϕ+(ζ ;n)ϕ+(ζ−1; j)− ϕ+(ζ−1;n)ϕ+(ζ ; j).

For the pure Toda lattice, the velocity of a 1-soliton corresponding to an eigenvalue λ = ζ+ζ−1

2 is
determined by the phase of the associated Riemann-Hilbert problem, and it is given by

c = v(ζ) = − ζ − ζ−1

2 log (|ζ|)
.

Results for u(r) = r2, ε = 0.05, with Toda soliton initial data (k=0.6)
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AT TIME t=50 : PERTURBED (RED) vs TODA (BLUE)
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AT TIME t=6000 : PERTURBED (RED) vs TODA (BLUE)
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SPEED CALCULATED FROM SCATTERING DATA: PERTURBED (RED) vs TODA (BLUE)
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PERTURBATION u(x) = x
2
, epsilon = 0.05 : SOLITON EIGENVALUE: PERTUBED (RED) VS TODA (BLUE)
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BOTTOM OF THE ESSENTIAL SPECTRUM: RESONANCES
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TOP OF THE ESSENTIAL SPECTRUM (COUNTER−PROPAGATION): RESONANCES

Figure 1: We first observed that the emerging solitary wave in the perturbed system travels faster than the Toda soliton which is the initial
data. Then we computed that the speed of this wave is given by v(ζ(t)) + Cuε, where Cu is a constant independent of ε. Note that Cu>0 and
large enough to compensate for the loss of speed due to the evolution of ζ(t) under the perturbed dynamics.

Results for u(r) = r3, ε = 0.05, with Toda soliton initial data (k=0.6)
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AT TIME t=50: PERTURBED (RED) vs TODA (BLUE)
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AT TIME t=6000: PERTURBED (RED) vs TODA (BLUE)
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SPEED CALCULATED FROM SCATTERING DATA: PERTURBED (RED) vs TODA (BLUE)
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PERTURBATION u(x)=x
3
, epsilon=0.05: SOLITON EIGENVALUE: PERTURBED (RED) vs TODA (BLUE)
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EIGENVALUES 1−2−3: PERTUBED VS UNPERTURBED (BLUE)
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Figure 2: This time, we observed that the emerging solitary wave in the perturbed system travels slower than the Toda soliton which is the
initial data. Then we computed that the speed of this wave is given by v(ζ(t)) +Cuε, where Cu is a constant independent of ε. Note that Cu<0
in this case.
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