CNA Seminar
November 30, 2021

Grain boundaries in minimal planar N-Partitions for Large N

Giovanni Alberti (Università di Pisa)
joint work with
Marco Caroccia (Politecnico di Milano)
Giacomo Del Nin (University of Warwick)

Summary

- Minimal partitions and Hales's Honeycomb Theorem
- Uniform energy distribution for minimal partitions
- Towards a description of the structure of minimal partitions: emergence of grains

Partitions

Let Ω be a two-dimensional domain with finite area.

An N-partition of Ω is a collection $\mathcal{E}=\left\{E_{1}, \ldots, E_{N}\right\}$ of closed sets in Ω (called cells of the partition)

- with pairwise disjoint interiors and union Ω,
- with equal area $\left|E_{i}\right|=|\Omega| / N$,
- and sufficiently regular boundaries.

The perimeter of a partition \mathcal{E} is

$$
\begin{aligned}
\operatorname{Per}(\mathcal{E}): & =\text { length }\left(\partial E_{1} \cup \cdots \cup \partial E_{n}\right) \\
& =\frac{1}{2} \sum_{i=1}^{N} \operatorname{length}\left(\partial E_{i}\right)+\frac{1}{2} \operatorname{length}(\partial \Omega) \\
& =\frac{1}{2} \sum_{i=1}^{N} \operatorname{Per}\left(E_{i}\right)+\frac{1}{2} \operatorname{Per}(\Omega)
\end{aligned}
$$

- Ω admits a minimal N-partition for every integer N;
- the local structure of minimal N-partitions is simple;
- computing minimal N-partitions is challenging.

Hales's Honeycomb Theorem [Hales 2001]

Let Ω be a flat torus which admits a regular hexagonal N-partition $\mathcal{E}_{\text {hex }}$.

Then $\mathcal{E}_{\text {hex }}$ is the unique minimal N-partition of Ω.

- Not all flat tori admit a regular hexagonal partition.
- No counterpart in higher dimension!

Key tool: Hales's isoperimetric inequality
Simplified version (polygons only):

- let E be an n-polygon with area 1 ,
- let R_{n} be the regular n-polygon with area 1 ,
- let $H=R_{6}$ be the regular hexagon with area 1 .

Then:

$$
\operatorname{Per}(E) \geq \operatorname{Per}\left(R_{n}\right) \geq \operatorname{Per}(H)-c(n-6)
$$

because $n \mapsto \operatorname{Per}\left(R_{n}\right)$ is a convex function (!)
We can do better:

$$
\operatorname{Per}(E) \geq \operatorname{Per}(H)-c(n-6)+\delta(\operatorname{dist}(E, H))^{2}
$$

where $\operatorname{dist}(E, H)$ is for example the Hausdorff distance of E from the closest regular hexagon H.

Idea of proof of Hales's theorem
Let \mathcal{E} be an N-partition of Ω with E_{i} an n_{i}-polygon:

$$
\begin{aligned}
\operatorname{Per}(\mathcal{E}) & =\frac{1}{2} \sum_{i} \operatorname{Per}\left(E_{i}\right) \\
& \geq N \cdot \frac{1}{2} \operatorname{Per}(H)-\frac{c}{2} \sum_{i}\left(n_{i}-6\right)+\frac{\delta}{2} \sum_{i}\left(\operatorname{dist}\left(E_{i}, H\right)\right)^{2} \\
& =N \cdot \frac{1}{2} \operatorname{Per}(H)+\frac{\delta}{2} \sum_{i}\left(\operatorname{dist}\left(E_{i}, H\right)\right)^{2} \\
& \geq N \cdot \frac{1}{2} \operatorname{Per}(H)=\operatorname{Per}\left(\mathcal{E}_{\text {hex }}\right) .
\end{aligned}
$$

We set $\sigma:=\frac{1}{2} \operatorname{Per}(H)=\sqrt[4]{12}$.

Minimal N-partitions of planar domains

We let Ω be an arbitrary planar domain with finite area,

and consider a minimal N-partition \mathcal{E} of Ω with very large N.

- We expect that most cells are close to regular hexagons \longrightarrow local hexagonal patterns.
- We expect some "disturbance" close to the boundary of Ω. Does such disturbance decay away from the boundary?
- Is the orientation of the local hexagonal pattern "constant"? If not, is it "piecewise constant"? \longrightarrow emergence of "grains"

Uniform energy distribution

- We can prove a uniform distribution of energy in the spirit of [A+Choksi+Otto 2009].
- Purpose: show that "most" cells are close to be regular hexagons in a quantified way.
- It is convenient to replace N with the length parameter

$$
\varepsilon:=\sqrt{|\Omega| / N}
$$

ε^{2} is the area of the cells of the partition, now called ε-partition.

Theorem (Energy distribution of the hexagonal partition)
Let $\mathcal{E}_{\text {hex }}$ be the regular hexagonal partition of the plane with cells of area 1. Then the "energy density" of $\mathcal{E}_{\text {hex }}$ is $\sigma:=\sqrt[4]{12}$.
More precisely, for every disc $B=B(x, r)$ with $r \gg 1$:

$$
\operatorname{Per}_{B}\left(\mathcal{E}_{\text {hex }}\right)=\sigma \operatorname{area}(B)+O\left(r^{2 / 3}\right)
$$

- Statement similar to Gauss's Circle Theorem.
- Proof by Fourier transform.

By scaling: if $\mathcal{E}_{\text {hex }}^{\varepsilon}$ is the regular hexagonal ε-partition of the plane, then for every disc $B=B(x, r)$ with $r \gg \varepsilon$

$$
\operatorname{Per}_{B}\left(\mathcal{E}_{\text {hex }}^{\varepsilon}\right)=\frac{\sigma}{\varepsilon} \operatorname{area}(B)+O\left(\varepsilon^{1 / 3} r^{2 / 3}\right)
$$

Theorem (Uniform distribution of energy)
Let $\mathcal{E}_{\varepsilon}$ be minimal ε-partitions of Ω. Let $B_{\varepsilon}=B\left(x_{\varepsilon}, r_{\varepsilon}\right)$ be discs in Ω with $r_{\varepsilon} \gg \varepsilon$ and $\operatorname{dist}\left(B_{\varepsilon}, \partial \Omega\right) \gg \varepsilon$. Then

$$
\operatorname{Per}_{B_{\varepsilon}}\left(\mathcal{E}_{\varepsilon}\right)=\frac{\sigma}{\varepsilon}\left|B_{\varepsilon}\right|+O\left(r_{\varepsilon}\right)
$$

- Proof of lower bound based Hales inequality.
- Proof of upper bound based on "cut and paste" technique.
- A precise statement depends on the variant of the problem considered.

Towards a precise description of minimal ε-partitions

- Recall the questions: In the limit $\varepsilon \rightarrow 0$, is the orientation of the local hexagonal pattern constant?
Is it piecewise constant?
- Consider the "excess energy":

$$
F_{\varepsilon}(\mathcal{E}):=\varepsilon \operatorname{Per}(\mathcal{E})-\sigma|\Omega| ;
$$

ideally, we would like to write the Γ-limit of F_{ε} as $\varepsilon \rightarrow 0$. What should be the variable of such Γ-limit? Guess: the "limit" of the orientation of the local hexagonal patterns.

- We did not write the Γ-limit, but we identified and partially addressed two key questions ("cell problems").

Excess energy due to change of orientation

- Consider a square of side-length $L \gg 1$;
- consider all 1-partitions \mathcal{E} which are prescribed in the grey zone, as in the picture, and satisfy suitable periodic conditions at bottom and top;
- $\theta:=$ angle between imposed orientations.

Define

$$
\Phi(\theta):=\liminf _{L \rightarrow+\infty} \frac{1}{L}\left\{\inf _{\mathcal{E}} F_{1}(\mathcal{E})\right\}
$$

- Explicit construction gives $\Phi(\theta)=O(\theta|\log \theta|)$;
- Is $\Phi(\theta)>0$? Presumably yes, partial proof.
- Is $\Phi(\theta)$ superlinear in $\theta=0$? Presumably yes, no proof.

Excess energy due to boundary

- Consider a square of side-length $L \gg 1$ and the rectangle R as in the picture;
- consider all 1-partitions of R which are prescribed in the grey zone, as in the picture;
- $\theta:=$ angle between the imposed orientation and the vertical direction.

Define

$$
\Phi_{b}(\theta):=\liminf _{L \rightarrow+\infty} \frac{1}{L}\left\{\inf _{\mathcal{E}} F_{1}(\mathcal{E})\right\}
$$

- Hales isoperimetric inequality gives $C \leq \Phi_{b} \leq C^{\prime}$.
- Does $\Phi_{b}(\theta)$ depends on θ ? Presumably yes, no proof.

Conclusions

- If $\Phi_{b}(\theta)$ does NOT depend on θ, then minimal ε-partitions of Ω have constant orientation (in the limit $\varepsilon \rightarrow 0$).
- If $\Phi_{b}(\theta)$ depends on θ, and Φ is strictly positive then minimal ε-partitions of Ω may not have constant orientation.
- If in addition $\Phi(\theta)$ is super-linear at 0 then the orientation of minimal ε-partitions is "piecewise constant".
\longrightarrow emergence of "grains".

Thanks for the attention!

Essential references

[A+Caroccia + DelNin] Giovanni Alberti; Marco Caroccia; Giacomo Del Nin. Paper in preparation.
[Caroccia] Marco Caroccia: On the isoperimetric properties of planar N-clusters. PhD thesis, University of Pisa, 2015.
https://cvgmt.sns.it/paper/2911/
[DelNin] Giacomo Del Nin: Some asymptotic results on the global shape of planar clusters. PhD thesis, University of Pisa, 2019.
https://cvgmt.sns.it/paper/4192/
[A+Choksi+Otto 2009] Giovanni Alberti, Rustum Choksi, Felix Otto:
Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Amer. Math. Soc., 22 (2009), 569-605.
[Hales 2001] Thomas C. Hales: The honeycomb conjecture. Discrete Comput. Geom. 25 (2001), 1-22.
[Müller+Scardia+Zeppieri 2003] Stefan Müller, Lucia Scardia, Caterina Ida Zeppieri: Geometric rigidity for incompatible fields, and an application to strain-gradient plasticity. Indiana Univ. Math. J. 63 (2014), 1365-1396.

