Center for Nonlinear Analysis
CNA Home
People
Seminars
Publications
Workshops and Conferences
CNA Working Groups
CNA Comments Form
Summer Schools
Summer Undergraduate Institute
PIRE
Cooperation
Graduate Topics Courses
SIAM Chapter Seminar
Positions
Contact |
Seminar Abstracts
Mohammad Reza Pakzad, Department of Mathematics, University of British Columbia."Rigidity and Regularity properties of Sobolev isometric immersions" Abstract
There are several motivations to study the isometric immersions with Sobolev type regularity of say an -dimensional domain into a given Euclidean space. One motivation is geometrical. It is well known that isometric immersions have a good classification and enjoy strong rigidity properties while the celebrated results of Nash and Kuiper show that isometric immersions can be much more complicated (e.g. the image of can be contained in an arbitrarily small ball). One may consider now the Sobolev classes of maps which lie somewhat in between. On the other hand, spaces of this type arise in the elasticity theory of plates, first formulated by Kirchhoff, and give rise to new questions which can be formulated for higher dimensional sheets. The main example disussed in this talk is the space of isometric immersions from a two dimensional domain to which are in the Sobolev class , i.e. is in . THURSDAY, December 2, 2004 |