Passage from the Boltzmann equation with Diffuse Boundary to the Incompressible Euler equation with Heat Convection

Yunbai Cao
a joint work with Juhi Jang and Chanwoo Kim

CNA seminar，Carnegie Mellon University， May， 2021

Hilbert's Sixth Problem

1900, ICM.
David Hilbert proposed 23 major mathematical problems.

Hilbert's Sixth Problem

Hilbert's sixth problem: "Mathematical Treatment of the Axioms of Physics"

Hilbert's Sixth Problem

Hilbert's sixth problem: "Mathematical Treatment of the Axioms of Physics"
"atomistic view"
N-body system $\Longrightarrow \begin{gathered}\text { "motion of a continuum" } \\ \text { Fluid mechanics }\end{gathered}$

Hilbert's Sixth Problem

Hilbert's sixth problem: "Mathematical Treatment of the Axioms of Physics"

> "atomistic view" N-body system $\Longrightarrow \begin{gathered}\text { "motion of a continuum" } \\ \text { Fluid mechanics }\end{gathered}$
"atomistic view"

N-body system \Longrightarrow\begin{tabular}{c}
"Statistical Physics"

Kinetic theory

\Longrightarrow

"motion of a continuum"

Fluid mechanics
\end{tabular}

Unified theory of the gas dynamics including different levels of descriptions from a mathematical standpoint by connecting the behavior of solutions to the mesoscopic kinetic equations to solutions of microscopic models and macroscopic models that arise in formal limits

Kinetic Theory

The object: the modelling of a gas (or plasma, or any system made up of a large number of particles) by a distribution function in the particle phase space.

Kinetic Theory

The object: the modelling of a gas (or plasma, or any system made up of a large number of particles) by a distribution function in the particle phase space.

This phase space includes macroscopic variables, i.e. the position in physical space, but also microscopic variables, which describe the state of the particles: the velocity.

Distribution Function

Consider the dynamics of rarified gas in a bounded domain $\Omega \subset \mathbb{R}^{3}$

$$
F(t, x, v) \geq 0 \quad \text { defined on }[0, T] \times \Omega \times \mathbb{R}^{3} .
$$

Here, \mathbb{R}^{3} is the space of velocities.
The quantity $F(t, x, v)$ stands for the density of particles at time t, position x, and with velocity v.
No external force, No interaction between particles (collision)

$$
\partial_{t} F+v \cdot \nabla_{x} F=0 \quad \text { (transport equation) }
$$

Collision: The Boltzmann equation

Maxwell (1866), Boltzmann (1872) proposed the Boltzmann equation: PDE for the dilute gas taken into account interactions between particles.

$$
\partial_{t} F+v \cdot \nabla_{x} F=Q(F, F)
$$

Collision operator

$$
\begin{aligned}
Q\left(F_{1}, F_{2}\right)(v): & =Q_{\text {gain }}\left(F_{1}, F_{2}\right)-Q_{\mathrm{loss}}\left(F_{1}, F_{2}\right) \\
& =\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} B(v-u, \omega)\left[F_{1}\left(v^{\prime}\right) F_{2}\left(u^{\prime}\right)-F_{1}(v) F_{2}(u)\right] d \omega d u
\end{aligned}
$$

- Hard sphere $B(v-u, \omega)=|(v-u) \cdot \omega|$
- 6 unknowns v^{\prime}, u^{\prime} and 4 equations : 2 dimensional $\omega \in \mathbb{S}^{2}$

$$
\begin{gathered}
v^{\prime}+u^{\prime}=v+u \quad \text { (Conservation of Momentum) } \\
\left|v^{\prime}\right|^{2}+\left|u^{\prime}\right|^{2}=|v|^{2}+|u|^{2} \quad \text { (Conservation of Energy) }
\end{gathered}
$$

- $v^{\prime}=v-[(v-u) \cdot \omega] \omega$ and $u^{\prime}=u+[(v-u) \cdot \omega] \omega$.

The dimensionless Boltzmann equation

$$
\begin{equation*}
\mathbf{S} \mathbf{t} \partial_{t} F+v \cdot \nabla_{x} F=\frac{1}{\mathbf{K n}} Q(F, F) \tag{3}
\end{equation*}
$$

- Strouhal number: St $\sim 1 /$ time scale
- Knudsen number: $\mathbf{K n} \sim$ mean free path

Formally, as $\mathbf{K n} \rightarrow 0$,

$$
\begin{equation*}
Q(F, F) \rightarrow 0 \tag{4}
\end{equation*}
$$

On the other hand, $Q(F, F)=0$ has a generic family of solutions (Maxwellian):

$$
\begin{equation*}
M_{R, U, T}(v)=\frac{R}{(2 \pi T)^{3 / 2}} e^{-\frac{|v-U|^{2}}{2 T}} \tag{5}
\end{equation*}
$$

Therefore, formally,

$$
\begin{equation*}
F \rightarrow M_{R, U, T}(v) \text { as } \mathbf{K n} \rightarrow 0 \tag{6}
\end{equation*}
$$

where (R, U, T) is the hydrodynamic variables.

Global Maxwellian and Mach number

Global Maxwellian

$$
\begin{equation*}
\mu(v):=M_{1,0,1}(v)=\frac{1}{(2 \pi)^{3 / 2}} \exp \left\{-\frac{|v|^{2}}{2}\right\} \tag{7}
\end{equation*}
$$

Mach number: $\mathbf{M a} \sim$ bulk velocity \sim fluctuations around the reference state $\mu(v)$

$$
\begin{equation*}
F \rightarrow M_{1+\text { Ma } \rho, \text { Mau }, 1+\text { Ma } \theta}(v) \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& (\rho(t, x), u(t, x), \theta(t, x)) \\
& =\lim _{\mathbf{M a} \downarrow 0} \frac{1}{\mathbf{M a}} \int_{\mathbb{R}^{3}}\{F(t, x, v)-\mu(v)\}\left(1, v, \frac{|v|^{2}-3}{\sqrt{6}}\right) \mathrm{d} v \tag{9}
\end{align*}
$$

Reynolds number and Inviscid limit

Reynolds number Re:

$$
\begin{equation*}
\frac{1}{\mathbf{R e}}=\frac{\mathbf{K n}}{\mathbf{M} \mathbf{a}} \text { (von Karman relation) } \tag{10}
\end{equation*}
$$

- $\operatorname{Re} \sim 1$: Viscous fluid as limit
- Kn $\sim \mathbf{M a} \sim \mathbf{S t} \rightarrow 0$: Incompressible Navier-Stokes-Fourier
- $\boldsymbol{R e} \gg 1$: Invisicd fluid as limit
- Kn $\ll \mathbf{M a} \sim \mathbf{S t} \rightarrow 0$: Incompressible Euler

Cf. $\mathbf{K n} \rightarrow 0$ but $\mathbf{M a} \sim \mathbf{S t} \sim 1$: Compressible Euler

Boundary conditions for kinetic equations

Incoming set:

$$
\gamma_{-}:=\left\{(x, v) \in \partial \Omega \times \mathbb{R}^{3}: n(x) \cdot v<0\right\}
$$

where $n(x)$ is the outward normal at $x \in \partial \Omega$.

What kind of BCs would we impose?

1879, James Clerk Maxwell: Basic Boundary Conditions

- Diffuse reflection BC:

$$
\begin{equation*}
\left.F(t, x, v)\right|_{\gamma_{-}}=c_{\mu} \mu(v) \int_{n(x) \cdot \mathfrak{u}>0} F(t, x, \mathfrak{u})\{n(x) \cdot \mathfrak{u}\} d \mathfrak{u} \tag{11}
\end{equation*}
$$

c_{μ} is chosen to be $\sqrt{2 \pi}$ so that

$$
c_{\mu} \int_{n(x) \cdot \mathfrak{u}>0} \mu(\mathfrak{u})(n(x) \cdot \mathfrak{u}) d \mathfrak{u}=1
$$

- Null flux: $\int_{\mathbb{R}^{3}} F(t, x, v)\{n(x) \cdot v\} \mathrm{d} v=0, x \in \partial \Omega$.
- When the particles hit the boundary and are re-emitted to the domain, they reach the equilibrium instantaneously. One can view this boundary condition as one of the ideal scattering model.

Boundary and the Major Difficulty

Kinetic $B C$: diffuse reflection $B C$ (instantaneous thermal equilibration)

$$
\begin{equation*}
\left.F(t, x, v)\right|_{\gamma_{-}}=c_{\mu} \mu(v) \int_{n(x) \cdot \mathfrak{u}>0} F(t, x, \mathfrak{u})\{n(x) \cdot \mathfrak{u}\} d \mathfrak{u} \tag{12}
\end{equation*}
$$

for $(x, v) \in\left\{\partial \Omega \times \mathbb{R}^{3}: n(x) \cdot v<0\right\}$

- Mismatch occurs at the boundary even in the formal level when one seeks a limit toward an inviscid fluid with the no-penetration boundary.
- In general with $u \cdot n=0$ on $\partial \Omega$:

$$
\begin{aligned}
& M_{1+\operatorname{Ma} \rho, \operatorname{Mau}, 1+\operatorname{Ma} \theta}(v) \\
& \neq c_{\mu} \mu(v) \int_{n(x) \cdot \mathfrak{u}>0} M_{1+\operatorname{Ma} \rho, \operatorname{Ma} u, 1+\operatorname{Ma} \theta(\mathfrak{u})\{n(x) \cdot \mathfrak{u}\} d \mathfrak{u}}
\end{aligned}
$$

- Fluid boundary mismatch in the inviscid limit
- Viscous fluid: No-slip boundary condition $\left.u\right|_{\partial \Omega}=0$
- Inviscid fluid: No-penetration boundary condition $\left.u \cdot n\right|_{\partial \Omega}=0$
- Layer formation: Prandtl layer, ...

The incompressible Euler limit with heat transfer from the Boltzmann equation with diffuse boundary has not been established in any framework yet.

- Bouchut-Golse-Pulvirenti-Desvillettes (2000): renormalized solutions of the Boltzmann equation \rightarrow dissipative solutions of the incompressible Euler, no boundary, no heat transfer
- Lions-Masmoudi (2001)
- Saint-Raymond $(2003,2009)$: heat transfer, Boltzmann with specular reflection BC: there is no mismatch at least in the formal level
- Bardos-Golse-Paillard (2012):

$$
\text { Maxwell } \mathrm{BC}=\alpha \times \text { Diffuse } \mathrm{BC}+(1-\alpha) \times \text { Specular } \mathrm{BC} \text {, }
$$

where $\alpha \rightarrow 0$ as $\mathbf{K n} \rightarrow 0$.

- Jang-Kim (submitted): Diffuse BC, no heat transfer

Intermediary approximation via Navier-Stokes-Fourier

Boltzmann $\xrightarrow{\mathbf{K n} \rightarrow 0}$ Navier-Stokes-Fourier $\xrightarrow{\mathrm{Re}=\frac{\mathrm{Ma}}{\mathrm{Kn}} \rightarrow \infty}$ Euler

- Boltzmann:

$$
F=\mu+\left(\mathbf{M a}+\mathbf{M a}^{2}\right)\{\text { NSF-Correction }\}+\mathbf{M a}^{3 / 2}\{\text { Remainder }\}
$$

- Navier-Stokes-Fourier with Re and no-slip BC

$$
\begin{align*}
\partial_{t} u+u \cdot \nabla_{x} u-\frac{1}{\mathbf{R e}} \Delta u+\nabla_{x} p & =0 \text { in } \Omega, \tag{13}\\
\nabla_{x} \cdot u=0 \text { in } \Omega, \quad u=0 & \text { on } \partial \Omega, \tag{14}\\
\partial_{t} \theta+u \cdot \nabla_{x} \theta-\frac{1}{\mathbf{R e}} \Delta \theta & =0 \text { in } \Omega, \tag{15}\\
\rho+\theta=0 \text { in } \Omega, \quad \theta & =0 \tag{16}
\end{align*} \text { on } \partial \Omega .
$$

- We can avoid the boundary mismatch
- We need the inviscid limit: Navier-Stokes-Fourier \rightarrow Euler with heat transfer

Inviscid limit: $(u, \theta) \rightarrow\left(u_{E}, \theta_{E}\right)$ in real analytic spaces

Both u and u_{E} are divergence-free and

$$
\begin{aligned}
& \partial_{t} u+u \cdot \nabla_{x} u+\nabla_{x} p=\frac{1}{\mathbf{R e}} \Delta u \text { in } \Omega, u=0 \text { on } \partial \Omega, \\
& \partial_{t} \theta+u \cdot \nabla_{x} \theta-\frac{1}{\mathbf{R e}} \Delta \theta=0 \text { in } \Omega, \theta=0 \text { on } \partial \Omega, \\
& \partial_{t} u_{E}+u_{E} \cdot \nabla_{x} u_{E}+\nabla_{x} p_{E}=0 \text { in } \Omega, u_{E} \cdot n=0 \text { on } \partial \Omega, \\
& \partial_{t} \theta_{E}+u_{E} \cdot \nabla_{x} \theta_{E}=0 \text { in } \Omega .
\end{aligned}
$$

- strong regularity such as analyticity at least near the boundary
- Prandtl expansion: Sammartino-Caflisch (1998)
- Green's function approach using the boundary vorticity formulation of Maekawa \rightarrow Kato's creterion: Nguyen-Nguyen (2018), Kukavica-Vicol-Wang (2020)
- cf. certain symmetry assumption on the domain and data

Main result (C-Jang-Kim Informal statement)

We consider a half space in 3D
$\Omega:=\mathbb{T}^{2} \times \mathbb{R}_{+} \ni\left(x_{1}, x_{2}, x_{3}\right)$, where \mathbb{T} is a periodic interval of $(-\pi, \pi)$.
For some choice of $\mathbf{M a}$ and $\mathbf{K n}=\mathbf{K n}(\mathbf{M a})$, there exists a large set of initial data $u_{i n}, \theta_{\text {in }}$ (in real analytic space), $F_{i n}$ such that a unique solution $F(t, x, v)$ satisfies, for $0<T \ll 1$,

$$
\begin{aligned}
& \frac{F(t, x, v)-\mu(v)}{\mathbf{M a} \sqrt{\mu(v)}} \longrightarrow \\
& \left(-\theta_{E}(t, x)+u_{E}(t, x) \cdot v+\theta_{E}(t, x) \frac{|v|^{2}-3}{2}\right) \sqrt{\mu(v)}
\end{aligned}
$$

in $L^{\infty}\left((0, T) ; L^{2}\left(\Omega \times \mathbb{R}^{3}\right)\right)$ as $\mathbf{M a} \rightarrow 0$.

Key\#1 of Boltzmann to NS: New Hilbert expansion around the global maxwellian

- $\mathbf{M a}=\varepsilon=\mathbf{S t}$ and $\mathbf{K n}=\kappa \varepsilon$ with $\kappa \downarrow 0$ as $\varepsilon \downarrow 0$
- $\varepsilon \partial_{t} F+v \cdot \nabla_{x} F=\frac{1}{\kappa \varepsilon} Q(F, F)$
- For $\mu=M_{1,0,1}$

$$
\begin{equation*}
F=\mu+\varepsilon f_{1} \sqrt{\mu}+\varepsilon^{2} f_{2} \sqrt{\mu}+\varepsilon^{3 / 2} f_{R} \sqrt{\mu} \tag{17}
\end{equation*}
$$

- $L f=\frac{-2}{\sqrt{\mu}} Q(\mu, \sqrt{\mu} f)$ and $\Gamma(f, g)=\frac{1}{\sqrt{\mu}} Q(\sqrt{\mu} f, \sqrt{\mu} g)$.
- \mathcal{N} : Null space of L is spanned by $\left\{\sqrt{\mu}, v \sqrt{\mu}, \frac{|v|^{2}-3}{\sqrt{6}} \sqrt{\mu}\right\}$. Denote $\mathbb{P g}$ to be projection of g in \mathcal{N}.
- Image of L and $\Gamma \perp \mathcal{N}, L$ is self-adjoint
- L is Fredholm: $L f=g$ is solvable if $g \in \mathcal{N}^{\perp}$ (and uniquely $f \in \mathcal{N}^{\perp}$)

$$
\begin{align*}
\partial_{t} f_{R} & +\frac{1}{\varepsilon} v \cdot \nabla_{x} f_{R}+\frac{1}{\varepsilon^{2} \kappa} L f_{R}-\frac{1}{\varepsilon^{1 / 2} \kappa} \Gamma\left(f_{R}, f_{R}\right) \\
= & -\frac{1}{\varepsilon^{5 / 2} \kappa} L f_{1} \tag{18}\\
& -\frac{1}{\varepsilon^{3 / 2}}\left\{v \cdot \nabla_{x} f_{1}-\frac{1}{\kappa} \Gamma\left(f_{1}, f_{1}\right)+\frac{1}{\kappa} L f_{2}\right\} \tag{19}\\
& -\frac{1}{\varepsilon^{1 / 2}}\left\{\partial_{t} f_{1}+v \cdot \nabla_{x} f_{2}-\frac{2}{\kappa} \Gamma\left(f_{1}, f_{2}\right)\right\} \tag{20}\\
& -\varepsilon^{1 / 2} \partial_{t} f_{2}+\frac{2}{\varepsilon \kappa} \Gamma\left(f_{1}, f_{R}\right)+\frac{2}{\kappa} \Gamma\left(f_{2}, f_{R}\right)+\frac{\varepsilon^{1 / 2}}{\kappa} \Gamma\left(f_{2}, f_{2}\right) . \tag{21}
\end{align*}
$$

- $(18)=0: f_{1}=\left(\rho+u \cdot v+\theta \frac{|v|^{2}-3}{\sqrt{6}}\right) \sqrt{\mu}$
- (19) = 0: $v \cdot \nabla_{x} f_{1} \in \mathcal{N} \rightarrow \nabla_{x} \cdot u=0$ and $\nabla(\rho+\theta)=0$ $(\mathbb{I}-\mathbb{P}) f_{2}=-\kappa L^{-1}\left(v \cdot \nabla_{x} f_{1}\right)+L^{-1}\left(\Gamma\left(f_{1}, f_{1}\right)\right)$

$$
\begin{align*}
\mathbb{P}(20) & =\mathbb{P}\left(\partial_{t} f_{1}+v \cdot \nabla_{x} f_{2}\right) \\
& =\partial_{t} \mathbb{P} f_{1}+v \cdot \nabla_{x} \mathbb{P} f_{2}+v \cdot \nabla_{x}(\mathbb{I}-\mathbb{P}) f_{2} \tag{22}
\end{align*}
$$

$$
\begin{align*}
(\mathbb{I}-\mathbb{P}) f_{2} & =-\kappa L^{-1}\left(v \cdot \nabla_{x} f_{1}\right)+L^{-1}\left(\Gamma\left(f_{1}, f_{1}\right)\right) \\
\mathbb{P} f_{2} & =\left(\rho_{2}+u_{2} \cdot v+\theta_{2} \frac{|v|^{2}-3}{2}\right) \sqrt{\mu} \tag{23}
\end{align*}
$$

with $\nabla \cdot u_{2}=-\partial_{t} \rho, \rho_{2}+\theta_{2}-\frac{|u|^{2}}{3}=p$.

$$
\begin{align*}
\left\langle v \sqrt{\mu}, \partial_{t} f_{1}+v \cdot \nabla_{x} f_{2}\right\rangle & =\partial_{t} u-\kappa \eta_{0} \Delta_{x} u+u \cdot \nabla_{x} u+\nabla_{x} p \\
\left\langle\frac{|v|^{2}-5}{2} \sqrt{\mu}, \partial_{t} f_{1}+v \cdot \nabla_{x} f_{2}\right\rangle & =\partial_{t} \theta-\kappa \eta_{1} \Delta_{x} \theta+u \cdot \nabla_{x} \theta \tag{24}
\end{align*}
$$

- $\mathbb{P}(20)=0$ if (u, θ) solve the Navier-Stokes-Fourier system

Remark in the Hilbert expansion

- $F=\mu+\varepsilon f_{1} \sqrt{\mu}+\varepsilon^{2} f_{2} \sqrt{\mu}+\varepsilon^{3 / 2} f_{R} \sqrt{\mu}$
- $f_{1}=\left(\rho+u \cdot v+\theta \frac{|v|^{2}-3}{2}\right) \sqrt{\mu}$
- boundary condition: $f_{R}=$ Diffuse $\mathrm{BC}\left(f_{R}\right)+O\left(\varepsilon^{1 / 2}\right)$

$$
\begin{aligned}
& \partial_{t} f_{R}+\frac{1}{\varepsilon} v \cdot \nabla_{x} f_{R}+\frac{1}{\varepsilon^{2} \kappa} L f_{R}-\frac{1}{\varepsilon^{1 / 2} \kappa} \Gamma\left(f_{R}, f_{R}\right) \\
= & -\frac{1}{\varepsilon^{1 / 2}}(\mathbb{I}-\mathbb{P})\left(v \cdot \nabla_{x} f_{2}-\frac{2}{\kappa} \Gamma\left(f_{1}, f_{2}\right)\right)+(21)
\end{aligned}
$$

- (21) contains $\nabla_{x} u, \nabla_{x} \theta, \partial_{t} \nabla_{x} u$, and $\partial_{t} \nabla_{x} \theta$.

Key\#2: $\mathbf{P} f_{R}$ in $L_{t}^{\infty} L_{x}^{6}$

- $\partial_{t} f_{R}+\frac{1}{\varepsilon} v \cdot \nabla_{\chi} f_{R}+\frac{1}{\varepsilon^{2} \kappa} L f_{R}-\frac{1}{\varepsilon^{1 / 2}} \Gamma\left(f_{R}, f_{R}\right)=\frac{2}{\varepsilon \kappa} \Gamma\left(f_{1}, f_{R}\right)+\cdots$
- If we expand $F=\mu+\varepsilon f_{1} \sqrt{\mu}+\varepsilon^{2} f_{2} \sqrt{\mu}+\varepsilon^{3 / 2} f_{R} \sqrt{\mu}$ more then singularity of the nonlinear term would become less significant.
- But it would cost another boundary layer since $(\mathbb{I}-\mathbb{P}) f_{2}$ is already determined and f_{2} likely does not honor the diffuse BC.

$$
\begin{align*}
& \left\|f_{R}(t)\right\|_{L_{k, v}^{2}}^{2}+\frac{1}{\varepsilon^{2} \kappa} \int_{0}^{t}\left\|(\mathbb{I}-\mathbb{P}) f_{R}\right\|_{L_{x, v}^{2}}^{2} \\
& \lesssim \frac{\varepsilon^{1 / 2}}{\kappa^{1 / 2}}\left\|\mathbb{P} f_{R}\right\|_{L_{t}^{\infty}}^{\infty} L_{x, v}^{6}\left\|\mathbb{P}_{R}\right\|_{L_{t}^{2} L L_{k, v}^{3}, v} \frac{1}{\varepsilon \kappa^{1 / 2}}\left\|(\mathbb{I}-\mathbb{P}) f_{R}\right\|_{L_{t, x, v}^{2}} \tag{25}\\
& \quad+\frac{1}{\kappa^{1 / 2}}\left\|f_{1}\right\|\left\|_{L_{x, v}^{\infty}}\right\| f_{R}\left\|_{L_{t, x, v}^{2}} \frac{1}{\varepsilon \kappa^{1 / 2}}\right\|(\mathbb{I}-\mathbb{P}) f_{R} \|_{L_{t, x, v}^{2}}
\end{align*}
$$

- $\left\|\mathbb{P} f_{R}\right\|_{L_{t}^{2} L_{x, v}^{3}}$: Average lemma $H^{1 / 2} \subset L^{3}$ in 3D
- $\left\|\mathbb{P} f_{R}\right\|_{L_{t}^{\infty} L_{x, v}^{6}}: v \cdot \nabla_{x} f_{R}=-\varepsilon \partial_{t} f_{R}-\frac{1}{\varepsilon \kappa} L f_{R}+\cdots$
- test function method
- $\partial_{t} f_{R}$-estimate requires $\partial_{t}^{2} \nabla_{x} u, \partial_{t}^{2} \nabla_{x} \theta$ estimate
- Gronwall's inequality: $\left\|f_{R}(t)\right\|_{L_{x, v}^{2}}^{2} \lesssim e^{t / \kappa}$.
- By choosing κ such that $\varepsilon^{1 / 2} e^{1 / \kappa} \downarrow 0$ as $\varepsilon \downarrow 0$,

$$
\begin{equation*}
\frac{1}{\varepsilon}\left|F-\left(\mu+\varepsilon f_{1} \sqrt{\mu}\right)\right| \lesssim \varepsilon^{1 / 2}\left|f_{R}\right| \downarrow 0 \tag{26}
\end{equation*}
$$

NS to Euler

- NS \rightarrow Euler can be justified in real analytic space (Sammartino-Caflisch 1998)
- Vorticity formulation of Maekawa: $\omega=\nabla \times u, \quad u=\nabla \times(-\Delta)^{-1} \omega$

$$
\begin{array}{r}
\partial_{t} \omega-\kappa \eta_{0} \Delta \omega=-u \cdot \nabla \omega+\omega \cdot \nabla u \text { in } \Omega, \\
\left.\omega\right|_{t=0}=\omega_{i n} \text { in } \Omega, \\
\kappa \eta_{0}\left(\partial_{x_{3}}+\sqrt{-\Delta_{h}}\right) \omega_{h}=\left[\partial_{x_{3}}(-\Delta)^{-1}\left(-u \cdot \nabla \omega_{h}+\omega \cdot \nabla u_{h}\right)\right] \\
\omega_{3}=0 \text { on } \partial \Omega,
\end{array}
$$

where $\sqrt{-\Delta_{h}}=\left|\nabla_{h}\right|$ is defined as

$$
\begin{equation*}
\sqrt{-\Delta_{h}} g\left(x_{h}, x_{3}\right)=\sum_{\xi \in \mathbb{Z}^{2}}|\xi| g_{\xi}\left(x_{3}\right) e^{i x_{h} \cdot \xi} \tag{27}
\end{equation*}
$$

- Green's function approach (Nguyen-Nguyen)

$$
\begin{align*}
\partial_{t} \omega_{\xi}-\kappa \eta_{0} \Delta_{\xi} \omega_{\xi} & =N_{\xi} \quad \text { in } \mathbb{R}_{+}, \tag{28}\\
\kappa \eta_{0}\left(\partial_{x_{3}}+|\xi|\right) \omega_{\xi, h} & =B_{\xi}, \quad \omega_{\xi, 3}=0 \quad \text { on } x_{3}=0 \tag{29}\\
\partial_{t} \theta_{\xi}-\kappa \eta_{c} \Delta_{\xi} \theta_{\xi} & =M_{\xi} \text { in } \mathbb{R}_{+}, \quad \theta_{\xi}=0 \text { on } x_{3}=0, \tag{30}
\end{align*}
$$

with $\left.\omega_{\xi}\right|_{t=0}=\omega_{0 \xi},\left.\theta_{\xi}\right|_{t=0}=\theta_{0 \xi}$ for $\xi \in \mathbb{Z}^{2}$. Here $\Delta_{\xi}=-|\xi|^{2}+\partial_{x_{3}}^{2}$.

$$
\begin{aligned}
& N_{\xi}:=(-u \cdot \nabla \omega+\omega \cdot \nabla u)_{\xi}\left(t, x_{3}\right), M_{\xi}:=(-u \cdot \nabla \theta)_{\xi}\left(t, x_{3}\right), \\
& B_{\xi}:=\left.\left(\partial_{x_{3}}\left(-\Delta_{\xi}\right)^{-1} N_{\xi, h}(t)\right)\right|_{x_{3}=0}
\end{aligned}
$$

$$
\omega_{\xi}\left(t, x_{3}\right)=\int_{0}^{\infty} G_{\xi}\left(t, x_{3}, y\right) \omega_{0 \xi}(y) \mathrm{d} y
$$

$$
\begin{equation*}
+\int_{0}^{t} \int_{0}^{\infty} G_{\xi}\left(t-s, x_{3}, y\right) N_{\xi}(s, y) \mathrm{d} y \mathrm{~d} s \tag{31}
\end{equation*}
$$

$$
-\int_{0}^{t} G_{\xi}\left(t-s, x_{3}, 0\right)\left(B_{\xi}(s), 0\right) \mathrm{d} s
$$

- Key\#1: Higher regularity of ω with the aid of boundary layer weight

$$
\begin{equation*}
\phi_{\kappa}(z):=\frac{1}{\sqrt{\kappa}} \phi\left(\frac{z}{\sqrt{\kappa}}\right) \text { with } \phi(z)=\frac{1}{1+|\operatorname{Re} z|^{\mathfrak{r}}} \text { for some } \mathfrak{r}>1, \tag{32}
\end{equation*}
$$

and initial-boundary layer

$$
\begin{equation*}
\phi_{\kappa t}(z)=\frac{1}{\sqrt{\kappa t}} \phi\left(\frac{z}{\sqrt{\kappa t}}\right) . \tag{33}
\end{equation*}
$$

- Key\#2: Conormal derivative of $\theta \Longrightarrow \frac{1}{x_{3}}$ singularity. Directly target the $\partial_{x_{3}}$ derivative + analytic recovery lemma gives

$$
\left\|\partial_{t} \nabla_{x}^{2} \theta\right\|_{L_{t, x}^{\infty}} \sim \frac{1}{\kappa}
$$

Thank you!

