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Introduction
We consider an ill-posed (e.g. A compact) linear operator equation

Au = f + w

where u : Ω→ R for Ω ⊂ Rd , d > 2, and w noise (deterministic).
Assumption: the true data u† to be recovered consists of distinct
objects; smooth areas separated by sharp, discontinuous edges.

Total variation regularization: Assuming A : Lq(Ω)→ Y bounded with
Y a Banach space and fixing σ > 1, the regularized solutions

uα,w ∈ arg min
u∈Lq(Ω)

1
σ
‖Au − (f + w)‖σY + αTV(u)

balance a priori information about u encoded in having a low variation,
and fidelity to the measurements available f + w.
Spaces/exponents: Typically q = d/(d − 1), Y generic, will usually
write σ = 2 (which does not always fit the assumptions) for simplicity.

www.ricam.oeaw.ac.at J.A. Iglesias, Variational curvatures and total variation regularization 1/26



Johann Radon Institute for Computational and Applied Mathematics

Introduction
We consider an ill-posed (e.g. A compact) linear operator equation

Au = f + w

where u : Ω→ R for Ω ⊂ Rd , d > 2, and w noise (deterministic).
Assumption: the true data u† to be recovered consists of distinct
objects; smooth areas separated by sharp, discontinuous edges.
Total variation regularization: Assuming A : Lq(Ω)→ Y bounded with
Y a Banach space and fixing σ > 1, the regularized solutions

uα,w ∈ arg min
u∈Lq(Ω)

1
σ
‖Au − (f + w)‖σY + αTV(u)

balance a priori information about u encoded in having a low variation,
and fidelity to the measurements available f + w.
Spaces/exponents: Typically q = d/(d − 1), Y generic, will usually
write σ = 2 (which does not always fit the assumptions) for simplicity.

www.ricam.oeaw.ac.at J.A. Iglesias, Variational curvatures and total variation regularization 1/26



Johann Radon Institute for Computational and Applied Mathematics

TV is more than denoising
Radon transform in the plane: Integrate over lines determined by
(θ, t) ∈ S1 × R,

Ru(θ, t) =
∫
{x·θ=t}

u(x) dH1(x).

‖Ru‖
Hs+ 1

2
6 C‖u‖Hs for compactly supported u, so inversion is ill-posed

(noise is amplified). In our setting s = 0,Y = L4(Ω) or Y = L2(Ω).

Also higher dimensions: A reasonable starting model for computed
tomography is the 3D analogue (X-Ray transform). Here q 6= 2.
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Definitions
Definition: We call total variation the norm of the distributional gradient
as a vector-valued Radon measure.

TV(u) := sup
{∫

Ω
u div z dx

∣∣∣∣ z ∈ C∞0 (Ω ; Rd), ‖z‖L∞(Ω) 6 1
}
.

If finite for u ∈ L1(Ω), then u has bounded variation: u ∈ BV(Ω).
If u smooth, TV(u) =

∫
Ω |∇u| dx.

For 1E the indicatrix of a set E , define the perimeter Per(E) := TV(1E).

For a ball B(x, r) we have TV(1B(x,r)) = 2πr and
the optimal z is aligned with the normal to the circle
∂B(x, r).

We have in particular
Per(A ∪ B) + Per(A ∩ B) 6 Per(A) + Per(B)

generalizing ‘length of the boundary’ to irregular sets.
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Convergence of solutions

First theoretical question: Analyze the low-noise regime in which the
noise intensity and the a priori chosen parameter α tend to zero.

Basic convergence result1: If f ∈ Ran(A) and αn,wn → 0 with
‖wn‖2

Y/αn 6 C , for

un := uαn ,wn ∈ arg min
u∈Lq(Ω)

1
2 ‖Au − (f + w)‖2

Y + αTV(u)

we have (up to a subsequence) un ⇀ u† weakly in Ld/(d−1)(Ω) where u†
is a minimal TV solution of Au = f .
Moreover, also un → u† strong in Lq̄

loc(Ω) for q̄ < d/(d − 1), and in
Lq̄(Ω) if Ω is bounded.
Convergence rates: Linear rates in Bregman distance2, under the source
condition A∗p0 ∈ ∂TV(u†) and linear parameter choice ‖wn‖/αn 6 C .

1R. Acar, C. R. Vogel. Inverse Prob. 10(6), 1994.

2M. Burger, S. Osher. Inverse Prob. 20(5), 2004.
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Subgradients and Bregman distances
If F : X → R ∪ {+∞}, define the (set-valued) subgradient in X∗ by

v ∈ ∂F(u) ⊂ X∗ ⇐⇒ F(u) > F(u) + 〈v, u − u〉(X∗,X).

Fermat theorem for convex unconstrained minimization:
u ∈ arg min

u∈X
F(u) ⇐⇒ 0 ∈ ∂F(u).

Bregman distance: Denoting v0 := A∗p0 ∈ ∂TV(u†),
Dv0(un, u†) := TV(un)− TV(u†)− 〈v0, un − u†〉(L2,L2)

involves TV(un), no translation to ‖un − u†‖L2 without strong convexity.
However: Convergence rates in norm are possible3 under an assumption
of the type “A∗A ≥ ε Id on Σ ⊃ supp Du† with Lipschitz boundary”.

3T. Valkonen. Regularisation, optimisation, subregularity. arXiv:2011.07575
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Optimality condition I
Formal Euler-Lagrange equation: (with Y = L2)

−A∗(Auα,w − f − w)
α

= div
(
∇uα,w
|∇uα,w|

)
.

With uα,w ∈ C 2 and at x with ∇uα,w(x) 6= 0, the right hand side
div(∇uα,w(x)/|∇uα,w(x)|) is the mean curvature of ∂{uα,w > uα,w(x)}.

But these assumptions are very far from the typical use cases:

Ideal u0 ∈ {0, 1}, blurry and noisy f = Au0 + w, solution uα,w , ∂{uα,w > 0.5} in red.
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Optimality condition II

Rigorous optimality condition: (with j duality mapping of Y )

vα,w := − 1
α

A∗j(Auα,w − f − w) ∈ ∂TV(uα,w), or

TV(uα,w)−
∫

Ω
vα,wuα,w 6 TV(u)−

∫
Ω

vα,wu, for all u ∈ Lq(Ω).

Level sets? Slice with the coarea and layer-cake formulas

TV(u) =
∫ ∞
−∞

Per({u > t}) dt,
∫

Ω
u dx =

∫ ∞
0
|{u > t}| dt if u > 0
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Variational curvatures of level sets
We can write optimality directly in terms of the level sets:

{uα,w > t} ∈ arg min
F

Per(F)−
∫

F
vα,w (for t > 0)

which is the definition4 of having variational mean curvature vα,w.
If everything was smooth, it would mean vα,w

∣∣
∂{uα,w>t} is the mean

curvature of ∂{uα,w > t} (as before).

Variational curvatures are not unique and nonlocal, since they are defined
with Lebesgue/volume integrals!

Integrability properties of vα,w imply regularity of ∂{uα,w}. For the energy
to not encourage small structures need to control vα,w in Ld

loc, scaling:∫
B(x,r)

|vα,w| 6 rd−1‖vα,w‖Ld(B(x,r)), and Per
(
B(x, r)

)
= Crd−1.

4E. Barozzi, U. Massari, I. Tamanini, E. Gonzalez, . . .
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A better mode of convergence
Convergence in Lp norm ‖un − u†‖Lp → 0, not really adequate for
measuring shapes of objects U ,V ⊂ Rd with boundaries ∂U , ∂V :

Situations with comparable |U∆V | = ‖1U − 1V ‖p
Lp .

Better mode: Convergence of boundaries in Hausdorff distance

dH (∂U , ∂V ) := max
{

sup
x∈∂U

inf
y∈∂V

|x − y|, sup
y∈∂V

inf
x∈∂U

|x − y|
}

can be seen as a geometric version of uniform convergence. Desirable to
have it for the level set boundaries ∂{uα,w > t} to ∂{u0 > t}.
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How to get Hausdorff convergence?
If the un have a common compact support, L1

loc convergence un → u
implies |{un > t}∆{u† > t}| → 0 for a.e. t.

To improve to Hausdorff, it is sufficient to prove that there are r0 > 0
and C > 0 such that for all r 6 r0 and x ∈ ∂{un > t}

|{un > t} ∩ B(x, r)|
|B(x, r)| > C and |B(x, r) \ {un > t}|

|B(x, r)| > C ,

density estimates, uniform in n, x and t.
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Density estimates I
Let E = {uα,w > t}. To get5 the estimate for |E ∩ B(x, r)|, test
optimality of E with E \ B(x, r):

Using minimality and basic properties of the perimeter:

Lemma

Per(E ∩ B(x, r))−
∫

E∩B(x,r)
vα,w 6 2 Per(B(x, r) ; E(1))

= 2 d
dr |E ∩ B(x, r)| for a.e. r .

5E. Gonzalez, U. Massari, I. Tamanini. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.
Nat. Rend. Lincei, 4(3), 1993.
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Density estimates II
With Hölder inequality:∣∣∣∣∣

∫
E∩B(x,r)

vα,w

∣∣∣∣∣ 6 |E ∩ B(x, r)|
d−1

d ‖vα,w‖Ld(E∩B(x,r))

6 |E ∩ B(x, r)|
d−1

d
(
‖vα,0‖Ld(E∩B(x,r)) + ‖vα,w − vα,0‖Ld(Rd)

)
.

If we can (choosing r small enough and α large in terms of ‖w‖) get

‖vα,0‖Ld(E∩B(x,r)) < ε and ‖vα,w − vα,0‖Ld(Rd) < η,

the isoperimetric inequality Per(E ∩ B(x, r)) > Cd |E ∩ B(x, r)| d−1
d and

the lemma provide

|E ∩ B(x, r)|
d−1

d (Cd − ε− η) 6 2 d
dr |E ∩ B(x, r)| for a.e. r ,

a differential inequality giving |E ∩ B(x, r)| > Crd = C ′|B(x, r)|.
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Strategy

This Hausdorff convergence was proved proved first6 for A = Id
(denoising) and Ω = R2 under the conditions ∂TV(u†) 6= ∅ and
‖wn‖L2(Ω)/αn 6 C .
Our goal has been to extend this result to linear inverse problems, higher
dimensions, bounded domains, and possibly without source condition.

General proof scheme:

Fenchel dual problem lives in in (Lq)∗ = Lq/(q−1) and involves vα,w
that should belong to Ld .
Strong Ld convergence of noiseless dual variables vα,0.
Stability estimates for vα,w with respect to w.
Both of these together imply uniform density estimates of
{uα,w > t} to improve the mode of convergence.

6A. Chambolle, V. Duval, G. Peyré, and C. Poon. Inverse Prob. 33(1), 2017.
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The dual problem
Using the characterization for one-homogeneous functionals

v ∈ ∂TV(u) ⇐⇒ v ∈ ∂TV(0) and
∫

Ω
vu = TV(u),

the Fenchel dual of our problem is to maximize among p ∈ Y ∗ such that
A∗p ∈ ∂TV(0), the quantity

Dα,w(p) := 〈p, f + w〉(Y∗,Y ) −
α

2 ‖p‖
2
Y∗ .

A is continuous and the fidelity term as well, so strong duality holds:

inf
u∈Lq(Ω)

Fα,w(u) = sup
A∗p∈∂TV(0)

Dα,w(p),

the maximizer pα,w is unique and we have the (already familiar)
optimality condition

vα,w := A∗pαw ∈ ∂TV(uα,w).
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v ∈ ∂TV(u) ⇐⇒ v ∈ ∂TV(0) and
∫

Ω
vu = TV(u),

the Fenchel dual of our problem is to maximize among p ∈ Y ∗ such that
A∗p ∈ ∂TV(0), the quantity

Dα,w(p) := 〈p, f + w〉(Y∗,Y ) −
α

2 ‖p‖
2
Y∗ .

A is continuous and the fidelity term as well, so strong duality holds:

inf
u∈Lq(Ω)

Fα,w(u) = sup
A∗p∈∂TV(0)

Dα,w(p),

the maximizer pα,w is unique and we have the (already familiar)
optimality condition

vα,w := A∗pαw ∈ ∂TV(uα,w).
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Stability of the dual wrt noise

pα,w = arg min
p∈Y∗

A∗p∈∂TV(0)

‖α−1(f + w)‖2
Y −

2
α

(
〈p, f + w〉(Y∗,Y ) −

α

2 ‖p‖
2
Y∗

)
.

This parallels the formula for projections onto a convex set in a Hilbert
space (which are nonexpansive, so they give a linear stability estimate)

inf
p∈H

A∗p∈∂TV(0)

∥∥∥∥ f + w
α

∥∥∥∥2

H
−2
〈

p, f + w
α

〉
H

+‖p‖2
H = inf

p∈H
A∗p∈∂TV(0)

∥∥∥∥p − f + w
α

∥∥∥∥2

H
.

Our dual can be interpreted as a generalized (not metric!) projection7
which is also stable assuming uniform convexity of Y ∗:

‖pα,w − pα,0‖Y∗ 6 ρY,2

(
‖w‖Y

2α

)
,

applying A∗ we can pick α with ‖vα,w − vα,0‖Lq′ (Ω) 6 η for any η > 0.
7Alber, Notik. Comm. Appl. Nonlinear Anal., 1995.
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Strong convergence of noiseless duals
The formal limits of the primal and dual problems when α,w → 0 write

inf{TV(u) | u ∈ Lq(Ω), Au = f } attained by u†, and

sup
A∗p∈∂TV(0)

〈p , f 〉(Y∗,Y ) = sup
A∗p∈∂TV(0)

∫
Ω

(A∗p)u†.

The fidelity term became a constraint (discontinuous), so no strong
duality. Attainment in the dual for u†, p0 with source condition

A∗p0 ∈ ∂TV(u†).
This also gives that the noiseless pαn ,0 converge strongly in Y ∗, to the
choice p∗ with minimal Y ∗ norm
(homogeneity of TV and Radon-Riesz property of Y ∗).

In consequence the sequence (vαn ,0) = (A∗pαn ,0) is Ld-equiintegrable:
for each ε > 0 there is r0 for which∫

B(x,r0)
|vαn ,0|d 6 εd for all x and n.
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Geometric convergence under source condition
We assumed that the {uα,w} have a common compact support, but for
q = d/(d − 1) this can be proved again with stability and
equiintegrability at infinity∫

Ω\B(0,R)
|vα,0|d 6 εd for R > R0.

Theorem (I., Mercier, Scherzer ’18 (d=2), I., Mercier ’20 (d>2))
Let q = d/(d − 1), σ 6 d/(d − 1), Ω either Rd or a bounded domain
with Neumann or Dirichlet (geometric restrictions!) boundary,
αn,wn −−−−→n→∞

0 related by

α
1

σ−1
n > C (d,Ω,Y , σ)‖wn‖Y ,

and assume the source condition Ran(A∗) ∩ ∂TV(u†) 6= ∅.
Then for un a subsequence of minimizers such that un → u† in L1

loc and
almost every t > 0, the level set boundaries ∂{un > t} converge to
∂{u† > t} in the sense of Hausdorff convergence.
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Density estimates with boundary conditions
Dirichlet: Prescribe zero values outside Ω which has a variational
curvature κΩ with κΩ

∣∣
Rd\Ω ∈ Ld(Rd \ Ω),

κα,w = vα,w1Ω + κΩ1Rd\Ω also a curvature for {uα,w > t}.

(a) and (b) are allowed, (c) is not.

Neumann: Variation in Ω, isoperimetric inequality fails but we have the
BV Poincaré-Sobolev inequality (η depends on embedding constant).
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A numerical example

Deblurring with Dirichlet boundary, α = 1, 1/4, 1/16, 1/64 and ‖w‖L2 = α/10.
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Boundedness under source condition
Theorem (Bredies, I., Mercier, soon)
Under the same conditions (minus the geometric restriction on Ω), and
for the full sequence,

‖un‖L∞(Ω) 6 C
(

u†, sup
n
α
− 1
σ−1

n ‖wn‖Y

)
< +∞,

and in consequence, if Ω is bounded and un → u† in L1, also

un → u† strongly in Lp for all p ∈ (1,∞).

Remarks:
The measurements f + w could be unbounded. And even if they were
bounded, there is A to deal with.
Analogously if ∂TV(u†) 6= ∅, then u† itself is bounded.
The bound is not explicit, since we use equiintegrability of vα,0.
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Source condition and Ld curvatures
The source condition is not harmless: for the indicatrix of
S = (0, 1)2 ⊂ R2, we have no curvature in L2 and ∂L2TV(1S) = ∅.
This is because ‘cutting’ a corner Kδ of side length δ reduces perimeter
by a fixed factor, which would contradict vS ∈ L2:

Cδ 6 Per(S)− Per(S \Kδ) 6
∫

Kδ
vS 6 δ‖vS‖2

L2(Kδ),

Original (w = 0) ‘Denoised’ (A = Id), large α

But the square satisfies density estimates. And without noise, one can
find a solution explicitly and the Hausdorff convergence still holds.
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Spaces for curvatures and regularity

So far: To prove density estimates one uses (local) bounds in Ld , which
in turn prevent mild singularities which we want to still handle.
Strong regularity: For p > d and d < 8, a set E having a variational
curvature in Lp implies8 that ∂E ∈ C 1,α.
Regularity with Ld curvature? bi-Hölder local parametrizations of the
boundary9, bi-Lipschitz10 for d = 2. There are examples11 of planar sets
with singular points but with variational mean curvatures in L2.
What is the optimal space? A more general (critical) setting for
variational curvatures is the Morrey space L1,d−1, but there are
counterexamples12 with no density estimates.

8U. Massari. Rend. Sem. Mat. Univ. Padova, 53, 1975.
9E. Paolini. Manuscripta Math., 97(1), 1998.

10L. Ambrosio, E. Paolini. Ricerche Mat. 48(suppl.), 1999.
11E. Gonzalez, U. Massari, I. Tamanini. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.

Nat. Rend. Lincei, 4(3), 1993.
12Q. Li, M. Torres. Adv. Calc. Var. 12(2), 2019.
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Denoising by comparison I
For denoising we can work on vα,w = α−1(f + w − uα,w) pointwise.

Lemma
Assume that the finite perimeter sets E1 and E2 admit variational mean
curvatures κ1 and κ2 respectively, and such that κ1 < κ2 in E1 \ E2.
Then |E1 \ E2| = 0, that is E1 ⊆ E2 up to Lebesgue measure zero.

Write
Per(E1)−

∫
E1

κ1 6 Per(E1 ∩ E2)−
∫

E1∩E2

κ1,

Per(E2)−
∫

E2

κ2 6 Per(E1 ∪ E2)−
∫

E1∪E2

κ2.

Summing and using Per(E1) + Per(E2) 6 Per(E1 ∩ E2) + Per(E1 ∪ E2),∫
E1\E2

κ2 6
∫

E1\E2

κ1.
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Denoising by comparison II
Let D be a bounded set of finite perimeter. Then D has13 at least one
variational mean curvature in κD ∈ L1(Rd), minimal in Lp(D) norm for
all p > 1 among such curvatures.

With g ∈ L1(Rd) with g > 0 consider

Dλ ∈ arg min
E⊂D

Per(E)−λ
∫

E
g, and Rd\D−λ ∈ arg min

F⊂Rd\D
Per(F)−λ

∫
F

g.

For λ→∞ the Dλ exhaust D, so for x ∈ D we can define

κD(x) := inf
{
λg(x)

∣∣ λ > 0 and x ∈ Eλ
}
.

13E. Barozzi, E. Gonzalez, and I. Tamanini. Proc. Amer. Math. Soc., 99(2), 1987.
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Denoising by comparison III
Theorem (I., Mercier ’21)
Let q = σ = d/(d − 1), Ω = Rd , A = Id, αn,wn related by
α

1
σ−1
n > C (d)‖wn‖, and f = 1D for D bounded of finite perimeter.

Then for un a subsequence of minimizers and almost every t > 0, the
level set boundaries ∂{un > t} converge to ∂D in the sense of Hausdorff
convergence.

Compare with κD ∈ L1(Rd), which acts as replacement of p0 ∈ ∂TV(f ).
Denoising reduces curvature pointwise:

|vα,0| 6 |κD| and sign(vα,0) = sign(κD).
Since D is arbitrary, the density estimates are not uniform anymore. But
using the additional bound obtained by comparing with balls

|κD| 6 dist(·, ∂D)

the Hausdorff convergence still holds.
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Summary
For TV regularization the dual variable is the variational curvature of the
level sets of the solution.
In dimension d > 2, one needs to go outside Hilbert spaces: the natural
space for the curvatures is Ld .

Uniform convexity of Y ,Y ∗ =⇒ Dual stability wrt noise (S).
Source condition =⇒ Noiseless dual convergence (C).
(S)+(C)+param. choice =⇒ Hausdorff convergence, L∞ bounds.
For denoising and f = 1D, convergence by comparison with κD ∈ L1.

J. A. Iglesias, G. Mercier, and O. Scherzer. A note on convergence of solutions
of total variation regularized linear inverse problems. Inverse Problems,
34(5):055011, 2018. arXiv:1711.06495
J. A. Iglesias, G. Mercier. Influence of dimension on the convergence of level-sets
in total variation regularization. ESAIM. Control, Optimisation and Calculus of
Variations, 26:52, 2020. arXiv:1811.12243
J. A. Iglesias, G. Mercier. Convergence of level sets in total variation denoising
through variational curvatures in unbounded domains. SIAM Journal on
Mathematical Analysis, 53(2):1509-1545, 2021. arXiv:2005.13910

www.ricam.oeaw.ac.at J.A. Iglesias, Variational curvatures and total variation regularization 26/26



Johann Radon Institute for Computational and Applied Mathematics

Summary
For TV regularization the dual variable is the variational curvature of the
level sets of the solution.
In dimension d > 2, one needs to go outside Hilbert spaces: the natural
space for the curvatures is Ld .
Uniform convexity of Y ,Y ∗ =⇒ Dual stability wrt noise (S).
Source condition =⇒ Noiseless dual convergence (C).
(S)+(C)+param. choice =⇒ Hausdorff convergence, L∞ bounds.

For denoising and f = 1D, convergence by comparison with κD ∈ L1.

J. A. Iglesias, G. Mercier, and O. Scherzer. A note on convergence of solutions
of total variation regularized linear inverse problems. Inverse Problems,
34(5):055011, 2018. arXiv:1711.06495
J. A. Iglesias, G. Mercier. Influence of dimension on the convergence of level-sets
in total variation regularization. ESAIM. Control, Optimisation and Calculus of
Variations, 26:52, 2020. arXiv:1811.12243
J. A. Iglesias, G. Mercier. Convergence of level sets in total variation denoising
through variational curvatures in unbounded domains. SIAM Journal on
Mathematical Analysis, 53(2):1509-1545, 2021. arXiv:2005.13910

www.ricam.oeaw.ac.at J.A. Iglesias, Variational curvatures and total variation regularization 26/26



Johann Radon Institute for Computational and Applied Mathematics

Summary
For TV regularization the dual variable is the variational curvature of the
level sets of the solution.
In dimension d > 2, one needs to go outside Hilbert spaces: the natural
space for the curvatures is Ld .
Uniform convexity of Y ,Y ∗ =⇒ Dual stability wrt noise (S).
Source condition =⇒ Noiseless dual convergence (C).
(S)+(C)+param. choice =⇒ Hausdorff convergence, L∞ bounds.
For denoising and f = 1D, convergence by comparison with κD ∈ L1.

J. A. Iglesias, G. Mercier, and O. Scherzer. A note on convergence of solutions
of total variation regularized linear inverse problems. Inverse Problems,
34(5):055011, 2018. arXiv:1711.06495
J. A. Iglesias, G. Mercier. Influence of dimension on the convergence of level-sets
in total variation regularization. ESAIM. Control, Optimisation and Calculus of
Variations, 26:52, 2020. arXiv:1811.12243
J. A. Iglesias, G. Mercier. Convergence of level sets in total variation denoising
through variational curvatures in unbounded domains. SIAM Journal on
Mathematical Analysis, 53(2):1509-1545, 2021. arXiv:2005.13910

www.ricam.oeaw.ac.at J.A. Iglesias, Variational curvatures and total variation regularization 26/26



Johann Radon Institute for Computational and Applied Mathematics

Summary
For TV regularization the dual variable is the variational curvature of the
level sets of the solution.
In dimension d > 2, one needs to go outside Hilbert spaces: the natural
space for the curvatures is Ld .
Uniform convexity of Y ,Y ∗ =⇒ Dual stability wrt noise (S).
Source condition =⇒ Noiseless dual convergence (C).
(S)+(C)+param. choice =⇒ Hausdorff convergence, L∞ bounds.
For denoising and f = 1D, convergence by comparison with κD ∈ L1.

J. A. Iglesias, G. Mercier, and O. Scherzer. A note on convergence of solutions
of total variation regularized linear inverse problems. Inverse Problems,
34(5):055011, 2018. arXiv:1711.06495
J. A. Iglesias, G. Mercier. Influence of dimension on the convergence of level-sets
in total variation regularization. ESAIM. Control, Optimisation and Calculus of
Variations, 26:52, 2020. arXiv:1811.12243
J. A. Iglesias, G. Mercier. Convergence of level sets in total variation denoising
through variational curvatures in unbounded domains. SIAM Journal on
Mathematical Analysis, 53(2):1509-1545, 2021. arXiv:2005.13910

www.ricam.oeaw.ac.at J.A. Iglesias, Variational curvatures and total variation regularization 26/26


