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Background: Relative isoperimetry

⌦ ⇢ Rn+1 open (container)

inf{P(E ;⌦) : |E | = v , E ⇢ ⌦}

How does the shape/energy of minimizers depend on the container ⌦?

Fall ’10, Choe-Ghomi-Ritoré ‘07/Fusco-Morini ‘23, Fonseca-Fusco-Leoni-Morini ’23



Exterior relative isoperimetry: results

⌦ ⇢ Rn+1 = W
c , W closed

inf{P(E ;W c) : |E | = v , E ⇢W
c
}

Maggi-N.: W compact

I Resolution of exterior isoperimetric sets at large volumes v

I Proof based on “mesoscale flatness criterion” that extends classical
blow-up/blow-down criteria

Fusco-Morini-Maggi-N.: W unbounded, convex

I Characterize dependence of the minimum energy on W (for various v)
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Exterior Isoperimetry

W ⇢ Rn+1 compact

IWc (v) = inf{P(E ;W c) : |E | = v , E ⇢W
c
}

Basic information

I Minimizers Ev exist (use compactness of W ), have constant mean
curvature

I ⌫Ev · ⌫W = 0 if @W 2 C
1,1 (Young’s law)

Ex



Large Volume Exterior Isoperimetry

W ⇢ Rn+1 compact, v1/(n+1)
� diam(W )

IWc (v) = inf{P(E ;W c) : |E | = v , E ⇢W
c
}

Question: Can we obtain W-specific energetic and geometric info for
minimizers?

Ex
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Does IW c admit an asymptotic expansion as v !1?

Example: W = B1(0) =) minimizers Ev of IWc (v) are large balls with
@Ev \ @W ⇡ equator

IWc (v)� cnv
n/(n+1) v!1

! �H
n(D)| {z }

“residue”

.

Here residue = � (area of the largest slice of W ).

W

Ev



The Asymptotic Expansion and Isoperimetric Residue

Theorem (Maggi-N.)

IWc (v)� cnv
n/(n+1) v!1

! �R(W )

“R(W ) ⇡ Plateau problem outside W with boundary data at 1”

A pair (F , ⌫), ⌫ 2 Sn is admissible for R(W ) if:

I proj⌫?(@F ) = ⌫? (weak version of graphicality)

I @F is contained in a finite height slab parallel to ⌫? (planar at 1)

0 < R(W ) = sup(F ,⌫) lim
r!1

!nr
n
� P(F ;C ⌫

r \W )
| {z }
large scale cylindrical area “deficit”

Tot
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Isoperimetric Residues - An Example

W ⇢ R2 compact, connected =) R(W ) = diamW

2r � P(F ;C ⌫
r \W )  diamW

OF
u
diamW

ut
c



Further Results on Isoperimetric Residues

Theorem (Maggi-N. ’22)

Any L
1
loc-limit F of minimizers for IWc (v) optimizes R(W )

@F \ BR(0) is the graph of a sol. u : ⌫? ! R of the minimal surface

equation, with

u(x) = a+
b

|x |n�2
+

c · x

|x |n
+O(|x |�n) as |x |!1

Vt



Further properties of R(W )

S(W )  R(W )  P(W )

I S(W ) := sup{Hn(W \ H) : H a hyperplane} (largest slice by a plane)

I P(W ) := sup{Hn(proj⌫?(W )) : ⌫ 2 Sn} (largest proj. onto a plane)

Among sets of a fixed diameter, balls have the largest residue.

Characterization of equality cases

I W contains a (n � 1)-dim. sphere S of diameter diam(W )

I W
c
\ (ext. hypersurface to S) has 2 unbounded connected components

D

PCW
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Asymptotic Expansion: Idea of Proof

Need to prove

lim sup
v!1

IWc (v)� cnv
n/(n+1)

 �R(W ) and

lim inf
v!1

IWc (v)� cnv
n/(n+1)

� �R(W ) .

Upper bound (ansatz): for asymptotically planar F , we can “glue”
large balls to F

Lower bound: If every limit F of minimizers Ev is asymptotically
planar (i.e. satisfies the ansatz), then

lim inf
v!1

IWc (v)� cnv
n/(n+1)

� �R(W )

I To close the argument, we must study the behavior at infinity of such
F .

E a

El v
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Description of Minimizers Close to W

Subsequential limits of minimizers Ev of IWc (v) converge locally to
optimizers of R(W ) =) @Ev is locally a normal graph over an
asymptotically planar minimal surface

R3 (physical case) + W
int is open with C

1,1 boundary
=) @F is regular up to @W
=) @Ev \ BR(0) can be parametrized over @F

Cannot “push” graphicality over @F further outside BR(0) in a
quantitative way.

in of
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Description of Minimizers Far from W

Rescale Ev ! Ev/v1/(n+1)

=) P(Ev/v
1/(n+1))  P(Brn(x)) + small error

Perimeter bound =)

I L
1-proximity to a large ball (quantitative isoperimetry)

I C
2-parametrization over a large sphere (L1-prox. + const. mean

curvature). . . (far) away from singularities of H@E , i.e. along W

Cannot “push” graphicality further inside Bv1/(n+1)(0) in a quantitative
way. . .

OW

v
int



What happens in the mesoscale?

Putting these two descriptions together leaves the mesoscale
undescribed. . .

We need a new flatness criterion!

g
Intl R R u Intl

LEI V
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Background: Blow-up Flatness Criteria

Theorem (Allard ’72)

M ⇢ Rn+1
is a hypersurface, |HM |1  ⇤, x 2 M,

r < "0/⇤ and
H

n(M \ Br (x))

!nr
n

� 1 < "0

then M \ Br/2(x) is a C
1
-graph over a hyperplane K .

“Area excess” assumption necessary - e.g. catenoids

Improved convergence for hypersurfaces Mj ! M

8
>><

>>:

|HMj |  ⇤, M smooth

H
n(Mj \ B⇢(x))! H

n(M \ B⇢(x)) =) Mj
C1
loc
! M

8x , a.e. ⇢

in
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Background: Blow-down Flatness Criteria

M an exterior minimal surface in Rn+1
\ BR

C is a tangent cone at infinity for M if 9 rk !1 such that

M/rk ! C .

(monotonicity of Hn(M \ Br )/rn =) all blow-downs are cones)

Example: For M = half-catenoid in R3,

M/r
r!1
! {z = 0}.

Is the tangent cone at infinity unique?

i

C O



Background: Blow-down Flatness Criteria

Theorem (Allard-Almgren ’81, Simon ’83)

M minimal in Rn+1
\ BR , M/rk ! K (hyperplane) for some rk !1

+

M/r
r!1
! K , and M \ Br 0 is a C

1
-graph of some u : K \ Br 0 ! R.

Higher co-dimension & general (multiplicity one) cones?

I A-A ’81: integrable cones with iso. sing. =) poly. decay

I S ’83: integrable/non-integrable cones with iso. sing. =) poly./log
decay

I Engelstein-Spolaor-Velichkov ’19: Uniqueness via (log)-epiperimetric
inequality for almost area-minimizing currents

C O
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Mesoscale Flatness Criterion

MR,⇤ = hypersurfaces M ⇢ Rn+1
\ BR with

bdryM ⇢ @BR , |HM |1  ⇤ on B⇤�1 \ BR

Monotone quantity (may change signs)

�(r) :=
H

n(M \ (Br \ BR))

rn
� !n + bdry term| {z }

⇡Rn

rn

+curvature term| {z }
⇡⇤r



Mesoscale Flatness Criterion

MR,⇤ = hypersurfaces M ⇢ Rn+1
\ BR with

bdryM ⇢ @BR , |HM |1  ⇤ on B⇤�1 \ BR

Theorem (Maggi-N. ’22)

9 "0(n) such that if M 2MR,⇤ and for some s,S > 0,
8
<

:

R

"0
 s <

S

2


"0
⇤
,

|�(s)|, |�(S)|  "0,

then

9 hyperplane K s.t. M is a C
1
-graph over K on BS/2 \ Bs .



Mesoscale Flatness Criterion: Further Remarks

Theorem

9 "0(n) such that if M 2MR,⇤ and for some s,S > 0,
8
<

:

R

"0
 s <

S

2


"0
⇤
,

|�(s)|, |�(S)|  "0,

then

9 hyperplane K s.t. M is a C
1
graph over K on BS/2 \ Bs .

Statement contains other flatness criteria over hyperplanes

I R = 0 ! Allard ’72 � � 0

I ⇤ = 0 ! Allard-Almgren ’81, Simon ’83, ’85, ’87 �  0

Also covers surfaces for which � can change sign and neither
blow-ups/blow-downs exist
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Idea of Proof

Starting point (improved convergence): If for some r > 0, a
hypersurface M 2MR,⇤ satisfies

r |HM |1| {z }
=⇤

⌧ 1 |�(r)|, |�(r/8)|⌧ 1,
R

"0


r

8
 r 

"0
⇤

then M \ (Br/2 \ Br/4) is a small C 1-graph over a plane.

+

On every dyadic annulus Br/4 \ Br/2 there is some ⌫r 2 Sn such that

M \ (Br/2 \ Br/4) is a C
1-graph over ⌫?r .

We need to show these normals do not oscillate too much as r varies.

i
V8 V4 V2
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Geometric Resolution of Minimizers

Theorem (Maggi-N. ’22)

There exists R0, R1 such that if Ev is a minimizer for large v

@Ev \ (BR1v1/(n+1) \ BR0) is a normal graph over @F , where (F , ⌫)
optimal for R(W )

Ev determines x 2 Rn+1
such that @Ev \ BR0 is a normal graph over

@Brnv1/(n+1)(x)

Overlapping domains of resolution (i.e. agreement of descriptions of
@Ev close/far from W )

I |x/|x |� ⌫|! 0

in of

DEV

Intl v IntlRo Ro
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Background

Literature: Choe-Ghomi-Ritoré ‘07, Fusco-Morini ‘21

I W closed, convex with non-empty interior:

P(E ;W c) � (n + 1)
⇣!n+1

2

⌘n/(n+1)
|E |

n/(n+1)

with “=” i↵ E is a half-ball supported on a facet of W .

Minimizers may not exist when W is unbounded
(Fonseca-Fusco-Leoni-Morini ’23)

I Minimizing sequences may run o↵ to infinity in search of facets

I Upshot: The isoperimetric problem outside an unbounded convex set
W is strongly influenced by the large scale behavior of W .

W
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Asymptotic Dimension of a Convex Set W

d
⇤(W ) ⇡ largest a�ne dimension of any sequence of

blow-downs+translations of W

More precisely,

d
⇤(W ) = max. a�ne dimension of any limit �k(W � xk), �k ! 0, xk 2W

d
⇤(W ) = k =) W ⇢ Rk

⇥W
0 for compact W 0

⇢ Rn+1�k

i
W

x d Wl I

k

k

d W 3



Comparison with other notions

d
⇤(W ) = max. a�ne dimension of any limit �k(W � xk), �k ! 0, xk 2W

If xk = x 2W , we recover the a�ne dimension of the classical
recession cone.

Example: W = {z � x
2 + y

2
}

I Recession cone = {(0, 0, z) : z � 0} (a�ne dimension = 1)

I d
⇤(W ) = 3 W

i d Iw s

O



d⇤(W ) and the isoperimetric profile

Theorem (Fusco-Maggi-Morini-N.)

Let W ⇢ Rn+1
be unbounded and convex.

If d
⇤(W ) � n, then the isoperimetric profile IWc (v) of W coincides

with that of a halfspace. (half-balls optimal at all volumes)

If d
⇤(W ) < n, then

lim
v!1

IWc (v)/vn/(n+1) = P(B) ,

(i.e. ⇡ balls are optimal for large volumes).

Corollary: If W is strictly convex and d
⇤(W ) � n, then there is

non-existence for every volume.

When d
⇤(W ) < n, we have preliminary estimates on the isoperimetric

residues, i.e. the second order term in the energy expansion in v .
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Future directions

Other mesoscale flatness criteria

I In arbitrary co-dimension for multiplicity one cones with isolated
singularity at 0

I Higher multiplicity cones?

I Cones with non-isolated singularities?

Large volume exterior isoperimetry outside unbounded convex W :
geometric resolutions and isoperimetric residues

I Example: W = R⇥ {y
2 + z

2
 1} ⇢ R3

Large volume isoperimetry outside compact W for anisotropic
energies: geometric resolutions & isoperimetric residues

I No monotonicity formula, but can we find other information to help
address mesoscale behavior?

Thank you!
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