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5. Lecture 5. Pointwise Error Control and Applications

In this lecture we extend the theory of Lecture 2 to the maximum norm following [38, 39]. We do
this in sections 5.1 to 5.3. The maximum norm is of special interest in applications because it controls
pointwise accuracy. We illustrate this in sections 5.4-5.7 for the simplest obstacle problem, which are
based on [40, 39] Other Lebesgue norms can be dealt with similarly. In this lecture we assume, for
simplicity, that the operator L is the Laplacian, so we study

−∆u = f in Ω, u = 0 on ∂Ω,

and consider polynomial degree k = 1. We point out that the convergence analysis as well as complexity
are open questions in this setting.

5.1. Error vs Residual. We start by showing an error-residual relation different from, but equivalent
to, that in (2.1). To this end we use the fact that the piecewise linear basis functions {φz}z∈Nh

form
a partition of unity of Ω:

∑

z∈Nh

φz = 1,

where Nh stands for all nodes of Th, including the boundary nodes. We denote by N̊h the set of interior
nodes. We have

B[eh, ψ] =
∑

z∈Nh

B[eh, ψφz] =
∑

z∈Nh

∫

ωz

fψφz +

∫

γz

Jhψφz ∀ψ ∈ H̊1(Ω),

where ωz = supp (φz) and γz are all the sides interior to ωz, the so-called scheleton of the star (or
patch) ωz. Using Galerkin orthogonality (1.13), we arrive at

(5.1)

B[eh, v] =
∑

z∈Nh

∫

ωz

f(ψ − ψ̄z)φz +

∫

γz

Jh(ψ − ψ̄z)φz

=
∑

z∈Nh

∫

ωz

(f − f̂z)(ψ − ψ̄z)φz +

∫

γz

Jh(ψ − ψ̄z)φz .

where ψ̄z is the weighted L2 projection of ψ over the constants on ωz, ψ̄z = 0 for boundary nodes, and

f̂z is given by

f̂z :=
1

2

(

min
ωz

f + max
ωz

f
)

.

This relation uncovers an intriguing property, namely that the jump residual dominates the interior

residual. In fact the latter occurs here through data oscillation in the form f − f̂z.
Given ϕ ∈ H̊1(Ω) ∩W 2

1 (Ω) and ψ = ϕ − Ihϕ, the Bramble-Hilbert Lemma and local second order

interpolation estimates for Ih given in (1.22) yield

‖ψ − ψ̄z‖0,1;ωz
4 hz‖∇ψ‖0,1;ωz

= hz‖∇(ϕ− Πhϕ)‖0,1;ωz
4 h2

z‖D
2ϕ‖0,1;N(ωz)

and, with the additional use of a scaled trace theorem,

‖ψ − ψ̄z‖0,1;γz
4 h−1

z ‖ψ − ψ̄z‖0,1;ωz
+ ‖∇ψ‖0,1;ωz

4 hz‖D
2ϕ‖0,1;N(ωz),

where N(ωz) is a discrete neighborhood of ωz. In view of (5.1), and the relation B[eh, ψ] = 〈R(uh), ψ〉,
the last two estimates yield the following one:

(5.2) |〈R(uh), ϕ〉| 4 max
z∈Nh

(

h2
z‖(f − f̂z)φz‖0,∞;ωz

+ hz‖Jh φz‖0,∞;γz

)

‖D2ϕ‖0,1;Ω.

Analogously, one obtains

(5.3) |〈R(uh), ϕ〉| 4

(

∑

z∈Nh

hp
z‖(f − f̂z)φz‖

p
0,p;ωz

+ hz‖Jh φz‖
p
0,p;γz

)1/p

‖∇ϕ‖0,p′;Ω,

where p′ = p/(p − 1) is the dual exponent of p ∈ [1,∞). The proof of (5.2)-(5.3) is straightforward
and is thus omitted.
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5.2. Generalized Green’s Functions. To prove an L∞-estimate we first invoke the uniform cone

property of Ω and find a ball B ⊂ Ω of radius ρ = hβ
min (β ≥ 1 to be determined) such that dist(x0, B) 4

ρ. We then introduce a regularized delta function δ supported in B
∫

B

δ = 1, 0 ≤ δ ≤ Cρ−d,

and corresponding regularized Green’s function G ∈ H̊1(Ω) satisfying −∆G = δ. The following a
priori bound proved [18, 38] will be crucial in the subsequent discussion

‖D2G‖0,1;Ω 4 | loghmin|
2.

5.3. Pointwise A Posteriori Error Analysis. To derive a pointwise error estimate we need to
relate the value eh(x0), where eh attains a maximum, with the PDE. In this respect we have

eh(x1) =

∫

Ω

ehδ = B[eh, G]

where x1 ∈ B. We then have the following estimate.

Lemma 5.1 (Pointwise Upper Bound). There exists an interpolation constant C∗, solely depending on

mesh regularity, such that

(5.4) ‖u− uh‖0,∞;Ω ≤ C∗| loghmin|
2 max

z∈Nh

ηz

where hmin := minz∈Nh
hz and ηz is the star-based residual indicator

(5.5) ηz := h2
z‖(f − f̂z)φz‖0,∞;ωz

+ hz ‖Jh φz‖0,∞;γz
.

Proof. We first apply the classical Hölder estimate of De Giorgi and Nash to deduce that w = eh ∈
C0,α(Ω) for α = 1 − d/p > 0 and ‖w‖C0,α(Ω) 4 ‖R(uh)‖−1,p;Ω. Consequently, (5.3) yields

‖w‖C0,α(Ω) 4
(

∑

z∈Nh

ζp
z

)

1/p

with

ζz := hz ‖(f − f̂z)φz‖0,p;ω+
z

+ h1/p
z ‖Jh φz‖0,p;γ+

z
.

Hence

(5.6) |w(x0) − w(x1)| 4 |x0 − x1|
α‖w‖C0,α(Ω) 4 |x0 − x1|

α
(

∑

z∈Nh

ζp
z

)1/p

.

On the other hand, with the help of (5.2),

(5.7) w(x1) = 〈w, δ〉 = 〈∇w, ∇G〉 = 〈R(uh), G〉 4 | loghmin|
2 max

z∈Nh

ηz .

Fixing p > d and choosing β = α−1, we deduce that

(5.8) hαβ
minζz 4 hzζz 4 ηz|ω

+
z |1/p for all z ∈ Nh.

Since |x0 − x1|α 4 ρα = hmin, combining (5.6) and (5.7) leads to (5.4). �

We conclude this section with a pointwise lower bound whose proof we leave as an exercise. The
construction, described in [38], is a modification of that in Lemma 2.2 to account for the L∞-norm.

Lemma 5.2 (Pointwise Lower Bound). There exists an interpolation constant C∗, solely depending on

mesh regularity, such that

(5.9) C∗hz ‖Jh φz‖0,∞;γz
≤ ‖u− uh‖0,∞;ωz

+ h2
z‖(f − f̂z)φz‖0,∞;ωz

. ∀z ∈ Nh
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5.4. Variational Inequalities. Free boundary problems are ubiquitous in applications, from nonlin-
ear elasticity and plasticity to fluids and finance [24, 30, 42]. The detection and accurate approximation
of the free boundary is often a primary goal of the computation. There are, however, no results in the
literature which provide a posteriori error estimates for interfaces. In case they are defined as level
sets, then the mere control of the solution(s) does not yield in general control of the interfaces. We
examine these issues below for the obstacle problem.

We first introduce the continuous obstacle problem. Let Ω be a bounded, polyhedral, not necessarily
convex domain in R

d with d ∈ {1, 2, 3}. Let f ∈ L∞(Ω) be a load function, χ ∈ H1(Ω)∩C0,α(Ω̄) be a
lower obstacle, and g ∈ H1(Ω) ∩C0,α(Ω̄) be a Dirichlet boundary datum with 0 < α ≤ 1. Both χ and
g satisfy the compatibility condition

χ ≤ g on ∂Ω.

Let K be the following non-empty, closed and convex subset of H1(Ω):

K := {v ∈ H1(Ω) | v ≥ χ a. e. in Ω and v = g on ∂Ω}.

The variational formulation of the continuous obstacle problem reads as follows:

(5.10) u ∈ K : 〈∇u, ∇(u− v)〉 ≤ 〈f, u− v〉 for all v ∈ K.

It is well known that (5.10) admits a unique solution u [30, Theorem 6.2], [24], [42], which is also
Hölder continuous [23]. The latter implies that the contact set

Λ := {u = χ} := {x ∈ Ω | u(x) = χ(x)}

and the free boundary or interface

F := ∂{u > χ} ∩ Ω

are closed in Ω. We are interested in the numerical study of these two sets. To this end, we first
approximate u by means of finite elements (see section 5.5) and, later on, we construct appropriate
a posteriori barrier sets depending on data and the finite element solution uh (see section 5.7).

Crucial facts, such as the location of Λ, are encoded in the non-positive functional σ ∈ H−1(Ω) =

H̊1(Ω)∗ defined by

(5.11) 〈σ, ϕ〉 = 〈f, ϕ〉 − 〈∇u, ∇ϕ〉 for all ϕ ∈ H̊1(Ω),

which plays the role of a multiplier for the unilateral constraint. In fact, we have σ = f + ∆χ in the
interior of the contact set Λ = {u = χ}, where σ is typically < 0, and σ = 0 in the open non-contact

set Ω \ Λ = {u > χ}.
Let χh := Ihχ be the discrete obstacle and let Ihg be the discrete Dirichlet boundary datum. The

discrete counterpart Kh of K is then

Kh := {vh ∈ Vh | vh ≥ χh in Ω and vh = Ihg on ∂Ω}.

Note that it is sufficient to check the unilateral constraint of Kh only at the nodes. The set Kh is
non-empty, convex, closed but in general not a subset of K (non-conforming approximation). The
discrete obstacle problem reads as follows:

(5.12) uh ∈ Kh : 〈∇uh, ∇(uh − vh)〉 ≤ 〈f, uh − vh〉 for all vh ∈ Kh.

Problem (5.12) admits a unique solution (use [24], [30] in the Hilbert space Vh).
To understand the issues involved in deriving sharp pointwise a posteriori error estimates, it is

revealing to consider simple one-dimensional situations. We thus resort to Figures 5.1-5.3, which were
produced with the estimators of this paper. These pictures display three meshes together with discrete
solutions (thin lines). The forbidden region below χ is shaded for ease of visualization and χh is
shown by thick lines. Our estimators control both errors u − uh in the maximum norm and σ − σh

in a negative Sobolev norm, which is altogether consistent with [47]. An optimal error estimator and
associated adaptive procedure, such as those given in this paper, should exhibit the following basic
properties:
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Figure 5.1. Localization for an obstacle with downward cusp

Figure 5.2. Localization for an oscillatory obstacle below uh

Figure 5.3. Localization for an obstacle not resolved on coarse grids

• In the discrete contact set {uh = χh} the estimator must be insensitive (apart from oscillations)
to the forcing term f , which should not dictate mesh quality. Figures 5.1 and 5.2 illustrate this
property since the meshes are rather coarse in the contact sets.

• In the non-contact set {uh > χh} the estimator must be insensitive to the obstacle and thus reduce to
the usual estimator for the Laplacian. This effect is shown in Figures 5.1 and 5.2. The refinement in
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Figure 5.1 is due to the curvature generated by f = −1 but not to the cusp of χ pointing downwards.
On the other hand, the estimator does not feel the oscillatory character of χ in Figure 5.2 because
it takes place below the discrete solution uh. Overall there is an excellent accuracy for u in the
non-contact set even though the approximation of χ is rather rough.

• The estimator must be able to detect the situation χ > uh, due to the nonconformity, and refine
accordingly. This is depicted in Figure 5.3, where the concave part of χ above uh is detected early
on and thereby the solution is lifted up.

• If σ = ∆u+ f happens to be singular with respect to the Lebesgue measure, as in Figure 5.1, then
we could expect a strong refinement near the discrete free boundary. In fact, the piecewise linear
approximation σh of σ cannot be very accurate in such a case no matter whether the corresponding
singularity in the exact solution u can be resolved in the discrete space.

• It is not advisable to preadapt the mesh according to data f and χ since the contact set in unknown
beforehand and its local mesh size should only depend on χ but not f , whereas the opposite situation
occurs in the non-contact set.

5.4.1. Discrete Full-contact Set and Multiplier. We first introduce some notation. Let Jh be the jumps
of the normal derivatives of uh across interior sides (nodes/edges/faces in 1d/2d/3d, respectively).
More precisely, given a common side S of two different simplices T+ and T−, we have on S

Jh = [[∂nuh]] =
[

∂nuh|T+ − ∂nuh|T−

]

· n,

where n is the normal of S that points from T− to T+. We denote the union of all interior sides
(inter-element boundaries) by Γ. For a node z ∈ Nh, let ωz = supp (()φz) be the finite element star
and γz = Γ ∩ int ωz be the union of all interior sides in ωz. We define

Ch = {z ∈ Nh | uh = χh and f ≤ 0 in ωz, Jh ≤ 0 on γz}

to be the set of full-contact nodes and denote by

Ω0
h =

{

x ∈ Ω |
∑

z∈Ch

φz(x) = 1
}

, Ω+
h = Ω\Ω0

h

the discrete full-contact set and its complement. Furthermore we set Γ0
h = Γ ∩ Ω0

h and Γ+
h = Γ ∩ Ω+

h .
We clearly have

(5.13) z ∈ Nh \ Ch =⇒ ωz ⊂ Ω+
h and γz ⊂ Γ+

h .

Finally, let Πh : L1(Ω) → V̊h be the interpolation operator of [14]; see also [41]. Such a Πh is both
positivity preserving, which helps construct σh ≤ 0, and second order accurate, which is crucial in
dealing with the second order maximum norm error.

With these notations at hand, we define the discrete multiplier σh ∈ H−1(Ω) by using the partition
of unity 〈σh, ϕ〉 =

∑

z∈Nh
〈σh, ϕ φz〉 and setting

(5.14)

〈σh, ϕ φz〉 =

∫

Ω0
h

f ϕφz +

∫

Γ0
h

Jhϕφz

+

∫

Ω+

h

f (Πhϕ)(z)φz +

∫

Γ+

h

Jh (Πhϕ)(z)φz

for all z ∈ Nh and ϕ ∈ H̊1(Ω). Note that Πhϕ is evaluated at the node z, and is thus a constant for
each z ∈ Nh. Therefore, (5.13) gives

(5.15) z ∈ Nh \ Ch =⇒ 〈σh, ϕ φz〉 = (Πhϕ)(z) sz ,

where sz is a nodal multiplier:

(5.16) sz :=

∫

Ω

f φz +

∫

Γ

Jhφz , z ∈ Nh.

It satisfies sz ≤ 0 whenever z ∈ N̊h ∪ Ch. This follows from the definition of Ch, if z ∈ Ch, and from

utilizing vh = uh + φz ∈ Kh in (5.12), if z ∈ N̊h.
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Lemma 5.3. The discrete multiplier σh satisfies σh ≤ 0.

Proof. Let ϕ ∈ H̊1(Ω) be non-negative. Since Πhϕ ≥ 0 in Ω and Πhϕ = 0 on ∂Ω, (5.15) implies
〈σh, ϕ φz〉 ≤ 0 for all z ∈ Nh \ Ch. On the other hand, if z ∈ Ch, then f ≤ 0 in ωz as well as Jh ≤ 0 on
γz by definition, whence 〈σh, ϕ φz〉 ≤ 0 follows from (5.14). �

The multiplier σh is not a discrete function and is thus non-computable. In evaluating our error

estimator, we will only make use of the nodal multipliers sz for z ∈ N̊h ∪ Ch. The properties of these
computable multipliers are closely related to properties of σh (see Proposition 5.5 below).

5.4.2. Galerkin Functional: Definition and Properties. We are now in the position to define the
Galerkin functional Gh ∈ H−1(Ω), which plays the role of the residual for (unconstrained) equations;
see [39, 47]:

(5.17)
〈Gh, ϕ〉 := 〈∇(u− uh), ∇ϕ〉 + 〈σ − σh, ϕ〉

= −〈∇uh, ∇ϕ〉 + 〈f − σh, ϕ〉 for all ϕ ∈ H̊1(Ω).

Integrating by parts and employing the partition of unity (φz)z∈Nh
, we obtain

〈Gh, ϕ〉 =

∫

Ω

f ϕ−

∫

Ω

∇uh∇ϕ− 〈σh, ϕ〉 =

∫

Ω

f ϕ+

∫

Γ

Jh ϕ− 〈σh, ϕ〉

=
∑

z∈Nh

{

∫

Ω

f ϕφz +

∫

Γ

Jh ϕφz −

∫

Ω0
h

f ϕφz −

∫

Γ0
h

Jh ϕφz

−

∫

Ω+

h

f (Πhϕ)(z)φz −

∫

Γ+

h

Jh (Πhϕ)(z)φz

}

=
∑

z∈Nh

{

∫

Ω+

h

f [ϕ− (Πhϕ)(z)]φz +

∫

Γ+

h

Jh [ϕ− (Πhϕ)(z)]φz

}

=

∫

Ω+

h

f
[

ϕ−
∑

z∈Nh

(Πhϕ)(z)φz

]

+

∫

Γ+

h

Jh

[

ϕ−
∑

z∈Nh

(Πhϕ)(z)φz

]

=

∫

Ω+

h

f [ϕ− Πhϕ] +

∫

Γ+

h

Jh [ϕ− Πhϕ].

This expression shows the effect of full localization of the Galerkin functional to the set Ω+
h . The

construction of σ̃h in [39] leads merely to a partial localization. The full localization of σh defined
by (5.14) is due to the notion of full-contact nodes, which was introduced in [22] so as to achieve full
localization in the context of a first order estimator. In [22, Remark 4.5] one finds also an argument
that the sign conditions on f and Jh in the definition of Ch are crucial.

To exploit further cancellation properties, we introduce the constant values

ψ̄z =







(

∫

Ω+

h

φz

)−1
∫

Ω+

h

ψ φz , if ρz = 0,

0, else,

for all z ∈ Nh and ψ ∈ L1(Ω), where

ρz :=

∫

Ω+

h

f φz +

∫

Γ+

h

Jh φz .

Note that, in view of (5.12) and (5.13), we certainly have ρz = 0 if uh(z) > χh(z) and perhaps by
chance otherwise. Setting ψ := ϕ − Πhϕ, employing again the partition of unity, and the fact that
ψ̄z ρz = 0 we can rewrite 〈Gh, ϕ〉 as follows:

〈Gh, ϕ〉 =
∑

z∈Nh

∫

Ω+

h

f [ψ − ψ̄z ]φz +

∫

Γ+

h

Jh [ψ − ψ̄z ]φz.
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For nodes z ∈ Nh with ρz = 0, the value ψ̄z is the weighted L2-projection of ψ to the constant
functions on ωz ∩ Ω+

h . Hence, we can subtract a constant from the element residual at these nodes
without altering the expression. In particular, we can write

(5.18) 〈Gh, ϕ〉 =
∑

z∈Nh

∫

ω+
z

[f − f̂z] [ψ − ψ̄z]φz +

∫

γ+
z

Jh [ψ − ψ̄z]φz ,

where

ω+
z = ωz ∩ Ω+

h , γ+
z = γz ∩ Ω+

h ,(5.19)

and

f̂z =

{

1
2

(

minω+
z
f + maxω+

z
f
)

, if ρz = 0,

0, else.
(5.20)

This shows that only the oscillation f − f̂z of the interior residual f enters in the estimators on all
stars with ρz = 0 and not f itself.

5.4.3. Galerkin Functional: Estimates. In order to bound the pointwise error ‖u − uh‖0,∞;Ω, we will
need an estimate of Gh in the dual norm

(5.21) ‖Gh‖−2,∞;Ω := sup
{

〈Gh, ϕ〉 | ϕ ∈ H̊1(Ω) ∩W 2
1 (Ω) with ‖D2ϕ‖0,1;Ω ≤ 1

}

.

Since Gh plays a similar role to the residual R in the linear theory of section 5.3, we simply collect the
estimates and refer to section 5.3 for the proofs.

Let w ∈ H̊1(Ω) be the Riesz representation of Gh,

(5.22) w ∈ H̊1(Ω) :

∫

Ω

∇w · ∇ϕ = 〈Gh, ϕ〉 for all ϕ ∈ H̊1(Ω).

The following estimate will be instrumental in section 5.5 and, compared with [39], it exhibits extra
localization and cancellation of the element residual. This results mimics Lemma 5.1.

Lemma 5.4 (Properties of w). The function w is Hölder continuous and satisfies

(5.23) ‖w‖0,∞;Ω 4 | loghmin|
2 max

z∈Nh

ηz

where hmin := minz∈Nh
hz and ηz is the star-based residual indicator

(5.24) ηz := h2
z‖(f − f̂z)φz‖0,∞;ω+

z
+ hz ‖Jh φz‖0,∞;γ+

z
,

with ω+
z , γ+

z , and f̂z defined in (5.19) and (5.20).

5.5. Error Analysis: Barriers and Localized Error Estimates. We now introduce the continu-
ous barriers u∗ (lower) and u∗ (upper), and derive a posteriori comparison estimates via the continuous

maximum principle, thereby imposing no geometric constraints on the mesh. This is in striking contrast
to existing a priori error analyses.

Given a function v, let v+ = max(v, 0) denote its non-negative part.

Proposition 5.5 (Lower barrier). Let u∗ be the function

(5.25) u∗ := uh + w − ‖w‖0,∞;Ω − ‖g − Ihg‖0,∞;∂Ω − ‖(uh − χ)+‖0,∞;Λh
,

where Λh is the contact set

(5.26) Λh :=
⋃

{ωz : z ∈ N̊h ∪ (Ch ∩ ∂Ω) and sz < 0}

with sz defined in (5.16). Then u∗ satisfies

u∗ ≤ u in Ω.
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Proof. We split the proof into four steps.
1. Since

(u∗ − u)|∂Ω ≤ (uh − u)|∂Ω − ‖g − Ihg‖0,∞;∂Ω ≤ 0,

the function v := (u∗ − u)+ satisfies

(5.27) v|∂Ω = 0.

We want to show that ‖∇v‖0,2;Ω = 0 and then use (5.27) to conclude that v = 0.
2. In view of (5.25), (5.22), (5.17), and σ ≤ 0, we can write

(5.28)
‖∇v‖2

0,2;Ω =

∫

Ω

∇(u∗ − u) · ∇v =

∫

Ω

∇(uh − u) · ∇v −

∫

Ω

∇w · ∇v

= 〈σ − σh, v〉 ≤ − 〈σh, v〉 .

It thus remains to show 〈σh, v〉 = 0, i. e. 〈σh, v φz〉 = 0 for all z ∈ Nh.
3. We now show that

sz = 0 or z ∈ (Nh ∩ ∂Ω) \ Ch =⇒ 〈σh, v φz〉 = 0.

First, consider z ∈ Ch with sz = 0. By definition of Ch, we have Jh ≤ 0 on γz and f ≤ 0 in ωz. Hence,

0 = sz =

∫

ωz

f φz +

∫

γz

Jh φz

implies in fact Jh = 0 on γz and f = 0 in ωz. This yields

〈σh, v φz〉 =

∫

ωz∩Ω0
h

f v φz +

∫

γz∩Ω0
h

Jh v φz

+ (Πhv)(z)

[

∫

ωz\Ω0
h

f φz +

∫

γz\Ω0
h

Jhφz

]

= 0.

Next, for z ∈ Nh\Ch with sz = 0, we directly obtain 〈σh, v φz〉 = 0 by (5.15). Finally, if z ∈
(Nh ∩ ∂Ω) \ Ch is a boundary node not being in full-contact, then (5.15) and (Πhv)(z) = 0 give
〈σh, v φz〉 = 0.

4. It remains to show that there is no node z ∈ N̊h ∪ Ch with 〈σh, v φz〉 < 0 and sz < 0. Suppose
that z were such a node. Then there would exist an x ∈ ωz with v(x) > 0, whence the definitions of
u∗ and Λh give

uh(x) > u(x) + ‖(uh − χ)+‖0,∞;Λh
≥ χ(x) + ‖(uh − χ)+‖0,∞;ωz

≥ uh(x).

This contradiction concludes the proof. �

Proposition 5.6 (Upper barrier). The function

(5.29) u∗ := uh + w + ‖w‖0,∞;Ω + ‖g − Ihg‖0,∞;∂Ω + ‖(χ− uh)+‖0,∞;Ω

satisfies

u ≤ u∗ in Ω.

Proof. We proceed as in Proposition 5.5, dealing with v := (u− u∗)+ ∈ H̊1(Ω) and using σh ≤ 0 from
Lemma 5.3. The crucial property 〈σ, (u− u∗)+〉 = 0 follows easily as in [39, Proposition 4.1]. �

Combining the results of Lemma 5.4 and Propositions 5.5 and ??, we can now establish an upper
a posteriori error estimate.

Theorem 5.7 (Reliability). Let (u, σ) be the continuous solution satisfying (5.10) and (5.11), and let

(uh, σh) be the discrete solution satisfying (5.12) and (5.14), respectively. Then the following global a

posteriori upper bound holds:

(5.30) max
{

‖u− uh‖0,∞;Ω, ‖σ − σh‖−2,∞;Ω

}

≤ Eh,
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where ‖ · ‖−2,∞;Ω is defined in (5.21), the error estimator Eh is given by

Eh := C∗| loghmin|
2 maxz∈Nh

ηz localized residual

+ ‖(χ− uh)+‖0,∞;Ω + ‖(uh − χ)+‖0,∞;Λh
localized obstacle approx.

+ ‖g − Ihg‖0,∞;∂Ω boundary datum approx,

C∗ is twice the geometric constant hidden in (5.23), solely depending on mesh regularity, ηz is the

star-based indicator defined in (5.24), and Λh is defined in (5.26).

Proof. Combining Propositions 5.5 and 5.6, we obtain u∗ ≤ u ≤ u∗, whence

‖u− uh‖0,∞;Ω ≤ 2‖w‖0,∞;Ω + ‖(χ− uh)+‖0,∞;Ω + ‖(uh − χ)+‖0,∞;Λh
+ ‖g − Ihg‖0,∞;∂Ω.

Lemma 5.4 then yields (5.30) for u− uh. Finally, we resort to (5.17), namely,

〈σ − σh, ϕ〉 = 〈Gh, ϕ〉 + 〈u− uh, ∆ϕ〉 for all ϕ ∈ H̊1(Ω) ∩W 2
1 (Ω),

and make use of (5.2) in conjunction with the bound above for ‖u− uh‖0,∞;Ω to derive the remaining
estimate for σ − σh. �

The latter observation is important for the establishment of lower bounds and underlines the signif-
icance of the Galerkin functional. The global upper bound of Theorem 5.7 is of optimal order because
the computable quantities therein are (locally) bounded by the combined error ‖u− uh‖0,∞;Ω + ‖σ −
σh‖−2,∞;Ω and data approximation as follows.

Theorem 5.8 (Efficiency). The following local lower bounds hold for any z ∈ Nh and T ∈ Tk:

hz‖Jhφz‖0,∞;γ+
z

4 ‖u− uh‖0,∞;ω+
z

+ ‖σ − σh‖−2,∞;ω+
z

+ h2
z‖f − f̂z‖0,∞;ω+

z
,

‖Ihg − g‖0,∞;T∩∂Ω ≤ ‖u− uh‖0,∞;T , ‖(χ− uh)+‖0,∞;T ≤ ‖u− uh‖0,∞;T ,

and, if ωz ⊂ Λh,

‖(uh − χ)+‖0,∞;ωz
4 ‖u− uh‖0,∞;ωz

+ ‖σ − σh‖−2,∞;ωz
+ h2

z‖f − f̂z‖0,∞;ωz

+ ‖(χh − χ)+‖0,∞;ωz
+ ‖ [[∂nχh]] ‖0,∞;γz

.

The proofs of these estimates are very similar to those of the corresponding lower bounds in [39, §6]
and are therefore omitted. The efficiency predicted by these estimates is corroborated computationally
in §5.6.

5.6. Numerical Experiments I: Pointwise Error. In this section we present a couple of insightful
examples computed with the finite element toolbox ALBERTA of Schmidt and Siebert [43]. This code
implements a bisection algorithm for refinement and thus guarantees mesh regularity.

The factor C∗| loghmin| of Theorem 5.7 is in practice replaced by C∗ = 0.02. This choice is consistent
with (5.30) for meshes with reasonable shape-regularity and moderate hmin. For the computation of the
maximum norm, functions are evaluated at the element Lagrange nodes corresponding to polynomials
of degree 7. The marking strategy for refinement is based on the maximum norm criterion.

5.6.1. Madonna’s Obstacle: Reliability and Efficiency. Let Ω := (−1, 1)2 and the obstacle χ be the
upward cone with tip at x0 = ( 3

8 ,
3
8 ) and slope m = 1.8:

χ(x) = 1 −m|x− x0|.

The exact solution is radially symmetric with respect to x0, vanishes at |x − x0| = 1
m and has a first

order contact with the obstacle at |x − x0| = 1
2m ; this corresponds to height 1

2 (see Figure 5.4). The
obstacle is thus singular within the contact set, due to the upward tip, which leads to local refinement.
Several meshes are displayed in Figure 5.9 below.

Since we know the exact solution u, this example allows for a precise computational study of
the estimator Eh. Figure 5.5 displays both Eh and ‖u − uh‖0,∞;Ω versus the number of degrees of
freedom (DOFs), and clearly demonstrates the equivalence between them. This result is consistent
with Theorems 5.7 (reliability) and 5.8 (efficiency), and confirms their optimality.
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Figure 5.4. Madonna’s obstacle: graph and grid of the discrete solution for adaptive
iteration 14.
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Figure 5.5. Madonna’s obstacle: equivalence of estimator Eh and true pointwise
error ‖u−uh‖0,∞;Ω. The optimal decay is indicated by the dotted line with slope −1.

5.6.2. Pyramid Obstacle: Full Localization. We now consider the same pyramid obstacle as in [39,
§7.4], namely

χ(x) := dist(x, ∂Ω) − 1
5 ,

f = −5 and g = 0 on the square domain Ω := {x | |x|1 < 1}; see Figure 5.6. We show the dramatic
effect of full localization of Eh in Figure 5.7, which exhibits coarse meshes within the full-contact set
(bottom row) in striking contrast to recent results from [39] (top row). In addition, the new estimator
is sharper with respect to the maximum norm than that in [39], and thus yields much fewer DOFs for
about the same accuracy.

5.7. Free Boundary Approximation: A Posteriori Barrier Sets. The error in the approxima-
tion of σ is related to some ‘weak distance’ of the exact contact set Λ and an appropriate approximation;
cf. [47, Remark 3.2]. However, the fact that the estimator Eh controls the pointwise error ‖u−uh‖0,∞;Ω

allows in certain situations for more accurate a posteriori information on Λ and also on the exact free
boundary (or interface) F . This topic is the main concern of this section.

We consider the situation when one knows λ > 0 such that

〈f, ϕ〉 − 〈∇χ, ∇ϕ〉 ≤ −λ

∫

Ω

ϕ(5.31)
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Figure 5.6. Pyramid obstacle: graph with grid of the discrete solution over the
obstacle for adaptive iteration 10, displaying lack of refinement along the diagonals
inside the full-contact set (effect of full localization).

iteration 00

step = 0, DOFs = 5

estimate = 0.0755

step = 6, DOFs = 829

estimate = 0.0058

step = 17, DOFs = 14869
iteration 00

step = 0, DOFs = 5

iteration 05

step = 5, DOFs = 381

iteration 10

step =10, DOFs = 3 073

Figure 5.7. Pyramid obstacle: Comparison of grids obtained with the partially lo-
calized estimator of [39] (top) and the fully localized estimator (bottom). The meshes
on the same column correspond to about the same value of the estimator, whereas
the number of degrees of freedom (DOFs) are much reduced with the new approach.
The benefits of full localization are apparent since the refinement on the diagonals in
contact is avoided.
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for all ϕ ∈ H̊1(Ω) with ϕ ≥ 0. Condition (5.31) guarantees stability of the exact free boundary F and
is due to Caffarelli [12]; see also [24, §2.10]. Moreover, (5.31) implies

(5.32) sup
B(x;r)

(u− χ) ≥ u(x) − χ(x) +
λr2

2d

for any x ∈ {u > χ} and any r > 0 such that B(x; r) ⊂ Ω. Its proof proceeds along the same lines as
that of Lemma 3.1 in [24, Chapter 2].

Let us define K := {dist(·, ∂Ω) ≥ rh} and the barrier sets

(5.33) Λ∗ := {uh ≤ χ+ Eh}, Λ∗ :=
{

dist
(

·, {uh ≥ χh + Eh}
)

≥ rh

}

,

where

(5.34) r2h :=
2d

λ

(

2Eh + ‖(χh − χ)+‖0,∞;{uh≤χh+Eh}

)

.

The following result, based on Theorem 5.7 and (5.32), locates the exact contact set Λ and the free
boundary F a posteriori.

Theorem 5.9 (A posteriori control of contact set and interface). The set Λ∗ is an upper barrier set for

the exact contact set Λ = {u = χ}, i. e. Λ ⊂ Λ∗.

Moreover, if the stability condition (5.31) holds, then the set Λ∗ is a lower barrier set for Λ in the

sense that Λ∗ ∩K ⊂ Λ ∩K, whence

F ∩K ⊂
(

Λ∗ ∩K
)

\ int
(

Λ∗ ∩K
)

.

Remark 5.10 (Conditioning). In the light of (5.32), λ dictates the quadratic growth of u − χ in the

non-contact set away from the free boundary F and so: the larger λ the more stable F , that is λ acts

as a measure of conditioning of the free boundary. Correspondingly, the thicknesses of the strips Ω\K
and

(

Λ∗ ∩K
)

\ int
(

Λ∗ ∩K
)

depend inversely on λ.

Remark 5.11 (Existence of exact interface). Suppose that condition (5.31) holds. Then Λ∗ ∩K 6= ∅
implies Λ 6= ∅. Moreover, Λ∗ ∩K 6= ∅ and Ω \ Λ∗ 6= ∅ imply F 6= ∅.

Proof of Theorem 5.9. We first prove Λ ⊂ Λ∗. We use Theorem 5.7 with x ∈ Λ

uh(x) = u(x) +
[

uh(x) − u(x)
]

≤ χ(x) + Eh

to deduce x ∈ Λ∗. We next prove Λ∗ ∩K ⊂ Λ ∩K provided that (5.31) holds. Let x ∈ Λ∗ ∩K and
suppose that

(5.35) u(x) > χ(x).

Then, the definition of Λ∗ in (5.33) implies that

(5.36) uh ≤ χh + Eh in B(x; rh)

holds and (5.32) yields

(5.37) sup
B(x;rh)

(u− χ) >
λr2h
2d

.

Consequently, Theorem 5.7, (5.34), and (5.37) give for some point y ∈ B(x; rh):

uh(y) = u(y) +
[

uh(y) − u(y)
]

> χ(y) +
λr2h
2d

− Eh

= χ(y) + 2Eh + ‖(χh − χ)+‖0,∞;{uh≤χh+Eh} − Eh ≥ χh(y) + Eh.

This contradicts (5.36) and so (5.35) is false. Consequently, x ∈ Λ as asserted. �
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Remark 5.12 (Estimate in distance). We stress that Theorem 5.9 relies solely on (5.32) and not on

estimating the measure of {0 < u − χ < ε}, the so-called non-degeneracy property of Caffarelli [12].
This leads, in the a priori error analysis for χ = χh, to estimates in measure for the discrete free

boundary relative to F [6, 36]. Bounds in distance require regularity of F [6, 19, 36]. We locate here

F relative to

Fh = ∂{uh > χh + Eh} ∩ Ω.

This dual approach yields estimates in distance without regularity assumptions on the exact free bound-

ary F .

Remark 5.13 (Computation of effective condition number). Statement (5.36) reveals that (5.31) is

needed in the proof of Theorem 5.9 only for positive test functions ϕ with supp (ϕ) ⊂ {uh ≤ χh + Eh}.
Therefore, if χ ∈ H2(Ω), one can adaptively compute the condition number λ by

λ = − sup
{uh≤χh+Eh}

(f + ∆χ).

5.8. Numerical Experiments II: Free Boundaries. In this section we present several numerical
experiments illustrating the impact of the a posteriori barrier sets in §5.7 on the numerical study of
exact free boundaries.

5.8.1. Madonna’s Obstacle: Reliability and Efficiency. Let us reconsider the example from §5.6.1, this
time focusing on the approximation of the exact free boundary F = {x ∈ Ω | |x−x0| = 1

2m}. The condi-
tion number λ which enters the definition of rh in (5.34), and thus the one of Λ∗, is computed according
to Remark 5.13. Figure 5.8 depicts the true distance dist(F ,Fh) between F and Fh = ∂{uh > χh+Eh}
together with rh versus the number of DOFs; the number rh essentially measures the gap between the
two barrier sets. Both quantities decay with optimal order. Their behavior corroborates the reliability
statement of Theorem 5.9 and, furthermore, reveals nice efficiency properties of rh, which are not
explained by the theory of section 5.7. Note also that, for the final computations the two barrier sets
are quite close: rh ≈ 0.02. The grids and interface barriers in Figure 5.9 illustrate different stages in
the information about the exact free boundary: the very coarse grid of the first column only indicates
a possible exact free boundary; the still quite coarse grid of the second column assures the existence of
the free boundary within the a posteriori annulus Λ∗\Λ∗ (see Remark 5.11), and suggests that it might
be a circle; the latter is further confirmed by the finer grid of the third column and corresponding
better interface resolution.
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100
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Figure 5.8. Madonna’s obstacle: equivalence of dist(F ,Fh) and the distance rh of
the barriers. The optimal decay is indicated by the dotted line with slope −1/2.
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iteration 01, estimate = 9.335101e-01 iteration 06, estimate = 5.535714e-02 iteration 13, estimate = 3.438965e-03

rh = 1.67e+00, lambda = 2.67e+00, est = 9.3351e-01rh = 2.88e-01, lambda = 5.33e+00, est = 5.5357e-02rh = 6.47e-02, lambda = 6.58e+00, est = 3.4390e-03

Figure 5.9. Madonna’s obstacle: grids and interface barriers obtained by the adap-
tive algorithm in steps 1, 6, and 13.

5.8.2. From Balls to Bones. We consider the domain Ω = (−2, 2)× (−1, 1)d−1, boundary value g = 0,
several constant loads f , and the smooth obstacle

(5.38) χ(x) = α− β(x2
1 − 1)2 − γ(|x|2 − x2

1)

with α = 10, β = 6, γ = 20 in 2d, and α = 5, β = 6, and γ = 30 in 3d. In 2d the graph of the obstacle
consists of two hills connected by a saddle.

Tolerance Interval for fcrit

τ ≈ 0.5 (−3.3,−17.0)
τ ≈ 0.1 (−5.1,−9.5)
τ ≈ 0.05 (−5.5,−8.8)
τ ≈ 0.01 (−5.9,−8.1)
τ ≈ 0.005 (−6.0,−7.3)
τ ≈ 0.001 (−6.5,−6.9)

Tolerance Interval for fcrit

τ ≈ 0.5 (−8.0,−21.0)
τ ≈ 0.25 (−8.5,−15.1)
τ ≈ 0.1 (−9.3,−13.9)

Table 5.1. From balls to bones: A posteriori control of the interval containing fcrit

for different tolerances in 2d (left) and 3d (right).

In what follows, “barrier sets for tolerance ≈ τ” (> 0) denote those barrier sets which are constructed
in the first adaptive iteration with Eh ≤ τ . The left column in Figure 5.10 illustrates the interface
barriers for four constant loads f = 0,−5.9,−8.1,−15 in 2d for about the same tolerance τ ≈ 0.01; the
exterior curves correspond to ∂Λ∗ whereas the interior curves display ∂Λ∗. For f = 0, the contact set
does not contain the saddle, whereas, for f = −15, it does. This happens because the solution, being
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rh = 3.89e-02, lambda = 3.53e+01, est = 6.5613e-03iteration 07, estimate = 1.459996e-01

rh = 5.52e-02, lambda = 4.07e+01, est = 1.4087e-02iteration 07, estimate = 1.624851e-01

rh = 4.38e-02, lambda = 4.28e+01, est = 9.9237e-03iteration 08, estimate = 1.081013e-01

rh = 3.81e-02, lambda = 4.92e+01, est = 8.5809e-03iteration 08, estimate = 1.086316e-01

Figure 5.10. From balls to bones: Interface barriers for tolerance ≈ 0.01 (left) and
adaptive grids for tolerance ≈ 0.15 (right) in 2d for forcing term f = 0,−5.9,−8.1,−15
(from top to bottom). The distance of the barriers is ≈ 0.05 for all four forces.

pushed down by f , adheres longer to the obstacle. During the transition between these two extreme
cases, the free boundary has a singular point, namely a “double-cusp” at the origin, for some critical
value fcrit. The barrier sets constructed in section 5.7 from the discrete solution and the estimator give
a reliable range for fcrit: as long as Λ∗ does not contain the saddle and Λ∗ 6= ∅, the true contact set Λ
exists and does not contain the saddle; this happens for 0 ≥ f > −5.9. For f < −8.1, the lower barrier
Λ∗ contains the saddle and exhibits a dumbbell shape, and so does Λ; hence, fcrit ∈ (−5.9,−8.1). The
size of this interval depends on the size of the estimator Eh and decreases for smaller values of Eh,
as documented in Table 5.1. Although the true interface develops a singularity, it is worth noticing
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Figure 5.11. From balls to bones: Upper barrier ∂Λ∗ ∩ Ω and adaptive grids in 3d
for tolerance ≈ 0.25 and f = 0,−9.3,−13.9. The distance of the barriers is ≈ 0.1 for
all three forces.

that u ∈ W 2
∞(Ω) and thus no special refinement is needed to approximate either u (or σ). Moreover,

f + ∆χ ≤ −16 in Ω for the 4 loads, which shows that the double-cusp is not due to lack of stability.
The interface estimate of Theorem 5.9 thus applies and provides a posteriori error control of the entire
free boundary including the double-cusp.

A similar situation occurs in 3d, as depicted in Figure 5.11, for tolerance ≈ 0.25 and values f =
0,−9.3,−13.9. These pictures as well as Figure 5.4 were created using the graphics package GRAPE
[27]. For tolerance ≈ 0.25, we can predict that a double-cusp forms for fcrit ∈ (−9.3,−13.9). The
interval for other tolerances is shown in Table 5.1.
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5.9. Exercises.

5.9.1. Exercise: The Logarithmic Factor. Let −∆G = δx0
be the Green’s function satisfying G = 0 on

∂Ω. Prove that
‖∇(G−Gh)‖L1(Ω) ≥ inf

ϕ∈Vh

‖∇G− ϕ‖L1(Ω) ≥ Ch| log h|,

where Vh is the space of piecewise constant vector-valued functions over Th. This partially explains the
presence of a logarithmic factor in the maximum norm error estimates, which is due to the fact that
P 1 finite elements cannot approximate the Green’s function singularity with optimal accuracy. Hint:
Decompose Th into the disjoint sets Ai := {T ∈ Th : ih ≤ dist (T, x0) < (i + 1)h}, use the properties
|D2G(x)| ≈ 1/|x − x0|n and |D3G(x)| ≈ 1/|x − x0|d+1, and Taylor’s formula within each element
T ∈ Ai to estimate ∇G − ϕ; here ≈ means equivalence. Upon realizing that card (Ai) ≤ Cid−1, add
on i.

5.9.2. Exercise: Star Estimator. Derive an H1 upper a posteriori error estimate in terms of star
estimators such as ηz .

5.9.3. Exercise: Positivity Preserving Interpolation. The construction of the operator Πh is rather
tricky snce the usual interpolation operators of Clement and Scott-Zhang do not preserve positivity.
Given an interior node z ∈ N̊h, let Bz be the largest ball contained in ωz. Given a function v ≥ 0 let

vz =
1

|B|

∫

B

v,

and
Πhv :=

∑

z∈N̊h

vzφz.

Show that Πhv ≥ 0, that Πh is a local operator, and that (1.22) is valid with t = 0, 1 and s = 2.
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