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Abstract

This work addresses second order structured deformations in the framework of
the space of special functions of bounded Hessian, BH. An integral representation
result is obtained in BH in the vein of the global method for relaxation of Bouchitté,
Fonseca, and Mascarenhas [4], and is applied to a relaxation problem in the context
of structured deformations.
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1 Introduction

The macroscopic deformation of a continuous body does not need to coincide with the
submacroscopic deformation. For instance, in a crystalline body deformed beyond the
plastic regime the macroscopic deformation may be simply due to several slips of the
crystallographic planes. Thus, submacroscopically the lattice of the crystalline body does
not deform but simply undergoes “submacroscopic cracks” or disarrangements. This kind
of multi-scale geometrical changes were addressed by Del Piero and Owen in [7] who
introduced the notion of structured deformation (κ, u,G): κ being the macroscopic crack
site, u the macroscopic deformation, and G a tensor associated with the submacroscopic
geometrical changes and called deformation without disarrangements. In the example of
the crystalline body, discussed above, we would have κ = ∅ since the submacroscopic
cracks diffuse and do not generate a macroscopic crack, G = I the identity tensor field
since the lattice does not deform locally, and, in general the deformation gradient ∇u is
different from G = I.
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Del Piero and Owen, still in [7], showed that every structured deformation can be seen
as the (appropriate) limit of sequences of piecewise-continuous “simple deformations”.
This result makes the theory even more interesting from a mechanical point of view, since,
for instance, in the example of the crystalline body mentioned above, the “submacroscopic
cracks” that form during the deformation can be thought as the jump sets of the piecewise-
continuous “classical deformations” of an approximating sequence. This result also opens
the way to define the energy of a structured deformation by using the “classical” energy of
piecewise-continuous “classical deformations”. Indeed, Choksi and Fonseca [5], following
the belief that “Nature always minimizes actions”, made the natural assumption that the
structured deformation (κ, u,G) would be the limit, among all approximating sequences,
of the approximating sequence that uses the least amount of energy. Choksi and Fonseca
worked within a variational framework and described the macroscopic deformation by a
function u ∈ BV whose jump set represents the crack site κ of Del Piero and Owen, and
with a deformation without disarrangements G ∈ L1. In this framework, they proved
the following approximation theorem: for any structured deformation (u,G) there exists
a sequence {un} ⊂ SBV such that

un → u in L1, ∇un
∗
⇀ G in the sense of measures, (1.1)

where ∇un denotes the absolutely continuous part of the distributional derivative of un;
moreover, they defined the energy E(u,G) of (u,G) as

E(u,G) := inf
{un}

lim inf
n→+∞

E0(un), (1.2)

where the inf is taken among all the sequences that generate, according to (1.1), the struc-
tured deformation (u,G), and E0(un) is the energy associated to the “simple deformation”
un. Thus, the energy E(u,G) is equal to the limit of the energies associated to the most
economic approximating sequence from the energetic point of view.

The concept of structured deformation was extended in [13] by defining the second-
order structured deformation (κ, u,G,U): where κ may be taken to be the set of points
were the fields involved are discontinuous, u and G are as above, and U , called second-
order deformation without disarrangements, is a third-order tensor field that allows one
to describe the submacroscopic deformation up to the second-order; for instance, it allows
one to describe the “bending” of the microstructure. Second-order structured deformation
are important since they allow inclusion of the effects of limits of second gradients and
jumps in the first gradients of approximating deformations: these jumps play a crucial
role in the mechanics of phase-transitions. In [14] two different variational frameworks
for second-order structured deformation are discussed: the primary difference being the
function space on which the deformation fields are defined. The first framework employs
a space named SBV 2 that allows jumps of the displacement as well as its gradient. A
recent paper of Barroso, Matias, Morandotti, and Owen [2] provides relaxation and integral
representation results for second-order structured deformations in the framework of SBV 2.
The second framework considers the space SBH of special functions of bounded Hessian.
Within this framework we have u ∈ W 1,1, G = ∇u, and κ is simply the jump set of ∇u.
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In the SBH framework, a second-order structured deformation is therefore described by
the pair (u, U). We remark that the SBH setting is more constrained than the SBV 2

setting, since the functions may not have “jumps”, and hence the techniques used in [2]
cannot be directly applied to the SBH setting.

The goal of our paper is to obtain relaxation and integral representation results in the
framework of SBH. We consider, over an open and bounded set Ω ⊂ RN , the family of
second-order structured deformations

SD2(Ω) := SBH(Ω;Rd)× L1(Ω; Sd×N×N ),

where Sd×N×N ⊂ Rd×N×N denotes the set of tensors (Mijk), i ∈ {1, . . . , d}, j, k ∈
{1, . . . , N}, such that Mijk = Mikj for all i, j ∈ {1, . . . , N}, d,N ∈ N. We first give a
self-contained proof of the following approximation theorem: for every (u, U) ∈ SD2(Ω)
there exists a sequence {un} ⊂ SBH(Ω;Rd) such that

un → u in W 1,1(Ω;Rd), ∇2un
∗
⇀ U in M(Ω).

We then prove a general integral representation result in the spirit of the global method
of Bouchitté, Fonseca and Mascarenhas [4]. With A(Ω) the family of open subsets of Ω,
we consider a functional

F : SD2(Ω)×A(Ω)→ [0,+∞]

satisfying the following hypotheses:

(H1) F(u, U ; ·) is the restriction to A(Ω) of a Radon measure for every (u, U) ∈ SD2(Ω).

(H2) F(·, ·;A) is SD2-lower semicontinuous, in the sense that if (u, U) ∈ SD2(Ω),

{(un, Un)} ⊂ SD2(Ω), un → u in W 1,1(Ω;Rd) and Un
∗
⇀ U in M(Ω), then

F(u, U ;A) ≤ lim inf
n→+∞

F(un, Un;A).

(H3) F is local, i.e., for all A ∈ A(Ω) if u = v and U = V LN a.e. x ∈ A then F(u, U ;A) =
F(v, V ;A).

(H4) There exists a constant C > 0 such that

1

C
(‖U‖L1(A) + |D2u|(A)) ≤ F(u, U ;A) ≤ C(LN (A) + ‖U‖L1(A) + |D2u|(A))

for every (u, U) ∈ SD2(Ω), A ∈ A(Ω).

In Theorem 4.6 we prove an integral representation for F of the form

F(u, U ;A) =

∫
A
f(x, u,∇u,∇2u, U) dx+

∫
S(∇u)∩A

h(x, u,∇u+,∇u−, ν∇u) dHN−1.

3



In view of this result, we define the energy of a second-order structured deformation (u, U),
in the same spirit of (1.2), as the limit of the energy of the most energetically convenient
approximating sequence, i.e.,

F(u, U) := inf
{un}

lim inf
n→+∞

F0(un),

where the infimum is taken among all the sequences that generate the second-order struc-
tured deformation (u, U), and F0(un) is the energy associated to the “simple deformation”
un, see Theorem 5.4.

The general relaxation result proved has applications also outside the framework of
structured deformations. Indeed, it has an immediate corollary to any functional defined
on SBH: we can show, see Theorem 6.1, that for any F : SBH(Ω;Rd)×A(Ω))→ [0,∞)
satisfying (H1)-(H4), we have the integral representation

F(u;A) =

∫
A
f(x, u,∇u,∇2u) dx+

∫
S(∇u)∩A

h(x, u,∇u+,∇u−, ν∇u) dHN−1.

In the case of functionals defined in BH(Ω;Rd), with the additional assumptions of affine
invariance and area-strict continuity, results in [11] can be leveraged along with the SBH
relaxation result to yield Corollary 6.4,

F(u;A) =

∫
A
f(x,∇2u) dx+

∫
A
f∞

(
x,

dDs(∇u)

d|Ds(∇u)|

)
d|Ds(∇u)|(x).

The assumption of affine invariance is merely a technical detail due to the lack of a BH
relaxation result as in [11] involving lower order terms. We motivate the assumption of
area-strict continuity by comparison to the first order global method for relaxation [4]. In
this situation, although we do not assume a priori that our abstract lower semicontinuous
functional is area-strict continuous, once we have the integral representation result, area-
strict continuity follows a posteriori, [12]. Thus, in the first-order case, nothing is lost by
adding the additional assumption that the functional is area-strict continuous. We expect
that the same holds in the second-order framework.

The paper is structured as follows. In Section 2 we collect some common notions and
establish pointwise results about BH functions. In Section 3 we prove an approximation
result in the SD2 framework along the lines of the approximation theorems of [5] and [7].
In Section 4 we use the global method approach introduced in [4] on functionals defined on
SD2 in order to prove the main integral representation result. In Section 5 we apply the
integral representation result to the problem of second order structured deformations to
get a relaxation as in [5]. In Section 6 we find further application of the integral relaxation
result in the spaces SBH and BH.

2 Preliminaries

In what follows, Ω is an open, bounded subset of RN . Given a smooth function u : RN →
Rd we denote by ∇2u ∈ Rd×N×N the tensor field whose components are

(∇2u)ijk =
∂2fi

∂xj∂xk
, i ∈ {1, . . . , d}, j, k ∈ {1, . . . , N}.
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Consider the space of functions of bounded Hessian

BH(Ω;Rd) : = {u ∈W1,1(Ω;Rd) : D(∇u) is a finite Radon measure}
= {u ∈ L1(Ω;Rd) : Du ∈ BV(Ω;Rd×N )},

where for locally integrable functions f , we write Df to denote its distributional derivative.
For u ∈ BH(Ω;Rd), we set

‖u‖BH(Ω) := ‖u‖W 1,1(Ω) + |D2u|(Ω),

where |D2u|(Ω) is the variation of ∇u. Moreover, since Du = ∇u ∈ BV (Ω;Rd×N ), we can
express the Radon-Nikodym decomposition of D(∇u) = D2u as

D(∇u) = ∇2uLN +Ds(∇u),

Ds(∇u) := [∇u]⊗ ν∇uHN−1 S(∇u) +Dc(∇u),

where ∇2u is a LN -measurable function with values in Sd×N×N , Ds(∇u) is the singular
part with respect to LN , S(∇u) denotes the jump set of ∇u, ν∇u is the normal to the
jump set, [∇u] = (∇u)+ − (∇u)− is the jump of ∇u across S(∇u), and Dc(∇u) is the
Cantor part of D(∇u), which is singular with respect to LN Ω +HN−1 S(∇u). Where
the function u is clear in context, we will abuse notation by omitting the subscript ∇u
and simply write ν.

We consider also the space of special functions of bounded Hessian

SBH(Ω;Rd) := {u ∈ BH(Ω;Rd) : Dc(∇u) = 0},

that is, BH functions with no Cantor part in the Hessian. This is distinct from the related
space

SBV 2(Ω;Rd) := {u ∈ BV (Ω;Rd) : ∇u ∈ BV (Ω;Rd×N ), Dc(u) = 0, Dc(∇u) = 0}.

We define the unit cube Q := {x ∈ RN : |xi| ≤ 1
2 for all 1 ≤ i ≤ N}. For x0 ∈ RN

and r > 0, we consider the cube of side length r centered at x0, Q(x0, r) := x0 + rQ =
{x0 + ry : y ∈ Q}.

In what follows, we fix a smooth, radially symmetric function φ ∈ C∞(RN ; [0,∞))
such that supp(φ) ⊂ B(0, 1) and

∫
RN φ(x)dx = 1. We define the standard mollifiers

φε(x) := 1
εN
φ(εx), ε > 0.

We now establish some basic results concerning approximate differentiability properties
of functions in the setting of BH.

Theorem 2.1. If u ∈ BH(Ω;Rd) then

(i) for LN a.e. x ∈ Ω

lim
r→0+

1

r2

∫
Q(x,r)

∣∣∣∣u(y)− u(x)−∇u(x)(y − x)− 1

2
∇2u(x)(y − x, y − x)

∣∣∣∣ dy = 0,

(2.1)
and

lim
r→0+

1

r

∫
Q(x,r)

∣∣∇u(y)−∇u(x)−∇2u(x)(y − x)
∣∣ dy = 0; (2.2)
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(ii) for HN−1 a.e. x ∈ S(∇u) we have

lim
r→0+

1

r

∫
Q±ν (x,r)

∣∣u(y)− u(x)−∇u±(x)(y − x)
∣∣ dy = 0, (2.3)

and

lim
r→0+

∫
Q±ν (x,r)

∣∣∇u(y)−∇u±(x)
∣∣ dy = 0, (2.4)

where Q+
ν (x, r) = Qν(x, r) ∩ {y : (y − x) · ν(x) > 0} and Q−ν (x, r) = Qν(x, r) ∩ {y :

(y − x) · ν(x) < 0}.

Proof. A proof of (2.2) can be found in Theorem 6.1 in [8], applied to f = ∇u. Similarly,
a proof of (2.3) and (2.4) can be found in Theorem 5.19 in [8], applied to f = u and
f = ∇u respectively.

It remains to show (2.1), which involves a second-order approximation. Its proof uses
arguments similar to those found in [8], and it is included below for completeness.

Fix x0 ∈ Ω such that

lim
r→0+

∫
Q(x0,r)

|u(x)− u(x0)| dx = 0, (2.5)

lim
r→0+

∫
Q(x0,r)

|∇u(x)−∇u(x0)| dx = 0, (2.6)

lim
r→0+

∫
Q(x0,r)

∣∣∇2u(x)−∇2u(x0)
∣∣ dx = 0, (2.7)

and

lim
r→0+

|D2
su|(Q(x0, r))

rN
= 0. (2.8)

Since the above hold for LN a.e. x0 ∈ Ω, it suffices to show that for every such x0 we have

lim
r→0+

1

r2

∫
Q(x0,r)

∣∣∣∣u(x)− u(x0)−∇u(x0)(x− x0)− 1

2
∇2u(x0)(x− x0, x− x0)

∣∣∣∣ dx = 0.

Without loss of generality, we can take x0 = 0. Define smooth functions uε by u ∗ φε,
for 0 < ε << r << dist(0, ∂Ω). By (2.5), (2.6) and (2.7), note that

lim
ε→0+

uε(0) = u(0), lim
ε→0+

∇uε(0) = ∇u(0), lim
ε→0+

∇2uε(0) = ∇2u(0).

For x ∈ Q(0, r), consider now the function gε(t) defined by

gε(t) := uε(tx), t ∈ [0, 1].

By smoothness of the uε, applying the fundamental theorem of calculus twice, we see that

g(1) = g(0) + g′(0) +

∫ 1

0
(1− t)g′′(t) dt
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and thus

uε(x) = uε(0) +∇uε(0)x+

∫ 1

0
(1− t)∇2uε(tx)(x, x) dt.

Rearranging these terms and subtracting 1
2∇

2u(0)(x, x) from both sides we obtain

uε(x)− uε(0)−∇uε(0)x− 1

2
∇2uε(0)(x, x) =

∫ 1

0
(1− t)(∇2uε(tx)−∇2uε(0))(x, x) dt,

and so
1

r2

∫
Q(0,r)

|uε(x)− uε(0)−∇uε(0)x− 1

2
∇2uε(0)(x, x)| dx

≤ 1

r2

∫
Q(0,r)

∫ 1

0
|(∇2uε(tx)−∇2uε(0))(x, x)| dt dx.

By Fatou’s lemma,

1

r2

∫
Q(0,r)

|u(x)− u(0)−∇u(0)x− 1

2
∇2u(0)(x, x)| dx

≤ lim inf
ε→0+

1

r2

∫
Q(0,r)

|uε(x)− uε(0)−∇uε(0)x− 1

2
∇2uε(0)(x, x)| dx

≤ lim inf
ε→0+

1

r2

∫
Q(0,r)

∫ 1

0

∣∣(∇2uε(tx)−∇2uε(0)
)

(x, x)
∣∣ dt dx. (2.9)

Thus, it suffices to bound (2.9). Applying the change of variables z = tx, we have∫ 1

0

1

tN+2

1

rN+2

∫
Q(0,tr)

∣∣(∇2uε(z)−∇2uε(0)
)

(z, z)
∣∣ dz dt

≤ N

4

∫ 1

0

1

rN tN

∫
Q(0,tr)

|∇2uε(z)−∇2uε(0)| dz dt.

Using the triangle inequality, we obtain∫ 1

0

1

rN tN

∫
Q(0,tr)

|∇2uε(z)−∇2uε(0)| dz ≤
∫ 1

0

1

rN
1

tN

∫
Q(0,tr)

|∇2uε(z)−∇2u(z)| dzdt

+

∫ 1

0

∫
Q(0,tr)

|∇2u(z)−∇2u(0)| dzdt+

∫ 1

0

∫
Q(0,tr)

|∇2u(0)−∇2uε(0)| dz dt.

(2.10)

If we let ε tend to 0+, the second term will be unchanged and the third term will vanish.
We turn our attention to the first term, namely∫ 1

0

1

tN
1

rN

∫
Q(0,tr)

|∇2uε(z)−∇2u(z)| dz dt.
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Set

hε(t) :=

∫
Q(0,tr)

|∇2uε(z)−∇2u(z)| dz, for t ∈ (0, 1),

and note that

hε(t) ≤
∫
Q(0,tr)

|(∇2u) ∗ φε(z)−∇2u(z)| dz +

∫
Q(0,tr)

|(D2
su) ∗ φε(z)| dz.

Sending ε→ 0+, we have

lim sup
ε→0+

hε(t) ≤
∣∣D2

su
∣∣ (Q(0, tr)).

Observe that

hε(t)

tN
=

1

tN

∫
Q(0,tr)

|∇2uε(z)−∇2u(z)| dz ≤ 1

tN

∫
Q(0,tr)

(
|∇2uε(z)|+ |∇2u(z)|

)
dz,

1

tN

∫
Q(0,tr)

|∇2u(z)| dz ≤ C

for some constant C by (2.7), since r is fixed. On the other hand,

1

tN

∫
Q(0,tr)

|∇2uε(z)| dz ≤
1

tN

∫
Q(0,tr)

∫
Ω
φε(z − y) d|D2u|(y) dz

=
1

tN

∫
Ω

∫
Q(0,tr)

φε(z − y) dz d|D2u|(y)

≤ C

εN tN

∫
Q(0,tr+ε)

∫
Q(0,tr)∩B(y,ε)

dz d|D2u|(y)

≤ C

εN tN
min{εN , tN}|D2u|(Q(0, tr + ε)).

Again by (2.7) and (2.8), we have

|D2u|(Q(0, tr + ε)) ≤ C(tr + ε)N

so we conclude that hε(t)
tN

is bounded by a constant for t ∈ (0, 1), and we may apply the
Reverse Fatou Lemma to deduce

lim sup
ε→0+

∫ 1

0

1

tNrN

∫
Q(0,tr)

|∇2uε(z)−∇2u(z)| dzdt ≤
∫ 1

0

1

tNrN
∣∣D2

su
∣∣ (Q(0, tr))dt.

Thus from (2.9) and (2.10) we have

1

r2

∫
Q(0,r)

|u(x)− u(0)−∇u(0)x− 1

2
∇2u(0)(x, x)| dx

≤
∫ 1

0

(
|D2

su|(Q(0, tr))

tNrN
+
N

4

∫
Q(0,tr)

|∇2u(z)−∇2u(0)| dz

)
dt. (2.11)
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For a given r there are only countably many t ∈ (0, 1) such that |D2
su|(∂Q(0, tr)) > 0.

Thus, we can rewrite the upper bound in (2.11) as∫ 1

0

(
|D2

su|(Q(0, tr))

tNrN
+
N

4

∫
Q(0,tr)

|∇2u(z)−∇2u(0)| dz

)
dt

We note that by (2.7) and (2.8) we can apply the dominated convergence theorem to
conclude that

lim
r→0+

∫ 1

0

(
|D2

su|(Q(0, tr))

tNrN
+
N

4

∫
Q(0,tr)

|∇2u(z)−∇2u(0)| dz

)
dt = 0.

The next result can be found in [10], Lemma 2.13.

Lemma 2.2. Let λ be a nonnegative Radon measure in RN . For λ a.e. x0 ∈ RN , for
every 0 < δ < 1 and for every ν ∈ SN−1,

lim sup
ε→0+

λ(Qν(x0, δε))

λ(Qν(x0, ε))
≥ δN ,

and, therefore,

lim
δ→1−

lim sup
ε→0+

λ(Qν(x0, δε))

λ(Qν(x0, ε))
= 1.

In order to establish that an abstract functional is the restriction of a Radon measure,
we will apply the coincidence criterion of Dal Maso, Fonseca and Leoni (see [6] Corollary
5.2).

Lemma 2.3. Let A(Ω) be the family of open subsets of Ω and λ : A(Ω) → [0,∞) be an
increasing set function such that:

(i) for all A,B,C ∈ A(Ω) with A ⊂ B ⊂ C there holds

λ(C) ≤ λ(C \A) + λ(B) ,

(ii) λ(A ∪B) = λ(A) + λ(B), for all A,B ∈ A(Ω) with A ∩B = ∅,

(iii) there exists a measure µ : B(Ω)→ [0,∞) such that

λ(A) ≤ µ(A)

for all A ∈ A(Ω), where B(Ω) denotes the family of Borel sets of Ω.

Then λ is the restriction to A(Ω) of a measure defined on B(Ω).
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3 Second-order structured deformations

Let Ω be an open, bounded subset of RN . Set

Sd×N×N = {U ∈ Rd×N×N : Uijk = Uikj ,∀i = 1, . . . , d, j, k = 1, . . . , N}.

Definition 3.1. The space of second-order structured deformations SD2(Ω) consists of
pairs (u, U) with u ∈ SBH(Ω;Rd) and U ∈ L1(Ω; Sd×N×N ),

SD2(Ω) := SBH(Ω;Rd)× L1(Ω; Sd×N×N ).

The approximation result stated next can be proved by applying the generalization of
Alberti’s theorem to BH functions contained in [9].

Theorem 3.2. For every (u, U) ∈ SD2(Ω) there exists a sequence {un} ⊂ SBH(Ω;Rd)
such that un → u in W 1,1(Ω;Rd) and ∇2un

∗
⇀ U in M(Ω), with

sup
n
‖un‖BH ≤ C(‖u‖BH + ‖U‖L1)

for some constant C > 0.

For convenience of the reader, we give a self-contained proof of Theorem 3.2, for which
we will make use of the following lemma.

Lemma 3.3. Let U ∈ L1(Ω,Rd×N×N ), and for every δ > 0 let {Aδi }i∈N be a countable
family of open sets such that Aδi ⊂ Ω, Aδi ∩ Aδj = ∅ for every i, j ∈ N with i 6= j,

LN (Ω\ ∪i Aδi ) = 0, and supi diam Aδi ≤ δ. For i ∈ N let V δ
i : Aδi → Rd×N×N be such that∫

Aδi

V δ
i dx =

∫
Aδi

U dx,

and set
V δ :=

∑
i

χAδi
V δ
i .

If supδ ‖V δ‖L1 < +∞ then V δLN ∗
⇀ ULN .

Proof. Arguing componentwise, it suffices to prove the lemma for scalar fields, hence we
suppose that U ∈ L1(Ω). Define

V
δ

:=
∑
i

χAδi

∫
Aδi

V δ
i dx =

∑
i

χAδi

∫
Aδi

U dx.

Fix ε > 0 and choose W ∈ L1(Ω) ∩ C∞0 (Ω) such that ‖U −W‖L1(Ω) < ε/3. Define

W
δ

:=
∑
i

χAδi

∫
Aδi

W dx.
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Since W is uniformly continuous, there exists η > 0 such that if |x− y| < η then |W (x)−
W (y)| ≤ ε/(3LN (Ω)). For 0 < δ ≤ η we have

‖W δ −W‖L1(Ω) =
∑
i

∫
Aδi

∣∣∣∣∣W (x)−
∫
Aδi

W (y) dy

∣∣∣∣∣ dx
≤

∑
i

∫
Aδi

∫
Aδi

|W (x)−W (y)| dy dx ≤ ε

3
,

and

‖W δ − V δ‖L1(Ω) =
∑
i

LN (Aδi )

∣∣∣∣∣
∫
Aδi

(W (y)− U(y)) dy

∣∣∣∣∣ ≤ ‖U −W‖L1(Ω) ≤
ε

3
.

Thus

‖V δ − U‖L1(Ω) ≤ ‖U −W‖L1(Ω) + ‖W δ −W‖L1(Ω) + ‖W δ − V δ‖L1(Ω) ≤ ε,

and we conclude that V
δ → U in L1(Ω). For ψ ∈ C0(Ω) we have

lim
δ→0+

∫
Ω

(V δ − U)ψ dx = lim
δ→0+

∫
Ω

(V δ − V δ
)ψ dx,

and hence it suffices to show that limδ→0+
∫

Ω(V δ − V δ
)ψ dx = 0. Note that∫

Ω
V
δ
ψ dx =

∑
i

∫
Aδi

∫
Aδi

V δ(y) dy ψ(x) dx =
∑
i

∫
Aδi

V δ(y) dy

∫
Aδi

ψ(x) dx

=
∑
i

∫
Aδi

V δ(y)ψ(y) dy +
∑
i

∫
Aδi

V δ(y)

∫
Aδi

(ψ(x)− ψ(y)) dx dy,

and therefore∣∣∣∣∫
Ω

(V δ − V δ
)ψ dx

∣∣∣∣ =

∣∣∣∣∣∑
i

∫
Aδi

V δ(y)

∫
Aδi

(ψ(x)− ψ(y)) dx dy

∣∣∣∣∣ ≤ sup
δ
‖V δ‖L1(Ω)o(1),

since ψ is uniformly continuous. This concludes the proof.

We now proceed to establish the approximation theorem.

Proof of Theorem 3.2 We claim that it suffices to prove that for every V ∈
L1(Ω; Sd×N×N ) there exists a sequence {f ε} ⊂ SBH(Ω;Rd) such that f ε → 0 inW 1,1(Ω;Rd),
∇2f ε

∗
⇀ V in M(Ω) and supε |D2f ε|(Ω) ≤ C‖V ‖L1(Ω). In fact, if the claim holds then we

can define un := u + f εn where the sequence {f ε} is the one obtained by applying the
claim to V := U −∇2u.

We now prove the claim. For simplicity of notation we will consider N = 2, however
the same argument works for a generic N . Extend V outside Ω by 0 and denote this

11



extension still by V . Fix ε > 0 and let {Qε,l}l be the family of open cubes whose side
length is ε and whose centers yε,l belong to the lattice (εZ)2. Let

φε(x) :=

(
1− 2|x1|

ε

)
χ{|x2|<ε/2,|x1|<|x2|} +

(
1− 2|x2|

ε

)
χ{|x1|<ε/2,|x2|<|x1|}

i.e., φε is the function whose graph is the pyramid over the cube Q(0, ε) of height one.
Let {Aε,l}l be a family of symmetric tensors in Sd×2×2 to be defined later and let f ε ∈
SBH(Ω;Rd) be given by

f ε(x) :=
∑
l

1

2
φε(x− yε,l)Aε,l(x− yε,l, x− yε,l).

We now define Aε,l as the symmetric tensor for which∫
Qε,l
∇2f ε dx =

∫
Qε,l

V dx. (3.1)

Note that, since ∇2φε = 0 and Aε,l is symmetric,

(∇2f ε)irs = (∇φε)sAε,lijr(xj − y
ε,l
j ) + (∇φε)rAε,lijs(xj − y

ε,l
j ) + φεAε,lirs,

where the summation convention is adopted throughout this proof. Define

Zεjs :=

∫
Q(0,ε)

(∇φε)s(x)xj dx =

∫
Qε,l

(∇φε)s(x− yε,l)(xj − yε,lj ) dx,

z̃ε :=

∫
Q(0,ε)

φε(x) dx =

∫
Qε,l

φε(x− yε,l) dx, and Ṽ ε,l :=

∫
Qε,l

V dx,

and rewrite (3.1) as

Aε,lijrZ
ε
js +Aε,lijsZ

ε
jr +Aε,lirsz̃

ε = Ṽ ε,l
irs . (3.2)

It turns out that Zε = −ε2I, where I is the identity matrix, indeed,

Zε11 =

∫
Q(0,ε)

x1
−2 sgn(x1)

ε
χ{|x1|<|x2|} dx = 2

∫ ε/2

ε/2

∫ x1

−x1

−2x1

ε
dx2dx1 = −ε2

and, similarly,

Zε22 =

∫
Q(0,ε)

x2
−2 sgn(x2)

ε
χ{|x2|<|x1|} dx = −ε2.

On the other hand,

Zε12 =

∫
Q(0,ε)

x2
−2 sgn(x1)

ε
χ{|x1|<|x2|} dx = 0

since the integrand is odd in x2 and x1 and the region of integration is symmetric in
both variables, and the same is true for Zε21. We can also calculate z̃ε as the volume of a
pyramid with base ε2 and height 1 to find z̃ε = 1

3ε
2.

12



From this, (3.2) becomes

−5

3
ε2Aε,l = Ṽ ε,l, (3.3)

We now prove that f ε → 0 in W 1,1(Ω;Rd). We have∫
Ω
|f ε| dx =

1

2

∑
l

∫
Qε,l∩Ω

|φε(x− yε,l)Aε,l(x− yε,l, x− yε,l)| dx

≤ C
∑
l

|Aε,l|ε2L2(Qε,l ∩ Ω) ≤ Cε2
∑
l

|Ṽ ε,l|

≤ Cε2
∑
l

∫
Qε,l
|V | dx ≤ Cε2‖V ‖L1(Ω)

where we have used (3.3). Furthermore, again by (3.3) we obtain∫
Ω
|∇f ε| dx ≤ C

∑
l

[
‖∇φε‖L∞ |Aε,l|ε2L2(Qε,l ∩ Ω) + ‖φε‖L∞ |Aε,l|εL2(Qε,l ∩ Ω)

]
≤ C

∑
l

[
1

ε
ε2L2(Qε,l ∩ Ω) + |Aε,l|εL2(Qε,l ∩ Ω)

]
≤ Cε‖V ‖L1(Ω).

Next, we show that supε |D2f ε|(Ω) ≤ C‖V ‖L1(Ω). Indeed, by (3.3)∫
Ω
|∇2f ε| dx ≤ C

∑
l

[
|Aε,l|ε1

ε
L2(Qε,l ∩ Ω) + |Aε,l|L2(Qε,l ∩ Ω)

]
≤ C‖V ‖L1(Ω),

and ∫
Ω∩S(∇fε)

|[∇f ε]| dH1 ≤
∑
l

∫
∂Qε,l∩Ω

|[∇f ε]| dH1 +

∫
dε,l
|[∇f ε]| dH1

≤ C
∑
l

(
1

ε

(
|Aε,l|ε2

)
ε+ |Aε,l|ε2

)
≤ C

∑
l

|Aε,l|L2(Qε,l) ≤ C‖V ‖L1(Ω),

where dε,l is the union of the diagonals of Qε,l, and we used the estimate∫
dε,l
|[∇f ε]| dH1 ≤ C

∫ ε

0

1

ε
|Aε,l||(t, t)|2 dt ≤ C|Aε,l|ε2.

That ∇2f ε
∗
⇀ V in M(Ω) follows from (3.1), the inequalities above and from Lemma

3.3.
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4 The global method

Recall that A(Ω) is the family of open subsets of Ω. Consider a functional

F : SD2(Ω)×A(Ω)→ [0,+∞] (4.1)

satisfying the following hypotheses:

(H1) F(u, U ; ·) is the restriction to A(Ω) of a Radon measure for every (u, U) ∈ SD2(Ω).

(H2) F(·, ·;A) is SD2-lower semicontinuous, in the sense that if (u, U) ∈ SD2(Ω),

{(un, Un)} ⊂ SD2(Ω), un → u in W 1,1(Ω;Rd) and Un
∗
⇀ U in M(Ω), then

F(u, U ;A) ≤ lim inf
n→+∞

F(un, Un;A).

(H3) F is local, i.e., for all A ∈ A(Ω), if u = v and U = V LN a.e. x ∈ A then
F(u, U ;A) = F(v, V ;A).

(H4) There exists a constant C > 0 such that

1

C
(‖U‖L1(A) + |D2u|(A)) ≤ F(u, U ;A) ≤ C(LN (A) + ‖U‖L1(A) + |D2u|(A))

for every (u, U) ∈ SD2(Ω), A ∈ A(Ω).

In the spirit of the global method for relaxation [3, 4], given (u, U ;A) ∈ SD2(Ω)×A(Ω)
we define

A(u, U ;A) :=

{
(v, V ) ∈ SD2(Ω) : spt (u− v) ⊂⊂ A,

∫
A

(U − V ) dx = 0

}
, (4.2)

and
m(u, U ;A) := inf {F(v, V ;A) : (v, V ) ∈ A(u, U ;A)} . (4.3)

Lemma 4.1. If (H1) and (H4) hold, then for every (u, U) ∈ SD2(Ω) and A ∈ A(Ω)

lim sup
δ→0+

m(u, U ;Aδ) ≤ m(u, U ;A),

where Aδ = {x ∈ A : dist(x, ∂A) > δ}.

Proof. Let ε > 0. Choose (ũ, Ũ) ∈ A(u, U ;A) such that

F(ũ, Ũ ;A) ≤ m(u, U ;A) + ε.

Let δ0 := dist(spt(u− ũ), ∂A) > 0. For 0 < δ < δ0/2 define

Û =

{
Ũ in A2δ,

(LN (Aδ\A2δ))
−1(
∫
Aδ
U dx−

∫
A2δ

Ũ dx) on Aδ \A2δ.
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Since (ũ, Û) ∈ A(u, U ;Aδ), for every compact set K ⊂ A2δ we have by (H1) and (H4),

m(u, U ;Aδ) ≤ F(ũ, Û ;Aδ)

≤ F(ũ, Ũ ;A2δ) + F(u, Û ;Aδ\K)

≤ F(ũ, Ũ ;A) + C

(
LN (A\K) +

∫
Aδ\K

|Û | dx+ |D2u|(A\K)

)

≤ m(u, U ;A) + ε+ C

(
LN (A\K) + |D2u|(A\K)

+
LN (Aδ\K)

LN (Aδ\A2δ)

∣∣∣∣∫
Aδ

U dx−
∫
A2δ

Ũ dx

∣∣∣∣ ).
Using inner regularity and letting K ↗ A2δ, we have

m(u, U ;Aδ) ≤ m(u, U ;A) + ε

+ C

(
LN (A\A2δ) + |D2u|(A\A2δ) +

∣∣∣∣∫
Aδ

U dx−
∫
A2δ

Ũ dx

∣∣∣∣ )
and since

∫
A U dx =

∫
A Ũ dx, we obtain

lim sup
δ→0+

m(u, U ;Aδ) ≤ m(u, U ;A) + ε

and by letting ε go to zero we finish the proof.

Again by analogy with [3, 4], for a fixed (u, U) ∈ SD2(Ω) we set µ := LN Ω + |D2
su|,

we define
A∗(Ω) := {Qν(x, ε) : x ∈ Ω, ν ∈ SN−1, ε > 0},

and for A ∈ A(Ω) and δ > 0,

mδ(u, U ;A) := inf

{ ∞∑
i=1

m(u, U ;Qi) : Qi ∈ A∗(Ω), Qi ∩Qj = ∅, Qi ⊂ A,

diam(Qi) < δ, µ(A \ ∪∞i=1Qi) = 0

}
.

Since mδ increases as δ goes to 0, we can define

m∗(u, U ;A) := sup
δ>0

mδ(u, U ;A) = lim
δ→0+

mδ(u, U ;A).

Lemma 4.2. Assume that hypotheses (H1)-(H4) hold. Then for all A ∈ A(Ω)

F(u, U ;A) = m∗(u, U ;A).
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Proof. Fix A ∈ A(Ω). For every δ > 0 and every collection of cubes {Qi}∞i=1 admissible
in the definition of mδ we obtain

mδ(u, U ;A) ≤
∞∑
i=1

m(u, U ;Qi) ≤
∞∑
i=1

F(u, U ;Qi) ≤ F(u, U ;A)

where we used (H1) in the last inequality. Hence m∗(u, U ;A) ≤ F(u, U ;A).
Conversely, fix δ > 0 and choose a family {Qδi }∞i=1 such that

∞∑
i=1

m(u, U ;Qδi ) ≤ mδ(u, U ;A) + δ.

For each Qδi let (vδi , V
δ
i ) ∈ A(u, U ;Qδi ) be such that

F(vδi , V
δ
i ;Qδi ) ≤ m(u, U ;Qδi ) + δLN (Qδi ).

Now, we stitch together these vδi and V δ
i to define

vδ :=
∞∑
i=1

vδi χQδi
+ uχNδ , V

δ :=
∞∑
i=1

V δ
i χQδi

+ UχNδ ,

where Nδ := Ω \ ∪∞i=1Q
δ
i . By the coercivity hypothesis (H4), we have vδ ∈ BH(Ω) and

V δ ∈ L1(Ω). By (H1) and (H3),

F(vδ, V δ;A) =

∞∑
i=1

F(vδi , V
δ
i ;Qδi ) + F(u, U ;Nδ ∩A),

and since µ(Nδ ∩A) = 0, by (H4) we have F(u, U ;Nδ ∩A) = 0, and so

F(vδ, V δ;A) ≤
∞∑
i=1

[
m(u, U ;Qδi ) + δLN (Qδi )

]
≤ mδ(u, U ;A) + δ + δLN (A).

If we prove that vδ → u in W 1,1(Ω;Rd) and V δ ∗⇀ U inM(Ω), then by lower semicon-
tinuity of F (see (H2)), we will have

F(u, U ;A) ≤ lim inf
δ→0+

F(vδ, V δ;A) ≤ lim inf
δ→0+

mδ(u, U ;A) = m∗(u, U ;A),

thus proving the lemma. To see that vδ → u in W 1,1, by the BV Poincaré inequality (see
Theorem 5.10 in [8]) applied to

(
∇u−∇vδ

)
we obtain

‖∇u−∇vδ‖L1(Ω) =

∞∑
i=1

‖∇u−∇vδ‖L1(Qδi )
≤
∞∑
i=1

Cδ|D2u−D2vδ|(Qδi )

≤ Cδ(|D2u|(A) + |D2vδ|(A)).
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By coercivity of F we have that {|D2vδ|(A)} is bounded, so this term goes to 0 with δ.
By Poincaré’s inequality applied now to u − vδ, we see that since ‖∇u − ∇vδ‖L1(Ω) → 0

we have that ‖u− vδ‖W 1,1(Ω) → 0. Finally, again by (H4)

sup
δ
‖V δ‖L1(Ω) <∞

and applying Lemma 3.3 we conclude that V δ ∗⇀ U in M(Ω).

Theorem 4.3. If (H1), (H2) and (H4) hold then for every (u, U) ∈ SD2(Ω) and for all
ν ∈ SN−1

lim
ε→0+

F(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))
= lim

ε→0+

m(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))

for µ a.e. x0 ∈ Ω where µ := LN Ω + |D2
su|.

Proof. By (H4), F(u, U ; ·) is absolutely continuous with respect to µ. Therefore, by Besi-
covitch’s derivation theorem,

lim
ε→0+

F(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))

exist for µ-almost every x0 ∈ Ω. Since m(u, U ; ·) ≤ F(u, U ; ·), we have trivially that

lim
ε→0+

F(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))
≥ lim sup

ε→0+

m(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))

whenever the lefthand limit exists. Thus, it suffices to show that

lim inf
ε→0+

m(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))
≥ lim

ε→0+

F(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))

for µ-almost every x0 ∈ Ω. Fix t > 0 and let

Et := {x ∈ Ω : ∃ εn → 0 such that µ(∂Qν(x, εn)) = 0 and

F(u, U ;Qν(x, εn)) > m(u, U ;Qν(x, εn)) + tµ(Qν(x, εn)) for every n}.

First, we observe that the condition that µ does not charge the boundary of the cubes is
innocuous: for every x ∈ Ω such that there is a sequence {εn} converging to 0 with

F(u, U ;Qν(x, εn)) > m(u, U ;Qν(x, εn)) + tµ(Qν(x, εn))

for every n, we can find another sequence {ε′n} such that for every n

F(u, U ;Qν(x, ε′n)) > m(u, U ;Qν(x, ε′n)) + tµ(Qν(x, ε′n)), µ(∂Qν(x, ε′n)) = 0. (4.4)

Indeed, for every n we can find εkn ↗ εn so that µ(∂Qν(x, εkn)) = 0. By inner regularity
we have

lim
k→∞

F(u, U ;Qν(x, εkn)) = F(u, U ;Qν(x, εn)), lim
k→∞

µ(Qν(x, εkn)) = µ(Qν(x, εn)),
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and by Lemma 4.1

lim sup
k→∞

m(u, U ;Qν(x, εkn)) ≤ m(u, U ;Qν(x, εn)).

Hence for k large enough we have

F(u, U ;Qν(x, εkn)) > m(u, U ;Qν(x, εkn)) + tµ(Qν(x, εkn)).

Extracting a diagonal subsequence of {εkn} we obtain a suitable subsequence {ε′n := ε
k(n)
n }

for which (4.4) holds. Thus we see that without loss of generality we can take the εn so
that µ does not charge the boundary.

Fix a compact set K ⊂ Ω such that K ⊂ Et. For δ > 0, define the families of cubes

Xδ := {Qν(x, ε) : ε < δ, Qν(x, ε) ⊂ Ω, µ(∂Qν(x, ε)) = 0,

F(u, U ;Qν(x, ε)) > m(u, U ;Qν(x, ε)) + tµ(Qν(x, ε))},

Y δ = {Qν(x, ε) : ε < δ, Qν(x, ε) ⊂ Ω \K, µ(∂Qν(x, ε)) = 0}.

Since K ⊂ Et, for every x ∈ K there exists Qν(x, ε) ∈ Xδ for some ε < δ, and, similarly,
if x ∈ Ω \K there exists a cube Qν(x, ε) ∈ Y δ. Hence, we can write

Ω =
⋃

Q∈Xδ

Q ∪
⋃

Q′∈Y δ
Q′

and applying the Vitali-Besicovitch covering theorem, we can find a countable collection
of QX

δ

i ∈ Xδ, QY
δ

j ∈ Y δ, all mutually disjoint, such that

Ω =
∞⋃
i=1

QX
δ

i ∪
∞⋃
j=1

QY
δ

j ∪ E

where µ(E) = 0, and, as a consequence F(u, U ;E) = 0. Note that since QY
δ

j ⊂ Ω \K for
all j, we have

µ(K) = µ(Ω ∩K) = µ

( ∞⋃
i=1

QX
δ

i

)
,

and thus

F(u, U ; Ω) =
∞∑
i=1

F(u, U ;QX
δ

i ) +
∞∑
j=1

F(u, U ;QY
δ

j )

≥
∞∑
i=1

[
m(u, U ;QX

δ

i ) + tµ(QX
δ

i )
]

+

∞∑
j=1

m(u, U ;QY
δ

j )

≥ mδ(u, U ; Ω) + t
∞∑
i=1

µ(QX
δ

i ) = mδ(u, U ; Ω) + tµ(K).
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Sending δ → 0, we can apply Lemma 4.2 to obtain

F(u, U ; Ω) ≥ m∗(u, U,Ω) + tµ(K) = F(u, U ; Ω) + tµ(K)

and so µ(K) = 0 for every compact K ⊂ Et. By inner regularity we conclude that
µ(Et) = 0, i.e., for µ-almost every x ∈ Ω, if ε is sufficiently small,

F(u, U ;Qν(x, ε)) ≤ m(u, U ;Qν(x, ε)) + tµ(Qν(x, ε))

and thus

lim
ε→0+

F(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))
≤ lim inf

ε→0+

m(u, U ;Qν(x0, ε))

µ(Qν(x0, ε))
+ t.

Sending t→ 0, we assert our claim.

Lemma 4.4. Assume that hypotheses (H1), (H3) and (H4) hold. Let {(vε, Vε)} ⊂ SD2(Ω),
(u, U) ∈ SD2(Ω), x0 ∈ Ω, ν ∈ SN−1, and let λ be a nonnegative Radon measure on Ω. Let
x0 ∈ Ω and suppose that

lim
ε→0+

m(u, U ;Qν(x0, ε))

λ(Qν(x0, ε))

exists. Then,

lim sup
ε→0+

m(vε, Vε;Qν(x0, ε))

λ(Qν(x0, ε))
− lim
ε→0+

m(u, U ;Qν(x0, ε))

λ(Qν(x0, ε))
≤

lim sup
δ→1−

lim sup
ε→0+

C

λ(Qν(x0, ε))

{
εN+1 + εN (1− δN ) + |D2u|(Qν(x0, ε) \Qν(x0, δε))

+ |D2vε|(Qν(x0, ε) \Qν(x0, δε)) +
1

ε2(1− δ)2

∫
Qν(x0,ε)

|u(x)− vε(x)| dx

+
1

ε(1− δ)

∫
Qν(x0,ε)

|∇u(x)−∇vε(x)| dx+

∣∣∣∣∣
∫
Qν(x0,ε)

Vε dx−
∫
Qν(x0,δε)

U dx

∣∣∣∣∣
}
.

Proof. Fix δ ∈ (0, 1) and let ε > 0 be so small that Qν(x0, ε) ⊂ Ω. Choose a cut-off
function φ ∈ C∞c (Qν(x0, ε)) such that φ = 1 in a neighborhood of Qν(x0, εδ),

‖∇φ‖L∞ ≤
2

ε(1− δ)
, and ‖∇2φ‖L∞ ≤

4

ε2(1− δ)2
.

Define

wε :=

{
φu+ (1− φ)vε in Qν(x0, ε),
vε otherwise,

and choose (ũ, Ũ) ∈ A(u, U ;Qν(x0, εδ)) such that

1

2
εN+1 +m(u, U ;Qν(x0, εδ)) ≥ F(ũ, Ũ ;Qν(x0, εδ)).

By outer regularity of F(ũ, Ũ ; ·) (see (H1)) we can find δ′ ∈ (δ, 1) such that

F(ũ, Ũ ;Qν(x0, εδ
′))− 1

2
εN+1 ≤ F(ũ, Ũ ;Qν(x0, εδ)).
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Set

ṽε :=

{
ũ in Qν(x0, εδ),

wε on Ω \Qν(x0, εδ),

and

Ṽε :=

{
Ũ in Qν(x0, εδ),

1
LN (Qν(x0,ε)\Qν(x0,εδ))

(
∫
Qν(x0,ε)

Vε dx−
∫
Qν(x0,εδ)

U dx) on Ω \Qν(x0, εδ).

Recalling that
∫
Qν(x0,εδ)

U dx =
∫
Qν(x0,εδ)

Ũ dx, we have (ṽε, Ṽε) ∈ A(vε, Vε;Qν(x0, ε)), and

by (H3) and (H4) we obtain

m(vε, Vε;Qν(x0, ε)) ≤ F(ṽε, Ṽε;Qν(x0, ε))

≤ F(ũ, Ũ ;Qν(x0, εδ
′)) + F(wε, Ṽε;Qν(x0, ε) \Qν(x0, εδ))

≤ εN+1 +m(u, U ;Qν(x0, εδ)) +

C

(
εN (1− δN ) + |D2wε|(Qν(x0, ε) \Qν(x0, εδ)) +∣∣∣∣∣
∫
Qν(x0,ε)

Vε dx−
∫
Qν(x0,εδ)

U dx

∣∣∣∣∣
)
. (4.5)

Since
∇wε = (u− vε)⊗∇φ+ φ∇u+ (1− φ)∇vε,

we obtain

|D2wε|(Qν(x0, ε) \Qν(x0, εδ)) ≤ C
{
|D2u|(Qν(x0, ε) \Qν(x0, εδ))

+ |D2vε|(Qν(x0, ε) \Qν(x0, εδ))

+
1

ε2(1− δ)2

∫
Qν(x0,ε)

|u(x)− vε(x)| dx

+
1

ε(1− δ)

∫
Qν(x0,ε)

|∇u(x)−∇vε(x)| dx.
}

(4.6)

From Lemma 2.2 we deduce that

lim
δ→1−

lim
ε→0+

m(u, U ;Qν(x0, εδ))

λ(Qν(x0, ε))
= lim

δ→1−
lim
ε→0+

(
m(u, U ;Qν(x0, εδ))

λ(Qν(x0, εδ))

λ(Qν(x0, εδ))

λ(Qν(x0, ε))

)
≤ lim

ε→0+

m(u, U ;Qν(x0, ε))

λ(Qν(x0, ε))
,

and hence to complete the proof it suffices to substitute (4.6) into (4.5), divide the resulting
inequality by λ(Qν(x0, ε)) and take the lim sup as ε→ 0+ and δ → 1−.

The next corollary is an immediate consequence of the previous lemma.
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Corollary 4.5. Assume that hypotheses (H1), (H3) and (H4) hold. Let (v, V ), (u, U) ∈
SD2(Ω), x0 ∈ Ω, ν ∈ SN−1, and let λ be a nonnegative Radon measure on Ω be given. Let
x0 ∈ Ω and suppose that

lim
ε→0+

m(u, U ;Qν(x0, ε))

λ(Qν(x0, ε))
and lim

ε→0+

m(v, V ;Qν(x0, ε))

λ(Qν(x0, ε))

exist. Then∣∣∣∣ lim
ε→0+

m(v, V ;Qν(x0, ε))

λ(Qν(x0, ε))
− lim
ε→0+

m(u, U ;Qν(x0, ε))

λ(Qν(x0, ε))

∣∣∣∣
≤ lim sup

δ→1−
lim sup
ε→0+

C

λ(Qν(x0, ε))

{
εN+1 + εN (1− δN ) + |D2u|(Qν(x0, ε) \Qν(x0, δε))

+ |D2v|(Qν(x0, ε) \Qν(x0, δε)) +
1

ε2(1− δ)2

∫
Qν(x0,ε)

|u(x)− v(x)| dx

+
1

ε(1− δ)

∫
Qν(x0,ε)

|∇u(x)−∇v(x)| dx+

∣∣∣∣∣
∫
Qν(x0,ε)

V dx−
∫
Qν(x0,ε)

U dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
Qν(x0,ε)\Qν(x0,δε)

V dx

∣∣∣∣∣+

∣∣∣∣∣
∫
Qν(x0,ε)\Qν(x0,δε)

U dx

∣∣∣∣∣
}
.

Theorem 4.6. Under hypotheses (H1), (H2), (H3),and (H4), for every (u, U) ∈ SD2(Ω)
and A ∈ A(Ω) we have

F(u, U ;A) =

∫
A
f(x, u,∇u,∇2u, U) dx+

∫
S(∇u)∩A

h(x, u,∇u+,∇u−, ν∇u) dHN−1,

where

f(x0, r, ξ,G,H) := lim
ε→0+

m(r + ξ(· − x0) + 1/2G(· − x0, · − x0), H;Q(x0, ε))

εN
,

h(x0, r, η, ζ, ν) := lim
ε→0+

m(r + uη,ζ,ν(· − x0), O;Qν(x0, ε))

εN−1
,

for all x0 ∈ Ω, r ∈ RN , ξ, η, ζ ∈ Rd×N , G,H ∈ Rd×N×N , ν ∈ SN−1, with O ∈ Rd×N×N
being the matrix with all entries equal to zero, and

uη,ζ,ν(y) :=

{
ηy if y · ν > 0,
ζy otherwise.

Proof. We first show that

dF(u, U ; ·)
dLN

(x0) = f(x0, u(x0),∇u(x0),∇2u(x0), U(x0)) (4.7)

for LN a.e. x0 ∈ Ω. Define

va(x) := u(x0) +∇u(x0)(x− x0) +
1

2
∇2u(x0)(x− x0, x− x0).
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By Theorem 2.1 and Theorem 4.3, for LN a.e. x0 ∈ Ω,

lim
ε→0+

1

ε2

∫
Q(x0,ε)

|u(x)− va(x)| dx = 0, lim
ε→0+

1

ε

∫
Q(x0,ε)

|∇u(x)−∇va(x)| dx = 0, (4.8)

lim
ε→0+

|D2u|(Q(x0; ε))

LN (Q(x0; ε))
= |∇2u(x0)|, (4.9)

dF(u, U ; ·)
dLN

(x0) = lim
ε→0+

m(u, U ;Q(x0; ε))

LN (Q(x0; ε))
, (4.10)

dF(va, U(x0); ·)
dLN

(x0) = lim
ε→0+

m(va, U(x0);Q(x0; ε))

LN (Q(x0; ε))
, (4.11)

lim
ε→0+

∫
Q(x0,ε)

|U(x)− U(x0)| dx = 0 (4.12)

Select a point x0 ∈ Ω with the above properties. Apply Corollary 4.5 with v := va, V :=
U(x0) and λ := LN Ω to find∣∣∣∣ lim

ε→0+

m(va, U(x0);Qν(x0, ε))

LN (Qν(x0, ε))
− lim
ε→0+

m(u, U ;Qν(x0, ε))

LN (Qν(x0, ε))

∣∣∣∣
≤ C lim sup

δ→1−
lim sup
ε→0+

G(ε, δ, u, va, U),

where

G(ε, δ, u, va, U) := C

{
ε+ (1− δN ) +

|D2u|(Qν(x0, ε) \Qν(x0, δε))

εN

+|∇2u(x0)|(1− δN ) +
1

(1− δ)2

1

ε2

∫
Q(x0,ε)

|u(x)− va(x)| dx

+
1

(1− δ)
1

ε

∫
Q(x0,ε)

|∇u(x)−∇va(x)| dx+

∣∣∣∣∣
∫
Q(x0,ε)

U dx− U(x0)

∣∣∣∣∣
+

∣∣∣∣∣ 1

εN

∫
Q(x0,ε)\Q(x0,εδ)

U dx

∣∣∣∣∣+ (1− δN )U(x0)

}
.

By (4.9) we find

0 ≤ lim sup
δ→1−

lim sup
ε→0+

|D2u|(Qν(x0, ε) \Qν(x0, δε))

εN
≤ lim sup

δ→1−
|∇2u(x0)|(1− δN ) = 0,

and by (4.12) we obtain

lim sup
δ→1−

lim sup
ε→0+

∣∣∣∣∣ 1

εN

∫
Q(x0,ε)\Q(x0,εδ)

U dx

∣∣∣∣∣
= lim sup

δ→1−
lim sup
ε→0+

∣∣∣∣∣
∫
Q(x0,ε)

U dx− δN
∫
Q(x0,εδ)

U dx

∣∣∣∣∣
= lim sup

δ→1−
|U(x0)− δNU(x0)| = 0,
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which, together with (4.8), yields

lim sup
δ→1−

lim sup
ε→0+

G(ε, δ, u, va, U) = 0

and, consequently,

dF(u, U ; ·)
dLN

(x0) = lim
ε→0+

m(u, U ;Qν(x0, ε))

LN (Qν(x0, ε))
= lim

ε→0+

m(va, U(x0);Qν(x0, ε))

LN (Qν(x0, ε))
,

concluding the proof of (4.7).

Now we show that

dF(u, U ; ·)
dHN−1bS(∇u)

(x0) = g(x0, u(x0),∇u+(x0),∇u−(x0), ν∇u(x0)),

for HN−1bS(∇u) a.e. x0 ∈ Ω. Hereafter, for simplicity, we will just write ν in place of
ν∇u. Define

vJ(x) := u(x0) +

{
∇u+(x0)(x− x0) if (x− x0) · ν(x0) > 0,
∇u−(x0)(x− x0) if (x− x0) · ν(x0) < 0.

Again by Theorem 2.1 and Theorem 4.3, for HN−1 a.e. x0 ∈ S(∇u) we have

lim
ε→0+

1

ε

∫
Qν(x0,ε)

|u(x)− vJ(x)| dx = 0, lim
ε→0+

∫
Qν(x0,ε)

|∇u(x)−∇vJ(x)| dx = 0, (4.13)

lim
ε→0+

|D2u|(Qν(x0; ε))

εN−1
= |[∇u](x0)|, (4.14)

dF(u, U ; ·)
dHN−1bS(∇u)

(x0) = lim
ε→0+

m(u, U ;Qν(x0; ε))

εN−1
, (4.15)

dF(vJ , O; ·)
dHN−1bS(∇u)

(x0) = lim
ε→0+

m(vJ , O;Qν(x0; ε))

εN−1
, (4.16)

lim
ε→0+

1

εN−1

∫
Qν(x0;ε)

|U |dx = 0. (4.17)

Select a point x0 ∈ S(∇u) such that the above properties hold. Apply Corollary 4.5
with v := vJ , V := O and λ := HN−1 S(∇u) to deduce that∣∣∣∣ lim

ε→0+

m(vJ , O;Qν(x0, ε))

εN−1
− lim
ε→0+

m(u, U ;Qν(x0, ε))

εN−1

∣∣∣∣
≤ C lim sup

δ→1−
lim sup
ε→0+

GJ(ε, δ, u, vJ , U),
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where

GJ(ε, δ, u, vJ , U) = C

{
ε2 + ε(1− δN ) +

|D2u|(Qν(x0, ε) \Qν(x0, δε))

εN−1

+|[∇u](x0)|(1− δN−1) +
1

(1− δ)2

1

ε

∫
Qν(x0,ε)

|u(x)− vJ(x)| dx

+
1

(1− δ)

∫
Qν(x0,ε)

|∇u(x)−∇vJ(x)| dx+ ε

∣∣∣∣∣
∫
Qν(x0,ε)

U dx

∣∣∣∣∣
+

∣∣∣∣∣ 1

εN−1

∫
Qν(x0,ε)\Qν(x0,εδ)

U dx

∣∣∣∣∣
}
.

By (4.14) we find

0 ≤ lim sup
δ→1−

lim sup
ε→0+

|D2u|(Qν(x0, ε) \Qν(x0, δε))

εN−1
≤ lim sup

δ→1−
|[∇u](x0)|(1− δN−1) = 0,

while from (4.17) we obtain

lim sup
ε→0+

∣∣∣∣∣ 1

εN−1

∫
Qν(x0,ε)\Qν(x0,εδ)

U dx

∣∣∣∣∣ ≤ lim
ε→0+

1

εN−1

∫
Qν(x0,ε)

|U | dx = 0,

and thus, using Eq. (4.13), we conclude that

lim sup
δ→1−

lim sup
ε→0+

GJ(ε, δ, u, vJ , U) = 0,

and hence the proof is completed.

5 Applications (SD2 integral representation)

We consider the functional defined for each A ∈ A(Ω) by

F0(u;A) :=


∫
A f0(x, u,∇u,∇2u) dx

+
∫
S(∇u)∩A g0(x, u,∇u+,∇u−, ν∇u) dHN−1 if u ∈ SBH(Ω;Rd),

+∞ otherwise,
(5.1)

where the densities f0 and g0 satisfy the following hypotheses:
(G1) f0 : Ω× Rd × Rd×N × Rd×N×N → [0,+∞) is measurable in x and continuous in

all other variables and
1

C
|Λ| ≤ f0(x, u, ξ,Λ) ≤ C(1 + |Λ|)

for all (x, u, ξ,Λ) ∈ Ω× Rd × Rd×N × Rd×N×N and for some C > 0;
(G2) the function g0 : Ω× Rd × (Rd×N )2 × SN−1 → [0,+∞) is continuous and

1

C
|ξ − η| ≤ g0(x, u, ξ, η, ν) ≤ C(1 + |ξ − η|)
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for all (x, u, ξ, η, ν) ∈ Ω× Rd × (Rd×N )2 × SN−1 and for some C > 0;
The functional F : SD2(Ω)×A(Ω)→ [0,+∞) is defined by

F(u, U ;A) := inf

{
lim inf
n→+∞

F0(un;A) : un → u in L1(Ω;Rd),

∇2un
∗
⇀ U in M(Ω;Rd×N×N )

}
. (5.2)

Lemma 5.1. For every (u, U) ∈ SD2(Ω), A ∈ A(Ω) and every sequence {(un, Un)} ⊂
SD2(Ω) such that un → u in L1(Ω;Rd) and Un

∗
⇀ U in in M(Ω;Rd×N×N ),

F(u, U ;A) ≤ lim inf
n→∞

F(un, Un;A).

Proof. Fix a sequence {(un, Un)} ⊂ SD2(Ω) such that un → u in L1 and Un
∗
⇀ U . For

every (un, Un) we can pick a sequence {(un,k, Un,k)} ⊂ SD2(Ω) such that un,k → un in L1

and Un,k
∗
⇀ Un as k →∞ and

lim inf
k→∞

F0(un,k, Un,k;A) ≤ F(un, Un;A) +
1

n
.

By diagonalizing we find sequences vn := un,kn and Vn := vn,kn such that vn → u in L1,

Vn
∗
⇀ U as n→∞, and

lim inf
n→∞

F0(vn, Vn;A) ≤ lim inf
n→∞

F(un, Un;A)

and thus
F(u, U ;A) ≤ lim inf

n→∞
F(un, Un;A).

Lemma 5.2. The functional F is local, i.e. for all A ∈ A(Ω), if u = v and U = V LN
a.e. x ∈ A then F(u, U ;A) = F(v, V ;A).

Proof. Let A, u, U, v and V be as in the statement of the lemma. For every sequence
{(un, Un)} ⊂ SD2(Ω) such that un → u in L1(A) and Un

∗
⇀ U , we also have un → v in

L1(A) and Vn
∗
⇀ V . Thus

F(u, U ;A) ≥ F(v, V ;A),

and by symmetry we conclude that

F(u, U ;A) = F(v, V ;A).

Lemma 5.3. Assume hypotheses (G1) and (G2) hold. For every (u, U) ∈ SD2(Ω) and
for every A ∈ A(Ω) we have

1

C

(
‖U‖L1(A) + |D2u|(A)

)
≤ F(u;A) ≤ C

(
LN (A) + ‖U‖L1(A) + |D2u|(A)

)
where C > 0. Moreover, for every u ∈ BH(Ω;Rd) the functional F(u; ·) is the restriction
to A(Ω) of a Radon measure.
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Proof. We note that hypotheses (G1) and (G2) imply that

1

C
|D2u|(A) ≤ F0(u;A) ≤ C(LN (A) + |D2u|(A))

for every u ∈ SBH(Ω;RN ) and A ∈ A(Ω). For any (u, U) ∈ SD2(Ω) and any δ > 0, we

can find un ∈ SBH(Ω;Rd) such that un → u in L1, ∇2un
∗
⇀ U , and

F(u, U ;A) ≥ lim inf
n→∞

F0(un;A)− δ.

On one hand, this implies that

F(u, U ;A) ≥ lim inf
n→∞

1

C
|D2un|(A)− δ ≥ 1

C
|D2u|(A)− δ,

and letting δ → 0 we have

F(u, U ;A) ≥ 1

C
|D2u|(A). (5.3)

On the other hand, we obtain

F(u, U ;A) ≥ lim inf
n→∞

1

C
|D2un|(A)− δ ≥ lim inf

n→∞

1

C
‖∇2un‖L1(A) − δ ≥

1

C
‖U‖L1(A) − δ

and, again letting δ → 0, we have

F(u, U ;A) ≥ 1

C
‖U‖L1(A).

Averaging this with (5.3), we deduce that

F(u, U ;A) ≥ 1

C

(
‖U‖L1(A) + |D2u|(A)

)
.

To prove the upper bound, we consider the sequence {un} constructed in the Approxima-

tion Theorem, Theorem 3.2, which satisfies un → u in L1, ∇2un
∗
⇀ U and

sup
n
|D(∇un)|(A) ≤ C

(
|D(∇u)|(A) + ‖U‖L1(A)

)
.

Then we have

F(u, U ;A) ≤ lim inf
n→∞

F0(un;A) ≤ lim inf
n→∞

C
(
LN (A) + |D(∇un)|(A)

)
≤ C

(
LN (A) + |D(∇u)|(A) + ‖U‖L1(A)

)
.

Finally, we will prove that for (u, U) ∈ SD2(Ω), F(u, U ; ·) is the restriction to A(Ω)
of a Radon measure. We will apply the coincidence criterion, Lemma 2.3. Since item (ii)
follows directly from the fact that F0(u, ·) is a Radon measure and item (iii) follows from
the growth condition that we have just proved, it only remains to prove that for any open
sets A,B,C ∈ A(Ω) with A ⊂ B ⊂ C we have

F(u, U ;C) ≤ F(u, U ;C \A) + F(u, U ;B).
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To see this, for ε > 0 we choose vn ∈ BH(Ω;Rd) and wn ∈ BH(Ω;Rd) as in the definition
of F(u, U ; ·) (perhaps along a subsequence) so that

lim
n→∞

F0(vn, C \A) ≤ F(u, U ;C \A)− ε (5.4)

and
lim
n→∞

F0(wn, B) ≤ F(u, U ;B)− ε.

We will use a slicing argument in order to construct (up to a subsequence) a sequence
{un} ⊂ BH(C;Rd) as in the definition of F(u, U ; ·) so that

lim inf
n→∞

F0(un;C) ≤ lim
n→∞

F0(vn, C \A) + lim
n→∞

F0(wn, B).

Let δ > 0 be so small that

Sδ := {x ∈ B : dist(x,A) < δ} ⊂⊂ B.

Given k ∈ N we can decompose Sδ \A into a disjoint union of strips, to be precise we write

Sδ \A =

k⋃
i=1

Li,k,

where

Li,k =

{
x ∈ Sδ :

(i− 1)δ

k
< dist(x,A) ≤ iδ

k

}
.

By coercivity of F0, we have

sup
n
|D(∇vn)|(C \A) + sup

n
|D(∇wn)|(B) ≤M

for some M <∞, and thus

sup
n

k∑
i=1

(|D(∇vn)|+ |D(∇wn)|) (Li,k) ≤M.

We remark that since there are only finitely many values of i and infinitely many values
of n, there must be some fixed i such that

(|D(∇vn)|+ |D(∇wn)|) (Li,k) ≤
M

k

for infinitely many n ∈ N. Thus for any k, there is a ik ∈ {1, . . . , k} and a subsequence

{n(k)
j } ⊂ {n} such that(

|D(∇v
n
(k)
j

)|+ |D(∇w
n
(k)
j

)|
)

(Lik,k) ≤
M

k
, ∀j, k ∈ N.
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We consider a smoooth cutoff function φk ∈ C∞c (B; [0, 1]) such that {0 < φk < 1} ⊂ Lik,k,
φk(x) = 0 if dist(x,A) ≤ ik−1

k δ, φk(x) = 1 if dist(x,A) ≥ ik
k δ and

‖∇φk‖∞ ≤ Ck, ‖∇2φk‖∞ ≤ Ck2.

For x ∈ C, we define
uj,k = φkvn(k)

j

+ (1− φk)wn(k)
j

.

Then we have

F0(uj,k;C) ≤ F0(v
n
(k)
j

;C \A) + F0(w
n
(k)
j

;B) + F0(uj,k;Lik,k),

and the last term is bounded by

F0(uj,k;Lik,k) ≤C
(
LN (Lik,k) + k2

∫
Lik,k

|v
n
(k)
j

− w
n
(k)
j

|dx+ k

∫
Lik,k

|∇v
n
(k)
j

−∇w
n
(k)
j

|dx

+ |D(∇v
n
(k)
j

)|(Lik,k) + |D(∇w
n
(k)
j

)|(Lik,k)
)

≤C
(

1

k
+ k2

∫
Lik,k

|v
n
(k)
j

− w
n
(k)
j

|dx+ k

∫
Lik,k

|∇v
n
(k)
j

−∇w
n
(k)
j

|dx
)
.

Since vn → u and wn → u in W 1,1(B \A), for any k we can choose an element n
(k)
jk

of n
(k)
j

so that the map k 7→ n
(k)
jk

is increasing and∫
B\A
|v
n
(k)
jk

− w
n
(k)
jk

|dx = o(1/k2)

and ∫
B\A
|∇v

n
(k)
jk

−∇w
n
(k)
jk

|dx = o(1/k).

With this choice we have that

lim inf
k→∞

F0(ujk,k;Lik,k) = 0.

Since vn → u in L1(C \ A), wn → u in L1(B) and ∇2vn
∗
⇀ U in C \ A, ∇2wn

∗
⇀ U in

B, we must have that ujk,k → u in L1(C) and ∇2ujk,k
∗
⇀ U in C. Thus, by definition of

F(u, U ; ·), we conclude

F(u, U ;C) ≤ lim inf
k→∞

F0(ujk,k;C) ≤ lim
k→∞

F0(v
n
(k)
jk

;C \A) + lim
k→∞

F0(w
n
(k)
jk

;B)

≤ F(u, U ;C \A) + F(u, U ;B)− 2ε.

Sending ε→ 0, we are done.
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Theorem 5.4. Assume (G1) and (G2) hold and let F be the functional defined by (5.2).
Then, there exist functions f : Ω × Rd × Rd×N × Rd×N×N × Rd×N×N → [0,∞) and
g : Ω× Rd × Rd×N × Rd×N × SN−1 → [0,∞) such that

F(u, U ;A) :=

∫
A
f(x, u(x),∇u(x),∇2u(x), U) dx

+

∫
S(∇u)∩A

g(x, u(x),∇u+(x),∇u−(x), ν∇u(x)) dHN−1(x),

for all u ∈ SBH(Ω;Rd) and A ∈ A(Ω).

Proof. We note that by Lemmas 5.1, 5.2 and 5.3, the functional F satisfies the hypotheses
of Theorem 4.6, and so the integral representation result follows immediately.

6 Applications (SBH, BH integral representation)

In this section we obtain integral representation results for abstract lower semicontinuous
functionals on SBH and BH. Consider a functional

F : BH(Ω;Rd)×A(Ω)→ [0,+∞] (6.1)

satisfying the following hypotheses:
(I1) F(u; ·) is the restriction to A(Ω) of a Radon measure,
(I2) F(·;A) is L1(A,Rd)-lower semicontinuous,
(I3) F is local, i.e., for all A ∈ A(Ω) if u = v LN a.e. in A then F(u;A) = F(v;A),
(I4) there exists a constant C > 0 such that

1

C
|D2u|(A) ≤ F(u;A) ≤ C(LN (A) + |D2u|(A)).

Given (u,A) ∈ BH(Ω;Rd)×A(Ω) we introduce

A(u;A) :=
{
v ∈ BH(Ω;Rd) : spt (u− v) ⊂⊂ A

}
, (6.2)

and
m(u;A) := inf{F(v,A) : v ∈ A(u;A)}. (6.3)

As a corollary of Theorem 4.6, we have the following SBH representation theorem.

Theorem 6.1. Under hypotheses (I1), (I2), (I3) and (I4), for every u ∈ SBH(Ω;Rd) and
A ∈ A(Ω) we have

F(u;A) =

∫
A
f(x, u,∇u,∇2u) dx+

∫
S(∇u)∩A

h(x, u,∇u+,∇u−, ν∇u) dHN−1,

where

f(x0, g,G,Σ) := lim
ε→0+

m(g +G(· − x0) + 1/2Σ(· − x0, · − x0);Q(x0, ε))

εN
,
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h(x0, g, L,H, ν) := lim
ε→0+

m(g + uL,H,ν(· − x0);Qν(x0, ε))

εN−1
,

for all x0 ∈ Ω, g ∈ Rd, G,H,L ∈ Rd×N ,Σ ∈ Rd×N×N , ν ∈ SN−1, and where

uL,H,ν(y) :=

{
Ly if y · ν > 0,
Hy otherwise.

In the case where the functional F is invariant under affine translations of u, we can
use this result to upper bound F on the space BH.

Corollary 6.2. Let F satisfy hypotheses (I1), (I2), (I3), (I4), and further assume that for
every affine function

v(x) := p+Ax

for p ∈ Rd, A ∈ Rd×N , we have

F(u; ·) = F(u+ v; ·).

Then for every u ∈ SBH(Ω;Rd) and A ∈ A(Ω) we have

F(u;A) =

∫
A
f(x,∇2u) dx+

∫
S(∇u)∩A

h(x,∇u+ −∇u−, ν∇u) dHN−1

where, with an abuse of notation, we write f(x,Σ) := f(x, 0, 0,Σ) and h(x, J, ν) :=
h(x, 0, 0, J, ν). Moreover, for u ∈ BH(Ω;Rd) and A ∈ A(Ω) we have

F(u,A) ≤
∫
A
f(x,∇2u) dx+

∫
A
f∞

(
x,

dDs(∇u)

d|Ds|(∇u)

)
d|Ds(∇u)|

where f∞ is the recession function defined by

f∞(x,Σ) = lim
t→∞

f(x, tΣ)

t
.

Proof. The assumption that F is affine invariant implies that m is also affine invariant.
Thus for any x0 ∈ Ω, g ∈ Rd, G ∈ Rd×N , Σ ∈ Rd×N×N , ν ∈ SN−1, we have

f(x0, g,G,Σ) = f(x0, 0, 0,Σ)

and for any x0 ∈ Ω, g ∈ Rd, L,H ∈ Rd×N , ν ∈ SN−1 we have

h(x0, g, L,H, ν) = g(x0, 0, 0, H − L, ν).

In particular, we deduce that for every u ∈W 2,1(Ω;Rd)

F(u;A) =

∫
A
f(x,∇2u) dx.
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The relaxation of such functionals to BH is the subject of [11], where we get an integral
representation of the relaxation, to be precise

inf

{
lim inf
n→∞

F(un;A) :, un ∈W 2,1(Ω;Rd), un → u, sup
n
‖un‖W 2,1 <∞

}
=

∫
A
Q2f(x,∇2u) dx+

∫
A

(Q2f)∞
(
x,

dDs(∇u)

d|Ds|(∇u)

)
d|Ds(∇u)| (6.4)

for every u ∈ BH(Ω;Rd), A ∈ A(Ω), where Q2f is the 2-quasiconvex envelope of f . In
this case, since F is lower semicontinuous, we must have that f is 2-quasiconvex as shown
in [1], and thus Q2f = f . Thus for every u ∈ BH(Ω;Rd) we may take a recovery sequence
for the relaxation {un} ⊂W 2,1(Ω;Rd) such that un → u in L1 and

lim
n→∞

F(un;A) =

∫
A
f(x,∇2u) dx+

∫
A
f∞

(
x,

dDs(∇u)

d|Ds|(∇u)

)
d|Ds(∇u)|

to conclude from lower semicontinuity of F that

F(u;A) ≤
∫
A
f(x,∇2u) dx+

∫
A
f∞

(
x,

dDs(∇u)

d|Ds|(∇u)

)
d|Ds(∇u)|.

We can push this further under a stronger continuity assumption on F . If F is contin-
uous with respect to area-strict convergence, (see [12]), then this upper bound is actually
sharp.

Definition 6.3. We say that a sequence of signed measures {µ(n)} ⊂ M(Ω;RN ) converges

area-strictly to µ if µ(n) ∗⇀ µ and

lim
n→∞

∫
Ω

√
1 +

∣∣∣∣dµ(n)

dLN

∣∣∣∣2dx+ |µ(n)
s |(Ω)

 =

∫
Ω

√
1 +

∣∣∣∣ dµdLN
∣∣∣∣2dx+ |µ|(Ω).

This condition is actually very natural for BH lower semicontinuous integral function-
als. Indeed, Theorem 2.14 in [11] shows that 2-quasiconvex potentials along with their
recession function of the form (6.4) are automatically area-strict continuous. In the first
order global method result [4], the area-strict continuity assumption is not needed, but
once we have a potential function for the integral relaxation, we can see that it is automat-
ically area-strict continuous by using the results in [12]. Thus in the first order case, an
assumption of area-strict continuity is innocuous, which motivates our assumption here.
With the assumption of area-strict continuity, we have the following:

Corollary 6.4. Let F satisfy hypotheses (I1), (I2), (I3), (I4) and further assume that for
every affine function

v(x) := p+Ax

for p ∈ Rd, A ∈ Rd×N , we have

F(u; ·) = F(u+ v; ·)
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and that for every u ∈ BH(Ω;Rd) and every sequence {un} ⊂ BH(Ω;Rd) so that un → u
in L1 and D(∇un)→ D(∇u) area-strictly, we have that

lim
n→∞

F(un; Ω) = F(u; Ω).

Then for every u ∈ BH(Ω;Rd) and A ∈ A(Ω) we have

F(u,A) =

∫
A
f(x,∇2u) dx+

∫
A
f∞

(
x,

dDs(∇u)

d|Ds|(∇u)

)
d|Ds(∇u)|.

Proof. Following the proof of Corollary 6.4, (I1), (I2), (I3), (I4) and the affine invariance
property give us a representation of F on W 2,1(Ω;Rd). For any u ∈ BH, we can use
Corollary 5.8 in [11] to construct a sequence {un} ⊂ W 2,1(Ω;Rd) so that un → u in L1

and D(∇un)→ D(∇u) area-strictly. Thus, by area-strict continuity, we have

F(u; Ω) = lim
n→∞

F(un; Ω). (6.5)

On the other hand, the functional

u ∈ BH(Ω;Rd) 7→
∫

Ω
f(x,∇2u) dx+

∫
Ω
f∞

(
x,

dDs(∇u)

d|Ds|(∇u)

)
d|Ds(∇u)| =: I(u; Ω)

is area-strict continuous on BH by Theorem 2.14 in [11] and agrees with F on W 2,1,
therefore

lim
n→∞

F(un; Ω) = lim
n→∞

I(un; Ω) = I(u; Ω).

This, together with (6.5), yields

F(u; Ω) =

∫
Ω
f(x,∇2u) dx+

∫
Ω
f∞

(
x,

dDs(∇u)

d|Ds|(∇u)

)
d|Ds(∇u)|

for every u ∈ BH(Ω;Rd).
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