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Hilbert’s Sixth Problem
1900, ICM.
David Hilbert proposed 23 major mathematical problems.
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Unified theory of the gas dynamics including different levels of
descriptions from a mathematical standpoint by connecting the behavior
of solutions to the mesoscopic kinetic equations to solutions of
microscopic models and macroscopic models that arise in formal limits
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Kinetic Theory

The object: the modelling of a gas (or plasma, or any system made
up of a large number of particles) by a distribution function in the
particle phase space.

This phase space includes macroscopic variables, i.e. the position
in physical space, but also microscopic variables, which describe
the state of the particles: the velocity.
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Distribution Function

Consider the dynamics of rarified gas in a bounded domain Ω ⊂ R3

F (t, x , v) ≥ 0 defined on [0,T ]× Ω× R3.

Here, R3 is the space of velocities.

The quantity F (t, x , v) stands for the density of particles at time t,
position x , and with velocity v .

No external force, No interaction between particles (collision)

∂tF + v · ∇xF = 0 (transport equation)



Collision: The Boltzmann equation

Maxwell (1866), Boltzmann (1872) proposed the Boltzmann
equation: PDE for the dilute gas taken into account interactions
between particles.

∂tF + v · ∇xF = Q(F ,F )

Collision operator

Q(F1,F2)(v) :=Qgain(F1,F2)− Qloss(F1,F2)

=

∫
R3

∫
S2

B(v − u, ω)[F1(v ′)F2(u′)− F1(v)F2(u)]dωdu



I Hard sphere B(v − u, ω) = |(v − u) · ω|
I 6 unknowns v ′, u′ and 4 equations : 2 dimensional ω ∈ S2

v ′ + u′ = v + u (Conservation of Momentum)

|v ′|2 + |u′|2 = |v |2 + |u|2 (Conservation of Energy)

I v ′ = v − [(v − u) · ω]ω and u′ = u + [(v − u) · ω]ω.



The dimensionless Boltzmann equation

St∂tF + v · ∇xF =
1

Kn
Q(F ,F ) (3)

I Strouhal number: St ∼ 1/time scale

I Knudsen number: Kn ∼ mean free path

Formally, as Kn→ 0,
Q(F ,F )→ 0. (4)

On the other hand, Q(F ,F ) = 0 has a generic family of solutions
(Maxwellian):

MR,U,T (v) =
R

(2πT )3/2
e−
|v−U|2

2T (5)

Therefore, formally,

F → MR,U,T (v) as Kn→ 0, (6)

where (R,U,T ) is the hydrodynamic variables.



Global Maxwellian and Mach number

Global Maxwellian

µ(v) := M1,0,1(v) =
1

(2π)3/2
exp

{
−|v |

2

2

}
. (7)

Mach number: Ma ∼ bulk velocity ∼ fluctuations around the
reference state µ(v)

F → M1+Maρ,Mau,1+Maθ(v) (8)

(
ρ(t, x), u(t, x), θ(t, x)

)
= lim

Ma↓0

1

Ma

∫
R3

{F (t, x , v)− µ(v)}
(

1, v ,
|v |2 − 3√

6

)
dv
. (9)



Reynolds number and Inviscid limit

Reynolds number Re:

1

Re
=

Kn

Ma
( von Karman relation ) (10)

I Re ∼ 1: Viscous fluid as limit
I Kn ∼ Ma ∼ St → 0: Incompressible Navier-Stokes-Fourier

I Re � 1: Invisicd fluid as limit
I Kn � Ma ∼ St → 0: Incompressible Euler

Cf. Kn → 0 but Ma ∼ St ∼ 1: Compressible Euler



Boundary conditions for kinetic equations

Incoming set:

γ− := {(x , v) ∈ ∂Ω× R3 : n(x) · v < 0}

where n(x) is the outward normal at x ∈ ∂Ω.



What kind of BCs would we impose?

1879, James Clerk Maxwell: Basic Boundary Conditions

I Diffuse reflection BC:

F (t, x , v)|γ− = cµµ(v)

∫
n(x)·u>0

F (t, x , u){n(x) · u}du, (11)

cµ is chosen to be
√

2π so that

cµ

∫
n(x)·u>0

µ(u)(n(x) · u)du = 1.

I Null flux:
∫
R3 F (t, x , v){n(x) · v}dv = 0, x ∈ ∂Ω.

I When the particles hit the boundary and are re-emitted to the
domain, they reach the equilibrium instantaneously. One can
view this boundary condition as one of the ideal scattering
model.



Boundary and the Major Difficulty
Kinetic BC: diffuse reflection BC (instantaneous thermal
equilibration)

F (t, x , v)|γ− = cµµ(v)

∫
n(x)·u>0

F (t, x , u){n(x) · u}du, (12)

for (x , v) ∈ {∂Ω× R3 : n(x) · v < 0}
I Mismatch occurs at the boundary even in the formal level

when one seeks a limit toward an inviscid fluid with the
no-penetration boundary.

I In general with u · n = 0 on ∂Ω:

M1+Maρ,Mau,1+Maθ(v)

6= cµµ(v)

∫
n(x)·u>0

M1+Maρ,Mau,1+Maθ(u){n(x) · u}du

I Fluid boundary mismatch in the inviscid limit
I Viscous fluid: No-slip boundary condition u|∂Ω = 0
I Inviscid fluid: No-penetration boundary condition u · n|∂Ω = 0
I Layer formation: Prandtl layer, . . .



The incompressible Euler limit with heat transfer from the
Boltzmann equation with diffuse boundary has not been
established in any framework yet.

I Bouchut-Golse-Pulvirenti-Desvillettes (2000): renormalized
solutions of the Boltzmann equation → dissipative solutions
of the incompressible Euler, no boundary, no heat transfer

I Lions-Masmoudi (2001)

I Saint-Raymond (2003, 2009): heat transfer, Boltzmann with
specular reflection BC: there is no mismatch at least in the
formal level

I Bardos-Golse-Paillard (2012):

Maxwell BC = α× Diffuse BC + (1− α)× Specular BC,

where α→ 0 as Kn→ 0.

I Jang-Kim (submitted): Diffuse BC, no heat transfer



Intermediary approximation via Navier-Stokes-Fourier

Boltzmann
Kn→0−−−−−−−→ Navier-Stokes-Fourier

Re= Ma
Kn
→∞

−−−−−−−−−−−→ Euler

I Boltzmann:

F = µ+
(
Ma + Ma2

)
{NSF-Correction}+ Ma3/2{Remainder}

I Navier-Stokes-Fourier with Re and no-slip BC

∂tu + u · ∇xu −
1

Re
∆u +∇xp = 0 in Ω, (13)

∇x · u = 0 in Ω, u = 0 on ∂Ω, (14)

∂tθ + u · ∇xθ −
1

Re
∆θ = 0 in Ω, (15)

ρ+ θ = 0 in Ω, θ = 0 on ∂Ω. (16)

I We can avoid the boundary mismatch
I We need the inviscid limit: Navier-Stokes-Fourier → Euler

with heat transfer



Inviscid limit: (u, θ)→ (uE , θE ) in real analytic spaces

Both u and uE are divergence-free and

∂tu + u · ∇xu +∇xp =
1

Re
∆u in Ω, u = 0 on ∂Ω,

∂tθ + u · ∇xθ −
1

Re
∆θ = 0 in Ω, θ = 0 on ∂Ω,

∂tuE + uE · ∇xuE +∇xpE = 0 in Ω, uE · n = 0 on ∂Ω,

∂tθE + uE · ∇xθE = 0 in Ω.

I strong regularity such as analyticity at least near the boundary

I Prandtl expansion: Sammartino-Caflisch (1998)
I Green’s function approach using the boundary vorticity

formulation of Maekawa→Kato’s creterion: Nguyen-Nguyen
(2018), Kukavica-Vicol-Wang (2020)

I cf. certain symmetry assumption on the domain and data



Main result (C-Jang-Kim Informal statement)

We consider a half space in 3D

Ω := T2×R+ 3 (x1, x2, x3), where T is a periodic interval of (−π, π).

For some choice of Ma and Kn = Kn(Ma), there exists a large set
of initial data uin, θin (in real analytic space), Fin such that a
unique solution F (t, x , v) satisfies, for 0 < T � 1,

F (t, x , v)− µ(v)

Ma
√
µ(v)

−→(
−θE (t, x) + uE (t, x) · v + θE (t, x)

|v |2 − 3

2

)√
µ(v)

in L∞((0,T ); L2(Ω× R3)) as Ma→ 0.



Key#1 of Boltzmann to NS: New Hilbert expansion
around the global maxwellian

I Ma = ε = St and Kn = κε with κ ↓ 0 as ε ↓ 0

I ε∂tF + v · ∇xF = 1
κεQ(F ,F )

I For µ = M1,0,1

F = µ+ εf1
√
µ+ ε2f2

√
µ+ ε3/2fR

√
µ (17)

I Lf = −2√
µQ(µ,

√
µf ) and Γ(f , g) = 1√

µQ(
√
µf ,
√
µg).

I N : Null space of L is spanned by {√µ, v√µ, |v |
2−3√
6

√
µ}.

Denote Pg to be projection of g in N .
I Image of L and Γ ⊥ N , L is self-adjoint
I L is Fredholm: Lf = g is solvable if g ∈ N⊥ (and uniquely

f ∈ N⊥)



∂t fR +
1

ε
v · ∇x fR +

1

ε2κ
LfR −

1

ε1/2κ
Γ(fR , fR)

= − 1

ε5/2κ
Lf1 (18)

− 1

ε3/2

{
v · ∇x f1 −

1

κ
Γ(f1, f1) +

1

κ
Lf2
}

(19)

− 1

ε1/2

{
∂t f1 + v · ∇x f2 −

2

κ
Γ(f1, f2)

}
(20)

− ε1/2∂t f2 +
2

εκ
Γ(f1, fR) +

2

κ
Γ(f2, fR) +

ε1/2

κ
Γ(f2, f2). (21)

I (18) = 0: f1 =
(
ρ+ u · v + θ |v |

2−3√
6

)√
µ

I (19) = 0: v · ∇x f1 ∈ N → ∇x · u = 0 and ∇(ρ+ θ) = 0
(I− P)f2 = −κL−1

(
v · ∇x f1) + L−1

(
Γ(f1, f1)

)



I

P(20) =P
(
∂t f1 + v · ∇x f2

)
=∂tPf1 + v · ∇xPf2 + v · ∇x(I− P)f2

(22)

I

(I− P)f2 =− κL−1
(
v · ∇x f1) + L−1

(
Γ(f1, f1)

)
Pf2 =(ρ2 + u2 · v + θ2

|v |2 − 3

2
)
√
µ

(23)

with ∇ · u2 = −∂tρ, ρ2 + θ2 − |u|
2

3 = p.

I

〈v√µ, ∂t f1 + v · ∇x f2〉 =∂tu − κη0∆xu + u · ∇xu +∇xp

〈 |v |
2 − 5

2

√
µ, ∂t f1 + v · ∇x f2〉 =∂tθ − κη1∆xθ + u · ∇xθ

(24)

I P(20) = 0 if (u, θ) solve the Navier-Stokes-Fourier system



Remark in the Hilbert expansion

I F = µ+ εf1
√
µ+ ε2f2

√
µ+ ε3/2fR

√
µ

I f1 =
(
ρ+ u · v + θ |v |

2−3
2

)√
µ

I boundary condition: fR = Diffuse BC(fR) + O(ε1/2)

I

∂t fR +
1

ε
v · ∇x fR +

1

ε2κ
LfR −

1

ε1/2κ
Γ(fR , fR)

=− 1

ε1/2
(I− P)

(
v · ∇x f2 −

2

κ
Γ(f1, f2)

)
+ (21)

I (21) contains ∇xu, ∇xθ, ∂t∇xu, and ∂t∇xθ.



Key#2: PfR in L∞t L6
x

I ∂t fR + 1
εv · ∇x fR + 1

ε2κ
LfR − 1

ε1/2κ
Γ(fR , fR) = 2

εκΓ(f1, fR) + · · ·
I If we expand F = µ+ εf1

√
µ+ ε2f2

√
µ+ ε3/2fR

√
µ more then

singularity of the nonlinear term would become less significant.

I But it would cost another boundary layer since (I− P)f2 is
already determined and f2 likely does not honor the diffuse BC.



‖fR(t)‖2
L2
x,v

+
1

ε2κ

∫ t

0
‖(I− P)fR‖2

L2
x,v

.
ε1/2

κ1/2
‖PfR‖L∞t L6

x,v
‖PfR‖L2

tL
3
x,v

1

εκ1/2
‖(I− P)fR‖L2

t,x,v

+
1

κ1/2
‖f1‖L∞x,v ‖fR‖L2

t,x,v

1

εκ1/2
‖(I− P)fR‖L2

t,x,v

(25)

I ‖PfR‖L2
tL

3
x,v

: Average lemma H1/2 ⊂ L3 in 3D

I ‖PfR‖L∞t L6
x,v

: v · ∇x fR = −ε∂t fR − 1
εκLfR + · · ·

I test function method
I ∂t fR -estimate requires ∂2

t∇xu, ∂2
t∇xθ estimate

I Gronwall’s inequality: ‖fR(t)‖2
L2
x,v

. et/κ.

I By choosing κ such that ε1/2e1/κ ↓ 0 as ε ↓ 0,

1

ε
|F − (µ+ εf1

√
µ)| . ε1/2|fR | ↓ 0 (26)



NS to Euler

I NS → Euler can be justified in real analytic space
(Sammartino-Caflisch 1998)

I Vorticity formulation of Maekawa:
ω = ∇× u, u = ∇× (−∆)−1ω

∂tω − κη0∆ω = −u · ∇ω + ω · ∇u in Ω,

ω |t=0 = ωin in Ω,

κη0(∂x3 +
√
−∆h)ωh = [∂x3(−∆)−1(−u · ∇ωh + ω · ∇uh)]

ω3 = 0 on ∂Ω,

where
√
−∆h = |∇h| is defined as√

−∆hg(xh, x3) =
∑
ξ∈Z2

|ξ|gξ(x3)e ixh·ξ. (27)



I Green’s function approach (Nguyen-Nguyen)

∂tωξ − κη0∆ξωξ = Nξ in R+, (28)

κη0(∂x3 + |ξ|)ωξ,h = Bξ, ωξ,3 = 0 on x3 = 0, (29)

∂tθξ − κηc∆ξθξ = Mξ in R+, θξ = 0 on x3 = 0, (30)

with ωξ|t=0 = ω0ξ, θξ|t=0 = θ0ξ for ξ ∈ Z2. Here
∆ξ = −|ξ|2 + ∂2

x3
.

Nξ := (−u · ∇ω + ω · ∇u)ξ (t, x3), Mξ := (−u · ∇θ)ξ(t, x3),

Bξ := (∂x3(−∆ξ)
−1Nξ,h(t))|x3=0

ωξ(t, x3) =

∫ ∞
0

Gξ(t, x3, y)ω0ξ(y)dy

+

∫ t

0

∫ ∞
0

Gξ(t − s, x3, y)Nξ(s, y)dyds

−
∫ t

0
Gξ(t − s, x3, 0)(Bξ(s), 0)ds.

(31)



I Key#1: Higher regularity of ω with the aid of boundary layer
weight

φκ(z) :=
1√
κ
φ(

z√
κ

) with φ(z) =
1

1 + |Re z |r
for some r > 1,

(32)
and initial-boundary layer

φκt(z) =
1√
κt
φ(

z√
κt

). (33)

I Key#2: Conormal derivative of θ =⇒ 1
x3

singularity. Directly
target the ∂x3 derivative + analytic recovery lemma gives

‖∂t∇2
xθ‖L∞t,x ∼

1

κ
.



Thank you !


