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1. Introduction and Motivation

The Project RŒNOBIO

Robust Energy-Optimization of Fermentation Processes for the
Production of Biogas and Wine

Modeling:
Kinetics, Fluid dynamics,
Yeast cell growth dynamics
Numerical modeling
Existence and uniqueness
Optimal design and placement of cooling
element for wine tanks and optimal design
of mixer configuration for biogas reactors
Parameter estimation and optimal control
Real-time optimization for wine
fermentation
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1. Introduction and Motivation

Introduction

Mashing of grapes

Wine press

Fermentation

The process of making wine
Addition of yeast and eventually nutrients
to must yield:

Yeast growth by metabolizing sugar
and nutrients such as nitrogen
Conversion of sugar into ethanol
usually under anaerobic conditions
(exothermic reaction)
Temperature important factor (too
high: death of yeast cells)→ Cooling
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1. Introduction and Motivation

Motivation for Energy Conservation

0.08% of global greenhouse gas emissions in
2009 ≈1 M cars annually or 2kg/0.75l bottle
(Smyth et al., 2011)
In California second highest energy consumer in
food industry (Galitzky et al., 2005)
High potential for saving energy in the process
of making wine→ control of fermentation
temperature significant
Objective: Minimize cooling energy and maintain
wine quality

[Source: tagesanzeiger.ch]

[Source: heise.de]
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1. Introduction and Motivation

Yeast Cell Growth Dynamics

mother cells

mt md

daughter cells

Figure: Simplified cell cycle for budding yeast

Figure: Visualization of birth-scars and
buds for Saccharomyces cerivisiae
from Wikipedia (2017)

Motivation: Open-loop dynamics of yeast are highly dependent on
initial cell mass distribution (Zhang et al., 2002)
Cell-cycle lasts 90 to 120 minutes (Morgan, 2007)
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2. Model Based on Integro-Differential Equations (IDEs)

Model Based on Integro-Differential Equations 1/2

Population balance equation (PBE):

∂W (m, t)
∂t

= −div(rε(m,N,S,O)W (m, t))

+ 2
∫ mmax

mmin

p(m,m′)Γ(m′)W (m′, t)dm′

− Γ(m)W (m, t)− Φ(E)W (m, t)m
−kdW (m, t)m

Boundary conditions:
rε(mmin,N,S,O)W (mmin, t) = 0
= rε(mmax ,N,S,O)W (mmax , t)

m cell mass
S,N,O,E sugar,
nitrogen, oxygen,
ethanol concentration
W (m, t) cell number
density
rε(m,N,S,O)
single-cell growth rate
p(m,m′) partitioning
function
Γ(m) division rate
Φ(E) death function

Development of [Daoutidis and Henson (2002); Henson (2003); Mantzaris
et al. (2002)]
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2. Model Based on Integro-Differential Equations (IDEs)

Partitioning Function, Division Rate, Death Term

p(m,m′) =

{
λe−β(m−mt )2

+ λe−β(m−m′+mt )2
, m′ > m and m′ > mt

0 , else

mt = 0.3784, m′ = 0.999,

md = 0.8525,

γ = 200, β = 400,

δ = 50, λ = 5.6419

Γ(m) =


0 , m ≤ mt

γe−δ(m−md )2
, mt < m < md

γ , else

Φ(E) =
(

0.5 + 1
π

arctan(kd1(E − tol))
)

kd2(E − tol)2,

where kd1 and kd2 ethanol inhibition constants and tol
tolerance of ethanol (strong inhibition)

tol = 79g/l,

kd1 = 99.86,

kd2 = 0.0021,

E ∈ [0, 110]
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2. Model Based on Integro-Differential Equations (IDEs)

Model Based on IDEs 2/2

Nitrogen concentration (oxygen without ε):

dN
dt

= −k1

∫ mmax

mmin

rε(m,N,S,O)W (m, t)dm

Sugar concentration:

dS
dt

= −
∫ mmax

mmin

q(m,N,S,E ,O)W (m, t)dm

Product / ethanol concentration:

dE
dt

=

∫ mmax

mmin

qE (m,S,E)W (m, t)dm

k1 yield
coefficient for
nitrogen
rε(m,N,S,O)
growth rate
q(m,N,S,O)
consumption
rate vector
qE (m,S,E)
ethanol growth
rate vector
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2. Model Based on Integro-Differential Equations (IDEs)

Growth, Consumption and Formation Rates

µmax , βmax
reaction rates
KE growth
inhibition by
ethanol
KN , KS1 , KS2 , KO
Michaelis
constants for
nitrogen, sugar,
oxygen
k2, k3 yield
coefficients for
sugar

rε(m,N,S,O)

= µmax (T )
N

KN + N
S

KS1 + S

(
O

KO + O
+ ε

)
m

qE (m,S,E)

= βmax (T )
S

KS2 + S
KE (T )

KE (T ) + E
m

q(m,N,S,E ,O)

= k2qE (m,S,E) + k3rε(m,N,S,O)

where µmax , βmax and KE assumed to be linear
dependent on temperature T .
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3. Solution of System of Partial and Ordinary IDEs

Solution: Existence and Uniqueness

Simplified Case
Hyperbolic boundary value problem with the velocity term rε
described by a constant r (not dependent on the other substrate
concentrations and m)
Existence and uniqueness of the solution shown based on
semigroup theory (Idea of proof: Dautray and Lions,1993)

Nonlinear Case
Local Lipschitz continuity of right hand side
Rigorous literature study
Discussion of challenges for strongly nonlinear and weakly
hyperbolic properties of the system of P/OIDEs

[Schenk (2018)]
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3. Solution of System of Partial and Ordinary IDEs

Simplified Case

Semilinear hyperbolic partial integro-differential equation

(?)



∂W (m, t)
∂t

+ r · div(W (m, t)) + Σ(m)W (m, t) = KW (m, t),

m ∈ M, r ∈ R+, t > 0
W
∣∣
Θ

= 0, Θ = {mmin,mmax}
W (m,0) = W0 on M, W0 given.

Σ positive function of m with

Σ(m) = Γ(m) + Φ(E)m + kdm (1)

and given operator K

(KW )(m) =

∫
M

f (m,m′)W (m′, t)dm′ (2)

with
f (m,m′) = p(m,m′)Γ(m′) (3)
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3. Solution of System of Partial and Ordinary IDEs

Semigroup Theory Notation I

Definition
Semigroup of class C0

Let {G(t)}t≥0 be a family of elements G(t) ∈ L(L2(M)) for t ≥ 0. This family
forms a semigroup of class C0 in L2(M) if it fulfills these conditions

G(s + t) = G(s)G(t) ∀s, t ≥ 0 (i) (algebraic property)
G(0) = Id (ii) (identity in L(L2(M)))
lim

t→+0
‖G(t)m −m‖L2(M) = 0 ∀m ∈ L2(M) (iii) (topological property).
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3. Solution of System of Partial and Ordinary IDEs

Semigroup Theory Notation II

Definition
Set of differentiable vectors
We call D(A) the set of differentiable vectors in L2(M), i.e. the subset of
elements m ∈ L2(M) such that the function t → G(t)m is differentiable for
t ≥ 0. Because of the algebraic property (i), D(A) is represented by

D(A) = {m ∈ L2(M);
G(h)m −m

h
converges in L2(M) as h→ +0}. (4)

From now on, let Ah be an operator defined by

Ah :=
G(h)− Id

h
(5)

with Ah ∈ L(L2(M)) ∀h > 0.
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3. Solution of System of Partial and Ordinary IDEs

Semigroup Theory Notation III

Definition
Infinitesimal generator of a semigroup
An operator A defined as a linear mapping from D(A) into L2(M), precisely as

lim
h→+0

Ahm = Am

with D(A) as in (4), is called the infinitesimal generator of the semigroup
{G(t)}t≥0.
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3. Solution of System of Partial and Ordinary IDEs

Semigroup Theory Notation IV

Remark
Let A be the unbounded operator in L2(M) defined by{

(AW )(m) = −r · div(W (m, t))

D(A) = {W ∈ L2(M); AW ∈ L2(M),W
∣∣
Θ

= 0}.

Then, A is called advection operator. Problem (?) is equivalent to
∂W
∂t

= TW

W (0) = W0

with
T = A− Σ(m) + K

where K is an integral operator, defined by (2), which is bounded in L2(M)
under certain assumptions which we have to make on the kernel f .
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3. Solution of System of Partial and Ordinary IDEs

Idea of Proof I

Existence and uniqueness of the solution shown based on
semigroup theory (Idea of proof: Dautray and Lions,1993)
Main steps:

1 Show that the operator{
T = A− Σ(m) + K (i)
D(T ) = D(A) (ii)

is infinitesimal generator of a semigroup of class C0 in L2(M) and
the semigroup generated by T operates in cone of positive
functions of L2(M)
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3. Solution of System of Partial and Ordinary IDEs

Idea of Proof II

2 Show that: Let f (m,m′) real positive function and measurable with
respect to m or m′ then there exist positive constants Ca and Cb,
such that { ∫

M f (m,m′) dm ≤ Ca ∀m′ ∈ M∫
M f (m,m′) dm′ ≤ Cb ∀m ∈ M

(6)

3 It follows that operator K defined by
(Kη)(m) =

∫
M f (m,m′)η(m′)dm′ ∀η ∈ L2(M) is linear and

continuous from L2(M) into L2(M).
4 Show Σ ∈ L∞(M)
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3. Solution of System of Partial and Ordinary IDEs

Idea of Proof III

5 Show W weak solution of (?) if y ∈ W2 with

W2 = {W ∈ L2(M) : r · div W ∈ L2(M)} (7)

W (0) = W0 and∫
M

(
d
dt

v(m)

)
W (m, t)dm +

∫
M

(rW (m, t)) · div(v(m))dm

= −
∫

M
KW (m, t)v(m)dm +

∫
M

(Σ(m) + r̃)W (m, t)v(m)dm

∀v ∈ H1(M),

(8)

(follows from semigroup theory)
6 Show uniqueness via Gronwall’s lemma
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3. Solution of System of Partial and Ordinary IDEs

Nonlinear Case

Quasilinear weakly hyperbolic partial integro-differential equations

∂W (m, t)
∂t

+ rε(m,N,S,O) div(W (m, t))

= −Σ(m)W (m, t) + KW (m, t)

∂N
∂t

= −k1
∫

M rε(m,N,S,O)W (m, t)dm

∂E
∂t

=
∫

M qE (m,S,E)W (m, t)dm

∂S
∂t

= −
∫

M q(m,N,E ,S,O)W (m, t)dm

∂O
∂t

= −k4
∫

M r(m,N,S,O)W (m, t)dm

where K as before and Σ now represents positive function of m with

Σ(m) = Γ(m) + Φ(E)m + kdm + r̃ε

with rε(m,N,S,O) = mr̃ε(N,S,O).

C. Schenk (CMU), schenk@cmu.edu, Numerical modeling of wine fermentation based on IDEs, CNA Seminar 23



3. Solution of System of Partial and Ordinary IDEs

Idea of Proof

1 Assumptions: Kinetic parameters and temperature all positive, initial
conditions belong to L∞(M,R5), are non-negative and temperature is
bounded by predefined upper and lower bound, such that linear temp.
dependent functions nonnegative

2 Show entries of the Jacobian Jhy (m, t , y) (h(m,t,y) right hand side) are
up to a constant bounded by Z 2 for y with values in [0,Z ], i.e. 0 ≤ yi ≤ Z
for i = 1, . . . ,5

3 With mean value theorem, right hand side h is locally Lipschitz
continuous for non-negative arguments, i.e. there exists a constant
L > 0 not dependent on Z and

|h(m, t , y)− h(m, t , ỹ)|R5 ≤ LZ 2 |y − ỹ |R5 ,

holds, where | · |R5 denotes the componentwise absolute value in R5.
4 BUT: Limitations for approaches in literature
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3. Solution of System of Partial and Ordinary IDEs

Approaches in Literature I

Glimm method: Existence result via formulating and studying the
Riemann problem for nonlinear strictly hyperbolic systems of
equations which are smooth in some region with a sufficiently
small total variation of the initial data (Glimm, 1965)
Existence and uniqueness of entropy solutions for weakly coupled
hyperbolic systems via its parabolic regularization and then letting
viscosity vanish (artificial diffusion) (Natalini and Hanouzet, 1996;
Rohde, 1998; Korsch and Kröner, 2017)
Approaches via semigroup theory very useful for semilinear
equations with nonlinear operator independent of solution y , e.g.
Pazy (1992); Engel et al. (1999)
Pazy (1992) even applies to quasilinear evolution equation but
with linear operator that explicitly depends on solution
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3. Solution of System of Partial and Ordinary IDEs

Approaches in Literature II

Dreher (2003) shows local existence and uniqueness for systems
of quasilinear weakly hyperbolic differential equations via
pseudodifferential operators and a reformulation with a special
right hand side that has to show asymptotic behavior
Existence and uniqueness for systems of hyperbolic equations via
sesquilinear forms requires linearity of the flux to fulfill properties
for forming sesquilinear form (Wloka, 1982)
Rozhdestvenskii et al. (1972) show existence for weakly nonlinear
systems of quasilinear weakly hyperbolic equations where
solution stays bounded, derivatives also stay bounded for all
points in time apart from the initial one (even global existence of
solutions to these kind of systems for all finite time values)
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3. Solution of System of Partial and Ordinary IDEs

Approaches in Literature III

BUT: All these approaches not applicable for our problem without
modification→ Ideas welcome!

Main problem for strongly nonlinear systems of quasilinear weakly
hyperbolic equations: Derivatives can become infinite for some
finite point in time→ For any point in time larger than latter one no
solution exists
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3. Solution of System of Partial and Ordinary IDEs

Discretization of PIDE “in Mass”

Using finite-volume method (to ensure mass
conservation) with first order upwind scheme
for the flux approximation results in the
following discrete scheme:

ẇi =
1

mi+1 −mi

[
− (rε(mi+1,N,S,O)wi(t)− rε(mi ,N,S,O)wi−1(t))

+ 2
NW∑
j=0

(
wj(t)

∫
Ωi

∫
Ωj

p(m,m′)Γ(m′)dm′dm

)
− wi(t)

∫
Ωi

Γ(m) dm

− Φ(E)wi(t)
∫

Ωi

m dm − kdwi(t)
∫

Ωi

m dm
]
, i = 1,2, . . . ,NW − 1,

where NW : #cells FVM

where NW is the number of cells used in the finite volume schemeC. Schenk (CMU), schenk@cmu.edu, Numerical modeling of wine fermentation based on IDEs, CNA Seminar 28



3. Solution of System of Partial and Ordinary IDEs

Whole Model Considered for Simulation

Add the differential equations for our product and substrate
concentration development to the system above
Yields the following system of differential equations

ẏ = f (t , y(t))

where ẏ = (ẇi , Ṅ, Ė , Ṡ, Ȯ)T with for example

Ṡ = −
NW−1∑

i=1

q̃(N,S,E ,O)

(
mi+1 + mi

2

)
wi(mi+1 −mi),

where q = q̃(N,S,E ,O)m
Numerical integration of this system using backward differentiation
formula (BDF) method or implicit trapezoidal rule
Implementation in MATLAB
In the following: time step of 1/192 ≈=0.0052, 150 mass cells
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3. Solution of System of Partial and Ordinary IDEs

Numerical Modeling Results: First 24 Hours

Small to medium cell initial distribution Two normal peaks initial distribution

Figure: Cell number density for different cell masses for first 24 hours with implicit trapezoidal rule

Lagged division Large cells disappear within first two hours
Same trend but peaks much larger
Similarity of two normal peaks to constant
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3. Solution of System of Partial and Ordinary IDEs

Cell Number Density for Entire Time Horizon

Small to medium cell initial distribution Two normal peaks initial distribution

Figure: Cell number density for different cell masses for twenty days with implicit trapezoidal rule

Similar but different

C. Schenk (CMU), schenk@cmu.edu, Numerical modeling of wine fermentation based on IDEs, CNA Seminar 31



3. Solution of System of Partial and Ordinary IDEs

All the Trajectories

Small to medium cell initial distribution Two normal peaks initial distribution

Figure: Log cell number and all other substrate/product concentration trajectories for entire time
horizon with implicit trapezoidal rule

1 million cells / ml initially
Yeast growth phases

Sugar, nitrogen, oxygen
consumption due to yeast
growth
Conversion into ethanol
No visible difference
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3. Solution of System of Partial and Ordinary IDEs

Challenges Facing with the IDE Model

Problem of receiving data
Computational cost of IDE model:

Accuracy of integral approximation
Accuracy of mass discretization
Accuracy of time discretization
with respect to Courant Friedrichs Levy condition (assurance of
stability properties)

→ ODE model for description←
regarding optimization

C. Schenk (CMU), schenk@cmu.edu, Numerical modeling of wine fermentation based on IDEs, CNA Seminar 33



3. Solution of System of Partial and Ordinary IDEs

Model Based on ODEs



dX
dt

=µmax (T )
N

KN + N
S

KS1
+ S

(
O

KO + O
+ ε

)
X

− kd X − Φ(E)X
dN
dt

=− k1µmax (T )
N

KN + N
S

KS1
+ S

(
O

KO + O
+ ε

)
X

dE
dt

=βmax (T )
S

KS2
+ S

KE (T )

KE (T ) + E
X

dS
dt

=− k2
dE
dt

−k3µmax (T )
N

KN + N
S

KS1
+ S

(
O

KO + O
+ ε

)
X

dO
dt

=−k4µmax (T )
N

KN + N
S

KS1
+ S

O
KO + O

X

with Φ(E) =

(
0.5 +

1
π

arctan(kd1 (E − tol))

)
kd2 (E − tol)2

[Borzı̀ et al. (2014); Schenk et al. (2017)]
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3. Solution of System of Partial and Ordinary IDEs

IDE Model vs. ODE Model

IDE model (two normal peak initial
distribution)

ODE model with approx. same initial
yeast concentration

Figure: Log cell number and all other substrate/product concentration trajectories for entire time
horizon

Main differences for
yeast growth, yeast
death and accumulation
of alcohol

BUT: Challenges
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4. Further Research

Further Research

ODE model for optimization
Economic nonlinear model predictive control with
parameter and state estimation and application
in several experiments with industry partners
Novel optimization problem formulation including
temperature development equation
Temperature control with objective of energy
conservation and quality maintenance
Reduction of cooling costs by approximately 52%
Quality assured by performance of triangle test
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5. Conclusions
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5. Conclusions

Outcomes and Outlook

Model derivation, existence and uniqueness studies,
and numerical results
Ideas of proof available in literature not applicable for
existence and uniqueness proof for nonlinear IDE
system without modification
More data and computational efficient methods
needed for IDE model→ ODE model for optimization
More information: Borzı̀ et al. (2014); Schenk and
Schulz (2015); Schenk et al. (2017); Schenk (2018);
Bartsch et al. (2019)

[Source: ruter.de]

[Source:
emaze.com]

[Source:fotalia.com]

Outlook
Further investigations related to nonlinear system
Stability and convergence analysis for IDE problem
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Engel, K. J., Brendle, S., Nagel, R., Campiti, M., Hahn, T., Metafune, G., Nickel, G., Pallara, D., Perazzoli, C., Rhandi, A., et al. (1999). One-Parameter Semigroups for Linear Evolution Equations.

Graduate Texts in Mathematics. Springer New York.

Galitzky, C., Worrell, E., Healy, P., and Zechiel, S. (2005). Benchmarking and self-assessment in the wine industry. In Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in

Industry.

Glimm, J. (1965). Solutions in the Large for Nonlinear Hyperbolic Systems of Equations. Communications on Pure and Applied Mathematics, 18:697–715.

Henson, M. A. (2003). Dynamic Modeling and Control of Yeast Cell Populations in Continuous Biochemical Reactors. Computers and Chemical Engineering, 27:1185–1199.

Houska, B., Ferreau, H., Vukov, M., and Quirynen, R. (2009–2013). ACADO Toolkit User’s Manual. http://www.acadotoolkit.org.

Korsch, A. and Kröner, D. (2017). On Existence and Uniqueness of Entropy Solutions of Weakly Coupled Hyperbolic Systems on Evolving Surfaces. Computers & Fluids.

Mantzaris, N., Srienc, F., and Daoutidis, P. (2002). Nonlinear Productivity Control Using a Multi-Staged Cell Population Balance Model. Chemical Engineering Science, 57:1–14.

Morgan, D. O. (2007). The Cell Cycle: Principles of Control. Primers in Biology. OUP/New Science Press.

Natalini, R. and Hanouzet, B. (1996). Weakly Coupled Systems of Quasilinear Hyperbolic Equations. Differential Integral Equations, 9:1279–1292.

Pazy, A. (1992). Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer New York.

Rohde, C. (1998). Entropy Solutions for Weakly Coupled Hyperbolic Systems in Several Space Dimensions. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 49(3):470–499.

C. Schenk (CMU), schenk@cmu.edu, Numerical modeling of wine fermentation based on IDEs, CNA Seminar 40

http://arxiv.org/abs/1901.03659
http://arxiv.org/abs/1412.6068


References II

Rozhdestvenskii, B. L., Yanenko, N. N., Science, A. F., and Technology Center Charlottesville, V. (1972). Systems of Quasilinear Equations and Their Applications to Gas Dynamics. Defense

Technical Information Center.

Schenk, C. (2018). Modeling, Simulation and Optimization of Wine Fermentation. PhD thesis, Trier University.

https://ubt.opus.hbz-nrw.de/frontdoor/index/index/year/2018/docId/860.

Schenk, C. and Schulz, V. (2015). Energy-Optimal Control of Temperature for Wine Fermentation Based on a Novel Model Including the Yeast Dying Phase. IFAC-PapersOnLine, 5th IFAC

Conference on Nonlinear Model Predictive Control (NMPC’15), Seville, Spain, 48(23):452–457. http://www.sciencedirect.com/science/article/pii/S240589631502604X.

Schenk, C., Schulz, V., Rosch, A., and von Wallbrunn, C. (2017). Less cooling energy in wine fermentation - a case study in mathematical modeling, simulation and optimization. Food and

Bioproducts Processing, 103:131–138. http://www.sciencedirect.com/science/article/pii/S0960308517300421.

Smyth, M., Russell, J., and Milanowski, T. (2011). Solar energy in the winemaking industry. Green Energy and Technology. Springer.

Wikipedia (2017). Saccharomyces Cerevisiae — Wikipedia, The free Encyclopedia. [Online; accessed 17-October-2017 ].

Wloka, J. (1982). Partielle Differentialgleichungen: Sobolevräume und Randwertaufgaben. Mathematische Leitfäden. Teubner.
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