Aubry-Mather Theory for PDEs

Timothy Blass

CNA Seminar
Carnegie Mellon University

4 October 2011
A function \(u \in H^1(\mathbb{R}^d, \mathbb{R}) \) is a minimizer for a formal energy

\[
S(u) = \int_{\mathbb{R}^d} F(x, u, \nabla u) \, dx
\]

if for all compactly supported \(\varphi \in H^1(\mathbb{R}^d, \mathbb{R}) \)

\[
\int_{\text{supp}(\varphi)} F(x, u + \varphi, \nabla (u + \varphi)) - F(x, u, \nabla u) \, dx \geq 0.
\]

Assumptions: \(F \) is smooth, \(F(x + k, y + l, p) = F(x, y, p) \) for all \((k, l) \in \mathbb{Z}^{d+1} \), and satisfies growth and convexity requirements in \(p \), so that the Euler-Lagrange equation for \(S \) is elliptic.
A function $u \in H^1(\mathbb{R}^d, \mathbb{R})$ is a minimizer for a formal energy

$$S(u) = \int_{\mathbb{R}^d} F(x, u, \nabla u) \, dx$$

if for all compactly supported $\varphi \in H^1(\mathbb{R}^d, \mathbb{R})$

$$\int_{\text{supp}(\varphi)} F(x, u + \varphi, \nabla (u + \varphi)) - F(x, u, \nabla u) \, dx \geq 0.$$

Assumptions: F is smooth, $F(x + k, y + l, p) = F(x, y, p)$ for all $(k, l) \in \mathbb{Z}^{d+1}$, and satisfies growth and convexity requirements in p, so that the Euler-Lagrange equation for S is elliptic.
A continuous \(u : \mathbb{R}^d \to \mathbb{R} \) is a Birkhoff function if

\[
u(x - k) + j - u(x) \leq 0 \quad \text{or} \quad \geq 0
\]

depending on \((k, j) \in \mathbb{Z}^{d+1}\) but independent of \(x\).

If \(u\) is a Birkhoff minimizer, then there is a \(\omega \in \mathbb{R}^d \) such that

\[
\sup_{x \in \mathbb{R}^d} |u(x) - \omega \cdot x| < \infty
\]

Theorem (Moser, ’86)

For each \(\omega \in \mathbb{R}^d \) there is a Birkhoff minimizer \(u \) with slope \(\omega \).

\[
\mathcal{M}_\omega = \{ u \mid u \text{ is Birkhoff minimizer of } S \text{ with slope } \omega \} \neq \emptyset
\]
A continuous $u : \mathbb{R}^d \to \mathbb{R}$ is a Birkhoff function if

$$u(x - k) + j - u(x) \leq 0 \quad \text{or} \quad \geq 0$$

depending on $(k, j) \in \mathbb{Z}^{d+1}$ but independent of x.

If u is a Birkhoff minimizer, then there is a $\omega \in \mathbb{R}^d$ such that

$$\sup_{x \in \mathbb{R}^d} |u(x) - \omega \cdot x| < \infty$$

Theorem (Moser, ’86)

For each $\omega \in \mathbb{R}^d$ there is a Birkhoff minimizer u with slope ω.

$\mathcal{M}_\omega = \{ u \mid u \text{ is Birkhoff minimizer of } S \text{ with slope } \omega \} \neq \emptyset$
Birkhoff Minimizers and Average Slope

- A continuous $u : \mathbb{R}^d \rightarrow \mathbb{R}$ is a Birkhoff function if

$$u(x - k) + j - u(x) \leq 0 \text{ or } \geq 0$$

depending on $(k, j) \in \mathbb{Z}^{d+1}$ but independent of x.

- If u is a Birkhoff minimizer, then there is a $\omega \in \mathbb{R}^d$ such that

$$\sup_{x \in \mathbb{R}^d} |u(x) - \omega \cdot x| < \infty$$

Theorem (Moser, ’86)

For each $\omega \in \mathbb{R}^d$ there is a Birkhoff minimizer u with slope ω.

$$\mathcal{M}_\omega = \{u \mid u \text{ is Birkhoff minimizer of } S \text{ with slope } \omega\} \neq \emptyset$$
The average energy of Birkhoff minimizers depends only on the slope:

$$E(\omega) = \lim_{r \to \infty} \frac{1}{|B_r|} \int_{B_r} F(x, u, \nabla u) \, dx, \quad u \in \mathcal{M}_\omega$$

The differentiability of $E(\omega)$ depends on the structure of \mathcal{M}_ω.

A crystal $W \subset \mathbb{R}^3$ can be modeled as a set that minimizes surface energy, ϕ, for a fixed volume:

$$\min_W \int_{\partial W} \phi(\nu(x)) \, dx, \quad \text{vol}(W) = \text{const},$$

where

$$\phi(\nu) = \frac{1}{|\nu|} E(\omega), \quad \nu = (\omega, -1).$$
The average energy of Birkhoff minimizers depends only on the slope:

$$E(\omega) = \lim_{r \to \infty} \frac{1}{|B_r|} \int_{B_r} F(x, u, \nabla u) \, dx, \quad u \in M_\omega$$

The differentiability of $E(\omega)$ depends on the structure of M_ω.

A crystal $W \subset \mathbb{R}^3$ can be modeled as a set that minimizes surface energy, ϕ, for a fixed volume:

$$\min_W \int_{\partial W} \phi(\nu(x)) \, dx, \quad \text{vol}(W) = \text{const},$$

where

$$\phi(\nu) = \frac{1}{|\nu|} E(\omega), \quad \nu = (\omega, -1).$$
Specific Form of S

- $Au = -\text{div}(a(x) \nabla u)$

$$S(u) = \int_{\mathbb{R}^d} \frac{1}{2} (Au) u + V(x, u) \, dx = \int_{\mathbb{R}^d} \frac{1}{2} (a(x) \nabla u) \cdot \nabla u + V(x, u) \, dx$$

V is \mathbb{Z}^{d+1}-periodic, and $a(x)$ is symmetric, positive definite and \mathbb{Z}^d-periodic.

- Minimizing surfaces satisfy the elliptic PDE

$$-Au = V_u(x, u).$$
Specific Form of S

- $Au = -\text{div}(a(x)\nabla u)$

$$S(u) = \int_{\mathbb{R}^d} \frac{1}{2} (Au) u + V(x, u) \, dx = \int_{\mathbb{R}^d} \frac{1}{2} (a(x)\nabla u) \cdot \nabla u + V(x, u) \, dx$$

V is \mathbb{Z}^{d+1}-periodic, and $a(x)$ is symmetric, positive definite and \mathbb{Z}^d-periodic.

- Minimizing surfaces satisfy the elliptic PDE

$$-Au = V_u(x, u).$$
Fix $\omega \in \frac{1}{N}\mathbb{Z}^d$ and look for N-periodic Birkhoff minimizers of S of the form $u(x) = \omega \cdot x + z(x)$.

This reduces to minimizing

$$S_N(u) = \int_{[0,N]^d} \frac{1}{2} (Au)u + V(x,u(x)) \, dx$$

where $u(x) = \omega \cdot x + z(x)$ and $z(x + k) = z(x)$ for all $k \in N\mathbb{Z}^d$.

S_N is called a reduced functional, and minimizers satisfy

$$\text{div}(a(x) \nabla u) = V_u(x,u), \quad z(x + k) = z(x) \forall k \in N\mathbb{Z}^d.$$

This is a cell problem for $z(x)$.
The Reduced Functional

- Fix $\omega \in \frac{1}{N}\mathbb{Z}^{d}$ and look for N-periodic Birkhoff minimizers of S of the form $u(x) = \omega \cdot x + z(x)$.

- This reduces to minimizing

$$S_N(u) = \int_{[0,N]^d} \frac{1}{2} (Au)u + V(x,u(x)) \, dx$$

where $u(x) = \omega \cdot x + z(x)$ and $z(x + k) = z(x)$ for all $k \in N\mathbb{Z}^{d}$.

- S_N is called a reduced functional, and minimizers satisfy

$$\text{div}(a(x) \nabla u) = V_u(x,u), \quad z(x + k) = z(x) \quad \forall k \in N\mathbb{Z}^{d}.$$

This is a cell problem for $z(x)$.

Timothy Blass (CMU)
Aubry-Mather for PDE
4 October 2011
The Reduced Functional

- Fix $\omega \in \frac{1}{N} \mathbb{Z}^d$ and look for N-periodic Birkhoff minimizers of S of the form $u(x) = \omega \cdot x + z(x)$.

- This reduces to minimizing

$$S_N(u) = \int_{[0,N]^d} \frac{1}{2} (Au)u + V(x, u(x)) \, dx$$

where $u(x) = \omega \cdot x + z(x)$ and $z(x + k) = z(x)$ for all $k \in N\mathbb{Z}^d$.

- S_N is called a reduced functional, and minimizers satisfy

$$\text{div}(a(x) \nabla u) = V_u(x, u), \quad z(x + k) = z(x) \quad \forall \ k \in N\mathbb{Z}^d.$$

This is a cell problem for $z(x)$.
For $\gamma > 0$, fractional powers of $\gamma I + A$ are defined as

$$ (\gamma I + A)^{-\beta} = C_\beta \int_0^\infty t^{\beta-1} e^{-t(\gamma I + A)} dt $$

$H_{\gamma,A}^{\beta}$ is defined as

$$ H_{\gamma,A}^{\beta}(\mathbb{T}^d) = \{ u \in H^0(\mathbb{T}^d) : \langle (\gamma I + A)^\beta u, u \rangle_0 < \infty \} $$

with the inner product

$$ \langle u, v \rangle_\beta = \langle (\gamma I + A)^\beta u, v \rangle_0. $$
The Sobolev Spaces $H_{\gamma,A}^\beta$

- For $\gamma > 0$, fractional powers of $\gamma I + A$ are defined as
 \[
 (\gamma I + A)^{-\beta} = C_\beta \int_0^\infty t^{\beta-1} e^{-t(\gamma I + A)} \, dt
 \]

- $H_{\gamma,A}^\beta$ is defined as
 \[
 H_{\gamma,A}^\beta(NT^d) = \{ u \in H^0(NT^d) : \langle (\gamma I + A)^\beta u, u \rangle_0 < \infty \}
 \]

 with the inner product
 \[
 \langle u, v \rangle_\beta = \langle (\gamma I + A)^\beta u, v \rangle_0.
 \]
\[DS_N(u)\eta = \langle \nabla_0 S_N(u), \eta \rangle_0 \]
\[= \langle Au + V_u(x, u), \eta \rangle_0 \]
\[= \langle (\gamma I + A)^\beta (\gamma I + A)^{-\beta} (Au + V_u(x, u)), \eta \rangle_0 \]
\[= \langle (\gamma I + A)^{-\beta} (\gamma u + Au - \gamma u + V_u(x, u)), \eta \rangle_\beta \]
\[= \langle (\gamma I + A)^{1-\beta} u - (\gamma I + A)^{-\beta} (\gamma u - V_u(x, u)), \eta \rangle_\beta \]
\[= \langle \nabla_\beta S_N(u), \eta \rangle_\beta \]

The descent equation \(\partial_t u = -\nabla_\beta S_N(u) \) is

\[\partial_t u = -(\gamma I + A)^{1-\beta} u + (\gamma I + A)^{-\beta} (\gamma u - V_u(x, u)) \]
$DS_N(u)\eta = \langle \nabla_0 S_N(u), \eta \rangle_0$
\[= \langle Au + V_u(x, u), \eta \rangle_0 \]
\[= \langle (\gamma I + A)^\beta (\gamma I + A)^{-\beta} (Au + V_u(x, u)), \eta \rangle_0 \]
\[= \langle (\gamma I + A)^{-\beta} (\gamma u + Au - \gamma u + V_u(x, u)), \eta \rangle_\beta \]
\[= \langle (\gamma I + A)^{1-\beta} u - (\gamma I + A)^{-\beta} (\gamma u - V_u(x, u)), \eta \rangle_\beta \]
\[= \langle \nabla_\beta S_N(u), \eta \rangle_\beta \]

The descent equation $\partial_t u = -\nabla_\beta S_N(u)$ is

$\partial_t u = - (\gamma I + A)^{1-\beta} u + (\gamma I + A)^{-\beta} (\gamma u - V_u(x, u))$
The Descent Equation: $\partial_t u = -\nabla_\beta S_N(u)$

Theorem (B., de la Llave, Valdinoci)

If $u(t, x)$ and $w(t, x)$ are solutions to the gradient descent equation

$$\partial_t u = -(\gamma + A)^{1-\beta} u + (\gamma + A)^{-\beta} (\gamma u - V_u(x, u))$$

for initial conditions $u_0, w_0 \in L^\infty(N^\mathbb{T}^d)$, with $\beta \in [0, 1]$, $\gamma > \sup |V_{uu}|$, $V \in C^3$, $u_0(x) \geq w_0(x)$ for a.e. x, then $u(t, x) \geq w(t, x)$ for all $t > 0$ and a.e. $x \in N^\mathbb{T}^d$. In particular, if $u_0(x) = \omega \cdot x + z_0(x)$ is a Birkhoff function, then $u(t, x) = \omega \cdot x + z(t, x)$ is Birkhoff for each $t > 0$.
We rewrite gradient as $-\nabla_\beta S(u) = Lu + X(u)$

\[L := -(\gamma I + A)^{1-\beta}, \quad X(u) := (\gamma I + A)^{-\beta} (\gamma u - V_u(x,u)). \]

Mild solutions of $\partial_t u = Lu + X(u)$ satisfy

\[u(t,x) = e^{tL}u_0(x) + \int_0^t e^{(t-\tau)L}X(u(\tau,x))d\tau. \]

Smoothing estimates for e^{tL}, X and Moser estimates show that solutions exist for bounded initial data and gain regularity.

\[\|e^{tL}\|_{L(H^s,H^{s+2\alpha(1-\beta)})} \leq c_\alpha t^{-\alpha}, \quad \|V(x,u)\|_{H^r} \leq c_r|V|_{C^r}(1 + \|u\|_{H^r}). \]
We rewrite gradient as $-\nabla_\beta S(u) = Lu + X(u)$

$L := -(\gamma I + A)^{1-\beta}, \quad X(u) := (\gamma I + A)^{-\beta} (\gamma u - V_u(x,u))$.

Mild solutions of $\partial_t u = Lu + X(u)$ satisfy

$$u(t,x) = e^{tL}u_0(x) + \int_0^t e^{(t-\tau)L}X(u(\tau,x))d\tau.$$

Smoothing estimates for e^{tL}, X and Moser estimates show that solutions exist for bounded initial data and gain regularity.

$$\|e^{tL}\|_{\mathcal{L}(H^s,H^{s+2\alpha(1-\beta)})} \leq c_\alpha t^{-\alpha}, \quad \|V(x,u)\|_{H^r} \leq c_r |V|_{C^r}(1 + \|u\|_{H^r}).$$
We rewrite gradient as $-\nabla_\beta S(u) = Lu + X(u)$

\[
L := -(\gamma I + A)^{1-\beta}, \quad X(u) := (\gamma I + A)^{-\beta} (\gamma u - V_u(x, u)).
\]

Mild solutions of $\partial_t u = Lu + X(u)$ satisfy

\[
u(t, x) = e^{tL}u_0(x) + \int_0^t e^{(t-\tau)L}X(u(\tau, x))d\tau.
\]

Smoothing estimates for e^{tL}, X and Moser estimates show that solutions exist for bounded initial data and gain regularity.

\[
\|e^{tL}\|_{\mathcal{L}(H^s, H^{s+2\alpha(1-\beta)})} \leq c_\alpha t^{-\alpha}, \quad \|V(x, u)\|_{H^r} \leq c_r |V|_{C^r} (1 + \|u\|_{H^r}).
\]
If \(u \geq w \) and \(\gamma > \sup |V_{uu}| \) then \(\gamma u - V_u(x, u) \geq \gamma w - V_u(x, w) \).

\[
(\gamma I + A)^{-\beta} = C_\beta \int_0^\infty \tau^{\beta-1} e^{-\tau(\gamma I + A)} d\tau
\]

implies \((\gamma I + A)^{-\beta} u \geq (\gamma I + A)^{-\beta} w \) when \(u \geq w \), and \(X(u) \geq X(w) \) follows.

The Bochner identity

\[
e^{tL} = \int_0^\infty \phi(t, \beta, \tau) e^{-\tau(\gamma I + A)} d\tau, \quad \phi(t, \beta, \tau) > 0 \ \forall \ \tau > 0
\]

gives \(e^{tL} u \geq e^{tL} w \) when \(u \geq w \).
Sketch of Proof: Comparison

If \(u \geq w \) and \(\gamma > \sup |V_{uu}| \) then \(\gamma u - V_u(x, u) \geq \gamma w - V_u(x, w) \).

\[
(\gamma I + A)^{-\beta} = C_{\beta} \int_0^\infty \tau^{\beta-1} e^{-\tau(\gamma I+A)} d\tau
\]

implies \((\gamma I + A)^{-\beta} u \geq (\gamma I + A)^{-\beta} w \) when \(u \geq w \), and \(X(u) \geq X(w) \) follows.

The Bochner identity

\[
e^{tL} = \int_0^\infty \phi(t, \beta, \tau)e^{-\tau(\gamma I+A)} d\tau, \quad \phi(t, \beta, \tau) > 0 \ \forall \ \tau > 0
\]

gives \(e^{tL}u \geq e^{tL}w \) when \(u \geq w \).
Sketch of Proof: Iteration and Extension

If $u \geq w$ then $e^{(t-\tau)L}X(u(\tau, x)) \geq e^{(t-\tau)L}X(w(\tau, x))$.

If $u_0(x) \geq w_0(x)$ then $u^j(t, x) \geq w^j(t, x)$, where

$$ u^{j+1}(t, x) = e^{tL}u_0(x) + \int_0^t e^{(t-\tau)L}X(u^j(\tau, x))d\tau, \quad u^0(t, x) = e^{tL}u_0(x). $$

$u^{j+1}(t, x)$ converges to solution of $\partial_t u = Lu + X(u)$.

The method generalizes to energies of the form

$$ S(u) = \int_{\mathbb{R}^d} \frac{1}{2} (A^\alpha u)u + V(x, u) \, dx, \quad \alpha \in (0, 1) $$

where equilibrium solutions solve

$$ -A^\alpha u = V_u(x, u). $$
If $u \geq w$ then $e^{(t-\tau)L}X(u(\tau,x)) \geq e^{(t-\tau)L}X(w(\tau,x))$.

If $u_0(x) \geq w_0(x)$ then $u^j(t,x) \geq w^j(t,x)$, where

$$u^{j+1}(t,x) = e^{tL}u_0(x) + \int_0^t e^{(t-\tau)L}X(u^j(\tau,x))d\tau, \quad u^0(t,x) = e^{tL}u_0(x).$$

$u^{j+1}(t,x)$ converges to solution of $\partial_t u = Lu + X(u)$.

The method generalizes to energies of the form

$$S(u) = \int_{\mathbb{R}^d} \frac{1}{2}(A^\alpha u)u + V(x,u) \, dx, \quad \alpha \in (0, 1)$$

where equilibrium solutions solve

$$-A^\alpha u = V_u(x,u).$$
Sketch of Proof: Iteration and Extension

If \(u \geq w \) then \(e^{(t-\tau)LX}(u(\tau, x)) \geq e^{(t-\tau)LX}(w(\tau, x)) \).

If \(u_0(x) \geq w_0(x) \) then \(u^j(t, x) \geq w^j(t, x) \), where

\[
 u^{j+1}(t, x) = e^{tL}u_0(x) + \int_0^t e^{(t-\tau)LX}(u^j(\tau, x))d\tau, \quad u^0(t, x) = e^{tL}u_0(x).
\]

\(u^{j+1}(t, x) \) converges to solution of \(\partial_t u = Lu + X(u) \).

The method generalizes to energies of the form

\[
 S(u) = \int_{\mathbb{R}^d} \frac{1}{2}(A^\alpha u)u + V(x, u) \, dx, \quad \alpha \in (0, 1)
\]

where equilibrium solutions solve

\[-A^\alpha u = V_u(x, u). \]
1. Background Material

2. Comparison for the Sobolev Gradient

3. Numerical Method

4. Asymptotic Analysis
The Numerical Method, $d = 2$

Constant coefficients case: $u(x) = \omega \cdot x + z(x)$

$$\partial_t z = -(\gamma I - \Delta)^{1-\beta} z + (\gamma I - \Delta)^{-\beta} (\gamma z - V(x, \omega \cdot x + z))$$

In Fourier space the descent equation is

$$\partial_t \hat{z} = - \left(\gamma + \frac{4\pi^2}{N^2} |k|^2 \right)^{1-\beta} \hat{z} + \left(\gamma + \frac{4\pi^2}{N^2} |k|^2 \right)^{-\beta} (\gamma \hat{z} - \mathcal{F}[V_u(x, \omega \cdot x + z)])$$

- If n^2 Fourier modes are used, the number of operations for one step is on the order of $n^2 \log(n)$.
- If $\beta \approx 1$, the stiffness of the equation is greatly reduced.
Constant coefficients case: \(u(x) = \omega \cdot x + z(x) \)

\[
\partial_t z = -(\gamma I - \Delta)^{1-\beta} z + (\gamma I - \Delta)^{-\beta}(\gamma z - V(x, \omega \cdot x + z))
\]

In Fourier space the descent equation is

\[
\partial_t \hat{z} = -\left(\gamma + \frac{4\pi^2}{N^2}|k|^2\right)^{1-\beta} \hat{z} + \left(\gamma + \frac{4\pi^2}{N^2}|k|^2\right)^{-\beta}(\gamma \hat{z} - \mathcal{F}[V_u(x, \omega \cdot x + z)])
\]

- If \(n^2 \) Fourier modes are used, the number of operations for one step is on the order of \(n^2 \log(n) \).
- If \(\beta \approx 1 \), the stiffness of the equation is greatly reduced.
The Numerical Method, \(d = 2 \)

Constant coefficients case: \(u(x) = \omega \cdot x + z(x) \)

\[
\partial_t z = - (\gamma I - \Delta)^{1-\beta} z + (\gamma I - \Delta)^{-\beta} (\gamma z - V(x, \omega \cdot x + z))
\]

In Fourier space the descent equation is

\[
\partial_t \hat{z} = - \left(\gamma + \frac{4\pi^2}{N^2} |k|^2 \right)^{1-\beta} \hat{z} + \left(\gamma + \frac{4\pi^2}{N^2} |k|^2 \right)^{-\beta} (\gamma \hat{z} - \mathcal{F}[V_u(x, \omega \cdot x + z)])
\]

- If \(n^2 \) Fourier modes are used, the number of operations for one step is on the order of \(n^2 \log(n) \).
- If \(\beta \approx 1 \), the stiffness of the equation is greatly reduced.
The Numerical Method, \(d = 2 \)

Constant coefficients case: \(u(x) = \omega \cdot x + z(x) \)

\[
\partial_t z = - (\gamma I - \Delta)^{1-\beta} z + (\gamma I - \Delta)^{-\beta} (\gamma z - V(x, \omega \cdot x + z))
\]

In Fourier space the descent equation is

\[
\partial_t \hat{z} = - \left(\gamma + \frac{4\pi^2}{N^2} |k|^2 \right)^{1-\beta} \hat{z} + \left(\gamma + \frac{4\pi^2}{N^2} |k|^2 \right)^{-\beta} \left(\gamma \hat{z} - \mathcal{F}[V_u(x, \omega \cdot x + z)] \right)
\]

- If \(n^2 \) Fourier modes are used, the number of operations for one step is on the order of \(n^2 \log(n) \).
- If \(\beta \approx 1 \), the stiffness of the equation is greatly reduced.
Example: \(\varepsilon = 0 \) compared with \(\varepsilon > 0 \)

\[
E_\varepsilon(\omega) = \frac{1}{N^2} \int_{[0,N]^2} \frac{1}{2} |\nabla u|^2 + \varepsilon \sin(2\pi k_1 x_1) \sin(2\pi k_2 x_2) \cos(2\pi u) \, dx
\]

Computed from \(u(x) = \omega \cdot x + z(x) \) for \(\omega \in [-2, 2]^2 \) and \(k = (1, 1) \)
1 Background Material

2 Comparison for the Sobolev Gradient

3 Numerical Method

4 Asymptotic Analysis
Senn’s Formula

- Minimizing surfaces define a set of gaps G.
- Senn’s Formula for the derivative:

$$D_{ej}A_{\varepsilon}(\omega) + D_{-ej}A_{\varepsilon}(\omega) = \sum_{G} \int_{0}^{1} \int_{0}^{\infty} F_{\varepsilon}(x, u_{T}, \nabla u_{T}) - F_{\varepsilon}(x, u_{B}, \nabla u_{B}) dx_{i} dx_{j}$$
Senn’s Formula

- Minimizing surfaces define a set of gaps G.
- Senn’s Formula for the derivative:

$$D_{e_j}A_\varepsilon(\omega) + D_{-e_j}A_\varepsilon(\omega) = \sum G \int_0^1 \int_0^\infty F_\varepsilon(x, u_T, \nabla u_T) - F_\varepsilon(x, u_B, \nabla u_B) \, dx_i dx_j$$
Take \(F_\varepsilon(x, u, \nabla u) = \frac{1}{2}|\nabla u|^2 + \varepsilon V(x, u) \)

For fixed \(\omega \in \frac{1}{N}\mathbb{Z}^d \), find an expression for \(u_\varepsilon(x) \) as a series in \(\varepsilon \)

\[
 u_\varepsilon(x) = \sum_{j=0}^{\infty} u_j(x) \varepsilon^j
\]

with \(u_j \) \(N \)-periodic, and solving

\[
 -\Delta u_\varepsilon + \varepsilon V_u(x, u_\varepsilon) = 0, \quad \sup_x |u_\varepsilon(x) - \omega \cdot x| < \infty.
\]

Also find expression for the heteroclinic connections between the gaps.
Lindstedt Series

- Take $F_\varepsilon(x, u, \nabla u) = \frac{1}{2}|\nabla u|^2 + \varepsilon V(x, u)$

- For fixed $\omega \in \frac{1}{N} \mathbb{Z}^d$, find an expression for $u_\varepsilon(x)$ as a series in ε

$$u_\varepsilon(x) = \sum_{j=0}^{\infty} u_j(x) \varepsilon^j$$

with $u_j N$-periodic, and solving

$$-\Delta u_\varepsilon + \varepsilon V_u(x, u_\varepsilon) = 0, \quad \sup_x |u_\varepsilon(x) - \omega \cdot x| < \infty.$$

- Also find expression for the heteroclinic connections between the gaps.
Lindstedt Series

- Take $F_\varepsilon(x, u, \nabla u) = \frac{1}{2}|\nabla u|^2 + \varepsilon V(x, u)$

- For fixed $\omega \in \frac{1}{N} \mathbb{Z}^d$, find an expression for $u_\varepsilon(x)$ as a series in ε

$$u_\varepsilon(x) = \sum_{j=0}^{\infty} u_j(x) \varepsilon^j$$

with u_j N-periodic, and solving

$$-\Delta u_\varepsilon + \varepsilon V_u(x, u_\varepsilon) = 0, \quad \sup_x |u_\varepsilon(x) - \omega \cdot x| < \infty.$$

- Also find expression for the heteroclinic connections between the gaps.
Lindstedt Series

To solve \(\Delta(u_0 + \varepsilon u_1 + \ldots) = \varepsilon V_u(x, u_0 + \varepsilon u_1 + \ldots) \) collect powers of \(\varepsilon \):

\[
\begin{align*}
\Delta u_0 &= 0 \quad \implies \quad u_0 = \omega \cdot x + \alpha \\
\Delta u_1 &= V_u(x, u_0) \\
\Delta u_2 &= V_{uu}(x, u_0)u_1 \\
\Delta u_3 &= V_{uu}(x, u_0)u_2 + \frac{1}{2}V_{uuu}(x, u_0)u_1^2 \\
&\vdots \\
\Delta u_j &= [V_u(x, u^{<j})]_{j-1} = V_{uu}(x, u_0)u_{j-1} + \ldots
\end{align*}
\]

- Compatibility condition \(\int_{NTd} [V_u(x, u^{<j})]_{j-1} \, dx = 0 \).
- Will the series converge?
Lindstedt Series

To solve \(\Delta(u_0 + \varepsilon u_1 + \ldots) = \varepsilon V_u(x, u_0 + \varepsilon u_1 + \ldots) \) collect powers of \(\varepsilon \):

\[
\begin{align*}
\Delta u_0 &= 0 \quad \implies u_0 = \omega \cdot x + \alpha \\
\Delta u_1 &= V_u(x, u_0) \\
\Delta u_2 &= V_{uu}(x, u_0) u_1 \\
\Delta u_3 &= V_{uu}(x, u_0) u_2 + \frac{1}{2} V_{uuu}(x, u_0) u_1^2 \\
&\vdots \\
\Delta u_j &= [V_u(x, u^{<j})]_{j-1} = V_{uu}(x, u_0) u_{j-1} + \ldots
\end{align*}
\]

- Compatibility condition \(\int_{N_T^d} [V_u(x, u^{<j})]_{j-1} \, dx = 0. \)
- Will the series converge?
To solve $\Delta(u_0 + \varepsilon u_1 + \ldots) = \varepsilon V_u(x, u_0 + \varepsilon u_1 + \ldots)$ collect powers of ε:

\[\Delta u_0 = 0 \quad \implies \quad u_0 = \omega \cdot x + \alpha\]
\[\Delta u_1 = V_u(x, u_0)\]
\[\Delta u_2 = V_{uu}(x, u_0) u_1\]
\[\Delta u_3 = V_{uu}(x, u_0) u_2 + \frac{1}{2} V_{uuu}(x, u_0) u_1^2\]
\[\vdots\]
\[\Delta u_j = [V_u(x, u^{<j})]_{j-1} = V_{uu}(x, u_0) u_{j-1} + \ldots\]

- Compatibility condition $\int_{\mathbb{T}^d} [V_u(x, u^{<j})]_{j-1} \, dx = 0$.
- Will the series converge?
Theorem (B., de la Llave)

Let \(u_0(x) = \omega \cdot x + \alpha \), \(\omega \in \frac{1}{N}\mathbb{Z}^d \), and \(\alpha \in [0, 1) \). If

\[
\int_{N\mathbb{T}^d} V_{uu}(x, u_0) \, dx \neq 0
\]

then there are at least two choices of \(\alpha \) such that \(\Delta u_j = [V_u(x, u^{<j})]_{j-1} \) has a periodic solution for all \(j \geq 1 \).
Proof of Theorem

If $\Phi(\alpha) = \int_{\mathbb{T}^d} V_u(x, \omega \cdot x + \alpha) \, dx$, then

$$
\int_0^1 \Phi(\alpha) \, d\alpha = \int_0^1 \int_{\mathbb{T}^d} V_u(x, \omega \cdot x + \alpha) \, dx \, d\alpha
$$

$$
= \int_0^1 \int_{\mathbb{T}^d} \frac{\partial}{\partial \alpha} V(x, \omega \cdot x + \alpha) \, dx \, d\alpha
$$

$$
= \int_{\mathbb{T}^d} V(x, \omega \cdot x + 1) - V(x, \omega \cdot x) \, dx = 0.
$$

\implies Φ has a zero in $[0, 1)$

- $\Phi(\alpha) = \Phi(\alpha + 1) \implies \Phi$ has at least two zeros.
- $\Delta u_1 = V_u(x, u_0)$ can be solved for $u_1 = u_1^* + \lambda_1$.
Proof of Theorem

If \(\Phi(\alpha) = \int_{NT^d} V_u(x, \omega \cdot x + \alpha) \, dx \), then

\[
\int_0^1 \Phi(\alpha) \, d\alpha = \int_0^1 \int_{NT^d} V_u(x, \omega \cdot x + \alpha) \, dx \, d\alpha
\]

\[
= \int_0^1 \int_{NT^d} \frac{\partial}{\partial \alpha} V(x, \omega \cdot x + \alpha) \, dx \, d\alpha
\]

\[
= \int_{NT^d} V(x, \omega \cdot x + 1) - V(x, \omega \cdot x) \, dx = 0.
\]

\[\implies \Phi \text{ has a zero in } [0, 1)\]

- \(\Phi(\alpha) = \Phi(\alpha + 1) \implies \Phi \text{ has at least two zeros.} \)
- \(\Delta u_1 = V_u(x, u_0) \) can be solved for \(u_1 = u_1^* + \lambda_1 \).
Proof of Theorem

If $\Phi(\alpha) = \int_{N^T} V_u(x, \omega \cdot x + \alpha) \, dx$, then

$$\int_0^1 \Phi(\alpha) \, d\alpha = \int_0^1 \int_{N^T} V_u(x, \omega \cdot x + \alpha) \, dx \, d\alpha$$

$$= \int_0^1 \int_{N^T} \frac{\partial}{\partial \alpha} V(x, \omega \cdot x + \alpha) \, dx \, d\alpha$$

$$= \int_{N^T} V(x, \omega \cdot x + 1) - V(x, \omega \cdot x) \, dx = 0.$$

$\implies \Phi$ has a zero in $[0, 1)$

- $\Phi(\alpha) = \Phi(\alpha + 1) \implies \Phi$ has at least two zeros.
- $\Delta u_1 = V_u(x, u_0)$ can be solved for $u_1 = u_1^* + \lambda_1$.
Proof of Theorem

Assuming we have solved $\Delta u_j = [V_u(x, u^{<j})]_{j-1}$ for $u_j = u^*_j + \lambda_j$. Write $[V_u(x, u^{<j+1})]_j = V_{uu}(x, u_0)(u^*_j + \lambda_j) + R(u^{<j})$.

Set $\lambda_j = -\frac{\int V_{uu}(x, u_0)u^*_j + R(u^{<j}) \, dx}{\int V_{uu}(x, u_0) \, dx}$.

Then

$$\int_{\mathbb{R}^d} [V_u(x, u^{<j+1})]_j \, dx = \int_{\mathbb{R}^d} V_{uu}(x, u_0)(u^*_j + \lambda_j) + R(u^{<j}) \, dx = 0$$

and $\Delta u_{j+1} = [V_u(x, u^{<j+1})]_j$ can be solved for $u_{j+1} = u^*_{j+1} + \lambda_{j+1}$.

□
Proof of Theorem

Assuming we have solved \(\Delta u_j = [V_u(x, u^{<j})]_{j-1} \) for \(u_j = u^*_j + \lambda_j \). Write \([V_u(x, u^{<j+1})]_j = V_{uu}(x, u_0)(u^*_j + \lambda_j) + R(u^{<j}). \)

Set \(\lambda_j = -\frac{\int V_{uu}(x, u_0)u^*_j + R(u^{<j}) \, dx}{\int V_{uu}(x, u_0) \, dx} \).

Then

\[
\int_{N T^d} [V_u(x, u^{<j+1})]_j \, dx = \int_{N T^d} V_{uu}(x, u_0)(u^*_j + \lambda_j) + R(u^{<j}) \, dx = 0
\]

and \(\Delta u_{j+1} = [V_u(x, u^{<j+1})]_j \) can be solved for \(u_{j+1} = u_{j+1}^* + \lambda_{j+1} \). \(\square \)
Proof of Theorem

Assuming we have solved $\Delta u_j = [V_u(x, u^{<j})]_{j-1}$ for $u_j = u_j^* + \lambda_j$. Write

$[V_u(x, u^{<j+1})]_j = V_{uu}(x, u_0)(u_j^* + \lambda_j) + R(u^{<j})$.

Set $\lambda_j = -\frac{\int V_{uu}(x, u_0)u_j^* + R(u^{<j}) \, dx}{\int V_{uu}(x, u_0) \, dx}$.

Then

$$\int_{N} [V_u(x, u^{<j+1})]_j \, dx = \int_{N} V_{uu}(x, u_0)(u_j^* + \lambda_j) + R(u^{<j}) \, dx = 0$$

and $\Delta u_{j+1} = [V_u(x, u^{<j+1})]_j$ can be solved for $u_{j+1} = u_{j+1}^* + \lambda_{j+1}$. □
Convergence via Newton Method

- Set $G_\varepsilon(u) = -\Delta u + \varepsilon V_u(x, u)$, find u_ε with $G_\varepsilon(u_\varepsilon) = 0$.
- Find a zero of G_ε via Newton Method:

$$U_{\varepsilon}^{n+1} = U_{\varepsilon}^n - DG_\varepsilon(U_{\varepsilon}^n)^{-1} G_\varepsilon(U_{\varepsilon}^n)$$

with initial guess

$$U_0 = \omega \cdot x + \alpha + \varepsilon u_1 + \ldots + \varepsilon^M u_M.$$

Theorem (B., de la Llave)

Under non-degeneracy conditions on V, and if ε is small, and M is large, then $U_{\varepsilon}^n \to U_{\varepsilon}^\infty$, analytic in ε in a neighborhood of zero, and $G_\varepsilon(U_{\varepsilon}^\infty) = 0$.

Timothy Blass (CMU) 4 October 2011 25 / 27
Set $G_\varepsilon(u) = -\Delta u + \varepsilon V_u(x, u)$, find u_ε with $G_\varepsilon(u_\varepsilon) = 0$.

Find a zero of G_ε via Newton Method:

$$U_{\varepsilon}^{n+1} = U_{\varepsilon}^{n} - DG_\varepsilon(U_{\varepsilon}^{n})^{-1} G_\varepsilon(U_{\varepsilon}^{n})$$

with initial guess

$$U_{\varepsilon}^{0} = \omega \cdot x + \alpha + \varepsilon u_1 + \ldots + \varepsilon^M u_M.$$

Theorem (B., de la Llave)

Under non-degeneracy conditions on V, and if ε is small, and M is large, then $U_{\varepsilon}^{n} \to U_{\varepsilon}^{\infty}$, analytic in ε in a neighborhood of zero, and $G_\varepsilon(U_{\varepsilon}^{\infty}) = 0$.
Convergence via Newton Method

- Set $G_\varepsilon(u) = -\Delta u + \varepsilon V_u(x, u)$, find u_ε with $G_\varepsilon(u_\varepsilon) = 0$.
- Find a zero of G_ε via Newton Method:

$$U_{\varepsilon}^{n+1} = U_{\varepsilon}^n - DG_\varepsilon(U_{\varepsilon}^n)^{-1} G_\varepsilon(U_{\varepsilon}^n)$$

with initial guess

$$U_{\varepsilon}^0 = \omega \cdot x + \alpha + \varepsilon u_1 + \ldots + \varepsilon^M u_M.$$

Theorem (B., de la Llave)

Under non-degeneracy conditions on V, and if ε is small, and M is large, then $U_{\varepsilon}^n \to U_{\varepsilon}^{\infty}$, analytic in ε in a neighborhood of zero, and $G_{\varepsilon}(U_{\varepsilon}^{\infty}) = 0$.

Timothy Blass (CMU)
Aubry-Mather for PDE
4 October 2011
25 / 27
If $\int V_{uu}(x, \omega \cdot x + \alpha)\,dx \neq 0$ then to solve $\Delta u_1 = V_u(x, \omega \cdot x + \alpha)$ we must make a choice of α.

If we look for $u(x) = \omega \cdot x + \alpha(\sqrt{\varepsilon}x) + \varepsilon u_1(x) + \ldots$, we get a PDE of the form

$$\Delta \alpha = g_\omega(x, \alpha), \quad \alpha(x) \to \alpha_\pm \text{ as } x \cdot v \to \pm \infty.$$

Example: $V(x, u) = \sin(2\pi k x) \cos(2\pi u)$, and $\omega = k \in \mathbb{Z}^2$

$$\Delta \alpha = -\pi \cos(2\pi \alpha), \quad \alpha_+ = \frac{1}{4}, \quad \alpha_- = -\frac{3}{4}$$
If \(\int V_{uu}(x, \omega \cdot x + \alpha) \, dx \neq 0 \) then to solve \(\Delta u_1 = V_u(x, \omega \cdot x + \alpha) \) we must make a choice of \(\alpha \).

If we look for \(u(x) = \omega \cdot x + \alpha(\sqrt{\varepsilon}x) + \varepsilon u_1(x) + \ldots \), we get a PDE of the form

\[
\Delta \alpha = g_\omega(x, \alpha), \quad \alpha(x) \to \alpha_\pm \text{ as } x \cdot v \to \pm \infty.
\]

Example: \(V(x, u) = \sin(2\pi kx) \cos(2\pi u) \), and \(\omega = k \in \mathbb{Z}^2 \)

\[
\Delta \alpha = -\pi \cos(2\pi \alpha), \quad \alpha_+ = \frac{1}{4}, \quad \alpha_- = -\frac{3}{4}.
\]
If \(\int V_{uu}(x, \omega \cdot x + \alpha) \, dx \neq 0 \) then to solve \(\Delta u_1 = V_u(x, \omega \cdot x + \alpha) \) we must make a choice of \(\alpha \).

If we look for \(u(x) = \omega \cdot x + \alpha(\sqrt{\epsilon} x) + \epsilon u_1(x) + \ldots \), we get a PDE of the form

\[
\Delta \alpha = g_\omega(x, \alpha), \quad \alpha(x) \to \alpha_{\pm} \text{ as } x \cdot v \to \pm \infty.
\]

Example: \(V(x, u) = \sin(2\pi k x) \cos(2\pi u) \), and \(\omega = k \in \mathbb{Z}^2 \)

\[
\Delta \alpha = -\pi \cos(2\pi \alpha), \quad \alpha_+ = \frac{1}{4}, \quad \alpha_- = -\frac{3}{4}
\]
Log-Log Plots of $J(\omega, \varepsilon) = D_{e_1}A_{\varepsilon}(\omega) + D_{-e_1}A_{\varepsilon}(\omega)$

\[(g) \quad J(\omega, \varepsilon) \approx \frac{4}{\pi} \sqrt{\varepsilon} \]

\[(h) \quad J(\omega, \varepsilon) \approx \frac{4\sqrt{2}}{\pi} \sqrt{\varepsilon} \]

Figure: In 1(g) $V(x, u) = \sin(2\pi k_1 x_1) \sin(2\pi k_2 x_2) \cos(2\pi u)$, and in 1(h) $V(x, u) = \sin(2\pi k \cdot x) \cos(2\pi u)$. Both plots are for $\omega = k$.