On the Dimension of a Certain Measure

Murat Akman

Department of Mathematics, University of Kentucky makman@ms.uky.edu | http://www.ms.uky.edu/~makman/

Notation and Terminology

Fix $p, 1 and let <math>f : \mathbb{C} \setminus \{0\} \to (0, \infty)$ be homogeneous of degree $p \text{ on } \mathbb{C} \setminus \{0\}$. That is,

$$f(\eta) = |\eta|^p f(\frac{\eta}{|\eta|}) > 0 \text{ when } \eta \in \mathbb{C} \setminus \{0\}.$$

We also assume that ∇f is δ -monotone on \mathbb{C} for some $0 < \delta \leq 1$. By definition, this means that $f \in W^{1,1}(B(0,R))$ for each R > 0 and for almost every $\eta, \eta' \in \mathbb{C}$ (with respect to two dimensional Lebesgue measure)

Results on Harmonic Measur

Let Ω be simply connected and $\mu = \omega$ in (2) be harmonic measure with respect to a point in $z_0 \in \Omega$ (the case when $f(\eta) = |\eta|^2$, and u is solution to Laplace's equation in $\Omega \setminus \{z_0\}$), and let

$$\tilde{\lambda}(r) = r \exp\{A\sqrt{\log\frac{1}{r}\log\log\log\frac{1}{r}}\}, \quad 0 < r < 10^{-6}$$

then in [M], Makarov proved that

Main Results

Theorem 1 [A1]

(3)

(4)

Let $\Omega \subset \mathbb{C}$ be a bounded simply connected domain and N be a neighborhood of $\partial\Omega$. Fix p, 1 , let f be homogeneous of degree p and let ∇f be δ monotone for some $0 < \delta \leq 1$. Let u > 0 be a weak solution to (1) in $\Omega \cap N$ with boundary value 0 on $\partial \Omega$ in the $W^{1,p}(\Omega \cap N)$ Sobolev sense. Let μ be the measure corresponding to u as in (2) and put

 $\langle \nabla f(\eta) - \nabla f(\eta'), \eta - \eta' \rangle \ge \delta |\nabla f(\eta) - \nabla f(\eta')| |\eta - \eta'|.$

In my thesis, we realized that δ -monotonicity and the following are equivalent for a.e $\eta \in \mathbb{C}$ and all ζ with $|\zeta| = 1$

 $\frac{1}{c}|\eta|^{p-2} \le f_{\zeta\zeta}(\eta) = \zeta^T D^2 f \zeta \le c|\eta|^{p-2}.$

Euler-Lagrange Equation

Let Ω be a bounded region in the complex plane. Let $z = x_1 + ix_2$. Next, given $h \in W^{1,p}(\Omega)$ let $\mathfrak{A} = \{h + \phi : \phi \in W_0^{1,p}(\Omega)\}$. It is well known from [HKM, Chapter 5] that there is $u \in \mathfrak{A}$ satisfying

$$\inf_{w \in \mathfrak{A}} \int_{\Omega} f(\nabla w) \mathrm{d}\nu = \int_{\Omega} f(\nabla u) \mathrm{d}\nu \text{ for some } u \in \mathfrak{A}.$$

Also u is a weak solution at $z \in \Omega$ to the Euler-Lagrange equation,

$$0 = \nabla \cdot \left(\nabla f(\nabla u(z))\right) = \sum_{k,j=1}^{2} f_{\eta_k \eta_j}(\nabla u(z)) \, u_{x_k x_j}(z) \tag{1}$$

That is, $u \in W^{1,p}(\Omega)$ and

 $\langle \nabla f(\nabla u(z)), \nabla \phi(z) \rangle \mathrm{d}\nu = 0$ whenever $\phi \in W_0^{1,p}(\Omega)$.

Theorem[Makarov]

a) There exists an absolute constant A > 0 such that ω is absolutely continuous with respect to H^{λ} measure.

b) If A > 0 is small enough, then there is an example of a simply connected domain Ω and a corresponding harmonic measure ω that is singular with respect to H^{λ} measure.

Corollary

If Ω is a simply connected domain in the plane then H-dim $\omega = 1$.

[M] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51(1985).

Results on P-Harmonic Measurement P-Harmo

In [BL], Bennewitz and Lewis obtained the following result for μ defined as in (2) for fixed p, $1 , relative to <math>f(\eta) = |\eta|^p$. In this case the corresponding pde (1) becomes

 $\nabla \cdot (|\nabla u|^{p-2} \nabla u) = 0,$

which is called the p-Laplace equation. Moreover a weak solution of (4) is called a p-harmonic function.

$\lambda(r) = r \exp \left| A \sqrt{\log \frac{1}{r} \log \log \frac{1}{r}} \right| \quad \text{for } 0 < r < 10^{-6}.$

a) If $p \ge 2$, there exists $A = A(p) \le -1$ such that μ is concentrated on a set of σ -finite H^{λ} Hausdorff measure.

b) If $1 , there exists <math>A = A(p) \geq 1$, such that μ is absolutely continuous with respect to H^{λ} Hausdorff measure.

Corollary

Let u and μ be as in Theorem 1. Then H-dim $\mu \leq 1$ when 2 ,H-dim $\mu = 1$ when p = 2, and H-dim $\mu \ge 1$ when 1 .

Theorem 2 [A2]

Let u and μ be as in the Theorem 1. If $\partial\Omega$ is a Wolff snowflake and $1 , then H-dim <math>\mu > 1$ while if $2 then H-dim <math>\mu < 1$.

[A1] Murat Akman, On the dimension of a certain measure in the plane, submitted, arXiv:1301.5860

[A2] Murat Akman Hausdorff dimension of A-harmonic measure on Wolff snowflakes., work in progress.

Future Work

[HKM] Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications Inc., 2006.

Existence of Measure μ

Next, suppose $\Omega \subset \mathbb{C}$ is a bounded simply connected domain, N is a neighborhood of $\partial\Omega$, and u > 0 is a weak solution to (1) in $\Omega \cap N$. Also assume that u = 0 on $\partial \Omega$ in the $W^{1,p}(\Omega \cap N)$ sense. Under this scenario it follows from [HKM, Chapter 21] that there exists a unique finite positive Borel measure μ with support on $\partial\Omega$ satisfying

 $\int_{\mathbb{C}} \langle \nabla f(\nabla u(z)), \nabla \phi \rangle \mathrm{d}\nu = -\int_{\partial \Omega} \phi \mathrm{d}\mu$

(2)

whenever $\phi \in C_0^{\infty}(N)$. We remark from (2) that if $\partial \Omega$ and f are smooth enough then

 $\mathrm{d}\mu = \frac{f(\nabla u)}{|\nabla u|} \mathrm{d}H^1|_{\partial\Omega}.$

Theorem[Bennewitz, Lewis]

Let $\Omega \subset \mathbb{C}$ be a domain bounded by a quasi circle and let N be a neighborhood of $\partial\Omega$. Fix $p \neq 2$, 1 , and suppose u is p-harmonicin $\Omega \cap N$ with boundary value 0 in the $W^{1,p}(\Omega \cap N)$ Sobolev sense. If μ is the measure corresponding to u as in (2) relative to $f(\eta) = |\eta|^p$, then H-dim $\mu \leq 1$ for $2 while H-dim <math>\mu \geq 1$ for 1 . Moreover,if $\partial \Omega$ is the von Koch snowflake then strict inequality holds for H-dim μ .

In [LNP], Lewis, Nyström, and Poggi-Corradini proved that

Theorem[Lewis, Nyström, Poggi-Corradini]

Let $\Omega \subset \mathbb{C}$ be a bounded simply connected domain and N a neighborhood of $\partial\Omega$. Fix $p \neq 2, 1 , and let u be p harmonic in <math>\Omega \cap N$ with boundary value 0 on $\partial\Omega$ in the $W^{1,p}(\Omega \cap N)$ Sobolev sense. Let μ be the measure corresponding to u as in (2), relative to $f(\eta) = |\eta|^p$ and put

 $\lambda(r) = r \exp\left[A\sqrt{\log\frac{1}{r}\log\log\frac{1}{r}}\right] \text{ for } 0 < r < 10^{-6}.$

a) If p > 2, there exists $A = A(p) \leq -1$ such that μ is concentrated on a set of σ -finite H^{λ} measure.

b) If $1 , there exists <math>A = A(p) \ge 1$, such that μ is absolutely continuous with respect to H^{λ} measure.

Recently, in [L], Lewis proved that

Let μ be as in the Theorem 1 and $\Omega \subset \mathbb{R}^2$.

1. Does our result hold when the measure function

$$\tilde{\lambda}(r) = r \exp\left[A\sqrt{\log\frac{1}{r}\log\log\log\frac{1}{r}}\right] \text{ for } 0 < r < 10^{-6}.$$

2. It is know that H-dim $\mu = 1$ when f is homogenous of degree 2 and ∇f is δ -monotone. What is H-dim μ when $p \neq 2$ (even when $\partial \Omega$ is von Koch snowflake)?

Let μ be as in the Theorem 1 and $\Omega \subset \mathbb{R}^n$, $n \geq 3$. In [B], Bourgain proved that

Theorem[Bourgain]

If $\Lambda = \mathbb{R}^n \setminus E$ is a domain in \mathbb{R}^n , then H-dim $\omega_E < n$.

Recently, in [LNV], Lewis, Nyström, Vogel proved that

Theorem[Lewis, Nyström, Vogel]

Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be a $(\tilde{\delta}, \tilde{r}_0)$ Reifenberg flat domain, $w \in \partial \Omega$, and p fixed, $n \leq p < \infty$. Let u > 0 be p harmonic in Ω with u = 0 continuously on $\partial\Omega$. Let μ be the measure associated with u as in (2). There exists, $\hat{\delta} = \hat{\delta}(p, n) > 0$, such that if $0 < \hat{\delta} \leq \hat{\delta}$, then μ is concentrated on a set of σ -finite H^{n-1} measure

Hausdorff Measure and Dime

Let $\lambda > 0$ be defined on $(0, r_0)$ with $\lim_{r \to 0^+} \lambda(r) = 0$ for some fixed r_0 . We define the H^{λ} measure of a set $E \subset \mathbb{C}$ as follows; For fixed $0 < \epsilon < r_0$, let $\{B(z_i, r_i)\}$ be a cover of E with $0 < r_i < \epsilon$, i = 1, 2, ..., and set

 $\phi_{\epsilon}^{\lambda}(E) = \inf \sum \lambda(r_i).$

where the infimum is taken over all possible covers of E. Then the Hausdorff H^{λ} measure of E is

 $H^{\lambda}(E) = \lim_{\epsilon \to 0} \phi_{\epsilon}^{\lambda}(E).$

When $\lambda(r) = r^{\alpha}$ we write H^{α} for H^{λ} . Next we define the Hausdorff dimension of the measure μ obtained in (2) as

H-dim $\mu = \inf\{\alpha : \exists Borel E \subset \partial\Omega \text{ with } H^{\alpha}(E) = 0 \text{ and } \mu(E) = \mu(\partial\Omega)\}.$

Theorem [Lewis]

Let $\Omega \subset \mathbb{C}$ be a bounded simply connected domain and N be a neighborhood of $\partial\Omega$. Fix $p \neq 2, 1 , and let u be p-harmonic in <math>\Omega \cap N$ with boundary value 0 on $\partial\Omega$ in the $W^{1,p}(\Omega \cap N)$ Sobolev sense. Let μ be the measure corresponding to u as in (2), relative to $f(\eta) = |\eta|^p$ and let $\lambda(r)$ be as in (3).

a) If p > 2, then μ is concentrated on a set of σ -finite H^1 measure. b) If $1 , there exists <math>A = A(p) \ge 1$, such that μ is absolutely continuous with respect to H^{λ} measure.

[BL] Björn Bennewitz and John L. Lewis, On the dimension of Pharmonic measure, Ann. Acad. Sci. Fenn. Math. 30 (2005). [LNP] J. Lewis, and K. Nyström, and P. Poggi-Corradini, *P-harmonic* measure in simply connected domains, Ann. Inst. Fourier, 61(2011). [L] John L. Lewis, *P*-harmonic measure in simply connected domains revisited, Transactions of the AMS (To appear).

They also conjectured that;

Conjecture[Lewis, Nyström, Vogel]

Let D and Ω be domains in \mathbb{R}^n with $D \subset \Omega$, $\partial D \subset \partial \Omega$ and $\partial D \cap \Omega$ a compact subset of Ω . Let u > 0 be p-harmonic in D, with u = 0 on $\partial \Omega$. If $p \ge n$ then H-dim $\mu \le n - 1$.

1. Is this conjecture true for measure μ as in Theorem 1? 2. What can be said about the H-dim μ when 1 ?

[B] J. Bourgain, On the Hausdorff dimension of harmonic measure in higher dimension, Inventiones Mathematicae, 87 (1987) [LNV] John L. Lewis and Kaj Nyström and Andrew Vogel, On the dimension of P-harmonic measure in space, submitted.