Periodic Homogenization of Non-variational Interface Motions

Peter Morfe

University of Chicago

Center for Nonlinear Analysis Seminar Carnegie Mellon University January 18, 2022

- (1) Motivation/Statement of the Problem
- (2) Main Result
- (3) Averaging in Codimension One
- (4) Making Sense of the Homogenized Equation
- (5) Conclusion/Future Directions

Given an open set E with smooth boundary, we let

 $n_{\partial E}$ = normal vector to ∂E $A_{\partial E}$ = second fundamental form associated with ∂E (symmetrix matrix-valued function on ∂E)

If $n_{\partial E}$ is "first derivative of ∂E ," then $A_{\partial E}$ is "second derivative/Hessian matrix" of ∂E

(It measures how how curved ∂E is)

Can compute $A_{\partial E} = -Dn_{\partial E}$

Interface motion in heterogeneous media

Question of interest in materials science/math: how do microscopic heterogeneities affect macroscopic motion of interfaces (e.g. phase/grain boundaries, domain walls)?

A toy model of solidification:

(i) $E^{\epsilon}(t)$ "melt" phase at time t, (ii) $\mathbb{R}^{d} \setminus E^{\epsilon}(t)$ "solid" phase at time t(iii) phase boundary $\partial E^{\epsilon}(t)$ moves with normal velocity

$$V_{\partial E^{\epsilon}(t)} = \operatorname{tr}\left(a(\epsilon^{-1}x, n_{\partial E^{\epsilon}(t)})A_{\partial E^{\epsilon}(t)}\right)$$

 $a: \mathbb{R}^d \times S^{d-1} \to \mathbb{R}^{d \times d}_{sym}$ models the heterogeneities in the material, $\lambda Id \leq a \leq \Lambda Id$, \mathbb{Z}^d -periodic, i.e. a(x + k, n) = a(x, n) for $k \in \mathbb{Z}^d$

Parabolic scaling: $E(t) = \epsilon^{-1} E^{\epsilon}(\epsilon^2 t)$ satisfies same equation with $\epsilon = 1$

Macroscopic behavior? \iff Limit of $E^{\epsilon}(t)$ as $\epsilon \to 0$?

Non-variational model: energy dissipation is missing

Main Result: Homogenization & Discontinuities

Recall the geometric flow of interest:

$$V_{\partial E^{\epsilon}(t)} = \operatorname{tr}\left(a(\epsilon^{-1}x, n_{\partial E^{\epsilon}(t)})A_{\partial E^{\epsilon}(t)}\right)$$
(1)

Notation: $S^{d-1} = \{ e \in \mathbb{R}^d \mid ||e|| = 1 \}$, $\mathbb{R}\mathbb{Z}^d = \{ \alpha k \mid \alpha \in \mathbb{R}, k \in \mathbb{Z}^d \}$.

Theorem (M. '20)

There is a homogenized tensor $\bar{a}: S^{d-1} \setminus \mathbb{RZ}^d \to \mathbb{R}^{d \times d}_{svm}$ such that

(i) Given any $E \subseteq \mathbb{R}^d$ open, there is a unique level set solution $\{E(t)\}_{t\geq 0}$ of the homogenized flow

$$V_{\partial E(t)} = tr(\bar{a}(n_{\partial E(t)})A_{\partial E(t)}), \quad E(0) = E$$

- (ii) If $\{E^{\epsilon}(t)\}_{t\geq 0}$ is the level set solution of (1) with initial set $E^{\epsilon}(0) = E$, then $E^{\epsilon}(t) \to E(t)$ as $\epsilon \to 0$.
- (iii) If $d \ge 3$, then \bar{a} generically has no well-defined limit at any direction $e \in S^{d-1} \cap \mathbb{RZ}^d$. (If d = 2, then \bar{a} extends continuously to S^1 in general.)

Heuristics

Assume $E^{\epsilon}(t) \to E(t)$ as $\epsilon \to 0$. **Goal:** derive equation for $\{E(t)\}_{t\geq 0}$

Let $x_0 \in \partial E(t_0)$

Suppose $\partial E(t_0)$ is smooth there

Recall: close to x_0 , the boundary looks like the graph of a paraboloid

Set
$$e = n_{\partial E(t_0)}(x_0)$$

To first order, $\partial E^{\epsilon}(t)$ sees a along the black hyperplane pictured

Question: Average of periodic function on a hyperplane?

Averaging over Planes

Let $f : \mathbb{R}^d \to \mathbb{R}$ be continuous and \mathbb{Z}^d -periodic, i.e. f(x+k) = f(x) if $k \in \mathbb{Z}^d$ Given an $e \in S^{d-1}$ and $s \in \mathbb{R}$, define $H(s, e) = \{x \in \mathbb{R}^d \mid x \cdot e = s\}$.

Question: What happens if we average f over H(s, e)?

Lemma

For any $e \in S^{d-1}$, $s \in \mathbb{R}$, and $x_0 \in H(s, e)$, the average

$$Avg(f, e, s) := \lim_{R \to \infty} (\omega_{d-1} R^{d-1})^{-1} \int_{B(x_0, R) \cap H(s, e)} f(y) \, dA(y)$$

exists and is independent of x_0 . Furthermore, we have:

(i) If e ∈ RZ^d, then s' → Avg(f, e, s') is periodic in R with period r_e.
(ii) If e ∉ RZ^d, then Avg(f, e, s) = ∫_{[0,1)^d} f(x) dx independently of s.

Proof of (i) and (ii): Fourier series expansion.

(ii) is a manifestation of unique ergodicity

P.S. Morfe

・ロト ・四ト ・ヨト ・ヨト

Averaging over Planes, cont.

If we think of $e \mapsto Avg(f, e, \cdot)$ as a function of e, it is discontinuous — **but not too discontinuous**

Demonstration: let $f(x) = \sum_{k \in \mathbb{Z}^2 \setminus \{0\}} \|k\|^{-3} \cos(2\pi k \cdot x)$

Back to the heuristic derivation

Averaging occurs if $e \notin \mathbb{R}\mathbb{Z}^d$

There is a probability measure $\bar{\mu}_e$ on the torus $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ such that

$$ar{a}(e) = \int_{\mathbb{T}^d} a(y,e) \, dar{\mu}_e(y)$$

and, in the picture,

$$V_{\partial E(t_0)}(x_0) = \operatorname{tr}\left(ar{a}(e)A_{\partial E(t_0)}(x_0)
ight)$$

 $(\bar{\mu}_e \text{ is supported in } [0,1)^d \text{ and AC w.r.t.}$ Lebesgue)

 $\bar{\mu}_e$ is the **invariant measure** of the diffusion equation (formally) satisfied by the fluctuation of the height h^{ϵ} around the black line in the figure

Rational Directions

The approach above fails if $e \in \mathbb{R}\mathbb{Z}^d$

In dimensions $d \geq 3$, \bar{a} is generically discontinuous at each $e \in \mathbb{RZ}^d$

Similar issues arise in other periodic homogenization problems involving surfaces

(see Feldman and Kim '17, Feldman and Smart '19)

Oscillation of \bar{a} has the same **"BV-like" behavior** we saw in $Avg(f, e, \cdot)$

Figure from Feldman, Smart 2019

We argued that if $E^{\epsilon}(t) \rightarrow E(t)$, then

 $V_{\partial E(t)} = \operatorname{tr} \left(\bar{a}(n_{\partial E(t)}) A_{\partial E(t)} \right) \quad \text{whenever } n_{\partial E(t)} \notin \mathbb{RZ}^d$

Question: What about when $n_{\partial E(t)} \in \mathbb{RZ}^d$?

How to deal with discontinuities?

Viscosity solutions theory: $\{E(t)\}_{t\geq 0}$ solves the equation if

$$V_{\partial E(t)}(x) \leq \lim_{\delta \to 0} \sup \left\{ \operatorname{tr} \left(\bar{a}(e) A_{\partial E(t)}(x) \right) \mid \| e - n_{\partial E(t)}(x) \| < \delta \right\},$$

$$V_{\partial E(t)}(x) \geq \lim_{\delta \to 0} \inf \left\{ \operatorname{tr} \left(\bar{a}(e) A_{\partial E(t)}(x) \right) \mid \| e - n_{\partial E(t)}(x) \| < \delta \right\}$$

How to prove this holds?

Introduce a new notion of solution adapted to what we do know

P.S. Morfe

Solutions of the flow "in irrational directions"

Very roughly, the idea is that a flow $\{E(t)\}_{t\geq 0}$ is a solution "in irrational directions" if there is a K > 0 such that

$$V_{\partial E(t)} = \operatorname{tr} \left(\bar{a}(n_{\partial E(t)}) A_{\partial E(t)} \right) \quad \text{whenever } n_{\partial E(t)} \notin \mathbb{RZ}^d$$
$$|V_{\partial E(t)}| \leq K \|A_{\partial E(t)}\|$$

We just proved the "hard part," the equation for $n_{\partial E(t)} \notin \mathbb{RZ}^d$

The second part follows from sending $\epsilon \rightarrow 0$ in the trivial inequality

$$|V_{\partial E^{\epsilon}(t)}| = \left| \operatorname{tr} \left(a(\epsilon^{-1}x, n_{\partial E^{\epsilon}(t)}) A_{\partial E^{\epsilon}(t)} \right) \right| \le \|a\|_{L^{\infty}} \|A_{\partial E^{\epsilon}(t)}\|$$

Rough meaning of inequality: "Normal velocity is controlled by curvature" Key point: velocity vanishes wherever boundary is flat, that is,

if
$$A_{\partial E(t_0)}(x_0) = 0$$
, then $V_{\partial E(t_0)}(x_0) = 0$

Solution "in irrational directions" \implies Viscosity solution

Suppose $\{E(t)\}_{t\geq 0}$ is a "solution in irrational directions" and fix (x_0, t_0) Recall we want to show that

$$V_{\partial E(t_0)}(x_0) \leq \lim_{\delta \to 0} \sup \left\{ \operatorname{tr} \left(\bar{a}(e) A_{\partial E(t_0)}(x_0) \right) \mid \|e - n_{\partial E(t)}(x_0)\| < \delta \right\}$$

$$V_{\partial E(t_0)}(x_0) \geq \lim_{\delta \to 0} \inf \left\{ \operatorname{tr} \left(\bar{a}(e) A_{\partial E(t_0)}(x_0) \right) \mid \|e - n_{\partial E(t)}(x_0)\| < \delta \right\}$$

We already know this when $n_{\partial E(t_0)}(x_0) \notin \mathbb{RZ}^d$ so assume it is rational Two cases:

(i)
$$A_{\partial E(t_0)}(x_0) = 0$$
 and (ii) $A_{\partial E(t_0)}(x_0) \neq 0$

Case (i): If $A_{\partial E(t_0)}(x_0) = 0$, then our previous observation says $V_{\partial E(t_0)}(x_0) = 0$

Thus, desired conclusion is immediate — all sides are zero

Proof of viscosity solution property, cont.

Case (ii): If $A_{\partial E(t_0)}(x_0) \neq 0$, then $n_{\partial E(t_0)}(x) \notin \mathbb{RZ}^d$ for some x closeby By assumption, we have

 $V_{\partial E(t_0)}(x) = \operatorname{tr} \left(\bar{a}(n_{\partial E(t_0)}(x)) A_{\partial E(t_0)}(x) \right), \quad \lim_{x \to x_0} n_{\partial E(t_0)}(x) = n_{\partial E(t_0)}(x_0)$

(assuming $\partial E(t_0)$ is smooth)

Therefore,

$$\begin{aligned} V_{\partial E(t_0)}(x_0) &= \lim_{x \to x_0} V_{\partial E(t_0)}(x) \\ &= \lim_{x \to x_0} \operatorname{tr} \left(\bar{a}(n_{\partial E(t_0)}(x)) A_{\partial E(t_0)}(x) \right) \\ &\leq \lim_{\delta \to 0} \sup \left\{ \operatorname{tr} \left(\bar{a}(e) A_{\partial E(t)}(x_0) \right) \mid \|e - n_{\partial E(t)}\| < \delta \right\} \end{aligned}$$

Opposite inequality follows the same way

P.S. Morfe

We saw that if $E^{\epsilon}(t) \rightarrow E(t)$ as $\epsilon \rightarrow 0$, then

$$V_{\partial E(t)} = \operatorname{tr}\left(\bar{a}(n_{\partial E(t)})A_{\partial E(t)}\right)$$

interpreted using viscosity solutions theory

But why does $E^{\epsilon}(t)$ converge as $\epsilon \to 0$? Answer: More viscosity theory... (this part is **standard**)

Analogous to Leray-Schauder fixed point thm, where

"a priori estimate \implies existence"

In viscosity solutions theory,

```
"a priori differential equation \implies convergence"
```

(Moral: compactness comes almost "for free")

Qualitative behavior: We derived a geometric flow with discontinuous coefficients

$$V_{\partial E(t)} = \operatorname{tr}\left(\bar{a}(n_{\partial E(t)})A_{\partial E(t)}\right)$$

(1) What can be said about regularity of solution E(t)?

(2) How do discontinuities manifest themselves where $n_{\partial E(t)} \in \mathbb{RZ}^d$?

Quantify the convergence: How close is $E^{\epsilon}(t)$ to E(t)?

Forced problem: Add a periodic force α to the flow and look at the hyperbolically scaled problem

$$V_{\partial E^{\epsilon}(t)} = \epsilon \operatorname{tr} \left(a(\epsilon^{-1}x, n_{\partial E^{\epsilon}(t)}) A_{\partial E^{\epsilon}(t)} \right) + \alpha(\epsilon^{-1}x)$$

What can be said about the double limit $\epsilon \to 0$, $\alpha \to 0$? What if $\alpha = O(\epsilon)$?

Viscosity-theoretic approach to **geometric flows**: Barles, Souganidis, ARMA (1993)

Discontinuities in periodic homogenization of surfaces: Feldman, Kim, Ann. Sci. Ec. Norm. Super. (2017) Feldman, Smart, ARMA (2019)

Homogenization of diffusion equations:

Papanicolaou, Varadhan, *Statistics and Probability: Essays in Honor of C.R. Rao* (1982)

Caffarelli, Wang, Souganidis, Commun. Pure Appl. Math. (2005)

The paper:

"On the homogenization of second-order level set PDE" (arXiv 2020)

- 4 回 ト 4 ヨ ト 4 ヨ ト