Carleson ε^{2} conjecture in higher dimensions

CNA Seminar - Carnegie Mellon University

Ian Fleschler
Princeton University

March 26 of 2024

Joint work with Xavier Tolsa and Michele Villa

Slides include drawings of Michele Villa

Quantitative rectifiability

Definition:

A set $E \subset \mathbb{R}^{m}$ is k-rectifiable if there exist Lipschitz functions $f_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ such that

$$
\mathcal{H}^{k}\left(E \backslash \bigcup_{i=1}^{\infty} f_{i}\left(\mathbb{R}^{k}\right)\right)=0
$$

$$
\beta_{2, E}^{k}(x, r):=\left(\inf _{P \text { plane }} \frac{1}{r^{k+2}} \int_{B(x, r) \cap E} \operatorname{dist}(y, P)^{2} d \mathcal{H}^{k}(y)\right)^{1 / 2}
$$

Theorem (Azzam - Tolsa 2015/Edelen-Naber-Valtorta 2016)

$$
\int_{0}^{1} \beta_{2, E}^{k}(x, r)^{2} \frac{d r}{r}<\infty \text { a.e in } E \Longleftrightarrow E \text { is } k \text { rectifiable. }
$$

Carleson ε^{2} conjecture

Coefficients $\varepsilon(x, r)$

Definition:

Γ Jordan curve, Ω^{+}inner domain and Ω^{-}exterior domain. $I^{ \pm}(x, r)$: connected component of $\partial B(x, r) \cap \Omega^{ \pm}$of greatest length.

$$
\varepsilon(x, r)=\frac{1}{r} \max \left\{\left|\pi r-\operatorname{length}\left(I^{+}(x, r)\right)\right|, \mid \pi r-\text { length }\left(I^{-}(x, r)\right) \mid\right\}
$$

Coefficients $\varepsilon(x, r)$

Coefficients $\varepsilon(x, r)$

Carleson's conjecture in 2d

Theorem (Jaye - Tolsa - Villa 2019):

Γ Jordan curve. Up to \mathcal{H}^{1} measure zero

$$
\int_{0}^{1} \varepsilon(x, r)^{2} \frac{d r}{r}<\infty \Longleftrightarrow \Gamma \text { admits a tangent in } x .
$$

Two problems

(1) What are the right coefficients?
(2) What kind of domains should we consider? Can we consider domains split by continuous images of spheres?
We need that if $\varepsilon(x, r)=0$ then the set agrees with a sphere in $\partial B(x, r)$.

New coefficients ε

Ω^{+}, Ω^{-}open subsets of $\mathbb{R}^{n+1} . x \in \partial \Omega^{+} \cap \partial \Omega^{-} . S_{H}^{+}$halfspace of the sphere.

Definition:

$$
\varepsilon_{n}(x, r)=\frac{1}{r^{n}} \inf _{H \text { plane }} \max _{ \pm}\left(\operatorname{Vol}_{\mathbf{S}^{n}}\left(S_{H}^{ \pm} \backslash \Omega^{ \pm}\right)\right)
$$

Rectifiability

Theorem A (F.- Tolsa - Villa 2023)

The set

$$
E:=\left\{x \in \partial \Omega^{+} \cap \partial \Omega^{-}: \int_{0}^{1} \varepsilon_{n}(x, r)^{2} \frac{d r}{r}<\infty\right\}
$$

is n-rectificable.
Reminder: This means there exist Lipschitz functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ such that

$$
\mathcal{H}^{n}\left(E \backslash \bigcup_{i=1}^{\infty} f_{i}\left(\mathbb{R}^{n}\right)\right)=0
$$

Observation:

Rectifiability of E is equivalent to E having approximate tangents (with respect to itself). Theorem A does not imply that $\partial \Omega^{ \pm}$admits a classical tangent plane.

Small coefficient case

At small scales the coefficient $\varepsilon_{n}(x, r)$ should be typically small in a uniform way. The first step is understanding the following question:

Question

Suppose on a ball B_{0} we have:
(1) Mass on the unit ball: $\mathcal{H}^{n}\left(E \cap B_{0}\right) \gtrsim r\left(B_{0}\right)^{n}$
(2) Uniformly small coefficients $\int_{0}^{10 r\left(B_{0}\right)} \varepsilon_{n}(x, r)^{2} \frac{d r}{r}<\delta \forall x \in E \cap 10 B_{0}$ what can we say about the structure of E and $\Omega^{ \pm}$on B_{0} ?

This step is not only natural, but also useful. We can then paste this local information and improve it.

Corkscrews

We say that B_{0} admits corkscrew balls if there are balls $B^{ \pm} \subseteq \Omega^{ \pm} \cap B_{0}$ with $\operatorname{rad}\left(B^{ \pm}\right) \simeq \operatorname{rad}\left(B_{0}\right)$.

Almost corkscrews

We can't exactly get corkscrew balls but we can get almost corkscrew balls.

Lemma

Suppose $|x-y|=R$ and $\int_{0}^{8 R} \varepsilon_{n}(x, r)^{2}+\varepsilon_{n}(y, r)^{2} \frac{d r}{r}<\delta$ then there exist $B^{ \pm}$almost corkscrew balls:
(1) $B^{ \pm} \subseteq B(x, 16 R)$ y $\operatorname{rad}\left(B^{ \pm}\right) \simeq R$.
(2)

$$
\operatorname{Vol}^{n+1}\left(B^{ \pm} \backslash \Omega^{ \pm}\right) \lesssim \delta^{1 / 4} R^{n+1}
$$

Almost corkscrew

99% of this hall

Almost corkscrew - sketch

Almost corkscrew

Flatness of E

Under the small coefficient hypothesis:

This means, if δ is small enough then there exists some plane P such that

$$
\sup _{E \cap B_{0}} \operatorname{dist}(x, E)<\varepsilon r\left(B_{0}\right) .
$$

Flatness sketch

The proof goes by contradiction. One can smoothen the coefficients ε_{n} to the coefficients

$$
\alpha^{ \pm}(x, r)=\left|\frac{1}{r^{n+1}} \int_{\Omega^{ \pm}} e^{-\frac{|x-y|^{2}}{r^{2}}} d y-\frac{\pi^{\frac{n+1}{2}}}{2}\right|
$$

Notice $\frac{\pi^{\frac{n+1}{2}}}{2}$ is the number obtained if Ω^{+}was a half-space.
(1) The coefficients ε_{n} control the coefficients α.
(2) In particular in the blowup limit $\alpha^{ \pm}(x, r)=0 \forall x \in E, \forall r \in(0,8)$.
(3) α are real analytic $E \subseteq Z$ then Z is a real analytic variety.
(9) Z is a plane. Contradiction! This step uses \exists almost corkscrew.

Domain splitting

In this step we improved the almost-corkscrew condition using the new information.

An example

Variant of the Koch Snowflake with angles α_{n}.

What we proved is morally that $\alpha_{n} \rightarrow 0$. The limit E is a Lipschitz graph if and only if

$$
\sum \alpha_{n}^{2}<\infty
$$

An example

What we proved is morally that $\alpha_{n} \rightarrow 0$. The limit E is a Lipschitz graph if and only if

$$
\sum \alpha_{n}^{2}<\infty
$$

Moreover when $\sum \alpha_{n}^{2}=\infty, E$ intersects every Lipschitz graph Γ (or curve of finite length) on a measure zero set. This is

$$
\mathcal{H}^{1}(E \cap \Gamma)=0 \forall \Gamma \text { Lipschitz graph }
$$

Construction of a Lipschitz graph

Rectifiability

Theorem A (F.- Tolsa - Villa 2023)

The set

$$
E:=\left\{x \in \partial \Omega^{+} \cap \partial \Omega^{-}: \int_{0}^{1} \varepsilon_{n}^{2}(x, r) \frac{d r}{r}<\infty\right\}
$$

is n-rectifiable. Moreover \mathcal{H}^{n} almost every point on $E, \Omega^{ \pm}$admit a tangent in L^{1} :

$$
\frac{\Omega^{ \pm}-x}{r} \xrightarrow{L_{l o c}^{1}} H^{ \pm}
$$

$H^{ \pm}$are the halfspaces determined by a plane.

Finer coefficients

Definition:

$$
\varepsilon_{n-1}(x, r)=\frac{1}{r^{n}} \inf _{H \text { plane }} \max _{ \pm}\left(\int_{\partial \Omega^{ \pm} \cap \partial B(x, r)} \operatorname{dist}(y, H) d \mathcal{H}_{\infty}^{n-1}(y)\right)
$$

We note that the integral with respect to Hausdorff content is not a measure.

Definition of Hausdorff content and Choquet integral:

$$
\begin{aligned}
\mathcal{H}_{\infty}^{s}(E) & =\inf \left\{\sum \operatorname{diam}\left(A_{i}\right)^{s}: E \subseteq \cup A_{i}\right\} \\
\int|f|^{p} d \mathcal{H}_{\infty}^{s} & :=\int_{0}^{\infty} \mathcal{H}_{\infty}^{s}(E:|f(x)|>t) t^{p-1} d t
\end{aligned}
$$

True tangents - sketch

Its enough to know that thet set has mas everywhere (which is detected by the Hausdorff content). Not only on Euclidean space but also on spheres!

Slicing

Question

If E is compact in $B(0,1)$, when is the following true?

$$
\mathcal{H}_{\infty}^{n}(E) \simeq \int_{0}^{1} \mathcal{H}_{\infty}^{n-1}(E \cap \partial B(x, r)) d t \forall x \in E
$$

Theorem B and Slicing

Definition:

$$
\varepsilon_{s}(x, r)=\frac{1}{r^{n}} \inf _{H \text { plane }} \max _{ \pm}\left(\int_{\partial \Omega^{ \pm} \cap B(x, r)} \operatorname{dist}(y, H)^{n-s} d \mathcal{H}_{\infty}^{s}(y)\right)
$$

Theorem B (F., Tolsa, Villa 2023)

Assume $\Omega^{ \pm}$have the s-capacity density condition $s \in(n, n+1)$. Up to measure zero

$$
\int_{0}^{1} \varepsilon_{s}(x, r)^{2}+\varepsilon_{n}(x, r)^{2} \frac{d r}{r}<\infty \Longleftrightarrow \partial \Omega^{ \pm} \text {admits a tangent at } x .
$$

Ω^{+}satisfies the capacity density condition (CDC) if $\exists t>s$ such that for every ball centered on $\partial \Omega^{+}$

$$
\mathcal{H}_{\infty}^{t}\left(\partial \Omega^{+} \cap B\right) \gtrsim r(B)^{s}
$$

Quantitative stability of Faber-Krahn

Let $\lambda_{1}(\Omega)$ be the first eigenvalue of the Laplacian.

Theorem (Brasco-De Phillipis- Velichkov 2013)

Assume $|\Omega|=|B|$, with B the unit ball. There exists a translation of B such that:

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \gtrsim|\Omega \Delta B|^{2}
$$

Theorem (Allen-Kriventsov-Neumayer 2021)

Assume that $|\Omega|=|B|$, with B the unit ball. Assume B has the same barycenter as Ω. We take u_{Ω}, u_{B} first eigenfunctions of the Laplacian extended by zero:

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \gtrsim|\Omega \Delta B|^{2}+\int\left|u_{\Omega}-u_{B}\right|^{2}
$$

Theorem (F.- Tolsa - Villa 2023)

Assume that $|\Omega|=|B|$, with B the unit ball and Ω has the s-capacity density condition. If B has the same barycenter as Ω, then:

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \gtrsim|\Omega \Delta B|^{2}+\int_{\partial \Omega \cap B} \operatorname{dist}(x, \partial B)^{n-s} d \mathcal{H}_{\infty}^{s} .
$$

Relationship with Carleson ε^{2} conjecture

If $\Sigma \subseteq \mathbf{S}^{n}$, first eigenfunction of the Laplacian u_{Σ} has homogeneous harmonic extension, whose degree we call $\alpha(\Sigma)$.

$$
\lambda_{1}=\alpha(\alpha+n-1)
$$

Alt-Cafarelli-Friedman monotonicity formula

Given two positive harmonic functions $u^{ \pm}$with zero boundary value over disjoint domains $\Omega^{ \pm} \subseteq \mathbb{R}^{n+1}$ for every $x \in \partial \Omega^{+} \cap \partial \Omega^{-}$
$J(x, r):=\left(\frac{1}{r^{2}} \int_{B(x, r) \cap \Omega^{+}} \frac{\left|\nabla u^{+}(y)\right|^{2}}{|y-x|^{n-1}} d y\right) \cdot\left(\frac{1}{r^{2}} \int_{B(x, r) \cap \Omega^{-}} \frac{\left|\nabla u^{-}(y)\right|^{2}}{|y-x|^{n-1}} d y\right)$
The function $J(x, r)$ is monotone and it satisfies:

$$
\frac{\partial_{r} J(x, r)}{J(x, r)} \geq \frac{2}{r}\left(\alpha^{+}(x, r)+\alpha^{-}(x, r)-2\right) \geq 0
$$

where $\alpha^{ \pm}(x, r)$ are the α for $\Omega^{ \pm} \cap \partial B(x, r)$

Source of inspiration

Another result of Allen-Kriventsov-Neumayer:

Theorem (Allen-Kriventsov-Neumayer 2022)

We take sets $\Omega^{ \pm}$and two sub-harmonic functions $u^{ \pm}$. The set

$$
E:=\left\{x: \lim _{r \rightarrow 0} J(x, r)>0\right\}
$$

is n-rectifiable. The blowups for almost every point in E are unique and linear.

Theorem B recharged

Theorem (F. - Tolsa - Villa 2023)

Given domains $\Omega^{ \pm}$with the Capacity density condition we have:

$$
\varepsilon_{s}(x, r)^{2} \lesssim \alpha^{+}(x, r)+\alpha^{-}(x, r)-2
$$

Theorem B Recharged (F.- Tolsa - Villa 2023)

Assume that $\Omega^{ \pm}$have the n-capacity density condition. Up to \mathcal{H}^{n} measure zero $\partial \Omega^{ \pm}$admits a tangent at x if and only if

$$
\int_{0}^{1} \min \left(1, \alpha^{+}(x, r)+\alpha^{-}(x, r)-2\right) \frac{d r}{r}<\infty
$$

Review

$$
E=\left\{x \in \mathbb{R}^{n+1} \mid A(x)<+\infty\right\}
$$

Thank you for coming!

Some ideas of the proof

The extension u_{ω}

$$
\widetilde{u}_{\Omega}(x, t)=u_{\Omega}(x) e^{-\sqrt{\lambda_{1}(\Omega)} t}
$$

is harmonic in the cylinder $\widetilde{\Omega}:=\Omega \times[0,1]$.

- The proof uses the maximum principle for harmonic functions at the level of integrals with respect to harmonic measure at the cylinder $\widetilde{\Omega}$.
- The dominant term is controlled by an integral over a nicer domain with Lipschitz interior. Errors are controlled either by $\lambda_{1}(\Omega)-\lambda_{1}(B)$ or by $\int_{\Omega \cap B}\left|u_{\Omega}-u_{B}\right|^{2}$ (which is enough by AKN).
- Over nice Lipschitz domains harmonic measure behaves like surface measure.

Refences

- Fleschler, Tolsa, Villa: Faber-Krahn inequalities, the Alt-Caffarelli-Friedman formula, and Carleson's ε^{2} conjecture in higher dimensions, preprint 2023.
- Fleschler, Tolsa, Villa: Carleson's ε^{2} conjecture in higher dimensions, preprint 2023.

