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Abstract

The size and distribution of particles suspended within a fluid influence the rheology of the
suspension, as well as strength and other mechanical properties if the fluid eventually solidifies.
An important motivating example of current interest is foamed cements used for carbon stor-
age and oil and gas wellbore completion. In these applications, it is desired that the suspended
particles maintain dispersion during flow and do not coalesce or cluster. This paper compares
the role of mono- against poly- dispersity in the particle clustering process. The propensity of
hard spherical particles in a suspension to transition from a random configuration to an ordered
configuration, or to form localized structures of particles, due to flow is investigated by compar-
ing simulations of monodisperse and polydisperse suspensions using Stokesian Dynamics. The
calculations examine the role of the polydispersity on particle rearrangements and structuring
of particles due to flow, and the effects of the particle size distribution on the suspension viscos-
ity. A key finding of this work is that a small level of polydispersity in the particle sizes helps
to reduce localized structuring of the particles in the suspension. A suspension of monodis-
perse hard spheres forms structures at a particle volume fraction of approximately 47% under
shear but a 47% volume fraction of polydisperse particles in suspension does not form these
structures.
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1 Introduction

The motivation for this study is to better understand the viscoelastic properties of foamed well
cement, due to the addition of bubbles to the cement slurry. Foamed cement is created by dispersing
gas, usually an inert gas like nitrogen, into cement slurry to create a suspension composed of
bubbles and solid particles. Foamed cement is used in wellbores requiring a lower density cement,
such as wells drilled into weak or fractured formations [1]. In the wellbore, cement is placed
between the steel casing at the center of the well and the formation. Cement is used to isolate and
seal wells in carbon storage and hydrocarbon extraction and to support the casing. The process
of foaming the cement slurry lowers the density of the cement as necessary for the application,
without changing the cement chemistry and while maintaining its compressive strength.

Cement is a highly complex material with properties that change over time. The cement slurry is
made up of the cement clinker (a powdery mix of materials - primarily lime, silica, alumina, and
iron) that when mixed with water begins the chemical reaction in the form of a hydration process
[2]. During the hydration process the chemical and the physical properties of the cement slurry are
changing. However, during the induction period when the cement is placed in the wellbore, little
hydration occurs and the slurry properties remain fairly constant. We are interested in the foamed
cement properties during its placement in the wellbore.

The bubble sizes and their distribution play a key role in the properties of foamed cement, includ-
ing stability [2]. The American Petroleum Institute (API) recommends foamed cement slurries be
designed to have an added gas volume fraction below 35% at the placement depth for a stable foam
that will maintain the mechanical integrity and the proper zonal isolation [3]. Above 35% volume
fraction of gas, the permeability may increase to unacceptable levels, and the compressive strength
and the ability to support the casing could be compromised. Pressures vary throughout the cement
process due to different depths in the well; we, therefore, study a range of volume fractions (10% to
50%). The foam should also have well dispersed bubbles that remain suspended during placement
in the well without significant clustering, coalescence, or other undesirable configuration changes
until the cement fully hardens [1]. Clusters of bubbles in foamed cement could increase the perme-
ability once cured because the bubbles can become interconnected. If the bubbles become ordered
and form structures of closely configured bubbles in the set cement, they weaken the effectiveness
of the cement by forming weak points for crack formation, which creates pathways for fluid to
flow and compromises the strength of the cement [4, 5]. Cracks can also increase the permeability
beyond the acceptable levels to provide proper zonal isolation.

Foamed cement samples produced in the laboratory that have come to a steady flow condition
show bubble rearrangement due to flow and subsequent clustering of the bubbles [6]. Comparable
foamed cement samples that were captured before attaining a steady flow, show no clustering of the
bubbles which remained in a random configuration. It is therefore evident that the flow influences
the properties of the foamed cement.

Our aim here is to study the influence of size distributions on the final arrangement of the particles
under flow using numerical simulations. We use the Stokesian Dynamics method [7], in the more
efficient recent Fast Lubrication Dynamics (FLD) approximation [8–10]. This method enables us
to track the location of all the particles during the simulation, and thereby obtain insights into
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smaller scale phenomena such as the detailed particle spatial distribution and structuring. Particles
can arrange into structures, where the particles become closer together. Higher levels of structuring
will show the particles arrange in a single line of particles. Structuring of any kind could result in
weakness along the line of particles.

2 Approach to Mathematical Modeling of Suspensions

2.1 Background

In this section, we will provide a brief discussion of various approaches to mathematically model
a complex fluid which is composed of particles suspended in a fluid. In general, we can talk about
non-flowing multicomponent systems, such as composite materials (the different components can
undergo elastic or plastic deformations without involving any motion), or flowing multicomponent
materials such as coal or cement slurries, fluidization, etc. We will limit our discussion to a two-
component flowing system, composed of particles and a host fluid. The fluid can be either a gas or
a liquid and the particles can be rigid (such as sand) or deformable (such as drops or bubbles). It
is possible to study (model) these flows using continuum theories, statistical theories or numerical
simulations.

From a continuum mechanics perspective, there are a few ways to study a two-component (some-
times called a two-phase) system (see [11,12]). The first approach is used when the two components
interact with each and each component influences the motion and the behavior of the other com-
ponent. This is usually known as the Dense Phase approach, or the Eulerian (two-fluid) approach.
This method can be used to study fluidization, gas-solid flows, pneumatic conveying, and suspen-
sions, etc. These ideas can be traced back to the pioneering work of Truesdell in 1957 (see [13])
and in the context of continuum theories, they are named mixture theories (see the review articles
in references [14, 15] and the book [16]). For a recent review and discussion of the relevant is-
sues, see the two articles: [17] and [18]. The basic assumption is that at any instant of time, every
point in space is occupied by one particle from each constituent. The theory provides a means for
studying the motions of bodies composed of several constituents by generalizing the equations for
the mechanics of a single continuum . This method is probably the most comprehensive and the
most difficult method to use, since in general, it would involve solving partial differential equations
and requires many constitutive relations. When thermal, chemical, and electromagnetic effects are
ignored, and assuming no inter-conversion of mass between the two components, the governing
equations are the conservation equations for mass, linear momentum and angular momentum for
each component. These are given for the two constituents:

∂ρi

∂t
+ div(ρivi) = 0, where i = s, f (2.1)

Where s and f refer to the solid and fluid components, respectively, div is the divergence operator,
vi is the velocity vector, and ρi designates the density. The densities in the current and reference
configuration are related through the kinematical field φ(x, t), called volume fraction (sometimes
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referred to as porosity), such that:

ρs = (1− φ)ρsR (2.2)

ρf = φρfR (2.3)

Where 0 ≤ φ(x, t) ≤ φmax < 1. Thus when φ = 1, there are no particles and the suspension
is simply a pure fluid. Note that Equations (2.2) and (2.3) imply that the mixture is saturated.
Otherwise, the porosities are constrained by φs+ φf ≤ 1. The balance of linear momentum for the
two components is given by

ρi
divi

dt
= divσi + ρibi +mi, where i = s, f (2.4)

Where bi is the external body force, mi is the interaction forces, σi designate the partial stress
tensor and di(.)

dt
= ∂(.)

∂t
+ [grad(.)]vi. In the absence of couple stresses, the balance of angular mo-

mentum indicates that the total stress tensor for the mixture is symmetric. To solve these equations,
at least three constitutive relations are needed: two (tensor) equations for the two stress tensors and
one (vector) equation for the interaction forces, which could include terms such as drag, lift, rela-
tive acceleration (virtual mass), history effects, etc. (see [19, 20]). A point to notice is that in any
of these continuum-based theories, a new kinematical field, namely the volume fraction (concen-
tration, porosity) has been added to the list of the parameters of interests, namely, velocity, density,
and pressure. For problems involving heat transfer, temperature also need to be added. Similarly,
for problems dealing with chemical reactions or electro-magnetic effects additional fields will have
to be introduced. Furthermore, in these mixtures-based theories, the distinct characteristics of par-
ticles, such as size, shape, surface roughness, etc., do not enter the equations in a direct manner;
at best, some of the information can be included in some of the coefficients which appear in the
constitutive relations such as the drag force. There are, however, micro-continuum theories, where
a length scale can be introduced (see [21]).

In the second approach, the amount of the dispersed particles is so small that their motion does
not affect the motion of the host fluid. This occurs in applications such as atomization, sprays,
pollution, etc. This approach is known as the Dilute Phase or the Lagrangian approach. In this case,
there is a one-way coupling, namely the motion of the fluid affects the motion of the particles but not
the other way around. The equations which need to be solved simultaneously are the force equation
for the particles (which will include a source term due to the motion of the fluid, usually in the form
of interaction forces such as drag, which depends on the relative velocity) and the conservation of
mass and linear momentum equations for the fluid (see [22–24]). The constitutive parameters which
are needed are the stress tensor for the fluid component and the interaction forces. To obtain the
basic equation governing the motion of a particle suspended or entrained in a fluid, most researchers
start with the equation of motion of a single (spherical) particle in a fluid. Tchen [25] synthesized
the work of Basset, Boussinesq, Stokes, and Oseen on the motion of a sphere settling under the force
of gravity in a fluid at rest. The resulting equation is usually called the Basset–Boussinesq–Oseen
(BBO) equation. This equation went through a series of revisions and updates; it is generally
accepted that a three-dimensional form of the BBO equation in a nonuniform flow is given by
Maxey and Riley (1983) [26]:

4



Effects of Polydispersity on Structuring and Rheology in Flowing Suspensions (to appear in J. Appl. Mech.)
E. Rosenbaum, M. Massoudi, and K. Dayal

ms
dvs
dt

=mf
Dvf
Dt
− 1

2
mf

d

dt

{
vs(t)− vf (t)−

1

10
a2∇2vf

}
− 6πaµf

{
vs(t)− vf (t)−

1

6
a2∇2vf

}
+ 6πa2µf

∫ t

0

dτ
d
dt

{
vs(τ)− vf (τ)− 1

6
a2∇2vf

}
√
πνf (t− τ)

+ (ms −mf )g

(2.5)

where vs is the velocity of the particle, vf is the velocity of the fluid, a is the particle radius, g is the
acceleration of gravity, µf and νf are the dynamic viscosity and the kinematic viscosity of the fluid,
respectively. The second term on the right-hand side (RHS) of Equation (2.5) reflects the presence
of the virtual mass, the third term is the Stokes drag, the fourth term is the Basset history effects,
and the last term is the buoyancy. The inclusion of velocity gradients (the first term on the RHS)
results in modifications to the virtual mass, the Stokes drag, and the Basset history terms to account
for the effect of a nonuniform flow field. These velocity gradients correspond to the physical effect
known as Faxen forces [27].

In certain engineering applications, where we are interested in global or macroscopic behavior of
these suspensions, we model them as a single component fluid, usually represented by a single
non-linear constitutive relation (for the stress tensor) where the material properties are functions
of volume fraction of the particles. In these cases, we are not concerned about the amount of
particles (whether dilute or dense) in the suspension and usually we are interested in the (total)
flow rate, pressure drop, etc.; these can be obtained by solving the basic equations of motion. Also,
there is only one constitutive relation which is needed for the stress tensor of the suspension. This
approach, often called suspension rheology, in general cannot provide us with particle distributions,
deposition, etc., unless certain convection-diffusion type equations are also used (see [28]).

From the statistical mechanics point of view, sometimes a particle dynamics approach (simulation)
is used and sometimes a modified form of the kinetic theory of gases, as applied to rigid particles
are used. These two techniques, especially with faster and more efficient computers have become
more popular in the last few decade (see review articles dealing with the statistical theories by
Herrmann [29, 30] and kinetic theories application to granular materials by Goldhirsh [31], or
numerical simulation by Walton [32]).

In the next section, we will discuss and use the Stokesian Dynamics approach (a molecular dynamics-
like method) and how it can be used to study the flow of a suspension.

2.2 Model Assumptions

We make several assumptions about the system of interest.

First, the bubbles are assumed to be hard sphere particles. Laboratory experiments show that the
surfactants and stabilizers added to the base fluid maintain fairly spherical, stable, discrete bubbles
in the flow regime typically encountered in the well [33]. The surfactants also cause the bubbles to
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typically have minimal direct contact. It should be noted that treating bubbles as deformable elastic
objects is an area of active research, e.g., [34], and infeasible for the large systems required here.

Second, the suspending fluid (cement slurry) is considered Newtonian. It is generally accepted
that cement slurry has a yield stress and can behave in highly nonlinear manner [35, 36]. How-
ever, we emphasize that there exists no feasible way to simulate large collections of particles in
non-Newtonian fluids while accounting for all particle positions. Therefore, while our simulations
provide useful insights into some of the properties of the bubbles that control the real system be-
havior, particularly the clustering and structuring of bubbles, it is important to note that one should
expect qualitative and quantitative differences compared to experiments.

Third, the buoyancy of the bubbles is neglected. Unlike aqueous foam solutions where the bubbles
tend to rise due to buoyancy, bubbles in cement tend to remain in place unless they reach a critical
size. This has been observed experimentally [37, 38]: in laboratory and field applications, the
bubble sizes are kept below this critical size and were observed to remain where placed during
curing [37]. This is reasonable considering that cement is a yield-stress fluid, and the yield stress
must be overcome for the cement to flow around a bubble. In addition, the cement slurry particles,
which act as surface active foaming materials, help keep the bubbles entrained [39].

2.3 Stokesian Dynamics

In a suspension of particles, the motion of each particle is transmitted through the suspending fluid.
In the quasi-static (creeping flow) limit, this is felt immediately throughout the entire system by
all the other particles. Therefore long-range effects should be carefully considered. For a dilute
suspension of particles where the particles are far apart, the detailed shape and structure of the
particles does not matter to leading-order. The velocity disturbance of one particle decays like a
point force as 1/r2, where r is the radial distance from the particle [7]. When the particles are
close together, the interaction of each particle pair is dominated by a pairwise force which comes
from lubrication theory [40]. This force is on the order of 1/h for rigid particles with no-slip
surfaces, where h is the gap between the particle surfaces. As the gap between the particles gets
smaller, the force between them increases rapidly and the approaching particles cannot contact
in finite time. In the setting of interest, both the far-field and the near-field interactions must be
considered in hydrodynamic interactions. The Stokesian Dynamics method account for the far-
field interaction through multipole expansions and for the near-field interactions through pairwise
interactions [7]. This was later made more computationally efficient through the use of lubrication
theory for the near-field interactions [41]. The FLD method further increased the efficiency by
using fast approximate methods for the far-field interaction [8, 9]. The broader idea of developing
multiscale methods for long-range interactions by decomposing into far- and near- field and then
using multipole expansions for the far-field has been studied theoretically and numerically in the
context of bubbly fluids [42] and electromagnetic interactions [43–45].

In a Newtonian fluid when the inertial term is neglected, we obtain the Stokes flow regime. The
governing equation is a linear biharmonic equation, thereby allowing superposition. Given a flow
with multiple particles, the flow due to each particle is given by a fundamental solution denoted
by a Stokeslet, and the interaction between particles can be obtained by superposing appropriately
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the Stokeslets solutions. This enables an effective pairwise interaction between particles where the
influence of the mediating fluid is accounted through the Stokeslet. Bossis and Brady were the first
to develop this idea and put this into the framework of pairwise molecular dynamics to enable the
efficient simulation of suspensions [7, 46]. This method is denoted “Stokesian Dynamics”.

For the Stokes flow regime, the viscous forces dominate and the inertial forces have negligible
effects. The movement of a particle is governed by the equation [10, 46]:

m · dU
dt

= FH (2.6)

Here, U is the generalized velocity vector of the particles with entries corresponding to both linear
and angular velocities. The velocity vector therefore has 6 components, corresponding to linear
and angular velocities along the Cartesian directions, for each particle. Correspondingly, m is the
generalized moment of inertia matrix containing entries for mass as well as the rotational inertia
and, FH is the generalized force vector with entries for both force as well as moment. Contained
in this hydrodynamic force vector are then the 6 Cartesian components of the force and torque for
each particle.

Note that the hydrodynamic force FH accounts for the flow-induced forces as well as forces due to
other particles that are mediated through the fluid. Direct inter-particle forces, such as in charged
systems or when they come directly in contact, and forces due to Brownian motion are not con-
sidered. In this study, there are no direct inter-particle forces, and Brownian forces are neglected
because the particles are much bigger than the scale at which these are significant.

Consider a macroscopically uniform (i.e., affine) flow field v(x) = A·x + B, where A is the
velocity gradient tensor andB is the mean velocity. The symmetric rate-of-strain tensor is defined
E∞ = 1

2
(A +AT ). The spin tensor is defined by W = 1

2
(A −AT ) and the axial vector corre-

sponding to this skew-symmetric tensor is w. The generalized far-field velocity U∞ is defined by
B and w.

The hydrodynamic forces can be determined by the relationship between the particle velocities and
forces due to the suspending fluid by:(

FH

SH

)
= R ·

(
U∞ −U
E∞

)
(2.7)

The symmetric first moment of the force, SH , is called the Stresslet. R is the resistance matrix,
and contains the particle positions. The main outcome of Stokesian Dynamics and FLD is to more
efficiently computeR so that large numbers of particles in a suspension can be simulated.

Both [46] and [7] compared two methods of adding particle interactions for a suspension: first, by
constructing the mobility matrixM or by constructing the resistance matrix R1. The computation
time to constructR is significantly greater than forM, but the particles overlap in using the mobil-
ity matrix, and the physics are not preserved. The reason for this issue with theM matrix is that it
does not accurately capture the lubrication forces that prevent the particles from overlapping, and
thereforeM does not preserve the physics of the problem.

1R andM are not precisely inverses of each other but are closely related [40].
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Brady and Bossis first construct the grand mobility matrix,M∞, and invert it for an approximation
to the resistance matrix to determine the far-field interactions. Inverting M∞ approximates the
far-field many-body interactions efficiently. However,M∞ does not include the exact lubrication
forces. To account for the exact near-field lubrication interactions, a resistance matrix can be used
that has the exact two-body lubrication interactions, represented by R2B. However, this leads to
double counting of some lubrication terms which must be subtracted; this is represented by the
matrixR∞2B. This process can be represented by [7]:

R = (M∞)−1 +R2B −R∞2B (2.8)

Stokesian Dynamics preserves all the relevant physics of the problem but is computationally intense
for systems with a large number of particles. To allow for larger systems while still maintaining
the physics of the problem in accounting properly for far-field and near-field interactions, Fast
Lubrication Dynamics (FLD) was developed [8, 9].

2.4 Fast Lubrication Dynamics (FLD)

The Fast Lubrication Dynamics [8,9] explicitly incorporates the lubrication interactions, following
[41], but modifies the Stokesian Dynamics [7] to reduce the computation time. In FLD, the grand
resistance matrix, denoted RFLD, is the sum of the near-field pairwise lubrication interactions and
the far-field interactions from the diagonal components of an isotropic resistance tensor,RIso. The
lubrication terms come directly from [41].

The matrix RIso aims to approximate (M∞)−1 in an efficient manner. To achieve this, RIso is
assumed to have the form of a multiple of the identity matrix. The multiplicative factor – assumed
to be a function of the volume fraction – is obtained by curve-fitting the short-time self-diffusivity
results from FLD to those obtained from full Stokesian Dynamics. In this way, FLD aims to
preserve the physics of the accurate Stokesian Dynamics approach while making the computation
more efficient. The resistance matrix used in FLD is described by:

RFLD = RIso +R2B −R∞2B (2.9)

The full expressions of the lubrication force and torque were derived by [47], see also [40]. [41]
derive expressions from the lubrication solutions to describe the modes of motion of both particles
in the particle pair interaction.

We note below an important though subtle issue regarding the implementation of FLD in the molec-
ular dynamics code LAMMPS (described further below). [41] give the expressions for the lubri-
cation forces and torques of each particle in the pair interaction. Using these full expressions,
including all the log terms, is important to accurately simulate monodisperse hard spherical parti-
cles with no-slip on their boundaries that are only interacting through hydrodynamic forces.

However, LAMMPS uses truncated expressions that leave out some terms. The truncated expres-
sions in LAMMPS are generally used with other forces such as Brownian, colloidal, electrostatic,
and so on. The error due to the missing terms can be negligible if other interactions dominate. How-
ever, we find that it is important to use the full expressions when computing the relative viscosity.
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For instance, Figure 4 shows the relative viscosity as a function of volume fraction computed by
Stokesian Dynamics [7, 46], FLD with truncated expressions [8], Ball and Melrose [41], and our
FLD calculations. We notice, particularly as the volume fraction increases, that Stokesian Dynam-
ics, our FLD calculations, and [41] all have good agreement. In contrast, the FLD calculations with
the truncated expressions show increasingly significant deviations with the volume fraction.

2.5 Near-Field Lubrication Interactions for Particles of Different Sizes

Given a pair of particles 1 and 2, both with the radius a and a separation h between the particle
surfaces, we can then write the lubrication forces fi and torques gi on each of the particles following
[41]:

f1 = −f2 = −asqN · (v1 − v2)− ash
(
2

r

)2

P · (v1 − v2) +
(
2

r

)
ashn× P · (ω1 + ω2)

(2.10a)

g1 = −
(
2

r

)
ashn× P · (v1 − v2)− ashP · (ω1 + ω2)− apuP · (ω1 − ω2)− atwN · (ω1 − ω2)

(2.10b)

g2 = −
(
2

r

)
ashn× P · (v1 − v2)− ashP · (ω1 + ω2) + apuP · (ω1 − ω2) + atwN · (ω1 − ω2)

(2.10c)

n is the unit vector directed along the line connecting the center of particle 1 pointing toward
particle 2, N := n ⊗ n, and P := I − N. v and ω are the velocity and the angular velocity,
respectively, of the particles. The expressions in (2.10) provide the components of R2B. Noting
that the left side – f , g – in (2.10) corresponds to the generalized force FH , and is linearly related
to v,ω that correspond to the generalized velocity U .

Particle pairs have four modes of interaction that have been termed squeeze (sq), shear (sh), pump
(pu), and twist (tw). These are shown schematically in Figure 1.

For two particles that have the same radius a, [41] derived the dominant pair interactions by first
defining:

asq = 6πµa

[
1

4h
+

9

40
log

1

h
+

3

112
h log

1

h

]
(2.11a)

ash = πµa3

[
(2 + h)2

4
log

1

h

]
(2.11b)

apu = 8πµa3
[

3

160
log

1

h
+

63

4000
h log

1

h

]
(2.11c)

µ is the suspending fluid viscosity without the particles. The twist term from [41] was not included
for our simulations as the contribution is negligible, i.e. atw = 0.
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Figure 1: Particle pair interactions are shown for four motions of particle a relative to particle b.

For two particles with unequal radii a and b, the linear resistance depends on the ratio β = b
a
. [40]

give the equations for the force and torque on particle a, which is moving as shown in Figure 1, and
particle b which is stationary. To determine the shearing terms, it is important to combine properly
the shearing and shearing pump motion, following the description in [41]. To obtain the ash term,
the force on particle a due to pure shearing motion must be multiplied by (2+h)2

4
to include the

Lorentz relationships as [41] have included in the Equations of 2.10. To obtain apu, g11 and g12
(from [47]) were combined (i.e. g11 + g12) as done in [41].

The equations for asq, ash, apu, generated from the solutions shown in [40], and following [41] are
now:

asq = 6πµa

[
β2

(1 + β)2
1

h
+

1 + 7β + β2

5(1 + β)3
log

1

h
+

(
1 + 18β − 29β2 + 18β3 + β4

21 (1 + β)4

)
h log

1

h

]
(2.12a)

ash = 6πµa3
(
1 + h+

1

4
h2
)[

4β (2 + β + 2β2)

15 (1 + β)3
log

1

h
+

4 (16− 45β + 58β2 − 45β3 + 16β4)

375 (1 + β)4
h log

1

h

]
(2.12b)

apu = 8πµa3

 4− 1
β2

80
(
1 + 1

β

) log
1

h
+

132 + 24 1
β
− 11 1

β2 + 24 1
β3 − 43 1

β4

2000
(
1 + 1

β

)2 h log
1

h

 (2.12c)

We use these expressions in (2.10) to obtainR2B for the case of two non-identical particles.

3 Numerical Simulations and Results

LAMMPS2 – the Large-scale Atomic/Molecular Massively Parallel Simulator – is an open-source
classical (non-quantum) molecular dynamics code developed and maintained at Sandia National
Labs [48]. We use LAMMPS with the FLD method3.

2lammps.sandia.gov
3As noted previously, we have extended LAMMPS to include the full expression for lubrication terms from (2.12).
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Figure 2: The particles are sheared in the direction shown and the images below are shown from
the side view and looking through the whole sample.

3.1 Implementation of the Shearing Flow

Three dimensional simulations were performed using the Lees-Edwards periodic boundary condi-
tions [49]. The velocity of each particle is a function of its position in the y-direction for strains
imposed in the xy-direction. When a particle crosses the simulation boundary, the velocity is
remapped to correspond to the new position in the simulation box4. The different suspensions were
sheared as shown in Figure 2 until the stress had reached a constant value and a strain of 200 was
reached. It was shown through testing different time steps, ∆t (time units) that the dimensionless
time step should be kept below 0.002 for the FLD simulations. An explicit time integration was
used.

For the quasi-static setting, the only physical parameter is the total strain or the product of strain
rate and timestep, γ̇ (1/time units) ×∆t. For a given value of γ̇ ×∆t, the time-history of the stress
and viscosity should be the same when time is appropriately re-scaled.

The stress in the system is calculated by summing the stresses computed for each particle. Ignoring
the kinetic energy contributions that are negligible here, the stress on a particle is defined by [51,
52]:

σi,αθ =
1

Vi
[−1

2

Np∑
n=1

(r1αF1θ + r2αF2θ)] (3.1)

Where α and θ run over the coordinate directions to compute the 6 components of the symmetric
stress tensor. The sum runs over the Np neighbors of the particle under consideration. r1 and
r2 are the positions of every particle pair that has pairwise interactions, and F1 and F2 are the
corresponding forces.

4See e.g. [50] for a discussion of this and [51] for the implementation.
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For a simulation box with volume, V , the stress from each particle is summed to determine the total
stress of the system of particles and is used to calculate the viscosity. With Lees-Edwards boundary
conditions imposed, the relative viscosity, or more accurately, the viscosity ratio, is then calculated
from the average total stress once the system has reached equilibrium:

µrelative =
µeffective

µ
=

∑
i σxy
γ̇µV

(3.2)

3.2 Generation of Initial Configurations of Particles

Particle systems were generated by randomly placing particles with a diameter of 1 in a 10×10×10
box to create different volume fractions (10%, 20%, 30%, 40%, 45%, 50%) of particles all having
the same system volume. Once the particles are randomly placed, a soft potential is used with
an energy minimization to remove overlaps in the initial configuration that are unphysical5. The
energy of the soft potential is [51]:

E = A

(
1 + cos

(
πr

rcut

))
, r < rcut (3.3)

where r is the distance between particles, A is the pre-factor in energy units that was initially set
low and ramped up, and rcut is the cut off distance.

To avoid effects from the system size, testing was done to determine the appropriate system size that
shows no further size dependence. The system sizes were progressively doubled in all coordinate
directions until an appropriate size without size-dependence was achieved. It was determined that
replicating the original system size four times in each direction eliminated system size effects.
Once this configuration was replicated, the particles were then moved around using the random
Brownian pair interaction in LAMMPS to make the particle arrangements random again. This step
was not part of the dynamics but was simply to create a random placement of the particles after
replicating the same arrangment of particles.

To create polydisperse particle systems, the monodisperse particle positions were used and the
particle size was increased and decreased randomly on the monodisperse particles to add slight
polydispersity to the particle sizes. Figure 3 shows the size distributions of the polydisperse par-
ticles. The system of polydisperse particles were then replicated and the positions randomized as
described above.

3.3 Relative Viscosity/Viscosity Ratio

The relative viscosity or viscosity ratio was calculated with Equation (3.2). Simulations are run
until an equilibrium is reached. The values of

∑
i σxy are an average over the time period where

the average stress is constant with time. The relative viscosity of monodisperse hard sphere particle
suspensions as a function of volume fraction is shown in Figure 4. The values of [41], the more

5We emphasize that the soft potential is used only in generating a physical initial configuration, and plays no role
once the simulation begins.

12



Effects of Polydispersity on Structuring and Rheology in Flowing Suspensions (to appear in J. Appl. Mech.)
E. Rosenbaum, M. Massoudi, and K. Dayal

Figure 3: Particle size distribution of the slightly polydisperse particles.

accurate Stokesian Dynamics of [7, 46], and the FLD with truncated expressions of [8] are shown
in black. Ball and Melrose simulated hard sphere suspensions using just the squeeze term so only
volume fractions as low as 20% could be simulated. The squeezing force dominates in close-range
interactions but Ball and Melrose were able to simulate hard sphere suspensions at 20% and higher
and the results compare well to higher accuracy simulation methods, such as Stokesian Dynamics
[7,46]. To avoid particle overlaps, they utilize a smaller and smaller time step allowing particles to
approach close to each other without overlap during the simulations, and so preserve the physics of
the problem. Stokesian Dynamics should give the most accurate results but the computation time
of Stokesian Dynamics limits the number of particles that can be used. To reduce computation
time, the FLD method was then developed. The original FLD method implemented into the current
distribution of LAMMPS includes truncated versions of Equations (2.11a), (2.11b), and (2.11c)
to only include up to the first log term in each Equation. The truncated FLD pair interactions –
that are the current implementation in LAMMPS (Original FLD) – resulted in higher values and
match those reported in [8]. The relative viscosity calculated from simulations performed with the
truncated resistance terms deviate from the results of Ball and Melrose and Stokesian Dynamics,
especially at higher volume fractions. However, when we implemented the correct full expressions
for the resistance terms into LAMMPS, the match between our results and Stokesian Dynamics
was closer, even at the higher volume fractions.

Three different simulation box strain rates were tested to determine the influence of the shear rate.
The same time step was used in all three cases. The same input configurations of particles was used
for all three simulation sets. The simulations run with γ̇ × ∆t values of 1 × 10−5 and 1 × 10−6

were all run until the strain reached 200 for all volume fractions shown. Due to time limitations on
the computing resource, the simulation sets run with γ̇ × ∆t of 1 × 10−7 were only strained to a
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Figure 4: The results reported previously are shown in black. The results of the simulations reported
here are shown in color. When we implemented the correct full expressions for the resistance terms
into LAMMPS, the match between our results and those of Ball and Melrose (1997) and Brady and
Bossis (1984) was closer, even at higher volume fractions, unlike Bybee (2009) and the original
LAMMPS FLD implementation. The−· (Original FLD implementation in LAMMPS) and− lines
(Simulations with full correct expressions) are second order polynomial fits through the simulation
data. Both simulation sets were run with the same initial particle data sets.

value of 20, which corresponds to the same length of simulation time as the γ̇ × ∆t = 1 × 10−6.
However, the values of stress used to calculate the viscosity is an average of those values once
the total stress have come to equilibrium, which occurs early on in the simulations. So even if
the simulations were not strained the same amount, the viscosity should not be affected in an
appreciable way. The results show that the variation of shear rates did not significantly impact
the relative viscosity for the cases tested and shown in Figure 5. In these simulations, we assume
that the particles maintain their spherical shape. Elongation of the particles due to shearing can
influence the viscosity. Particle surface properties also can impact the effects of shearing on the
viscosity. In cement slurry systems, for example, the rheology is dependent on shearing and resting
history. When cements are at rest, particles within the suspension can flocculate together due to
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random movements [35,36,53]. Shearing the suspension serves to break apart these particle clusters
and is thought to lend to the shear thinning that occurs with time [35, 36, 53]. In the simulations
shown herein, these properties are not included, which could be why the shear rates shown do not
have an impact on the relative viscosity.

Figure 5: Results are shown for three different strain rates. The simulation sets were run with the
same initial particle configurations.

Figure 6 compares the relative viscosity of the monodisperse particles to the slightly polydisperse
particles. To create the particle inputs of the polydisperse particle sets, the monodisperse particle
inputs were used but random particle sizes were decreased to a diameter of 0.802 and other particle
sizes were randomly increased to a diameter of either 1.0495 or 1.0396, and the remaining particles
kept a diameter of 1.0. The change in the particle sizes from the monodisperse particles with a
diameter of 1.0, was a slight change to explore the effects that the particle size distribution has on
the particle suspension properties. For the simulations explored here, the relative viscosity was not
significantly impacted by the polydispersity added. The stress per particle that is used to calculate
the relative viscosity is a function of the force between the particle pairs and the distance between
their centers. The difference in the particle sizes is considered in calculating the force (Equations
2.12) but there is not a lot of disparity in the particle sizes. The center to center distances between
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Figure 6: Results are shown for hard sphere suspensions of monodisperse (solid circles) and poly-
disperse (open circles) particles.

particles may also average out so that the same overall average stress that is calculated is not very
different between the polydisperse and monodisperse particles.

3.4 Dependence of Structuring on Monodisperse vs. Polydisperse

To explore the effects of the particle volume fraction on particle rearrangement and structuring, the
monodisperse particle placements from the 50% volume fraction, having a diameter of 1.0, was
used to create lower volume fractions of particles by reducing the particle diameter of all particles.
The volume fractions created correspond to 46%, 47%, and 48%, with diameters of 0.973, 0.980,
and 0.99, respectively, to determine at what volume fraction the structuring is significant. Simula-
tions of the monodisperse particles show structuring of the particles at a particle volume fraction of
around 47% as shown in Figure 7. These results are consistent with [41]. A 48% volume fraction
of particles had even more structuring. The relative levels of structuring between these volume
fractions can be seen in Figure 7 and Figure 8. Figure 7 shows the final particle configurations at
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the last timestep. All particles are shown in the figures and the perspective is a view from the side as
indicated in Figure 2. The particles are shown at half their size so that the structures in the systems
can be visualized. The colors of the particles show how many other particles are near by and are an
indication of the particle structuring in a local region. The red particles show a higher coordination
and level of structuring and the blue particles indicate no or little coordination with that particular
particle’s neighbors. In larger particle systems, the structuring may not be qualitatively or visu-
ally evident so the coordination number can be used to identify local regions of structuring. The
coordination number is the sum of neighbors located within a distance of 1.5 from particle center.
The coordination number for each particle was calculated using OVITO’s6 [54] computation of the
coordination number and corresponding radial distribution function for each system of particles.
Figure 8 shows the evolution of structuring over time. Three timesteps are shown in the figure
for the initial and the final configurations and at the midpoint. The color corresponds to the level
of coordination, where the red particles show a higher level of structuring and blue indicates less
coordination. The radial distribution function is also shown for each time step and corresponds to
the level of structuring of the whole system. The thinner, taller peak is indicative of more overall
system structuring.

Figure 7: Comparison of structuring of monodisperse particles at three different volume fractions.
The structuring is indicated by particles aligning along a single line and are seen as a single particle
from the view point. The structuring increases with volume fraction. The particle configurations
were made by reducing the monodisperse particle size from a 50% volume fraction of particles
so that all particles are starting from the same configuration. The final configuration is shown.
Particles are shown at half size.

By adding a small level of variation in the particle sizes to the same particle positions as the
monodisperse particles, a comparison can be made between the monodisperse particles and the
polydisperse. Because the monodisperse particles show structuring to begin and become notice-
able at a volume fraction of 47%, a 47% volume fraction was used for comparison between the
monodisperse and polydisperse particles. The polydisperse 47% by volume fraction of particles

6http://ovito.org/
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Figure 8: The Radial Distribution Function is shown at three different times, representing the initial
configuration, the configuration at the mid-point and the configuration at the end of the simulation.
The color corresponds to the particle coordination number. The side shown is the view indicated in
figure 2.

system, did not show particle clustering or structuring after shearing. Figure 9 shows the three-
dimensional simulation box and the particles at 47% by volume fraction of the monodisperse and
polydisperse systems. The initial, random configuration of particles is shown with the final config-
uration at the end of the simulations. The direction of shear is indicated in the figure and particle
alignment relative to the direction of shearing can be seen in the monodisperse system. The parti-
cles begin to align and form chains of particles. This can also be observed from the side view of
the simulation box shown in Figure 10. From this perspective, the particles can be seen to align in
a structured pattern similar to a crystal. One region of structuring is indicated with an ellipse. The
particles are shown at half size in the inlaid image, where it is evident that the alignment extends
throughout the length of the simulation box. In contrast, the polydisperse particles remain in a
random configuration after shearing to the same strain value. In Figures 9 and 10 the color is only
indicative of the particle size to emphasize the level of polydispersity relative to the monodisperse
particles. As discussed in the previous section, the slight polydispersity did not have an appreciable
effect on the relative viscosity, but there is a clear difference in the propensity to form structuring
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Figure 9: The initial and the final configurations of two 47% by volume fraction of particles sys-
tems. Monodisperse and polydisperse particle configurations are compared. The color corresponds
to the particle size.

under imposed shearing between the monodisperse and polydisperse particles.

4 Discussion

A key finding of this paper is that even a small amount of polydispersity in the particle size distri-
bution reduces structuring of the particles during a shearing Couette flow. Real systems, including
foamed cements, have natural polydispersity. The goal is to keep particles dispersed after the flow
has started and it seems that the polydispersity helps to maintain the dispersion. We also find that
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Figure 10: The initial and the final configurations of two 47% by volume fraction of particles sys-
tems. Monodisperse and polydisperse particle configurations are compared. The color corresponds
to the particle size. The side shown is the view indicated in figure 2. The insert shows the particles
at half size, where the structuring is more apparent. The circled region indicates one of the regions
where structuring occurred in the particles. The particles form a line of particles in the x-direction.

the relative viscosity was minimally affected by adding the small amount of polydispersity. The
effect of adding bubbles or particles to fluids is an increase in the viscosity, and therefore it is
beneficial that the relative viscosity is not dependent on this level of polydispersity.

A key assumption that we have made here is that the fluid is Newtonian. This assumption is
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essential for the Stokesian Dynamics method. In essence, the Newtonian assumption leads – in the
Stokes’ flow limit – to a linear problem. The linearity enables the use of superposition techniques
– using fundamental solutions such as Stokeslets – that are specific to linear problems.

Cement slurry, on the other hand, is well known to behave as a non-Newtonian fluid [35,36]. How-
ever, there exists no method analogous to Stokesian Dynamics for the non-Newtonian setting since
superposition cannot be used. Instead, one must solve, at a given time, the continuum mechanical
balance of linear momentum7with a nonlinear constitutive response, σ(x, t) = σ̂(φ,E), and with
a large number of bubbles / particles embedded in the solution domain. Further, one must compute
– at every time – the net force on all the bubbles / particles, and move them appropriately. Then
the balance of momentum equation must be solved again, and so on. This is clearly a completely
unfeasible problem.

A potential alternate approach for the future is to use homogenization methods, e.g. [55–59] that
have also been used to similar ends. While these have the important advantage that non-Newtonian
systems can tractably be solved numerically, they do not track individual bubbles / particles. There-
fore, detailed insights into the structuring process cannot easily be resolved using these methods.
An important goal for the future is to develop mixture theory-based models that include additional
continuum scale fields (or internal variables) that track the structuring, possibly following ideas
from [60].

We have focused our attention here on Couette flows using the Lees-Edwards method. Future work
will look at a more general class of flows that generalize the Lees-Edwards method [50, 61]. Like
the Lees-Edwards method, this general class of flows are also exact solutions of particle dynamics.

Ongoing experimental efforts have the ability to study the bubble sizes and their typical distribution
of sizes in the well, by producing foamed cement samples and then using Computed Tomography
scanning to quantify bubble sizes, their size distribution, and their initial distribution within the
sample relative to other bubbles [37,38]. Future work will continue to compare the particle dynam-
ics simulations with experimental observations.

It would be very interesting to investigate higher volume fractions. However, it is difficult to create
initial conditions of monodisperse particle systems of randomly placed particles above 50% volume
fraction in the approach used here. The maximum packing fraction of ordered spheres is roughly
∼ 34% to ∼ 74% – depending on sphere packing pattern [62] – and these packings are uniform.
A random arrangement of sphere packing when compressed has a maximum packing fraction of
∼ 64% [63]. Therefore, an initial condition with not too much polydispersity that approaches these
volume fractions, tends to become more ordered. Our current efforts involve the use of methods
to create lognormal particle size distributions of randomly placed particles that do not overlap, but
there are a number of unsolved challenges in achieving this.

7Here, σ is the stress field and v is the velocity field.
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