Optimal artificial boundary conditions for three dimensional elliptic random media

Lihan Wang (Carnegie Mellon University)

Joint work with Jianfeng Lu (Duke) and Felix Otto (MPI)

CMU CNA Seminar

January 25, 2022

Background

Consider

$$
\begin{equation*}
-\nabla \cdot a \nabla u=\nabla \cdot g \tag{E}
\end{equation*}
$$

with
$\lambda \operatorname{Id} \leq a \leq \operatorname{Id} ;$
a symmetric, stationary, unit range, ("i.i.d.");
$g(x)=\hat{g}\left(\frac{x}{\ell}\right)$, supp $\hat{g} \subset B_{1}, \ell>1$;
u decaying as $x \rightarrow \infty$.
Goal: find ∇u in $Q_{L}=(-L, L)^{d}$ using information $\left.a\right|_{Q_{2 L}}$ for $L \gg \ell$.

Maxwell: Effective resistance of a composite

A TREATISE
ELECTRICITY AND MAGNETISM
Naxw:LI

That the one expression should be equivalent to the other,

$$
\begin{equation*}
K=\frac{2 k_{1}+k_{2}+p\left(k_{1}-k_{2}\right)}{2 k_{1}+k_{2}-2 p\left(k_{2}-k_{2}\right)} k_{2} . \tag{17}
\end{equation*}
$$

This, therefore, is the specific resistance of a compound medium consisting of a substance of specific resistance k_{2}, in which are dissęminated small spheres of specific resistance k_{1}, the ratio of the volume of all the small spheres to that of the whole being p. In order that the action of these spheres may not produce effects depending on their interference, their radii must be small compared with their distances, and therefore p must be a small fraction.

Picture credit to Felix Otto

Background

We have to solve PDEs in a finite box \Rightarrow artificial boundary condition

$$
-\nabla \cdot a \nabla \hat{u}=\nabla \cdot g \text { in } Q_{L}, \hat{u}=? \text { on } \partial Q_{L} .
$$

A naive approach: solve for

$$
-\nabla \cdot a \nabla u_{0}=\nabla \cdot g \text { in } Q_{L}, \quad u_{0}=0 \text { on } \partial Q_{L}
$$

One can prove $\nabla\left(u-u_{0}\right)=O\left(\left(\frac{\ell}{L}\right)^{d}\right)$. Without any assumption on the structure of a, this is the best we can get.

CLT-Lower Bound

Theorem (Lu, Otto '18)

There exists an ensemble $\langle\cdot\rangle$, which is stationary, of unit-range, such that

$$
\left.\langle | \int \eta \nabla u-\left.\left\langle\int \eta \nabla u \mid Q_{2 L}\right\rangle\right|^{2}\right\rangle^{\frac{1}{2}} \geq \frac{1}{C}\left(\frac{\ell}{L}\right)^{d}\left(\frac{1}{L}\right)^{\frac{d}{2}} .
$$

Here $\eta>0$ is compactly supported in an $O(1)$ region and $\int \eta=1$.

Our goal is to find an algorithm whose error matches the lower bound, which brings us to the framework of stochastic homogenization.

Qualitative Homogenization Theory

The first idea: random media \Rightarrow homogenization
For stationary, ergodic media a, there exists some homogenized coefficient a_{h}, deterministic and constant in space, and we can consider

$$
-\nabla \cdot a \nabla \hat{u}=\nabla \cdot g \text { in } Q_{L}, \quad \hat{u}=\tilde{u}_{h} \text { on } \partial Q_{L},
$$

where \tilde{u}_{h} satisfies

$$
-\nabla \cdot a_{h} \nabla \tilde{u}_{h}=\nabla \cdot g .
$$

Unfortunately, this does not improve the scaling of error in L.

Correctors

The next idea: two-scale expansion.
The corrector ϕ_{i} on direction e_{i} is defined (in whole space) as the unique stationary, mean-zero solution of

$$
-\nabla \cdot a \nabla\left(x_{i}+\phi_{i}\right)=0
$$

We can then look at

$$
-\nabla \cdot a \nabla \hat{u}=\nabla \cdot g \text { in } Q_{L}, \quad \hat{u}=\left(1+\phi_{i} \partial_{i}\right) \tilde{u}_{h} \text { on } \partial Q_{L} .
$$

While $\left(1+\phi_{i} \partial_{i}\right) \tilde{u}_{h}$ helps with approximating the gradient, this approach does not improve the scaling of error in L.

What is missing?

The Effective Dipole

- Consider the homogenized equation

$$
-\nabla \cdot a_{h} \nabla \tilde{u}_{h}=\nabla \cdot g,
$$

the solution is given by

$$
\tilde{u}_{h}(x)=\int G_{h}(x-y) \nabla \cdot g(y) \mathrm{d} y .
$$

- For $|x|=O(L) \gg|y|=O(\ell)$, we can expand

$$
G_{h}(x-y)=G_{h}(x)-y_{i} \partial_{i} G_{h}(x)+\text { higher order term }
$$

$$
\tilde{u}_{h}(x)=-\left(\int y_{i} \nabla \cdot g \mathrm{~d} y\right) \partial_{i} G_{h}(x)+\text { higher order term }
$$

- For random media, we replace y_{i} by $y_{i}+\phi_{i}$,

$$
u(x)=-\left(\int\left(y_{i}+\phi_{i}\right) \nabla \cdot g \mathrm{~d} y\right) \partial_{i} G_{h}(x)+\text { higher order term }
$$

The Effective Dipole

This extra term motivates us to look at

$$
\begin{aligned}
-\nabla \cdot a \nabla \hat{u} & =\nabla \cdot g \text { in } Q_{L}, \\
\hat{u} & =\left(1+\phi_{i} \partial_{i}\right)\left(\tilde{u}_{h}-\left(\int \phi_{i} \nabla \cdot g\right) \partial_{i} G_{h}\right) \text { on } \partial Q_{L} .
\end{aligned}
$$

This gives an error of $O\left(\left(\frac{\ell}{L}\right)^{d}\left(\frac{1}{L}\right)^{1-}\right)$, and the extra factor $O\left(\left(\frac{1}{L}\right)^{1-}\right)$ is contributed by the dipole correction. For $d=2$ this approximation is optimal.

In dimension 3 this algorithm is still $\frac{1}{2}$ order away from being optimal. What else can we do?

Fluxes and Second-Order Correctors

The first-order flux $\sigma_{i j k}$ is defined as ([Gloria, Neukamm, Otto '14])

$$
-\Delta \sigma_{i j k}=\partial_{j} q_{i k}-\partial_{k} q_{i j}
$$

where $q_{i}=a\left(e_{i}+\nabla \phi_{i}\right)$. This enables us to define second-order correctors $\psi_{i j}$, which satisfy

$$
-\nabla \cdot a \nabla \psi_{i j}=\nabla \cdot\left(\phi_{i} a-\sigma_{i}\right) e_{j}
$$

In 3D the two-scale expansion can be upgraded to ([Bella, Fehrman, Fischer, Otto '17])

$$
\left(1+\phi_{i} \partial_{i}+\psi_{i j} \partial_{i j}\right) \tilde{u}_{h} .
$$

Second-Order Correctors

In 3D ψ has spatial growth like $\sqrt{|x|}$.

Effective Quadrupoles

The solution of homogenized equation \tilde{u}_{h} should be further corrected by a quadrupole term

$$
u_{h}=\tilde{u}_{h}-\int\left(\phi_{i} \nabla \cdot g\right) \partial_{i} G_{h}+c_{i j} \partial_{i j} G_{h}
$$

where $c_{i j}$ are some coefficients that can be computed via ϕ, ψ and g [Bella, Giunti, Otto '17].

The solution of

$$
-\nabla \cdot a \nabla \hat{u}=\nabla \cdot g \text { in } Q_{L}, \quad \hat{u}=\left(1+\phi_{i} \partial_{i}+\psi_{i j} \partial_{i j}\right) u_{h} \text { on } \partial Q_{L}
$$

gives the optimal approximation of ∇u.

Optimal Boundary Condition in 3D

Define stochastic norm

$$
\|F\|_{s}:=\inf \left\{M>0,\left\langle\exp \left(\left(\frac{|F|}{M}\right)^{s}\right)\right\rangle \leq 2\right\}
$$

Theorem (Lu, Otto, W.)

Fix any $\varepsilon>0$, there exists a random radius $r_{* *}$ such that

$$
\left\|r_{* *}\right\|_{\frac{3}{2}-} \lesssim 1
$$

Moreover, for any $R, \ell \in\left[r_{* *}, L\right]$, we have the following error estimate

$$
\left(f_{B_{R}}|\nabla(\hat{u}-u)|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{\ell}{L}\right)^{d}\left(\frac{r_{* *}}{L}\right)^{\frac{3}{2}-\varepsilon} .
$$

Here C depends on ellipticity ratio λ, rhs \hat{g} and ε.

Random Radius $r_{\text {** }}$

The radius $r_{* *}$ is defined such that (ψ, Ψ) has at most square root growth, where Ψ is the second-order flux:

$$
\frac{1}{r^{2}}\left(f_{B_{r}}\left|(\psi, \psi)-f_{B_{r}}(\psi, \psi)\right|^{2}\right)^{\frac{1}{2}} \leq\left(\frac{r_{* *}}{r}\right)^{\frac{3}{2}-\varepsilon}, \forall r \geq r_{* *}
$$

Multipole behavior kicks in when $\ell \geq r_{* *}$, since for a_{h}-harmonic u_{h},

$$
-\nabla \cdot a \nabla\left(1+\phi_{i} \partial_{i}+\psi_{i j} \partial_{i j}\right) u_{h}=-\nabla \cdot\left(\psi_{i j} a-\psi_{i j}\right) \nabla \partial_{i j} u_{h}
$$

For

$$
-\nabla \cdot a \nabla \hat{u}=\nabla \cdot g \text { in } Q_{L}, \quad \hat{u}=\left(1+\phi_{i} \partial_{i}+\psi_{i j} \partial_{i j}\right) u_{h} \text { on } \partial Q_{L},
$$

we can control two-scale expansion error by the growth of (ψ, Ψ).

Idealized Algorithm

Algorithm

- Solve for first-order correctors ϕ.
- Determine the homogenized coefficients a_{h}.
- Solve for $-\nabla \cdot a_{h} \nabla \tilde{u}_{h}=\nabla \cdot g$.
- Solve for first-order flux σ.
- Solve for second-order correctors ψ.
- Obtain optimal boundary condition $\left(1+\phi_{i} \partial_{i}+\psi_{i j} \partial_{i j}\right) u_{h}$.
- Solve for û.

In practical computations we have to use a finite domain, therefore we need to find approximations for all these quantities.

Challenges in 3D

In [Lu, Otto '18] a Dirichlet proxy is considered

$$
-\nabla \cdot a \nabla\left(x_{i}+\phi_{i}^{(L)}\right)=0 \text { in } Q_{2 L}, \phi_{i}^{(L)}=0 \text { on } \partial Q_{2 L}
$$

We hope to prove in 3D

$$
\left(f_{Q_{L}}\left|\nabla\left(\phi-\phi^{(L)}\right)\right|^{2}\right)^{\frac{1}{2}} \lesssim L^{-\frac{3}{2}}
$$

but we can only prove the error rate to be L^{-1}. Obstacles:

- $\phi^{(L)}$ is not stationary so probabilistic arguments do not apply;
- the effect of boundary layer is unclear.

Massive Approximation

It is well-known [Yurinskii '86] [Gloria, Otto '11] that $\phi_{i, T}$, the solution of the massive equation

$$
\frac{1}{T} \phi_{i, T}-\nabla \cdot a \nabla\left(x_{i}+\phi_{i, T}\right)=0
$$

provides a stationary approximation of ϕ_{i}. We can further approximate $\phi_{i, T}$ by a "solvable" $\phi_{i, T}^{(L)}$ which satisfies

$$
\frac{1}{T} \phi_{i, T}^{(L)}-\nabla \cdot a \nabla\left(x_{i}+\phi_{i, T}^{(L)}\right)=0 \text { in } Q_{2 L}, \quad \phi_{i, T}^{(L)}=0 \text { on } \partial Q_{2 L} .
$$

Proposition

For any $p<\infty$,

$$
\left(f_{Q_{L}}\left(\phi_{T}-\phi_{T}^{(L)}\right)^{2}\right)^{\frac{1}{2}} \lesssim_{p}\left(\frac{\sqrt{T}}{L}\right)^{p} .
$$

Pick $\sqrt{T}=L^{1-\varepsilon}$ and we get subalgebraic error.

Massive Approximation

We use the same idea to approximate σ and ψ :

$$
\begin{gathered}
\frac{1}{T} \sigma_{i j k, T}-\Delta \sigma_{i j k, T}=\partial_{j} q_{i k, T}-\partial_{k} q_{i j, T} \\
\frac{1}{T} \psi_{i j, T}-\nabla \cdot a \nabla \psi_{i j, T}=\nabla \cdot\left(\left(\phi_{i, T} a-\sigma_{i, T}\right) e_{j}\right)
\end{gathered}
$$

Proposition

Let r_{*} be the minimal radius [Armstrong, Smart '14] [Gloria, Neukamm, Otto '14], then for any $\sqrt{T} \geq 1$,

$$
\begin{array}{r}
\left\|\left(f_{B_{\sqrt{T}}}\left|\nabla\left(\phi_{T}-\phi\right)\right|^{2}\right)^{\frac{1}{2}}\right\|_{2-} \lesssim \sqrt{T^{-\frac{3}{2}}} ; \\
\left\|I\left(\ell \geq r_{*}\right)\left(f_{B_{\ell}}\left|\nabla\left(\phi_{T}-\phi\right)\right|^{2}\right)^{\frac{1}{2}}\right\|_{2-} \lesssim \sqrt{T^{-\frac{3}{2}}} . \\
\left\|I\left(\ell \geq r_{*}\right)\left(f_{B_{\ell}}\left|\nabla\left(\psi_{T}-\psi\right)\right|^{2}\right)^{\frac{1}{2}}\right\|_{1-} \lesssim \sqrt{T^{-\frac{1}{2}}} .
\end{array}
$$

True Algorithm

- Solve for approximate first-order corrector

$$
\frac{1}{T} \phi_{i, T}^{(L)}-\nabla \cdot a \nabla \phi_{i, T}^{(L)}=\nabla \cdot a e_{i} \text { in } Q_{2 L} .
$$

- Estimating homogenized coefficients

$$
a_{h}^{(L)} e_{i}=f_{Q_{L}} q_{i, T}^{(L)}, \text { for } q_{i, T}^{(L)}=a\left(e_{i}+\nabla \phi_{i, T}^{(L)}\right)
$$

- Solve for approximate first-order flux $\sigma_{i, T}^{(L)}=\left(\sigma_{i j k, T}^{(L)}\right)_{j, k}$

$$
\frac{1}{T} \sigma_{i j k, T}^{(L)}-\Delta \sigma_{i j k, T}^{(L)}=\partial_{j} q_{i k, T}^{(L)}-\partial_{k} q_{i j, T}^{(L)} \text { in } Q_{\frac{7}{4} L}
$$

True Algorithm

- Solve for approximate second-order correctors $\psi_{i j, T}^{(L)}$:

$$
\frac{1}{T} \psi_{i j, T}^{(L)}-\nabla \cdot a \nabla \psi_{i j, T}^{(L)}=\nabla \cdot\left(\phi_{i, T}^{(L)} a-\sigma_{i, T}^{(L)}\right) e_{j} \text { in } Q_{\frac{3}{2} L} .
$$

- Dipole and quadrupole corrections:

$$
\begin{gathered}
-\nabla \cdot a_{h}^{(L)} \nabla \tilde{u}_{h}^{(L)}=\nabla \cdot g, \\
u_{h}^{(L)}=\tilde{u}_{h}^{(L)}+\left(\int \nabla \phi_{i, T}^{(L)} \cdot g\right) \partial_{i} G_{h}^{(L)}+c_{i j, T}^{(L)} \partial_{i j} G_{h}^{(L)}
\end{gathered}
$$

- Solve for $u^{(L)}$:

$$
\begin{aligned}
-\nabla \cdot a \nabla u^{(L)} & =\nabla \cdot g & & \text { in } Q_{L} \\
u^{(L)} & =\left(1+\phi_{i, T}^{(L)} \partial_{i}+\psi_{i j, T}^{(L)} \partial_{i j}\right) u_{h}^{(L)} & & \text { on } \partial Q_{L}
\end{aligned}
$$

Main Theorem

Theorem (Lu, Otto, W.)

Fix $\varepsilon>0$, the algorithm with $\sqrt{T}=L^{1-\varepsilon}$ produces a function $u^{(L)}$ which only depends on a $\left.\right|_{2 L L}$, such that conditioning on $\ell \geq r_{* *}$, up to an event of probability $\exp \left(-L^{\frac{\varepsilon}{3}}\right)$, we have

$$
\left(f_{B_{R}}\left|\nabla\left(u^{(L)}-u\right)\right|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{\ell}{L}\right)^{d}\left(\frac{r_{* *}}{L}\right)^{\frac{3}{2}-\varepsilon} \text { for } L \geq R \geq r_{* *},
$$

Here the constant C depends on λ, ε and \hat{g}.

3D Numerical Result

Parabolic Semigroup

For any vector field q_{0}, we define $S(t) q_{0}:=v(t)$, which satisfies

$$
\partial_{t} v-\nabla \cdot a \nabla v=0 \text { for } t>0, v(t=0)=\nabla \cdot q_{0}
$$

We can then express

$$
\phi_{i}=\int_{0}^{\infty} \mathrm{d} t S(t) a e_{i}, \quad \text { and } \quad \phi_{i, T}=\int_{0}^{\infty} \mathrm{d} t \exp \left(-\frac{t}{T}\right) S(t) a e_{i}
$$

Proposition (Gloria, Otto '15)

$$
\left\|\left(f_{B_{\sqrt{T}}}|\nabla S(T) a e|^{2}\right)^{\frac{1}{2}}\right\|_{2-} \lesssim \frac{1}{T}\left(1 \wedge \frac{1}{\sqrt{T}}\right)^{\frac{d}{2}}
$$

- $\nabla S(T)$ ae is approximately local on scale $1 \vee \sqrt{T}$.

Therefore, heuristically in 3D,

$$
\nabla\left(\phi-\phi_{T}\right) \lesssim \int_{0}^{\infty} \mathrm{d} t\left(1-\exp \left(-\frac{t}{T}\right)\right) \frac{1}{t}\left(1 \wedge \frac{1}{\sqrt{t}}\right)^{\frac{3}{2}} \sim \sqrt{T^{-\frac{3}{2}}}
$$

Estimation of ψ

$$
\begin{aligned}
\nabla \psi=\int_{0}^{\infty} \mathrm{d} t_{0} & \int_{0}^{\infty} \mathrm{d} t_{1} \nabla S\left(t_{0}\right)\left(a S\left(t_{1}\right) a e-\bar{S}\left(t_{1}\right) \times a e\right) \\
& -\int_{0}^{\infty} \mathrm{d} t_{0} \int_{0}^{\infty} \mathrm{d} t_{1} \int_{0}^{\infty} \mathrm{d} t_{2} \nabla S\left(t_{0}\right) \bar{S}\left(t_{1}\right) \times a \nabla S\left(t_{2}\right) a e
\end{aligned}
$$

Proposition

Suppose q_{0} is approximately local on scale $r_{0} \geq 1$, then:

$$
\left\|\left(f_{B_{2 \sqrt{T}}}\left|\nabla S(T) q_{0}\right|^{2}\right)^{\frac{1}{2}}\right\|_{\frac{2 s}{s+2}-} \lesssim \frac{1}{T}\left(1 \wedge \frac{r_{0}}{\sqrt{T}}\right)^{\frac{d}{2}}\left\|\left(f_{B_{2 r_{0}}}\left|q_{0}\right|^{2}\right)^{\frac{1}{2}}\right\|_{s}
$$

- $\nabla S(T) q_{0}$ is approximately local on scale $r_{0} \vee \sqrt{T}$.

Estimation of $r_{* *}$

We know that $\left\|r_{*}\right\|_{3} \lesssim 1$ [Armstrong, Smart '14] [Gloria, Otto '15].

Proposition

For any $R \geq 1$,

$$
\begin{array}{r}
\left\|I\left(R \geq r_{*}\right)\left(f_{B_{R}}|\nabla(\psi, \psi)|^{2}\right)^{\frac{1}{2}}\right\|_{1-} \lesssim 1 \\
\left\|I\left(R \geq r_{*}\right) f_{B_{R}} \nabla(\psi, \psi)\right\|_{1-} \lesssim R^{-\frac{1}{2}} .
\end{array}
$$

We use these properties to estimate the probability of $r_{* *} \geq R$, which yields the stochastic estimate

$$
\left\|r_{* *}\right\|_{\frac{3}{2}-} \lesssim 1
$$

Future directions:

- Better estimates for Dirichlet proxy of ϕ.
- More general ensembles (for example LSI).
- High contrast/degenerate media.
- Wave propagation in random media.
- Inverse problems.

Thanks for your attention!

References

(1) Peter Bella, Arianna Giunti, and Felix Otto. Effective multipoles in random media. Communications in Partial Differential Equations, 45(6):561-640, 2020.
(2) Antoine Gloria and Felix Otto. The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations. arXiv preprint arXiv:1510.08290, 2015.
(3) Jianfeng Lu and Felix Otto. Optimal artificial boundary condition for random elliptic media, Foundations of Computational Mathematics (2021): 1-60.
(9) Jianfeng Lu, Felix Otto, and Lihan Wang, Optimal artificial boundary conditions for three dimensional elliptic random media, arXiv preprint arXiv:2109.01616, 2021.

