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Abstract
We study anomalous dissipation in hydrodynamic turbulence in the context of passive scalars.

Our main result produces an incompressible C∞([0, T ) × Td) ∩ L1([0, T ];C1−(Td)) velocity field
which explicitly exhibits anomalous dissipation. As a consequence, this example also shows non-
uniqueness of solutions to the transport equation with an incompressible L1([0, T ];C1−(Td)) drift,
which is smooth except at one point in time. We also provide three sufficient conditions for anomalous
dissipation provided solutions to the inviscid equation become singular in a controlled way. Finally,
we discuss connections to the Obukhov-Corrsin monofractal theory of scalar turbulence along with
other potential applications.

1 Introduction
We study the advection-diffusion equation

∂tθ
κ + u · ∇θκ = κ∆θκ , (1.1)

on the d-dimensional torus, Td. Here θκ is a passive scalar, representing temperature or concentration,
κ > 0 is the molecular diffusivity, and u is a prescribed, time dependent divergence free vector field
representing the velocity of an ambient fluid.

Since u is divergence free, one immediately sees that the L2 energy decay of solutions is governed by

1

2
|θκ(t)|2L2 =

1

2
|θ(0)|2L2 − κ

∫ t

0

|∇θκ(s)|2L2 ds , (1.2)

and thus the L2 energy dissipation can be measured using κ
∫ t
0
|∇θκ|2L2 ds. Even though the advecting

velocity field doesn’t feature in (1.2), it influences the energy decay indirectly. Indeed, advection typ-
ically generates small scales, which are rapidly damped by the diffusion. What is expected in certain
turbulent regimes [SS00,DSY05, Sre19] is that these effects strike a balance and the energy dissipation
rate κ

∫ t
0
|∇θκ|2L2 ds becomes independent of κ. That is, we expect

κ

∫ t

0

|∇θκ(s)|2L2 ds > χ > 0 , (1.3)

for some constant χ > 0 independent of κ. This is behavior known as anomalous dissipation. The main
result in this paper provides an explicit, deterministic example of this.
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1.1 Main Results
We first produce a divergence free velocity field which exhibits anomalous dissipation for all initial data
that is sufficiently close to a non-constant eigenfunction of the Laplacian.

Theorem 1 (Universal rate near Harmonics). Fix T > 0, d > 2, and α ∈ [0, 1), and let

Ψ
def
= {sin(Mx) sin(Ly), sin(Mx) cos(Ly), sin(Ly) cos(Mx), cos(Mx) cos(Ly)}M>0,L>0 − {0, 1} .

There exists absolute constants εα, χα > 0, and a divergence-free velocity field

u ∈ C∞([0, T )× Td) ∩ L1([0, T ];Cα(Td)) ∩ L∞([0, T ]× Td) , (1.4)

such that the following holds: If θ0 ∈ H2(Td) is mean zero, and there exists λ > 0 and ψ ∈ Ψ such that

|θ0 − λψ|L2 6 εα|θ0|L2 ,

then

κ

∫ T

0

|∇θκ|2L2 dt > χα|θ0|2L2 . (1.5)

Remark. It is not difficult to modify the velocity field so that anomalous dissipation occurs for any initial
data whose “width” of the spectrum is bounded by some finite constant.

For arbitrary H2 initial data, a small modification of the velocity field used above will also exhibit
anomalous dissipation. However the velocity field and the dissipation rate will depend on the data.

Theorem 2 (Data dependent rate and velocity field). Fix T > 0, d > 2, α ∈ [0, 1), and a mean-zero
θ0 ∈ H2(Td). There exists a divergence-free velocity field

u ∈ C∞([0, T )× Td) ∩ L1([0, T ];Cα(Td)) ∩ L∞([0, T ]× Td) ,

and χα(θ0) > 0 so that we have

κ

∫ T

0

|∇θκ|2L2 dt > χα(θ0)|θ0|2L2 . (1.6)

Our constructions are sharp in the sense that if α = 1, then the dissipation must vanish (i.e. χ1 = 0). In
fact, if u ∈ L1([0, T ];W 1,1(Td)) then all weak solutions of the inviscid transport equation are renormalized
and hence conservative [DL89]. Moreover, since θκ → θ weakly in L2 and the norms converge (by lower
semi-continuity of L2 under weak limits), the convergence is in fact strong and so we must have χ1 = 0.
In our construction, the scalar θκ does not retain any Hölder regularity uniformly in κ on the whole time
interval [0, T ]. As such, our result establishes the sharpness of the Obukhov-Corrsin theory (discussed at
the end in §5) for fields which lose regularity at a single instance in time in the endpoint case of u ∈ Cα
with α < 1 and θ ∈ Cβ with β = 0. In light of this connection, Theorem 1 can be understood also as a
proof of the analogue of Onsager’s conjecture for passive scalar turbulence in our specific setting.

We prove Theorem 1 by constructing a velocity field which develops smaller and smaller scales with
time, mimicking the time development of a turbulence cascade. As a result, the velocity field has non-
trivial energy at “infinite frequency” at the final time, T . At this point in time, the velocity can be made
to be Hölder Cα for any α < 1 but not better. Due to the precise nature of the construction, we track
explicitly the resulting cascade of scalar energy to high-frequency. The scalar field θκ is bounded, but as
mentioned above, is not uniformly Hölder for any β > 0.

The velocity field we construct alternates horizontal and vertical shears, motivated by the work of
Pierrehumbert [Pie94]. The velocity fields used in [Pie94] involves sinusoidal shears of a single frequency,
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with a random phase shift. Our velocity fields, on the other hand, require the use of higher frequencies
as time progresses and possess multiple scales.

We now briefly digress and present an application of Theorem 2 showing non-uniqueness of solu-
tions to the transport equation with an irregular drift. Recall, that solutions to the transport equa-
tion with an L1([0, T ];W 1,∞(Td)) drift are easily seen to be unique. Seminal work of DiPerna and
Lions [DL89] show that for L1(0, T ];W 1,1(Td) incompressible velocity fields, all weak solutions are renor-
malized and hence unique. Ambrosio [Amb04] extended it further to L1([0, T ];BV (Td)) incompressible
vector fields. More generally, uniqueness of weak solutions to the transport equation is closely connected
to energy conservation of solutions. In the DiPerna Lions framework, conservation of energy follows
from the so-called re-normalization property. For lower regularity velocity fields several counterexamples
to uniqueness, and consequently to conservation of energy for solutions of the transport equation, are
known [Aiz78,CLR03,Dep03,ABC14,CGSW15,MS18]. In particular, Alberti et al. [ABC14] abstractly
show the existence of a Hölder continuous, time independent, divergence free vector field for which the
transport equation does not have a unique solution. In this direction, we use Theorem 2 to produce an
explicit, divergence free drift for which the transport equation does not have a unique solution. In our
example the drift is smooth, except at one point in time, and can be chosen to be L1

tC
α
x , for any α < 1.

Theorem 3 (Non-uniqueness of the transport equation). Fix T > 0, d > 2, α ∈ [0, 1) and a mean-zero
θ0 ∈ H2. Let u∗ be the divergence-free velocity field from Theorem 2. Let u, defined on [0, 2T ], be

u(t) =

{
u∗(t) t ∈ [0, T ),

−u∗(2T − t) t ∈ [T, 2T ].

Then there are at least two weak solutions θ, θ̄ ∈ Cw([0, 2T ];L2(Td)) of the transport equation

∂tθ + u · ∇θ = 0 (1.7)

with initial data θ0.

We prove Theorem 3 by constructing one solution as a vanishing viscosity limit, and the other using
time reversibility. The vanishing viscosity solution is dissipative and loses a non-zero fraction of its initial
L2-energy. The time reversible solution, on the other hand, ends with exactly the same L2-energy as it
started with. The full is presented in Section 4. We conclude this subsection with two remarks concerning
anomalous dissipation in the random setting, and magnetic dynamos.

Remark 1.1 (Anomalous Dissipation in the Randomized Setting). Examples of anomalous in a statistical
setting can be found in studies of the Kraichnan model [FGV01,Gaw08]. This model advects the scalar
by a Gaussian, white-in-time velocity field which is only Hölder continuous in space and anomalous
dissipation for passive scalars can be proved upon taking expectation of (1.3) over the random velocity
field. For precise rigorous statements, see the works [LJR02, LJR04]. The mechanism for anomalous
dissipation discovered in the Kraichnan model and which holds in far greater generality is the breakdown of
uniqueness of Lagrangian particle trajectories or spontaneous stochasticity [BGK98,DE17,ED15]. While
this phenomenon is expected to be robust in a turbulent setting, the proof of anomalous dissipation and
spontaneous stochasticity in the Kraichnan model rely heavily on the Gaussian nature of the advecting
velocity and, more importantly, on the white-in-time correlation. Moreover, since the velocity field is
only distributional in time (formally the temporal regularity is like a derivative of Brownian motion),
it is not clear how to generate examples of (1.3) for distributional solutions to the advection diffusion
equation in a fixed deterministic velocity field. We remark also that [BBPS19a] studies a related problem
of anomalous dissipation of the scalar in forced statistically steady state, allowing for the advecting
velocity to be a solution of forced Navier-Stokes with independent forcing random. Namely, [BBPS19a]
establishes a constant flux of scalar energy through all small length-scales in a permanent regime where
scalar energy is input in a (statistically) constant rate.
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Remark 1.2 (Magnetic Dynamo Example). Our construction has implications for the existence of a (finite
time) magnetic dynamo in two dimensions. In particular, consider the 2D resistive passive vector equation

∂tB
κ + u · ∇Bκ − Bκ · ∇u = κ∆Bκ,

∇ ·Bκ = 0, ∇ · u = 0,

Bκ|t=0 = B0,

modeling the evolution of a magnetic field B in a prescribed velocity field u. The unique solution of the
above equation can be constructed with a stream function Bκ = ∇⊥ψκ solving

∂tψ
κ + u · ∇ψκ = κ∆ψκ (1.8)

provided with any initial data ψ0 with the property that ∇⊥ψ0 = B0. Thus, our results for anomalous
dissipation apply to ψκ which implies that if u is chosen as in Theorem 1 then∫ T

0

|B|2L2 dt >
χ

κ
. (1.9)

This behavior shows unbounded growth of the magnetic field as κ → 0 in finite time, seemingly in
violation of the 2d anti-dynamo theorems (see chapter 4 of [AK98]). However, these results assume
advecting velocities are smooth for infinite time at fixed κ.

1.2 General Criterion for Anomalous Dissipation
The proof of Theorem 1 involves comparing θκ, the solution of the advection diffusion equation (1.1), to
solutions of the transport equation (1.7). As a result, we obtain three criterion that guarantee some form
of anomalous dissipation.

For each of the results below we fix T > 0, assume u ∈ L∞loc([0, T );W 1,∞(Td)) is divergence free, and
let θκ and θ be solutions to (1.1) and (1.7) respectively with the same, κ independent, mean zero initial
data θ0 ∈ H2(Td). The first result is the criterion that will be used in the proof of Theorem 1.

Proposition 1.3. If

lim
t→T

∫ t

0

|∇θ|2L2ds = +∞ , and |θ(t)|2
Ḣ1 > c

(
|θ(t)|Ḣ2 + |θκ(t)|Ḣ2

)
|θ0|L2 (1.10)

for all t ∈ [0, T ), for a fixed constant c ∈ (0, 1) independent of κ and t, then

κ

∫ T

0

|∇θκ|2L2dt >
( c

2

)4
|θ0|2L2 .

Even though Proposition 1.3 is what we use in the proof of Theorem 1, we note that it involves a
condition on both θ and θκ. The next two results will involve conditions on the inviscid equation alone.

Proposition 1.4. If ∫ T

0

|∇θ(s)|2L2 ds = +∞ and |θ(t)|H−1 6 C
|θ0|2L2

|θ(t)|Ḣ1

, (1.11)

for all t ∈ [0, T ) and some constant C > 1 independent of κ and t, then

κ

∫ T

0

|∇θκ|2L2 dt >
1

64C2
|θ0|2L2 .
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Recall |θ(t)|H−1 is a measure of the scale to which θ(t) is mixed, a notion that will be revisited in
the next section (see also [Thi12] for a review). Note that interpolation and the fact that |θ(t)|L2 is
conserved guarantees that |θ(t)|H−1 > |θ0|2L2/|θ(t)|Ḣ1 . Thus the assumption (1.11) essentially requires
θ(t) to become mixed at a comparable rate.

The proof of Proposition 1.4 is short and elementary, and is mainly stated here as it establishes a
concrete link between mixing and anomalous dissipation. It is, however, hard to produce examples of
mixing, especially at nearly optimal rates. In fact, as we will see in the proof, particles advected by
velocity field used in Theorems 1 and 2 only travel a finite distance in time T . Thus, these velocity fields
are not even mixing, let alone mixing at the nearly optimal rate required in Proposition 1.4.

Finally, we conclude by stating a criterion for anomalous dissipation that only requires growth of
positive norms of θ, a criterion that is weaker than mixing.

Proposition 1.5. If

|θ(t)|Ḣ2 6
C|θ(t)|2

Ḣ1

|θ0|L2

,
1

C(T − t)
6
|θ(t)|Ḣ1

|θ0|L2

, and |∇u(t)|L∞ 6
C

(T − t)
, (1.12)

for all t ∈ [0, T ), and some constant C > 1, independent of κ and t, then there exists a χ > 0 depending
only on C

κ

∫ T

0

|∇θκ|2L2 dt > χ|θ0|2L2 .

Again we note that interpolation forces |θ(t)|Ḣ2 > |θ(t)|2
Ḣ1/|θ0|L2 . The first inequality in (1.12)

assumes that |θ(t)|Ḣ2 does not grow any faster. Moreover, by Gronwall’s lemma we immediately see that
last assumption in (1.12) implies that |θ(t)|Ḣ1 can not grow faster than power of 1/(T − t) as t → T .
The second assumption in (1.12) requires |θ(t)|Ḣ1 to grow at least linearly in 1/(T − t).

1.3 Connections with Enhanced Dissipation and Mixing
Enhanced dissipation, anomalous dissipation, and mixing are intrinsically related. Enhanced dissipation is
the notion that solutions to (1.1) dissipate energy faster than e−κt, the rate at which solutions to the heat
equation (with no advection) dissipate energy. This occurs when the advection sends some fraction of the
total energy to high frequencies. Using certain assumptions on this rate (specifically (1.11) and (1.12)),
we showed anomalous dissipation in Propositions 1.4 and 1.5 respectively.

Mixing, on the other hand, requires all energy (in the diffusion free case) to be sent to high frequencies.
When κ is small, one still expects energy to be sent to high frequencies, and so mixing implies enhanced
dissipation, at least when u is regular (see for instance [CKRZ08,CZDE18,Wei18,FI19]). The converse,
of course, need not be true: cellular flows enhance dissipation, but are certainly not mixing [IXZ19].

In the context of mixing, Bressan [Bre03] raised an interesting open problem: is there a lower bound
on the mixing rate of a rough velocity field, in the absence of diffusion? More precisely,

Conjecture 1.6 (Bressan [Bre03]). If θ is a solution to (1.7) on the torus, then

|θ(t)|mix > C1(θ0) exp
(
−C2(θ0)

∫ t

0

|∇u(·, s)|L1 ds
)
, (1.13)

for some constants C1, C2 that depend on the initial data.

Here |θ|mix is some quantification of the mixing scale of θ. One common choice is to use multi-scale
norms, and set |θ|mix = |θ − θ̄|H−1 (see [Thi12] for a comprehensive review). However, geometric scales,
such as those used in [Bre03] or [LLN+12] may also be used.

A quick application of Gronwall’s lemma shows that Conjecture 1.6 holds if |∇u|L1 is replaced
by |∇u|L∞ . When u is only L1

tW
1,p
t , solutions to (1.7) need to be interpreted in the renormalized
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sense [DL89]. Regularity of these solutions was studied by Crippa and DeLellis [CDL08b, CDL08a],
and their results can be used to prove that (1.13) holds if |∇u|L1 is replaced by |∇u|Lp for any p > 1
(see [IKX14, CDL08a]). In this case recent results [ACM19a, YZ17, EZ18, BBPS19b] construct explicit
examples showing that the lower bound (1.13) is indeed attained. When the velocity field is allowed to
be less regular than L1

tW
1,1
x , (for instance if u ∈ L1

tBVx, or even if u ∈ L1
tC

α
x with α < 1), one can

have perfect mixing in finite time. Indeed, the examples in [Bre03, LLN+12] exhibit situations where
|θ(t)|mix decreases linearly and hits 0 in finite time [ACM19a]. However, when u ∈ L1

tW
1,1
x , as stated in

Conjecture 1.6, the optimal lower bound on the mixing rate is not known.
In the presence of diffusion, we formulate a version of the above using dissipation enhancement. First,

using Gronwall’s lemma and energy methods (see for instance [Poo96,MD18]) one can obtain the following
double exponential lower bound on the L2 energy1:

|θκ|L2 > |θ0|L2 exp
(
−
κ|∇θ0|2L2

|θ0|2L2

∫ t

0

exp
(
C

∫ s

0

|∇u(·, s′)|L∞ ds′
)

ds
)
.

Here C is an explicit dimensional constant C. If u is less regular, does θκ dissipate at the same rate?
Can it be faster? Thus, in the presence of diffusion, we formulate a version of Bressan’s conjecture as
follows.

Conjecture 1.7. If θκ is a solution to (1.1) with u ∈ C∞(Td × [0,∞)) and smooth initial data, then,
for all 0 6 κ 6 1

|θκ|L2 > |θ0|L2 exp
(
−κC1(θ0)

∫ t

0

exp
(
C2

∫ s

0

|∇u(·, s′)|L1 ds′
)

ds
)
.

Here C1 > 0 is a constant that depends on θ0, but not κ, and C2 > 0 is a universal constant. In particular,

κ

∫ t

0

|∇θκ|L2 ds 6 |θ0|2L2

(
1− exp

(
−2κC1(θ0)

∫ t

0

exp
(
C2

∫ s

0

|∇u(·, s′)|L1 ds′
)

ds
))

.

We remark that it is also not known whether this conjecture holds when |∇u|L1 is replaced by |∇u|Lp
for any p ∈ (1,∞). Since (morally) enhanced dissipation only requires growth of the |θκ|H1 and not
actual mixing, this problem appears harder than Bressan’s conjecture [Bre03]. The difficulty is that the
H1 norm of the inviscid solution may become infinite immediately [ACM19b] even when u ∈ L∞t W 1,p

when p <∞.
Note that main theorem says that one cannot hope to have any such lower bound if we just assume

that u ∈ L1
loc([0,∞);Cα(T2)) if α < 1. We further remark that, while the natural place to look for

velocity fields breaking this lower bound would be to use rough velocity fields that mix in finite time, it
is not easy to rigorously show that mixing implies enhanced dissipation in low regularity settings (see,
for example, Theorem 4.4 from [CZDE18]).

1.4 Notation Convention and Plan of this Paper
For simplicity of presentation, we present the proofs of the main theorem two spatial dimensions, as the
generalizing to higher dimension is straightforward. Without loss of generality, we will also set T = 1
and subsequently assume that the initial data θ0 is always mean zero:∫

Td
θ0(x) dx = 0.

1We remark that it is also unknown whether this double exponential lower bound above is attained for any flow. In
discrete time [FI19] produce an example where is in fact attained. In continuous time, however, there are no examples
exhibiting the double exponential decay. Moreover, Miles and Doering [MD18] provide numerical evidence and a heuris-
tic argument that the Batchelor scale limits the effectiveness of mixing, suggesting that the L2 energy can only decay
exponentially.
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We use the convention

|θ|L2
def
=

(∫
T2

|θ|2 dx

)1/2

, |θ|2
Ḣ1

def
=

2∑
i=1

|∂iθ|2L2 , and |θ|2
Ḣ2

def
=

2∑
i,j=1

|∂i∂jθ|2L2 ,

for any function θ : T2 → R. We will also use |θ|Ẇ 1,∞
def
= max{|∂1θ|L∞ , |∂2θ|L∞}. With these conventions,

|θ|2
Ḣ1 6 |θ|L2 |θ|Ḣ2 ,

and

|θ|2H2 = |θ|2
Ḣ2 + |θ|2

Ḣ1 + |θ|2L2 , |θ|2H1 = |θ|2
Ḣ1 + |θ|2L2 , |θ|W 1,∞ = max{|θ|L∞ , |θ|Ẇ 1,∞} .

To compare quantities that depend on time, we will useA(t) ≈ B(t) to mean thatA(t)/B(t) is bounded
above and below by absolute positive constants. We will also use A� B to mean that limt→1A/B = 0.

The plan of the paper is as follows. In §2 we prove the criterion for anomalous dissipation (Proposi-
tions 1.3–1.5). In §3, we construct the velocity field used in Theorem 1, and prove Theorems 1–2. In §4,
we use Theorem 2 to prove non-uniqueness of weak solutions to the transport equation. Finally, in §5,
we discuss the connection of our construction to the sharpness of the Obukhov-Corrsin scaling theory of
passive scalar turbulence and conclude with an open question.

2 Criteria for Anomalous Dissipation
In this section we prove Propositions 1.3–1.5. The first result will also be used in the proof of Theorem 1.

2.1 Inviscid Growth Criterion with an Assumption on |θκ|H2

Proof of Proposition 1.3. For simplicity, and without loss of generality, we assume |θ0|L2 = 1. Since

1

2
∂t|θ − θκ|2L2 = κ

∫
∆θκ(θκ − θ) dx = −κ|θκ|2

Ḣ1 + κ

∫
∇θκ · ∇θ dx.

Thus, upon integration and using the Cauchy-Schwarz inequality we have

1

2
|θ − θκ|2L2(t) 6

(
κ

∫ 1

0

|θκ|2
Ḣ1 ds

)1/2(
κ

∫ t

0

|θ|2
Ḣ1 ds

)1/2
,

for all t < 1. Assume toward a contradiction that there exists a sequence κk → 0 so that

δk
def
= κk

∫ 1

0

|θκk |2
Ḣ1 dt < χ as k →∞ (2.1)

where χ def
= (c/2)4. Let Tk < 1 be such that

κk

∫ Tk

0

|θ|2
Ḣ1 dt = 1. (2.2)

Note that Tk → 1 as k →∞. We have that

sup
t6Tk

|θ − θκk |L2 6
√

2δk
1/4 6

√
2χ1/4.

7



On the other hand, we have by interpolation and our hypothesis (1.10) that for t 6 Tk,

|θ − θκ|2
Ḣ1 6 |θ − θκ|L2 |θ − θκ|Ḣ2 6

√
2χ1/4

c
|θ|2
Ḣ1

and so |θ − θκ|Ḣ1 6 21/4χ1/8

√
c
|θ|Ḣ1 . By the reverse triangle inequality we have

|θκ|Ḣ1 >
∣∣∣|θ|Ḣ1 − |θκ − θ|Ḣ1

∣∣∣ > (1− 21/4χ1/8

√
c

)
|θ|Ḣ1 (2.3)

Thus we have

κk

∫ Tk

0

|θκ|2
Ḣ1 dt > κk

(
1− 21/4χ1/8

√
c

)2 ∫ Tk

0

|θ|2
Ḣ1 dt =

(
1− 21/4χ1/8

√
c

)2

. (2.4)

Thus, so long as χ satisfies the following inequality

χ 6

(
1− 21/4χ1/8

√
c

)2

(2.5)

the right-hand-side of (2.4) exceeds χ contradicting (2.1). Since χ = (c/2)4 we see that (2.5) becomes(
c
4

)2
6 1−

(
1
4

)1/4
. Since c < 1 and 1/16 < 1−(1/2)

1/4, (2.5) is satisfied thereby concluding the proof.

2.2 Inviscid Mixing Criterion
Proof of Proposition 1.4. For simplicity, and without loss of generality, we again assume |θ0|L2 = 1.
Following the proof of Proposition 1.3, we again assume (2.1) but now with χ def

= 1
26C2 . Defining Tk as in

(2.2), we find again

sup
t6Tk

|θ − θκk |L2 6
√

2χ1/4 =
1

2
C−1/2 6 1/2

since the constant in (1.11) satisfies C > 1. Now given N ∈ N, let P>N be the projection onto Fourier
frequencies higher than N . Recalling |θ|L2 = 1, we see

|P>Nθκ|L2 > |P>Nθ|L2 − |P>N (θ − θκ)|L2 > |P>Nθ|L2 − 1

2

> 1−N2|θ|2H−1 −
1

2
>

1

2
− C2N2

|θ(t)|2
Ḣ1

,

where C is the constant in (1.11). Letting λ(t)
def
= |θ(t)|2

Ḣ1 and N2 def
= λ(t)/(2C)2 we see

|P>Nθκ|L2 >
1

4
which implies |∇θκ|2L2 >

λ(t)

16C2
.

Consequently,

κ

∫ Tκ

0

|∇θκ|2L2 dt >
1

16C2
= 4χ ,

contradicting the assumption (2.1) and concluding the proof.
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2.3 Inviscid Growth Criterion with Bounds on ∇u
Proof of Proposition 1.5. We assume |θ0|2L2 = 1 and T = 1 and define λ(t) = 1/(1− t). Define

χκ(t, κ)
def
= κ

∫ t

0

|θκ(t)|2
Ḣ1 dt, χ0(t, κ)

def
= κ

∫ t

0

|θ(t)|2
Ḣ1 dt. (2.6)

For the sake of contradiction, suppose that

χκ(1, κ)→ 0 as κ→ 0. (2.7)

Note that we have the following lower bound on the dissipation for all t ∈ [0, 1]

χκ(1, κ) > χκ(t, κ) >
1

2
χ0(t, κ)− κ

∫ t

0

|θκ(s)− θ(s)|2
Ḣ1 ds. (2.8)

For any sequence κi → 0 we have

χ0(1− κi, κi) ≈ κi
∫ 1−κi

0

λ(s) ds =
1

2
. (2.9)

Now fix i and denote κ = κi. We consider now two separate cases

1. there exists λ ∈ (0.5, 1.5) and µ ∈ (2, 3) such that∫ 1−λκ

1−µκ
|θ|2H2 ds > χκ(1, κ)1/100

∫ 1−λκ

1−µκ
|θκ|2H2 ds (2.10)

2. for all λ ∈ (0.5, 1.5) and µ ∈ (2, 3) we have∫ 1−λκ

1−µκ
|θ|2H2 ds 6 χκ(1, κ)1/100

∫ 1−λκ

1−µκ
|θκ|2H2 ds (2.11)

Case (1): we use the equation for the difference,

∂t(θ
κ − θ) + u · ∇(θκ − θ) = κ∆θκ, (θκ − θ)|t=0 = 0 (2.12)

to find
|θκ(t)− θ(t)|L2 6 2

√
χκ(t, κ)χ0(t, κ). (2.13)

Then, we have by interpolation

|θκ(t)− θ(t)|2H1 6 |θκ(t)− θ(t)|L2 |θκ(t)− θ(t)|H2

6 2
√
χκ(t, κ)χ0(t, κ)|θκ(t)− θ(t)|H2

6 2
√
χκ(t, κ)χ0(t, κ) (|θ(t)|H2 + |θκ(t)|H2) .
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Recalling that χ0(1− λκ, κ) bounded independent of κ, for an appropriate choice of λ, µ we have∫ 1−λκ

1−µκ
|θκ(t)− θ(t)|2H1 dt 6 2

√
χκ(1, κ)χ0(1− λκ, κ)

∫ 1−λκ

1−µκ
(|θ(t)|H2 + |θκ(t)|H2) dt

.
√
χκ(1, κ)κ1/2

(∫ 1−λκ

1−µκ

(
|θ(t)|2H2 + |θκ(t)|2H2

)
dt

)1/2

. χκ(1, κ)1/2−1/50κ1/2

(∫ 1−λκ

1−µκ
|θ(t)|2H2 dt

)1/2

. χκ(1, κ)1/2−1/50κ1/2

(∫ 1−λκ

1−µκ
|θ(t)|4H1 dt

)1/2

≈ χκ(1, κ)1/2−1/50
∫ 1−λκ

1−µκ
|θ(t)|2H1 dt

6
1

4

∫ 1−λκ

1−µκ
|θ(t)|2H1 dt for sufficiently small κ > 0,

where we have used the properties of the inviscid solution in the second to last two lines. In particular,
|θ|H1 ≈ κ−1 on that time interval. Thus, we have from (2.8)

χκ(1, κ) > κ

∫ 1−λκ

1−µκ
|θκ(s)|2H1 ds >

1

2
κ

∫ 1−λκ

1−µκ
|θ(s)|2H1 ds > c > 0 (2.14)

which gives a contradiction with (2.7).

Case (2): From (2.12) we obtain the Ḣ1 balance

1

2
∂t|θκ − θ|2Ḣ1 6 |∇u|L∞ |θκ − θ|2Ḣ1 +

κ

2

(
|θ|2
Ḣ2 − |θκ|2Ḣ2

)
. (2.15)

Integrating the above from s to t and denoting K(t, s)
def
= exp

(
2
∫ t
s
|∇u(r)|L∞ dr

)
we find

|θκ(t)− θ(t)|2
Ḣ1 6 K(t, s)|θκ(s)− θ(s)|2

Ḣ1 + κ

∫ t

s

K(t, s′)
(
|θ(s′)|2

Ḣ2 − |θκ(s′)|2
Ḣ2

)
ds′

6 K(t, s)|θκ(s)− θ(s)|2
Ḣ1 + κK(t, s)

∫ t

s

|θ(s′)|2
Ḣ2 ds′ − κ

∫ t

s

|θκ(s′)|2
Ḣ2 ds′. (2.16)

We restrict the above to s ∈ (1 − 3κ, 1 − 2κ) to any t ∈ (1 − 1.5κ, 1 − 0.5κ). First we remark that the
integrating factor is uniformly bounded on this interval, namely

1 6 K(t, s) 6 exp

(
2

∫ t

s

|∇u(r)|L∞ dr

)
6 exp

(
2

∫ 1−0.5κ

1−3κ
(1− r)−1 dr

)
6 Γ.

Under the working hypothesis and the assumption (2.7)

|θκ(t)− θ(t)|2
Ḣ1 6 Γ|θκ(s)− θ(s)|2

Ḣ1 + κ
(

Γ− χκ(1, κ)−1/100
)∫ t

s

|θ(s′)|2
Ḣ2 ds′

6 Γ
(
|θκ(s)|2

Ḣ1 + |θ(s)|2H1

)
−Mκ

∫ t

s

|θ(s′)|2
Ḣ2 ds′, for any M > 0

10



for some sufficiently small κ. Now, under the assumption on the inviscid solution, we have

|θ(s)|2
Ḣ1 ≈ (1− s)−2 ≈ κ−2, (2.17)

κ

∫ t

s

|θ(s′)|2
Ḣ2 ds′ ≈ κ

∫ t

s

|θ(s′)|4
Ḣ1 ds′ ≈ κ−2, (2.18)

so that we obtain

|θκ(t)− θ(t)|2
Ḣ1 6 Γ|θκ(s)|2

Ḣ1 + κ−2(C1Γ− C2M) 6 Γ|θκ(s)|2
Ḣ1

for two appropriate constants C1, C2 > 0. Choosing κ sufficiently small so that M > C1Γ/C2 we find
upon integrating the above inequality s from 1− 3κ to 1− 2κ and in t from 1− 2κ to 1− κ that

κ

∫ 1−κ

1−2κ
|θκ(t)− θ(t)|2

Ḣ1 dt 6 Γκ

∫ 1−κ

0

|θκ(s)|2
Ḣ1 ds. (2.19)

Since the right-hand-side above vanishes by assumption, we can choose κ sufficiently small such that

κ

∫ 1−κ

1−2κ
|θκ(t)− θ(t)|2

Ḣ1 dt 6
1

4
χ0(1− κ, κ) (2.20)

as desired to produce a contradiction by means of (2.14) as before.

3 Construction of the Example
In this section, we establish Theorems 1 and 2 by providing an example of velocity field satisfying
Proposition 1.3. As mentioned earlier, we will assume for simplicity that T = 1 and d = 2 in the
statements of the theorems. Moreover, contrary to the regularity stated in (1.4), we construct a velocity
in the class

u ∈ L∞loc([0, 1);W 2,∞(T2)) ∩ L1([0, 1];Cα(T2)) ∩ L∞([0, 1]× T2).

Our construction is based on the following smoothed-out ‘sawtooth’ function. Given π
2 > ε > 0, we

define Sε : T = (R/2πZ)→ R to be odd with respect to 0, even with respect to π
2 , and

Sε(x) =

{
x 0 6 x 6 π

2 − ε
x− 1

2ε (x− π
2 + ε)2 π

2 − ε < x 6 π
2

Observe that Sε ∈W 2,∞(T) and

|S′ε|L∞ 6 1 |S′′ε |L∞ 6
1

ε
.

Let us first fix a sequence to time steps {tj}j∈N, a sequence of regularizations εj , and a sequence of
frequencies {Nj}j∈N. In practice, tj and εj are going to be chosen to be decreasing and summable while
Nj will be chosen to be rapidly increasing. Next, define measure preserving transformations {Tj}j∈N by

Tj(x, y) =

{
(x+ tjSεj (Njy), y) j odd
(x, y + tjSεj (Njx)) j even

.

Now define
Uj

def
= T1 ◦ T2 ◦ T3 ◦ . . . Tj .

Set Tj =
∑j
i=0 ti with t0 = 0. Note that θ0 ◦ Uj = θ(Tj) where θ(t) is the solution of

∂tθ + u · ∇θ = 0, θ(t = 0) = θ0,
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with u(t) for t ∈ [Ti, Ti+1) given by

u(t, x, y) =



(
Sεi(Niy)

0

)
i even,(

0

Sεi(Nix)

)
i odd.

(3.1)

In the following sections, we proceed to check the conditions in Proposition 1.3. To treat the case of
α > 0 small, we modify u(t) to be trivial for t 6 Tj with j < 1

α for a technical reason; see Lemma 3.2.

Figure 1: Fix α = 1 and εi and Ni as above. The two left panels depict shear profiles, and two right
panels represent contour plots of the corresponding stream function with velocity vectors superimposed.
The two top panels correspond to t2 = 2−2, and the two Bottom panels correspond to t3 = 2−3.

Remark 3.1. In the above, we have constructed u ∈ L∞loc([0, T );W 1,∞(T2)) rather than u ∈ C∞([0, 1)×
T2). The modification required to obtain smooth velocities is straightforward; it is accomplish by modi-
fying the shear profile, Sε to be C∞, instead of C2, and adding amplitude functions which smoothly turn
on and off the shears over each time interval in the construction. The window over which the shears are
turned on and off are taken small to start with, and can be taken to decrease as time progresses and N
increases in the construction.
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3.1 Inviscid Bounds
In this section, we prove the following

Lemma 3.2. For any α > 0, let

tj = 2−j , Nj = 2(1+α)j , εj = exp

(
−30(1 +

1

2α − 1
)

)
· 2−2j .

Assume that θ0 is given by one of the following trigonometric functions:

sin(Mx) sin(Ly), sin(Mx) cos(Ly), cos(Lx) sin(My), cos(Lx) cos(My)

for some integers M > 1 and L > 0. Define θj(x, y) = θ0 ◦ Uj where

Uj
def
= Id, j 6

1

α

and

Uj
def
= TJ(α) ◦ · · · ◦ Tj , j > J(α)

def
=

⌊
1

α

⌋
+ 1.

Here
⌊
1
α

⌋
denotes the largest integer not exceeding 1

α . Then, θj satisfy:

|θj |H1 > cα2
αj(j+1)

2 |θ0|H1 , |θj |W 1,∞ 6 Cα|θj |H1 , |θj |H2 6 Cα|θj |2H1 ,

for some constants Cα, cα > 0 independent of j.

Remark 3.3. It is easy to see that the choice of tj , Nj , εj in the above gives us |∇u(t)|L∞ ≈ 1
(1−t)2 while

|θ(t)|2H1 ≈ |θ(t)|H2 � 1
(1−t)2 where u is defined as in (3.1).

Proof. We shall assume for simplicity that θ0 = sin(Mx) sin(Ly) with M > L. The proof for other
trigonometric functions are almost identical, as long as M > L. We shall sketch necessary modifications
to the proof in the case L > M at the end. We now observe that

|θ0|Ẇ 1,∞ 6 4|θ0|Ḣ1 , |θ0|Ḣ2 6 4|θ0|2Ḣ1 .

Fix j ∈ N ∪ {0} and let ij = j − 1 mod 2 and ij+1 = j mod 2. Assuming for a moment that j is odd, we
compute:

∂2θj+1(x, y) = ∂2θj(x+ tjSεj (Njy), y) + tjNjS
′
εj (Njy)∂1θj(x+ tjSεj (Njy), y),

∂1θj+1(x, y) = ∂1θj(x+ tjSεj (Njy), y).

Moreover,

∂11θj+1(x, y) = ∂11θj(x+ tjSεj (Njy), y),

∂12θj+1(x, y) = ∂12θj(x+ tjSεj (Njy), y) + tjNjS
′
εj (Njy)∂11θj(x+ tjSεj (Njy), y),

∂22θj+1(x, y) = ∂22θj(x+ tjSεj (Njy), y) + tjN
2
j S
′′
εj (Njy)∂1θj(x+ tjSεj (Njy), y)

+ (tjNj)
2(S′εj (Njy))2∂11θj(x+ tjSεj (Njy), y).

We have similar formulas when j is odd, exchanging the roles of x and y. Now the upper bounds on θj+1

in Ẇ 1,∞ and Ḣ1 are easy to get.
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Upper Bounds: From the Lipschitz property of the profile Sε, it is easy to see that

|θj+1|Ẇ 1,∞ 6 tjNj |θj |Ẇ 1,∞ + |θj |Ẇ 1,∞

6 tjNj |θj |Ẇ 1,∞

(
1 +

1

tjNj

)
.

Similarly, we have

|θj+1|Ḣ1 6 tjNj |θj |Ḣ1

(
1 +

1

tjNj

)
.

Recalling that tj = 2−j and Nj = 2(1+α)j , notice

∞∏
j=1

(
1 +

1

tjNj

)
=

∞∏
j=1

(
1 + 2−αj

)
6 exp

(
1

2α − 1

)
by taking the log of the infinite product and using the fact that log(1 + x) 6 x for x > 0. Then we have

|θj+1|Ẇ 1,∞ 6 exp

(
1

2α − 1

)
· 2

αj(j+1)
2 |θ0|Ẇ 1,∞ .

The same upper bound holds for |θj+1|Ḣ1 :

|θj+1|Ḣ1 6 exp

(
1

2α − 1

)
· 2

αj(j+1)
2 |θ0|Ḣ1 .

Lower Bounds: Note that |S′εj (z)| = 1 except for the region |z− π
2 | < εj . We bound the contribution

from this region using the Ẇ 1,∞ norm:

|∂ij+1
θj+1|L2 > tjNj |∂ijθj |L2 −√εjtjNj |θj |Ẇ 1,∞ − |∂ij+1

θj |L2

= tjNj |∂ijθj |L2

(
1−√εj

|θj |Ẇ 1,∞

|∂ijθj |L2

− 1

tjNj

|∂ij−1θj |L2

|∂ijθj |L2

)
.

Observe also that
|∂ijθj+1|L2 = |∂ijθj |L2 .

Thus,

|∂ij+1
θj+1|L2 > tjNj |∂ijθj |L2

(
1−√εj

|θj |Ẇ 1,∞

|∂ijθj |L2

− 1

tjNj

|∂ij−1
θj−1|L2

|∂ijθj |L2

)
,

where θ−1 ≡ 0. Define

Aj
def
=

|∂ijθj |L2

|∂ij+1
θj+1|L2

, Rj+1
def
=
|θj+1|Ẇ 1,∞

|∂ij+1
θj+1|L2

.

Then,

Aj 6 2−αj
(

1−√εjRj − 2−αjAj−1

)−1
,

Rj+1 6 Rj

(
1 + 2−αj

)(
1−√εjRj − 2−αjAj−1)−1.

Recall that εj = exp(−30(1 + 1
2α−1 ))2−2j and let us bootstrap the following information:

Aj 6 2 · 2−αj , Rj 6 exp(10(1 +
1

2α − 1
)).
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Then,

Aj 6 2−αj(
9

10
− 2−αjAj−1)−1. (3.2)

To start the bootstrap procedure, let us compute A0 directly: recalling that θ0 = sin(Mx) sin(Ly) and
α = 1, we have

θ1(x, y) = sin(M(x+ t1Sε1(N1y))) cos(Ly)

and

∂yθ1 = t1N1S
′
ε1(N1y)M cos(M(x+ t1Sε1(N1y))) cos(Ly)− L sin(M(x+ t1Sε1(N1y))) sin(Ly).

Observe that two terms in the above expression are orthogonal in L2(T2). Therefore, in this case, we
have

A0 6 2−1(1−
√
ε0R0)−1 <

3

5
.

Here, we also used the observation that in this case R0 can be replaced by |∂xθ0|L∞/|∂xθ0|L2 , which is
uniformly bounded. In the general case α > 0, one obtains similarly A0 = AJ(α)−1 <

3
5 . We omit the

proof for the remaining cases of θ0, which requires only minor modifications. Now recalling (3.2) and
using AJ(α)−1 < 3

5 gives AJ(α) < 1. Then we see that for j > J(α) + 1 we must have Aj < 2 ·2−αj . Next,
let us keep that Rj < exp(10(1 + 1

2α−1 )). We know that

Rj+1 6 Rj(1 + 2−αj)(1− 1

100
2−j − 2−αjAj−1)−1.

On the other hand, we have that 1
1−x < 1+3x for x < 2. Now,

∞∏
j=J(α)

(1 + 2−αj) < exp(
1

2α − 1
)

and
∞∏

j=J(α)

(1− 1

100
2−j − 2−αjAj−1)−1 6

∞∏
j=J(α)

(1 +
3

100
2−j + 3 · 2−αjAj−1)

since we know that 1
1002−j + 2−αjAj−1 6 2

3 for all j > J(α). Now,

∞∏
j=J(α)

(1 +
3

100
2−j + 3 · 2−αjAj−1) 6

∞∏
j=J(α)

(1 +
3

100
2−j + 6 · 2−2αj) < exp(10(1 +

1

2α − 1
)).

This now concludes the proof that Rj 6 exp(10(1 + 1
2α−1 )) and Aj 6 2 ·2−αj . The above also shows that

|∂ijθj |L2 > cα2
αj(j+1)

2 |∂xθ0|L2 .

Ḣ2 Bound: Finally, from the bound

|θj+1|Ḣ2 6 t2jN
2
j |θj |Ḣ2(1 + 2(tjNj)

−1 + (tjNj)
−2) + |θj |Ḣ1

tj
εj
N2
j ,

6 22αj |θj |Ḣ2

(
1 + 2 · 2−αj + 2−2αj + Cα

|θj |Ḣ1

|θj |Ḣ2

23j
)
.
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But we know that |θj |Ḣ2 > |θj |2Ḣ1 and we have a lower bound on |θj |Ḣ1 . Thus,

|θj+1|Ḣ2 6 22αj |θj |Ḣ2

(
1 + 2 · 2−αj + 2−2αj+Cα2−

αj(j+1)
2 23j

)
.

Since
∞∑
j=0

(2 · 2−αj + 2−2αj+Cα2−
αj(j+1)

2 23j) = cα <∞,

we have that
|θj+1|Ḣ2 6 2αj(j+1)ecα |θ0|Ḣ2 .

This concludes the proof. Let us now comment on the case where L > M . To adapt the proof, we just
need to observe that (assuming α = 1 for simplicity) at j = 1, we have from explicit computations that
|θ1|Ḣ1 ≈ |∂yθ1|L2 and

|θ1|Ẇ 1,∞ 6 10|θ1|Ḣ1 , |θ0|Ḣ2 6 10|θ0|2Ḣ1 .

Therefore one can just repeat the arguments above starting with j = 1 instead of j = 0.

3.2 Viscous Bounds
To complete the proof of anomalous dissipation, we need to prove the following lemma.

Lemma 3.4. Assume that tj , Nj , εj , and θ0 are given as in Lemma 3.2. With u(t) defined as in (3.1),
the solution θκ to the system (1.1) with initial data θ0 satisfies

|θκ(t)|H2 6 C|θ(t)|2H1

for some universal constant C independent of κ of t, where θ(t) is the inviscid solution.

Proof. Again, for simplicity we assume that the initial data is given by θ0 = sin(Mx) sin(Ly) withM > L.
Recall that Tj =

∑j
i=0 ti where t0 = 0 and ti is as above. It suffices to prove desired H2 bound on the

viscous solution on each time interval [Tj , Tj+1]. In particular, we prove bounds on solutions to

∂tθ
κ + Sεj (Njy)∂xθ

κ = κ∆θκ,

for t ∈ [Tj , Tj+1], which is the equation when j is even (when j is odd the situation is almost identical).
Let us write the equations for all derivatives up to order 2.

∂tθ
κ + Sεj (Njy)∂xθ

κ = κ∆θκ,

∂t∂xθ
κ + Sεj (Njy)∂xxθ

κ = κ∆∂xθ
κ,

∂t∂xxθ
κ + Sεj (Njy)∂xxxθ

κ = κ∆∂xxθ
κ,

∂t∂yθ
κ + Sεj (Njy)∂x∂yθ

κ +NjS
′
εj (Njy)∂xθ

κ = κ∆∂yθ
κ,

∂t∂xyθ
κ + Sεj (Njy)∂x∂xyθ

κ +NjS
′
εj (Njy)∂xxθ

κ = κ∆∂xyθ
κ,

∂t∂yyθ
κ + Sεj (Njy)∂x∂yyθ

κ + 2NjS
′
εj (Njy)∂xyθ

κ +N2
j S
′′
εj (Njy)∂xθ

κ = κ∆∂yyθ
κ.

In particular, from the first three equations we have that

|θκ(t)|L2 6 |θκ(Tj)|L2 , |∂xθκ(t)|L2 6 |∂xθκ(Tj)|L2 , |∂xxθκ(t)|L2 6 |∂xxθκ(Tj)|L2 ,
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for all t ∈ [Tj , Tj+1]. Moreover, from the second two equations (using the above bounds) we have that

|∂yθκ(t)|L2 6 Nj(t− Tj)|∂xθκ(Tj)|L2 + |∂yθκ(Tj)|L2 , (3.3)
|∂xyθκ(t)|L2 6 Nj(t− Tj)|∂xxθκ(Tj)|L2 + |∂xyθκ(Tj)|L2 , (3.4)

for all t ∈ [Tj , Tj+1]. Finally, from the third equation and using the above bounds we get:

|∂yyθκ(t)|L2 6 (t− Tj)2N2
j |∂xyθκ(Tj)|L2 + (t− Tj)N2

j

1

εj
|∂xθκ(Tj)|L2 + |∂yyθκ(Tj)|L2 ,

for all t ∈ [Tj , Tj+1]. Thus,

sup
t∈[Tj ,Tj+1]

|θκ|Ḣ2 6 t2jN
2
j |θκ(Tj)|H2 +

tj
εj
N2
j |θκ(Tj)|H1 + |θκ(Tj)|H2 .

In the above, we are using that Njtj > 1. Therefore,

sup
t∈[Tj ,Tj+1]

|θκ|Ḣ2 6 (t2jN
2
j + 1)|θκ(Tj)|H2 +

tj
εj
N2
j |θκ(Tj)|H1 .

Note that this bound is valid for every j (even and odd). Now let Aj = supj∈[Tj ,Tj+1) |θ
κ|H2 . Then, using

the definition of εj , tj , and Nj we see:

Aj 6 (22αj + 2)Aj−1 + Cα210j

using the fact that |θκ|2H1 6 |θκ|H2 and the Cauchy-Schwarz inequality. We may assume A0 = 1 by
normalizing the initial data appropriately. We may now define Bj = Aj + Cα210j and we see:

Bj 6 2Cα210j + (22αj + 1)(Bj−1 − Cα210(j−1)).

Thus, if j > J(α) we have
Bj 6 (22αj + 1)Bj−1

and it follows that
Bj 6 C̃α2αj(j+1).

In conclusion, we see that
sup

t∈[Tj ,Tj+1]

|θκ|H2 6 C̃α · 2αj(j+1)

for all j. In particular, in light of the H1 bound of Lemma 3.2 we see that

|θκ|H2 6 Cα|θ|2H1 ,

where θ is the inviscid solution.

3.3 Proof of Theorem 1
The previous lemmas establish anomalous dissipation for initial data given by a pure harmonic. To
conclude the proof of Theorem 1, we need to treat the case of small L2 perturbation, and show that the
velocity field u(t) we have defined in (3.1) can belong to L1([0, 1];Cα

′
) for any α′ < 1. For the latter, we

simply compute that

|u|L1([0,1];Cα′ ) .
∑

j>J(α)

tjN
α′

j .
∑

j>J(α)

2(1+α)α
′j−j < +∞
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once we take 0 < α < 1
α′ − 1.

Now we assume that, for some εα > 0 to be determined, θ0 satisfies

|θ0 − λψ|L2 6 εα|θ0|L2 ,

where we may assume without loss of generality that ψ = sin(Mx), λ = 1, and ψ is orthogonal with
θ0 − ψ in L2. We then simply decompose

θ0(x, y) = sin(Mx) + (θ0 − sin(Mx))
def
= θL0 + θH0

so that

|θ0|2L2 = |θL0 |2L2 + |θH0 |2L2 .

From the smallness assumption, we have√
1− ε2α|θH0 |L2 6 εα|θL0 |L2

which gives

|θ0|L2 > |θL0 |L2 − |θH0 |L2 > (1− εα√
1− ε2α

)|θL0 |L2 .

From previous lemmas, we have that for any 0 < κ 6 1,

1

2
(|θL0 |2L2 − |θL,κ(1)|2L2) = κ

∫ 1

0

|∇θL,κ|2L2dt > χα|θL0 |2L2

where θL,κ is the solution to

∂tθ
L,κ + u · ∇θL,κ = κ∆θL,κ

with initial data θL0 . Similarly, we define θH,κ to be the solution with initial data θH0 . Since the equation
is linear, we have that θκ = θL,κ + θH,κ. We now estimate that at time 1,

|θκ(1)|L2 6 |θL,κ(1)|L2 + |θH,κ(1)|L2 6 (1− 2χα)|θL0 |L2 + |θH0 |L2

6

(
(1− 2χα)(1− εα√

1− ε2α
)−1 +

εα√
1− ε2α

)
|θ0|L2 < (1− 1

10
χα)|θ0|L2

once we take εα = χα/100, say. The proof is complete.

3.4 Proof of Theorem 2
We now prove Theorem 2, which establishes anomalous dissipation for arbitrary mean-zero initial data
θ0 ∈ H2(T2). As in the above, we achieve it via Proposition 1.3, but with velocity vector field depending
on θ0. This time, given α > 0, we take

tj = 2−j , Nj = 2(1+α)j , εj = a0 exp

(
−30(1 +

1

2α − 1
)

)
· 2−2j ,

and define the velocity field u(t) for t ∈ [Tj , Tj+1) by

u(t, x, y) =



(
(−1)sjSεj (Njy)

0

)
j even,(

0

(−1)sjSεj (Njx)

)
j odd,

(3.5)
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where Tj =
∑j
i=0 ti with t0 = 0. The constant 1 > a0 > 0 and the signs sj ∈ {0, 1} will be chosen

depending on the initial data, as we shall see below. Apart from these additional parameters, the velocity
field is exactly the same with (3.1).

We need to prove the assumptions of Proposition 1.3, and to do so we follow exactly the same steps
from the previous section. Inspecting the proof, we see that the only place which needs to be modified is
the part where we obtain an H1 lower bound on the solution. In this process sj and a0 will be determined.
To this end we define, assuming that θj is given with j odd,

θ±j+1 = θj(x± tjSεj (Njy), y)

and compute:

∂ij+1θ
±
j+1(x, y) = ∂ij+1θj(x± tjSεj (Njy), y)± tjNjS′εj (Njy)∂ijθj(x+ tjSεj (Njy), y).

A direct computation gives∑
±
|∂ij+1

θ±j+1|
2
L2 = 2|∂ij+1θj |2L2 + 2(tjNj)

2|S′εj (Njy)∂ijθj |2L2

since the cross terms cancel each other. Then, there exists sj ∈ {0, 1} such that

|∂ij+1θ
(−1)sj
j+1 |L2 > tjNj |S′εj (Njy)∂ijθj |L2 > tjNj |∂ijθj |L2(1−√εj

|θj |Ẇ 1,∞

|∂ijθj |L2

).

Therefore, in the bootstrapping scheme with Aj and Rj , we have instead (assuming α = 1 for simplicity)

Aj 6 2−j(1−√εjRj)−1,

while we still have the same inequality for Rj+1. We may now choose a0 > 0 sufficiently small (depending
only on θ0) to guarantee that A1 < 1. Now the same bootstrap argument gives the desired lower bound.

4 Non-Uniqueness of Weak Solutions
The goal of this section is to prove Theorem 3. Recall that we say θ ∈ Cw(0, T ;L2(Td)) is weak solution
of the transport equation (1.7) on Td × [0, T ] if∫ T

0

∫
Td
θ
(
∂tϕ+ u · ∇ϕ

)
dx dt = −

∫
Td
θ0(x)ϕ(x, 0) dx (4.1)

holds, for all test functions ϕ ∈ C∞0 ([0, T )× Td).

Proof of Theorem 3. In what follows, we construct two distinct weak solutions; one time irreversible
solution arising from a vanishing viscosity limit and one time reversible solution.

Time irreversible weak solution: Let θ be a vanishing viscosity solution on [0, 2T ]×Td constructed as
the limit of the approximating sequence θκk , κk → 0 of solutions of the advection diffusion equation with
velocity u∗. Indeed, since θκk is uniformly bounded in L∞([0, 2T ]×Td), by an application of Aubin-Lions
lemma we have that θκk → θ in C([0, 2T );w−L2(Td)) where w−L2 is L2 endowed with the weak topology.
Since the equation is linear and u ∈ L∞(0, 2T ;L∞(Td)) and θ ∈ L∞([0, 2T ]× Td) ∩ Cw([0, 2T );L2(Td)),
it is simply to verify that the weak limit θ is a weak solution of the transport equation on [0, 2T ]×Td in
the sense of (4.1). Furthermore, since the L2 norm is weakly lower semi-continuous, for all t ∈ [T, 2T ]

|θ(t)|2L2 6 lim inf
κ→0

|θκ(t)|2L2 6 |θ0|2L2 − lim sup
κ→0

κ

∫ T

0

|∇θκ|2L2 dt 6 (1− χα)|θ0|2L2 < |θ0|2L2 (4.2)
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upon applying Theorem 2. Thus,

sup
t∈[T,2T ]

|θ(t)|2L2 6 (1− χα)|θ0|2L2 < |θ0|2L2 , (4.3)

and the inviscid solution has lost a non-zero fraction of its initial energy after time T .

Time reversible weak solution: We now construct another weak solution θ̄ distinct from θ on the
interval [T, 2T ]. This solution is defined by the formula

θ̄(t) =

{
θ(t) t ∈ [0, T ),

θ(2T − t) t ∈ [T, 2T ].
(4.4)

Note first that, since θ ∈ Cw([0, T ];Td), by construction θ̄ ∈ Cw([0, 2T ];Td). We now check that it is
a weak solution on the entire time interval with the velocity u. That is, we aim to show that for any
ϕ ∈ C∞0 ([0, 2T )× Td) we have that∫ 2T

0

∫
Td
θ̄(x, t)∂tϕ(x, t) dx dt+

∫ 2T

0

∫
Td
θ̄(x, t)u(x, t) · ∇ϕ(x, t) dx dt = −

∫
Td
θ0(x)ϕ(x, 0) dx. (4.5)

To proceed, divide ϕ into even and odd parts about t = T :

ϕ = ϕe + ϕo, ϕe/o
def
=
ϕ(T + (t− T ))± ϕ(T − (t− T ))

2
. (4.6)

Note that since θ(x, t) is even and u(x, t) is odd about t = T , the left-hand-side of the above expression
vanishes identically for the even part of ϕ, namely it reduces to∫ 2T

0

∫
Td
θ̄(x, t)∂tϕo(x, t) dx dt+

∫ 2T

0

∫
Td
θ̄(x, t)u(x, t) · ∇ϕo(x, t) dxdt = −

∫
Td
θ0(x)ϕ(x, 0) dx. (4.7)

Splitting up different regions, we have∫ T

0

∫
Td
θ(x, t)∂tϕo(x, t) dx dt+

∫ T

0

∫
Td
θ(x, t)u∗(x, t) · ∇ϕo(x, t) dxdt = −

∫
Td
θ0(x)ϕ(x, 0) dx

−
∫ 2T

T

∫
Td
θ(x, 2T − t)∂tϕo(x, t) dxdt+

∫ 2T

T

∫
Td
θ(x, 2T − t)u∗(x, 2T − t) · ∇ϕo(x, t) dxdt.

Changing variables and introducing ψ(x, τ) = ϕo(x, 2T−τ) ∈ C∞0 ([0, 2T ]×Td) and additionally ψ(x, T ) =
0 since ϕo vanishes at t = T owing to the fact that it is odd, we have∫ T

0

∫
Td
θ(x, t)∂tϕo(x, t) dx dt+

∫ T

0

∫
Td
θ(x, t)u∗(x, t) · ∇ϕo(x, t) dxdt = −

∫
Td
θ0(x)ϕ(x, 0) dx

+

∫ T

0

∫
Td
θ(x, τ)∂τψ(x, τ) dxdτ +

∫ T

0

∫
Td
θ(x, τ)u∗(x, τ) · ∇ψ(x, τ) dxdτ.

Since θ is a weak solution in the class Cw([0, T ];Td) on the interval [0, T ] and ψ(x, T ) = 0 while ψ(x, 0) =
φ0(x, 2T ),∫ T

0

∫
Td

[θ(x, τ)∂τψ(x, τ) + θ(x, τ)u∗(x, τ) · ∇ψ(x, τ)] dx dt = −
∫
Td
θ0(x)ϕo(x, 2T ) dx.

We also have∫ T

0

∫
Td

[θ(x, t)∂tϕo(x, t) + θ(x, t)u∗(x, t) · ∇ϕo(x, t)] dx dt = −
∫
Td
θ0(x)ϕo(x, 0) dx.
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Since
ϕo(x, 0) = −ϕo(x, 2T ) =

1

2
ϕ(x, 0), (4.8)

we find that θ̄ ∈ Cw([0, 2T ];Td) is a weak solution on the interval [0, 2T ]. Finally, we note that

|θ̄(2T )|2L2 = |θ0|2L2 . (4.9)

In light of (4.3), the solutions θ and θ̄ are distinct.

5 Discussion: Obukhov-Corrsin Theory
In the context of passive scalar turbulence, Obukhov [Obu49] and Corrsin [Cor51] studied the ‘inertial-
range’ scaling behavior of scalar structure functions Sθp(`)

def
= 〈|δ`θ|p〉 ∼ `ζp(θ) in a fully developed ho-

mogenous isotropic velocity field exhibiting Kolmogorov 1941 (K41) ‘monofractal’ scaling [Kol41]

Sup (`)
def
= 〈|δ`u|p〉 ∼ (ε`)p/3, `ν � `� Lu (5.1)

for all p > 1 where Lu is the integral scale of the velocity field and `ν is the dissipation scale (the K41
prediction being `ν = (ν3/ε)1/4 where ε def

= limν→0 ν〈|∇uν |2〉 > 0 is the anomalous energy dissipation
rate). Said another way, in the idealized limit ν → 0, the velocity field is assumed to be 1/3–Hölder and
not better. Based on dimensional grounds, Obukhov and Corrsin independently predicted that the scalar
field would also exhibit the same scaling

Sθp(`)
def
= 〈|δ`θ|p〉 ∼ (χ/ε1/3)p/2`p/3, `ν . `κ � `� Lθ . Lu (5.2)

where χ def
= limκ,ν→0 κ〈|∇θκ|2〉 > 0 is the (presumed) anomalous dissipation of the passive scalar, Lθ is

the typical length-scale of the scalar input initially or by a force, and `κ is the dissipative length for the
scalar field (`κ = (κ3/ε)1/4 in the Corrsin-Obukhov theory). Their scaling theory can be generalized as

Sup (`) ∼ `αp, α ∈ (0, 1) implies Sθp(`) ∼ `(
1−α
2 )p. (5.3)

In the idealized limit of ν, κ→ 0, this says that if the velocity u ∈ Cα is Hölder with exponent α ∈ (0, 1)
and not better, then the scalar should be Hölder θ ∈ Cβ with exponent β = (1 − α)/2 and not better.
These constraints can be understood as a consequence of the fractal geometry of scalar level sets in rough
velocities [CP93, CP94]. Moreover, the entire picture has been generalized to accommodate (the more
realistic setting) of multifractal velocity fields with the property that Sup (`) ∼ `ζp(u) where ζp(u) may
depend non-linearly on p resulting in constraints on the multifractal spectrum of the scalar ζp(θ) [Eyi96].

In analogy to the Onsager conjecture for the dissipation anomaly of kinetic energy in incompressible
fluids [Ons49], one can regard the above theory as setting a threshold condition for the anomalous
dissipation of scalar energy [Eyi96]. Namely, if u ∈ Cα and θκ ∈ Cβ uniformly then

χ
def
= κ

∫ T

0

∫
Td
|∇θκ|2 dxdt→ 0 unless β >

1− α
2

. (5.4)

Along these lines, we first establish an upper bound on the dissipation for vanishing diffusion limits
in rough velocity fields. A similar estimate was provided for viscous energy dissipation in the context
of Onsager’s conjecture for hydrodynamic turbulence [DE19]. We also study what happens when the
velocity field is smooth up until a single point in time where it may lose regularity. The latter is relevant
to the problem in which an inertial range for the velocity field evolves dynamically by some cascade
process to the point where the field becomes non-smooth in a way consistent with the observed long-time
inertial range scaling in real turbulence. In fact, one has the following result.
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Theorem 4. Let u ∈ L1([0, T ];Cα(Td)) for α ∈ (0, 1] be a given divergence free vector field. Suppose
that the family {θκ}κ>0 is bounded in L∞([0, T ];Cβ(Td)) for β ∈ (0, 1] uniformly in κ, then

κ

∫ T

0

∫
Td
|∇θκ|2 dxdt 6 Cκ

α+2β−1
α+1 (5.5)

for an absolute constant C depending only on T and the Hölder norms of the solutions. In particular, if
β > (1− α)/2 then there can be no anomalous scalar dissipation. If furthermore

u ∈ L1
loc([0, T );W 1,∞(Td)) ∩ L1([0, T ];Cα(Td)) for α < 1 ,

and if β = (1− α)/2, then

lim
κ→0

κ

∫ T

0

∫
Td
|∇θκ|2 dx dt = 0. (5.6)

Proof. Let f ` = ϕ` ∗ f for any ` > 0. Mollifying the equations, one finds

∂t(θκ)` + u` · ∇(θκ)` = κ∆(θκ)` −∇ · τ`(u, θ
κ) (5.7)

where τ`(f, g) = (fg)` − f `g`. A straightforward calculation for any 0 6 t 6 T shows that

κ

∫ T

t

∫
Td
|∇θκ|2 dx dt′ =

∫ T

t

∫
Td
∇(θκ)` · τ`(u, θ

κ) dxdt′ + κ

∫ T

t

∫
Td
|∇(θκ)`|

2 dxdt′

+
1

2

∫
Td
τ`(θ

κ(t), θκ(t)) dx− 1

2

∫
Td
τ`(θ

κ(T ), θκ(T )) dx. (5.8)

Using standard estimates for mollified gradients and the Constantin-E-Titi [CET94] commutator estimate

|∇f `|L∞ 6 |θ|Cα`α−1, |τ`(f, g)|L∞ 6 |θ|Cα |g|Cβ `α+β , f ∈ Cα, g ∈ Cβ (5.9)

together with the fact that τ`(f, f) > 0 we arrive at an upper bound for the scalar dissipation

κ

∫ T

t

∫
Td
|∇θκ|2 dx dt′ 6 `α+2β−1|θκ|2

L∞t C
β
x
|u|L1(t,T ;Cαx ) +

(
κ(T − t)`2(β−1) + `2β

)
|θκ|2

L∞t C
β
x
. (5.10)

Setting t = 0 and optimizing ` as a function of κ we find ` = κ1/(α+1) and (5.5) follows. The second
statement of the theorem follows by dividing the time interval into [0, T − ε] × [T − ε, T ] and using the
assumed C1 regularity of u on the interval [0, T − ε] together with the uniform Hölder on the entire
interval [0, T ] and the fact that ε is allowed arbitrarily small (and can vanish as κ→ 0).

In light of Theorems 1 and 4, we conclude with an open question.

Question 5.1. Fix α ∈ (0, 1). Does there exist divergence-free vector field

u ∈ L1([0, 1];Cα(Td))

such that {θκ}κ>0 is bounded in L∞([0, T ];Cβ(Td)) for every β < (1− α)/2,and

lim inf
κ→0

κ

∫ T

0

∫
Td
|∇θκ|2 dxdt > 0 ?

Finally, we comment briefly on the nonlinear problem: establishing anomalous dissipation for solutions
of Navier-Stokes equations

∂tu
ν + uν · ∇uν = −∇pν + ν∆uν ,

∇ · uν = 0.
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As for passive scalars, experimental and numerical observations of hydrodynamic turbulence suggest that
kinetic energy dissipation is non-vanishing in the limit of zero viscosity [Sre84,Sre98,PKW02,KIY+03],
i.e. there exists ε > 0 independent of ν such that, in turbulent regimes, a family of Leray-Hopf solutions
{uν}ν>0 satisfies

ν

∫ T

0

∫
|∇uν(x, t)|2 dxdt > ε > 0. (5.11)

This phenomenon of anomalous dissipation is so fundamental to our modern understanding of turbulence
that it is often termed the “zeroth law”. In 1949 [Ons49], Lars Onsager offered significant insight into
this phenomena in asserting that it requires that, at high Reynolds number, flow develop structures
approximating singular ones with Hölder exponents not exceeding 1/3. This assertion has since been
proved [Eyi94,CET94] and dissipative weak solutions of the Euler equations with lower regularity have
been constructed in a series of works using convex integration [DLS09,DLS10,DLS12,Ise18,BDSV19] and
culminating in a construction of non-conservative solutions in the class CtC

1/3−
x by P. Isett. However,

to this day, none of these constructions are achieved as zero viscosity limits of Navier-Stokes solutions
obeying a physical energy balance (e.g. Leray-Hopf weak solutions). In the present paper, we solved an
analogous problem for passive scalars in a setting which models the effect of a finite-time singularity in an
inviscid problem on anomalous dissipation in the corresponding viscous problem. Our result follows from
a sufficient conditions for anomalous dissipation assuming that the inviscid solution becomes singular in
a controlled way. It is possible that one could deduce anomalous dissipation in the vanishing viscosity
limit of Navier Stokes solutions under some conditions on a (hypothetical) blowup in the Euler equation.
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