Exterior isoperimetry and a mesoscale regularity theorem

Mike Novack joint with Nicola Fusco, Francesco Maggi, and Massimiliano Morini

> CNA Seminar Carnegie Mellon University September 25, 2023

Background: Relative isoperimetry

 $\Omega \subset \mathbb{R}^{n+1}$ open (container)

 $\inf\{P(E;\Omega): |E| = v, E \subset \Omega\}$

How does the shape/energy of minimizers depend on the container Ω ?

Fall '10, Choe-Ghomi-Ritoré '07/Fusco-Morini '23, Fonseca-Fusco-Leoni-Morini '23

Exterior relative isoperimetry: results

 $\Omega \subset \mathbb{R}^{n+1} = W^c$, W closed

- Maggi-N.: W compact
 - Resolution of exterior isoperimetric sets at large volumes v
 - Proof based on "mesoscale flatness criterion" that extends classical blow-up/blow-down criteria
- Fusco-Morini-Maggi-N.: *W* unbounded, convex
 - Characterize dependence of the minimum energy on W (for various v)

Table of Contents

1 Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Outline

1 Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- 2 Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Exterior Isoperimetry

 $W \subset \mathbb{R}^{n+1}$ compact

•
$$\nu_{E_v} \cdot \nu_W = 0$$
 if $\partial W \in C^{1,1}$ (Young's law)

Large Volume Exterior Isoperimetry

Question: Can we obtain *W-specific* energetic and geometric info for minimizers?

Outline

Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- 2 Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Does \mathcal{I}_{W^c} admit an asymptotic expansion as $v \to \infty$?

Example: $W = B_1(0) \implies$ minimizers E_v of $\mathcal{I}_{W^c}(v)$ are large balls with $\partial E_v \cap \partial W \approx$ equator

Here residue = - (area of the largest slice of W).

The Asymptotic Expansion and Isoperimetric Residue

Theorem (Maggi-N.) $\mathcal{I}_{W^c}(v) - c_n v^{n/(n+1)} \stackrel{v \to \infty}{\to} -\mathcal{R}(W)$

• " $\mathcal{R}(W) pprox \mathsf{Plateau}$ problem outside W with boundary data at ∞ "

The Asymptotic Expansion and Isoperimetric Residue

Theorem (Maggi-N.) $\mathcal{I}_{W^c}(v) - c_n v^{n/(n+1)} \stackrel{v \to \infty}{\to} -\mathcal{R}(W)$

- " $\mathcal{R}(W)pprox$ Plateau problem outside W with boundary data at ∞ "
- A pair (F, ν) , $\nu \in \mathbb{S}^n$ is admissible for $\mathcal{R}(W)$ if:
 - $\operatorname{proj}_{\nu^{\perp}}(\partial F) = \nu^{\perp}$ (weak version of graphicality)

Isoperimetric Residues - An Example

 $W \subset \mathbb{R}^2$ compact, connected $\implies \mathcal{R}(W) = \operatorname{diam} W$

 $2r - P(F; C_r^{\nu} \setminus W) \leq \operatorname{diam} W$

Further Results on Isoperimetric Residues

Theorem (Maggi-N. '22)

Any L¹_{loc}-limit F of minimizers for I_{W^c}(v) optimizes R(W)
∂F \ B_R(0) is the graph of a sol. u : v[⊥] → ℝ of the minimal surface equation, with

$$u(x) = a + \frac{b}{|x|^{n-2}} + \frac{c \cdot x}{|x|^n} + O(|x|^{-n}) \text{ as } |x| \to \infty$$

Further properties of $\mathcal{R}(W)$

- $\mathcal{S}(W) \leq \mathcal{R}(W) \leq \mathcal{P}(W)$
 - $\mathcal{S}(W) := \sup\{\mathcal{H}^n(W \cap H) : H \text{ a hyperplane}\}$ (largest slice by a plane)
 - ► $\mathcal{P}(W) := \sup\{\mathcal{H}^n(\operatorname{proj}_{\nu^{\perp}}(W)) : \nu \in \mathbb{S}^n\}$ (largest proj. onto a plane)

Further properties of $\mathcal{R}(W)$

- $\mathcal{S}(W) \leq \mathcal{R}(W) \leq \mathcal{P}(W)$
 - $S(W) := \sup\{\mathcal{H}^n(W \cap H) : H \text{ a hyperplane}\}$ (largest slice by a plane)
 - $\mathcal{P}(W) := \sup\{\mathcal{H}^n(\operatorname{proj}_{\nu^{\perp}}(W)) : \nu \in \mathbb{S}^n\}$ (largest proj. onto a plane)

- Characterization of equality cases
 - W contains a (n-1)-dim. sphere S of diameter diam(W)
 - $W^c \setminus (ext. hypersurface to S)$ has 2 unbounded connected components

Asymptotic Expansion: Idea of Proof

Need to prove

$$\limsup_{v \to \infty} \mathcal{I}_{W^c}(v) - c_n v^{n/(n+1)} \leq -\mathcal{R}(W) \quad \text{and}$$
$$\liminf_{v \to \infty} \mathcal{I}_{W^c}(v) - c_n v^{n/(n+1)} \geq -\mathcal{R}(W).$$

Upper bound (ansatz): for asymptotically planar F, we can "glue" large balls to F
 F

 $|E_v| = v$

Asymptotic Expansion: Idea of Proof

Need to prove

$$\limsup_{v \to \infty} \mathcal{I}_{W^c}(v) - c_n v^{n/(n+1)} \leq -\mathcal{R}(W) \quad \text{and}$$
$$\liminf_{v \to \infty} \mathcal{I}_{W^c}(v) - c_n v^{n/(n+1)} \geq -\mathcal{R}(W).$$

- Upper bound (ansatz): for asymptotically planar F, we can "glue" large balls to F
- Lower bound: If every limit F of minimizers E_v is asymptotically planar (i.e. satisfies the ansatz), then

$$\liminf_{v\to\infty}\mathcal{I}_{W^c}(v)-c_nv^{n/(n+1)}\geq -\mathcal{R}(W)$$

To close the argument, we must study the behavior at infinity of such F.

Outline

1 Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Description of Minimizers Close to W

• Subsequential limits of minimizers E_v of $\mathcal{I}_{W^c}(v)$ converge **locally** to optimizers of $\mathcal{R}(W) \implies \partial E_v$ is **locally** a normal graph over an asymptotically planar minimal surface

Description of Minimizers Close to W

• Subsequential limits of minimizers E_v of $\mathcal{I}_{W^c}(v)$ converge **locally** to optimizers of $\mathcal{R}(W) \implies \partial E_v$ is **locally** a normal graph over an asymptotically planar minimal surface

- \mathbb{R}^3 (physical case) + W^{int} is open with $C^{1,1}$ boundary $\implies \partial F$ is regular up to ∂W
 - $\implies \partial E_v \cap B_R(0)$ can be parametrized over ∂F

Cannot "push" graphicality over ∂F further outside $B_R(0)$ in a quantitative way.

Description of Minimizers Far from W

• Rescale $E_v
ightarrow E_v / v^{1/(n+1)}$

$$\implies P(E_v/v^{1/(n+1)}) \le P(B_{r_n}(x)) + \text{small error}$$

- Perimeter bound \implies
 - L¹-proximity to a large ball (quantitative isoperimetry)
 - C^2 -parametrization over a large sphere (L^1 -prox. + const. mean curvature). . . (far) away from singularities of $H_{\partial E}$, i.e. along W

Cannot "push" graphicality further inside $B_{v^{1/(n+1)}}(0)$ in a quantitative way. . .

What happens in the mesoscale?

Putting these two descriptions together leaves **the mesoscale** undescribed. . .

Outline

1 Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Outline

1 Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- 2 Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Background: Blow-up Flatness Criteria

Theorem (Allard '72)

 $M \subset \mathbb{R}^{n+1}$ is a hypersurface, $|H_M|_{\infty} \leq \Lambda$, $x \in M$,

$$r < \varepsilon_0 / \Lambda$$
 and $\frac{\mathcal{H}^n(M \cap B_r(x))}{\omega_n r^n} - 1 < \varepsilon_0$

then $M \cap B_{r/2}(x)$ is a C^1 -graph over a hyperplane K.

Background: Blow-up Flatness Criteria

Theorem (Allard '72)

 $M \subset \mathbb{R}^{n+1}$ is a hypersurface, $|H_M|_{\infty} \leq \Lambda$, $x \in M$,

$$r < \varepsilon_0 / \Lambda$$
 and $\frac{\mathcal{H}^n(M \cap B_r(x))}{\omega_n r^n} - 1 < \varepsilon_0$

then $M \cap B_{r/2}(x)$ is a C^1 -graph over a hyperplane K.

• "Area excess" assumption necessary - e.g. catenoids

Background: Blow-up Flatness Criteria

Theorem (Allard '72)

$$M \subset \mathbb{R}^{n+1}$$
 is a hypersurface, $|H_M|_{\infty} \leq \Lambda$, $x \in M$,

$$r < \varepsilon_0 / \Lambda$$
 and $\frac{\mathcal{H}^n(M \cap B_r(x))}{\omega_n r^n} - 1 < \varepsilon_0$

then $M \cap B_{r/2}(x)$ is a C^1 -graph over a hyperplane K.

- "Area excess" assumption necessary e.g. catenoids
- Improved convergence for hypersurfaces $M_j \rightarrow M$

$$\begin{cases} |H_{M_j}| \leq \Lambda, \ M \text{ smooth} \\ \mathcal{H}^n(M_j \cap B_\rho(x)) \to \mathcal{H}^n(M \cap B_\rho(x)) \implies M_j \stackrel{C^1_{loc}}{\to} M \\ \forall x, \text{ a.e. } \rho \end{cases}$$

Background: Blow-down Flatness Criteria

- *M* an exterior minimal surface in $\mathbb{R}^{n+1} \setminus B_R$
- *C* is a tangent cone at infinity for *M* if $\exists r_k \to \infty$ such that

$$M/r_k \to C.$$

(monotonicity of $\mathcal{H}^n(M \cap B_r)/r^n \implies$ all blow-downs are cones)

• Example: For M = half-catenoid in \mathbb{R}^3 ,

$$M/r \stackrel{r \to \infty}{\to} \{z = 0\}.$$

Is the tangent cone at infinity unique?

Background: Blow-down Flatness Criteria

Theorem (Allard-Almgren '81, Simon '83)

M minimal in $\mathbb{R}^{n+1} \setminus B_R$, $M/r_k \to K$ (hyperplane) for some $r_k \to \infty$ \downarrow

 $M/r \xrightarrow{r \to \infty} K$, and $M \setminus B_{r'}$ is a C^1 -graph of some $u : K \setminus B_{r'} \to \mathbb{R}$.

Background: Blow-down Flatness Criteria

Theorem (Allard-Almgren '81, Simon '83)

M minimal in $\mathbb{R}^{n+1} \setminus B_R$, $M/r_k \to K$ (hyperplane) for some $r_k \to \infty$ \Downarrow

 $M/r \xrightarrow{r \to \infty} K$, and $M \setminus B_{r'}$ is a C^1 -graph of some $u : K \setminus B_{r'} \to \mathbb{R}$.

- Higher co-dimension & general (multiplicity one) cones?
 - A-A '81: integrable cones with iso. sing. \implies poly. decay
 - S '83: integrable/non-integrable cones with iso. sing. decay
 - Engelstein-Spolaor-Velichkov '19: Uniqueness via (log)-epiperimetric inequality for almost area-minimizing currents

Mesoscale Flatness Criterion

• $\mathcal{M}_{R,\Lambda}$ = hypersurfaces $M \subset \mathbb{R}^{n+1} \setminus B_R$ with bdry $M \subset \partial B_R$, $|H_M|_{\infty} \leq \Lambda$ on $B_{\Lambda^{-1}} \setminus \overline{B}_R$

• Monotone quantity (may change signs)

$$\delta(r) := \frac{\mathcal{H}^n(M \cap (B_r \setminus B_R))}{r^n} - \omega_n + \underbrace{\operatorname{bdry term}}_{\approx \frac{R^n}{r^n}} + \underbrace{\operatorname{curvature term}}_{\approx \Lambda r}$$

Mesoscale Flatness Criterion

Theorem (Maggi-N. '22)

 $\exists \varepsilon_0(n) \text{ such that if } M \in \mathcal{M}_{R,\Lambda} \text{ and for some } s, S > 0,$

$$\left\{ egin{array}{l} \displaystyle rac{R}{arepsilon_0} \leq s < \displaystyle rac{S}{2} \leq \displaystyle rac{arepsilon_0}{\Lambda}, \ |\delta(s)|, |\delta(S)| \leq arepsilon_0, \end{array}
ight.$$

then

 \exists hyperplane K s.t. M is a C^1 -graph over K on $B_{S/2} \setminus B_s$.

Mesoscale Flatness Criterion: Further Remarks

Theorem

 $\exists \varepsilon_0(n) \text{ such that if } M \in \mathcal{M}_{R,\Lambda} \text{ and for some } s, S > 0$,

$$\left\{ egin{array}{l} \displaystyle rac{R}{arepsilon_0} \leq s < \displaystyle rac{S}{2} \leq \displaystyle rac{arepsilon_0}{\Lambda}, \ |\delta(s)|, |\delta(S)| \leq arepsilon_0, \end{array}
ight.$$

then

$$\exists$$
 hyperplane K s.t. M is a C^1 graph over K on $B_{S/2} \setminus B_s$.

• Statement contains other flatness criteria over hyperplanes

$$\blacktriangleright R = 0 \longleftrightarrow \text{Allard '72} \quad \delta \ge 0$$

► $\Lambda = 0 \leftrightarrow$ Allard-Almgren '81, Simon '83, '85, '87 $\delta \leq 0$

Mesoscale Flatness Criterion: Further Remarks

Theorem

 $\exists \varepsilon_0(n) \text{ such that if } M \in \mathcal{M}_{R,\Lambda} \text{ and for some } s, S > 0$,

$$\left\{ egin{array}{l} \displaystyle rac{R}{arepsilon_0} \leq s < \displaystyle rac{S}{2} \leq \displaystyle rac{arepsilon_0}{\Lambda}, \ |\delta(s)|, |\delta(S)| \leq arepsilon_0, \end{array}
ight.$$

then

 \exists hyperplane K s.t. M is a C^1 graph over K on $B_{S/2} \setminus B_s$.

- Statement contains other flatness criteria over hyperplanes
 - $\blacktriangleright R = 0 \longleftrightarrow \text{Allard '72} \quad \delta \ge 0$

► $\Lambda = 0 \leftrightarrow$ Allard-Almgren '81, Simon '83, '85, '87 $\delta \leq 0$

• Also covers surfaces for which δ can change sign and neither blow-ups/blow-downs exist

Idea of Proof

Starting point (improved convergence): If for some r > 0, a hypersurface $M \in \mathcal{M}_{R,\Lambda}$ satisfies

$$r \underbrace{|\mathcal{H}_M|_{\infty}}_{=\Lambda} \ll 1 \qquad |\delta(r)|, |\delta(r/8)| \ll 1, \qquad \frac{\mathcal{R}}{\varepsilon_0} \leq \frac{r}{8} \leq r \leq \frac{\varepsilon_0}{\Lambda}$$

 \downarrow

then $M \cap (B_{r/2} \setminus B_{r/4})$ is a small C^1 -graph over a plane.

Idea of Proof

Starting point (improved convergence): If for some r > 0, a hypersurface $M \in \mathcal{M}_{R,\Lambda}$ satisfies

$$r \underbrace{|\mathcal{H}_M|_{\infty}}_{=\Lambda} \ll 1 \qquad |\delta(r)|, |\delta(r/8)| \ll 1, \qquad \frac{\mathcal{R}}{\varepsilon_0} \leq \frac{r}{8} \leq r \leq \frac{\varepsilon_0}{\Lambda}$$

 \downarrow

then $M \cap (B_{r/2} \setminus B_{r/4})$ is a small C^1 -graph over a plane.

We need to show these normals do not oscillate too much as r varies.

Outline

1 Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Geometric Resolution of Minimizers

Theorem (Maggi-N. '22)

There exists R_0 , R_1 such that if E_v is a minimizer for large v $\partial E \cap (B \cup v) \otimes B_D$ is a normal graph over ∂E where (E

• $\partial E_{\nu} \cap (B_{R_1\nu^{1/(n+1)}} \setminus B_{R_0})$ is a normal graph over ∂F , where (F, ν) optimal for $\mathcal{R}(W)$

Geometric Resolution of Minimizers

Theorem (Maggi-N. '22)

There exists R_0 , R_1 such that if E_v is a minimizer for large v

- $\partial E_{\nu} \cap (B_{R_1\nu^{1/(n+1)}} \setminus B_{R_0})$ is a normal graph over ∂F , where (F, ν) optimal for $\mathcal{R}(W)$
- E_v determines $x \in \mathbb{R}^{n+1}$ such that $\partial E_v \setminus B_{R_0}$ is a normal graph over $\partial B_{r_nv^{1/(n+1)}}(x)$

Geometric Resolution of Minimizers

Theorem (Maggi-N. '22)

There exists R_0 , R_1 such that if E_v is a minimizer for large v

- $\partial E_{v} \cap (B_{R_{1}v^{1/(n+1)}} \setminus B_{R_{0}})$ is a normal graph over ∂F , where (F, ν) optimal for $\mathcal{R}(W)$
- E_v determines $x \in \mathbb{R}^{n+1}$ such that $\partial E_v \setminus B_{R_0}$ is a normal graph over $\partial B_{r_nv^{1/(n+1)}}(x)$

$$\blacktriangleright |x/|x| - \nu| \to 0$$

Outline

D Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- 2 Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry

3 Exterior isoperimetry outside unbounded convex sets

- Background
- Results

Outline

D Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- 2 Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- 3 Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Background

- Literature: Choe-Ghomi-Ritoré '07, Fusco-Morini '21
 - ► *W* closed, convex with non-empty interior:

$$P(E; W^c) \ge (n+1) \left(\frac{\omega_{n+1}}{2}\right)^{n/(n+1)} |E|^{n/(n+1)}$$

with "=" iff E is a half-ball supported on a facet of W.

Background

- Literature: Choe-Ghomi-Ritoré '07, Fusco-Morini '21
 - ► *W* closed, convex with non-empty interior:

$$P(E; W^c) \ge (n+1) \left(\frac{\omega_{n+1}}{2}\right)^{n/(n+1)} |E|^{n/(n+1)}$$

with "=" iff E is a half-ball supported on a facet of W.

- Minimizers may not exist when W is unbounded (Fonseca-Fusco-Leoni-Morini '23)
 - Minimizing sequences may run off to infinity in search of facets
 - Upshot: The isoperimetric problem outside an unbounded convex set W is strongly influenced by the large scale behavior of W.

Outline

D Exterior isoperimetry outside compact sets

- Energetic resolution
- Geometric resolution?
- 2 Mesoscale Flatness Criterion
 - Background and statement
 - Application to exterior isoperimetry
- ③ Exterior isoperimetry outside unbounded convex sets
 - Background
 - Results

Asymptotic Dimension of a Convex Set W

 $d^*(W) \approx$ largest affine dimension of any sequence of blow-downs+translations of W

More precisely,

 $d^*(W) = \max$. affine dimension of any limit $\lambda_k(W - x_k)$, $\lambda_k \to 0$, $x_k \in W$ d*(w) = 1d*(w) = 3 $d^*(W) = k \implies W \subset \mathbb{R}^k \times W'$ for compact $W' \subset \mathbb{R}^{n+1-k}$

Comparison with other notions

 $d^*(W) = \max$ affine dimension of any limit $\lambda_k(W - x_k)$, $\lambda_k \to 0$, $x_k \in W$

- If $x_k = x \in W$, we recover the affine dimension of the classical recession cone.
- Example: $W = \{z \ge x^2 + y^2\}$
 - Recession cone = $\{(0, 0, z) : z \ge 0\}$ (affine dimension = 1)

$d^*(W)$ and the isoperimetric profile

Theorem (Fusco-Maggi-Morini-N.)

Let $W \subset \mathbb{R}^{n+1}$ be unbounded and convex.

- If $d^*(W) \ge n$, then the isoperimetric profile $\mathcal{I}_{W^c}(v)$ of W coincides with that of a halfspace. (half-balls optimal at all volumes)
- If $d^*(W) < n$, then

$$\lim_{v\to\infty}\mathcal{I}_{W^c}(v)/v^{n/(n+1)}=P(B)\,,$$

(i.e. \approx balls are optimal for large volumes).

$d^*(W)$ and the isoperimetric profile

Theorem (Fusco-Maggi-Morini-N.)

Let $W \subset \mathbb{R}^{n+1}$ be unbounded and convex.

- If $d^*(W) \ge n$, then the isoperimetric profile $\mathcal{I}_{W^c}(v)$ of W coincides with that of a halfspace. (half-balls optimal at all volumes)
- If $d^*(W) < n$, then

$$\lim_{v\to\infty}\mathcal{I}_{W^c}(v)/v^{n/(n+1)}=P(B)\,,$$

(i.e. \approx balls are optimal for large volumes).

- Corollary: If W is strictly convex and d[∗](W) ≥ n, then there is non-existence for every volume.
- When $d^*(W) < n$, we have preliminary estimates on the isoperimetric residues, i.e. the second order term in the energy expansion in v.

- Other mesoscale flatness criteria
 - In arbitrary co-dimension for multiplicity one cones with isolated singularity at 0
 - Higher multiplicity cones?
 - Cones with non-isolated singularities?

- Other mesoscale flatness criteria
 - In arbitrary co-dimension for multiplicity one cones with isolated singularity at 0
 - Higher multiplicity cones?
 - Cones with non-isolated singularities?
- Large volume exterior isoperimetry outside unbounded convex *W*: geometric resolutions and isoperimetric residues
 - Example: $W = \mathbb{R} \times \{y^2 + z^2 \leq 1\} \subset \mathbb{R}^3$

- Other mesoscale flatness criteria
 - In arbitrary co-dimension for multiplicity one cones with isolated singularity at 0
 - Higher multiplicity cones?
 - Cones with non-isolated singularities?
- Large volume exterior isoperimetry outside unbounded convex W: geometric resolutions and isoperimetric residues
 - Example: $W = \mathbb{R} \times \{y^2 + z^2 \le 1\} \subset \mathbb{R}^3$
- Large volume isoperimetry outside compact *W* for anisotropic energies: geometric resolutions & isoperimetric residues
 - No monotonicity formula, but can we find other information to help address mesoscale behavior?

- Other mesoscale flatness criteria
 - In arbitrary co-dimension for multiplicity one cones with isolated singularity at 0
 - Higher multiplicity cones?
 - Cones with non-isolated singularities?
- Large volume exterior isoperimetry outside unbounded convex W: geometric resolutions and isoperimetric residues
 - Example: $W = \mathbb{R} \times \{y^2 + z^2 \le 1\} \subset \mathbb{R}^3$
- Large volume isoperimetry outside compact *W* for anisotropic energies: geometric resolutions & isoperimetric residues
 - No monotonicity formula, but can we find other information to help address mesoscale behavior?

Thank you!