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Abstract. A bilevel training scheme is used to introduce a novel class of regularizers, providing

a unified approach to standard regularizers TGV 2 and NsTGV 2 . Optimal parameters and
regularizers are identified, and the existence of a solution for any given set of training imaging

data is proved by Γ-convergence. Explicit examples and numerical results are given.

Contents

1. Introduction 2
2. Notations and preliminary results 6
3. The space of functions with bounded PGV - seminorm 7
3.1. The space BVB and the class of admissible operators 7
3.2. The PGV - total generalized variation 8
4. Γ-convergence of functionals defined by PGV - total generalized variation seminorms 10
5. The bilevel training scheme with PGV - regularizers 15

E-mail addresses: elisa.davoli@tuwien.ac.at, fonseca@andrew.cmu.edu, dragonrider.liupan@gmail.com.

2010 Mathematics Subject Classification. 26B30, 94A08, 47J20.
Key words and phrases. image processing, optimal training scheme, first order differential operators, Γ-

convergence.

1



6. Training set Σ[A ] based on (A ,B) training operators pairs 17
6.1. A subcollection of Π characterized by (A ,B) training operators pairs 17
6.2. Training scheme with fixed and multiple operators A 22
7. Explicit examples and numerical observations 24
7.1. The existence of fundamental solutions of operators A 24
7.2. The unified approach to TGV 2 and NsTGV 2 - an example of Σ[A ] 25
7.3. Numerical simulations and observations 28
Acknowledgements 31
References 31

1. Introduction

Image processing aims at the reconstruction of an original “clean” image starting from a “distorted
one”, namely from a datum which has been deteriorated or corrupted by noise effects or dam-
aged digital transmission. The key idea of variational formulations in image-processing consists in
rephrasing this problem as the minimization of an underlying functional of the form

I(u) := ‖u− uη‖2L2(Q) +Rα(u),

where uη is a given corrupted image, Q := (−1/2, 1/2)N is the N -dimensional unit square (in
image processing we usually take N = 2, i.e., Q represents the domain of a square image) and Rα
is a regularizing functional, with α denoting the intensity parameter (which could be a positive
scalar or a vector). Minimizing the functional I allows to reconstruct a “clean” image based on
the functional properties of the regularizer Rα .

Within the context of image denoising, for a fixed regularizer Rα we seek to identify

uα,R := arg min
{
‖u− uη‖2L2(Q) +Rα(u) : u ∈ L2(Q)

}
.

An example is the ROF model ([30]), in which the regularizer is taken to be Rα(u) := αTV (u),
where TV (u) is the total variation of u (see, e.g. [1, Chapter 4]), α ∈ R+ is the tuning parameter,
and we have

uα,TV := arg min
{
‖u− uη‖2L2(Q) + αTV (u) : u ∈ L2(Q)

}
. (1.1)

In view of the coercivity of the minimized functional, the natural class of competitors in (1.1) is
BV (Q), the space of real-valued functions of bounded variation in Q . The trade-off between the
denoising effects of the ROF-functional and its feature-preserving capabilities is encoded by the
tuning parameter α ∈ R+ . Indeed, high values of α lead to a strong penalization of the total vari-
ation of u , which in turn determines an over-smoothing effect and a resulting loss of information
on the internal edges of the reconstructed image, while small values of α cause an unsatisfactory
noise removal.

In order to determine the optimal α , say α̃ , in [13, 14] the authors proposed a bilevel training
scheme, which was originally introduced in Machine Learning and later adopted by the imaging
processing community (see [10, 11, 15, 31]). The bilevel training scheme is a semi-supervised train-
ing scheme that optimally adapts itself to the given “clean data”. To be precise, let (uη, uc) be
a pair of given images, where uη represents the corrupted version and uc stands for the original



Page 3 Section 1

version, or the “clean” image. This training scheme searches for the optimal α so that the re-
covered image uα,TV , obtained in (1.1), minimizes the L2 -distance from the clean image uc . An
implementation of such training scheme, denoted by (T ), equipped with total variation TV is

Level 1. α̃ ∈ arg min
{
‖uα,TV − uc‖2L2(Q) : α ∈ R+

}
,

Level 2. uα,TV := arg min
{
‖u− uη‖2L2(Q) + αTV (u) : u ∈ BV (Q)

}
. (T -L2)

An important observation is that the geometric properties of the regularizer TV play an essential
role in the identification of the reconstructed image uα,TV and may lead to a loss of some fine texture
in the image. The choice of a given regularizer Rα is indeed a crucial step in the formulation of the
denoising problem: on the one hand, the structure of the regularizer must be such that the removal
of undesired noise effects is guaranteed, and on the other hand the disruption of essential details of
the image must be prevented. For these reasons, various choices of regularizers have been proposed
in the literature. For example, the second order total generalized variation, TGV 2

α , defined as

TGV 2
α (u) := inf

{
α0 |Du− v|Mb(Q;RN ) + α1 |(sym∇)v|Mb(Q;RN×N ) :

v ∈ L1(Q;RN ), (sym∇)v ∈Mb(Q;RN×N )
}
, (1.2)

has been characterized in [4], where Du denotes the distributional gradient of u , (sym∇)v :=
(∇v + ∇T v)/2, Mb(Q;RN×N ) is the space of bounded Radon measures in Q with values in
RN×N , α0 and α1 are positive tuning parameters, and α := (α0, α1). A further possible choice for
the regularizer is the non-symmetric counterpart of the TGV 2

α - seminorm defined above, namely
the NsTGV 2

α functional (see e.g., [34, 33]). It has been shown that a reconstructed image presents
several perks and drawbacks according to the different regularizers. An important question is thus
how to identify the regularizer that might provide the best possible image denoising for a given
class of corrupted images.

To address this problem, it is natural to use a straightforward modification of scheme (T ) by
inserting different regularizers inside the training level 2 in (T -L2). For example, one could set

Level 1. (R̃α) := arg min
{
‖uα,R − uc‖2L2(Q) : Rα ∈

{
αTV, TGV 2

α , NsTGV
2
α

}}
, (1.3)

Level 2. uα,R := arg min
{
‖u− uη‖2L2(Q) +Rα(u) : u ∈ L1(Q)

}
.

However, the finite number of possible choices for the regularizer within this training scheme would
imply that the optimal regularizer R̃α would simply be determined by performing scheme (T )
finitely many times, at each time with a different regularizer Rα . In turn, some possible texture
effects for which an “intermediate” (or interpolated) reconstruction between the one provided by,
say, TGV 2

α and NsTGV 2
α , might be more accurate, would then be neglected in the optimization

procedure. Therefore, one main challenge in the setup of such a training scheme is to give a mean-
ingful interpolation between the regularizers used in (1.3), and also to guarantee that the collection
of the corresponding functional spaces exhibits compactness and lower semicontinuity properties.

The aim of this paper is threefold. First, we propose a novel class of image-processing operators,
the PDE-constrained total generalized variation operators, or PGV 2

α,B , defined as
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PGV 2
α,B(u) := inf

{
α0 |Du− v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N ) :

v ∈ L1(Q;RN ), Bv ∈Mb(Q;RN×N )
}
, (1.4)

for each u ∈ L1(Q;RN ), where B is a linear differential operator (see Section 2 and Definition 3.5)
and α := (α0, α1), with α0, α1 ∈ (0,+∞). We also define the space of functions with bounded
second order PGV 2

α,B -seminorms

BPGV 2
α,B(Q) :=

{
u ∈ L1(Q) : PGV 2

α,B(u) < +∞
}
.

Note that if B := sym∇ , then the operator PGV 2
α,B defined in (1.4) coincides with the operator

TGV 2
α mentioned in (1.2). In fact, we will show that, under appropriate assumptions (see Definition

6.1), the class described in (1.4) provides a unified approach to some of the standard regularizers
mentioned in (1.3), generalizing the results in [8] (see Section 7.2). Moreover, the collection of func-
tionals described in (1.4) naturally incorporates the recent PDE-based approach to image denoising
formulated in [2] via nonconvex optimal control problem, thus offering a very general and abstract
framework to simultaneously describe a variety of different image-processing techniques.

The second main goal of this article is the study of a training scheme optimizing the trade-off
between effective reconstruction and fine image-detail preservation. That is, we propose a new
bilevel training scheme that simultaneously yields the optimal regularizer PGV 2

α,B(u) in the class

described in (1.4) and an optimal tuning parameter α , so that the corresponding reconstructed
image uα,B , obtained in Level 2 of the (T 2

θ )-scheme (see (T 2
θ -L2) below), minimizes the L2 -

distance from the original clean image uc . To be precise, in Sections 3, 4, and 5 we study the
improved training scheme T 2

θ for θ ∈ (0, 1), defined as follows

Level 1. (α̃, B̃) := arg min

{
‖uc − uα,B‖2L2(Q) : α ∈

[
θ,

1

θ

]
2, B ∈ Σ

}
, (T 2

θ -L1)

Level 2. uα,B := arg min
{
‖u− uη‖2L2(Q) + PGV 2

α,B(u), u ∈ BPGV 2
α,B(Q)

}
, (T 2

θ -L2)

where Σ is an infinite collection of first order linear differential operators B (see Definition 3.4
and Definition 5.1). We prove the existence of optimal solutions to (T 2

θ -L1) by showing that the
functional

Iα,B(u) := ‖u− uη‖2L2 + PGV 2
α,B(u) (1.5)

is continuous in the L1 topology, in the sense of Γ-convergence, with respect to the parameters α
and the operators B (see Theorem 4.2). A simplified statement of our main result (see Theorem
5.4) is the following.

Theorem 1.1. Let θ ∈ (0, 1) . Then, the training scheme (T 2
θ )admits at least one solution (α̃, B̃) ∈[

θ, 1
θ

]2 × Σ , and provides an associated optimally reconstructed image uα̃,B̃ ∈ BV (Q) .

The collection Σ of operators B used in (T 2
θ -L1) has to satisfy several natural regularity and

ellipticity assumptions, which are fulfilled by B := ∇ and B := sym∇ (see Section 7.2.1). The
general requirements on B that allow scheme (T 2

θ ) to have a solution are listed on Assumptions 3.2
and 3.3. Later in Section 6, as the third main contribution of this article, we provide in Definition
6.1 a collection of operators B satisfying Assumptions 3.2 and 3.3. A simplified statement of our
result is the following (see Theorem 6.3 for the detailed formulation).
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Theorem 1.2. Let B be a first order differential operator such that there exists a differential
operator A for which (A ,B) is a training operator pair, namely A admits a fundamental solution
having suitable regularity assumptions, and the pair (A ,B) fulfills a suitable integration-by-parts
formula (see Definition 6.1 for the precise conditions). Then B is such that the training scheme
(T 2
θ ) admits a solution.

The requirements collected in Definition 6.1 and the analysis in Section 6 move from the observation
that a fundamental property that the admissible operators B must satisfy is to ensure that the
set of maps v ∈ L1(Q;RN ) such that Bv is a bounded Radon measure (henceforth denoted by
BVB(Q;RN )) must embed compactly in L1(Q;RN ). In the case in which B coincides with ∇ or
sym∇ , a crucial ingredient is Kolmogorov-Riesz compactness theorem (see [7, Theorem 4.26] and
Proposition 6.4). In particular, for B = sym∇ the key point of the proof is to guarantee that
bounded sets F ⊂ BD(Q) satisfy

lim
|h|→0

‖τhf − f‖L1(RN ) = 0 uniformly in F ,

where τhf(·) := f(· − h). This in turn relies on the formal computation

τhf − f = δh ∗ f − f = δh ∗ (δ ∗ f)− (δ ∗ f) = δh ∗ ((curlcurlφ) ∗ f)− (curlcurlφ) ∗ f
= curlcurl ((δh ∗ φ− φ) ∗ f) ,

where φ is a fundamental solution for curlcurl , and where δ and δh denote the Dirac deltas
centered in the origin and in h , respectively. In the case in which B = sym∇ the conclusion then
follows from the fact that one can perform an “integration by parts” in the right-hand side of the
above formula, and estimate the quantity curlcurl ((δh ∗ φ− φ) ∗ f) by means of the total variation
of (sym∇)f and owing to the regularity of the fundamental solution of curlcurl . The operator
A in Theorem 1.2 plays the role of curlcurl in the case in which sym∇ is replaced by a generic
operator B . Definition 6.1 is given in such a way as to guarantee that the above formal argument
is rigorously justified for a pair of operators (A ,B).
Finally, in Section 7.2 we give some explicit examples to show that our class of regularizers PGV 2

α,B

includes the seminorms TGV 2
α and NsTGV 2

α , as well as smooth interpolations between them.

We remark that the task of determining not only the optimal tuning parameter but also the opti-
mal regularizer for given training image data (uη, uc), has been undertaken in [12] where we have
introduced one dimensional real order TGV r regularizers, r ∈ [1,+∞), as well as a bilevel training
scheme that simultaneously provides the optimal intensity parameters and order of derivation for
one-dimensional signals.

Our analysis is complemented by very first numerical simulations of the proposed bilevel training
scheme. Although this work focuses mainly on the theoretical analysis of the operators PGV 2

α,B

and on showing the existence of optimal results for the training scheme (T 2
θ ), in Section 7.3 a

primal-dual algorithm for solving (T 2
θ -L2) is discussed, and some preliminary numerical examples,

such as image denoising, are provided.

With this article we initiate our study of the combination of PDE-constraints and bilevel train-
ing schemes in image processing. Future goals will be:
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• the construction of a finite grid approximation in which the optimal result (α̃, B̃) for the
training scheme (T 2

θ )can be efficiently determined, with an estimation of the approximation
accuracy;

• spatially dependent differential operators and multi-layer training schemes. This will allow
to specialize the regularization according to the position in the image, providing a more
accurate analysis of complex textures and of images alternating areas with finer details with
parts having sharpest contours (see also [23]).

This paper is organized as follows: in Section 2 we collect some notations and preliminary results.
In Section 3 we analyze the main properties of the PGV 2

α,B -seminorms. The Γ-convergence result
and the bilevel training scheme are the subjects of Sections 4 and 5, respectively. We point out that
the results in Sections 3 and 4 are direct generalizations of the works in [5, 3]. The novelty of our
approach consists in providing a slightly stronger analysis of the behavior of the functionals in (1.5)
by showing not only convergence of minimizers under convergence of parameters and regularizers,
but exhibiting also a complete Γ-convergence result.
The expert Reader might skip Sections 3–5, and proceed directly with the content of Section 6.
Section 6 is devoted to the analysis of the space BVB for suitable differential operators B . The
numerical implementation of some explicit examples is performed in Section 7.3.

2. Notations and preliminary results

We collect below some notation that will be adopted in connection with differential operators. Let
N ∈ N be given, and let Q := (−1/2, 1/2)N be the unit open cube in RN centered in the origin and

with sides parallel to the coordinate axes. MN3

is the space of real tensors of order N ×N ×N .
Also, D′(Q,RN ) and D′(Q,RN×N ) stand for the spaces of distributions with values in RN and
RN×N , respectively, and RN+ denotes the set of vectors in RN having positive entries.

For every open set U ⊂ RN , the notation B will be used for first order differential operators
B : D′(U ;RN )→ D′(U ;RN×N ) defined as

(Bv)lj :=

N∑
i,k=1

Biljk
∂

∂xi
vk for every v ∈ D′(U ;RN ), l, j = 1, . . . , N, (2.1)

where ∂
∂xi

denotes the distributional derivative with respect to the i-th variable, and where Bi ∈
MN3

for each i = 1, . . . , N . We additionally write the symbol of B as

B[ξ] :=

N∑
i=1

ξiB
i for every ξ = (ξ1, . . . , ξN ) ∈ SN−1. (2.2)

Given a sequence {Bn}∞n=1 of first order differential operators and a first order differential operator

B , with coefficients
{
Bin
}∞
n=1

and Bi , i = 1, . . . , N , respectively, we say that Bn → B in `∞ if

‖Bn −B‖`∞ :=

N∑
i=1

∥∥Bin −Bi∥∥→ 0, (2.3)

where for B ∈MN3

, ‖B‖ stands for its Euclidean norm.
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3. The space of functions with bounded PGV - seminorm

3.1. The space BVB and the class of admissible operators. We generalize the standard total
variation seminorm by using first order differential operators B : D′(Q;RN ) → D′(Q;RN×N ) in
the form (2.1).

Definition 3.1. For every l ∈ N , we define the space of tensor-valued functions BVB(Q;RN ) as

BVB(Q;RN ) :=
{
u ∈ L1(Q;RN ) : Bu ∈Mb(Q,RN×N )

}
, (3.1)

and we equip it with the norm

‖u‖BVB(Q;RN ) := ‖u‖L1(Q;RN ) + |Bu|Mb(Q;RN×N ) . (3.2)

We refer to [28, 29] for some recents results on BVB -spaces for elliptic and cancelling operators, as
well as to [24] for a study of associated Young measures. We point out that in the same way in which

BV spaces relate to W 1,p -spaces, the spaces BVB are connected to the theory of W 1,p
B -spaces, cf.

[18, 19, 26, 27]. See also [21] for a related compensated-compactness study.
In order to introduce the class of admissible operators, we first list some assumptions on the operator
B .

Assumption 3.2. 1. The space BVB(Q;RN ) is a Banach space with respect to the norm defined
in (3.1).

2. The space C∞(Q,RN ) is dense in BVB(Q;RN ) in the strict topology. In other words, for every
u ∈ BVB(Q;RN ) there exists {un}∞n=1 ⊂ C∞(Q̄;RN ) such that

un → u strongly in L1(Q;RN ) and |Bun|Mb(Q;RN×N ) → |Bu|Mb(Q;RN×N ) .

3. (Compactness) The injection of BVB(Q;RN ) into L1(Q;RN ) is compact.

We point out that, for l = 1, Requirement 3 above is satisfied for B := ∇ .

The following compactness property applies to a collection of operators {Bn}∞n=1 .

Assumption 3.3. Let {vn,Bn}∞n=1 be such that Bn satisfies Assumption 3.2 for every n ∈ N ,
and

sup
{
‖Bn‖`∞ + ‖vn‖BVBn (Q;RN ) : n ∈ N

}
< +∞.

Then there exist B and v ∈ BVB(Q;RN ) such that, up to a subsequence (not relabeled),

vn → v strongly in L1(Q;RN ),

and

Bnvn
∗
⇀ Bv weakly∗ in Mb(Q;RN×N ).

Definition 3.4. We denote by Π the collection of operators B defined in (2.1), with finite dimen-
sional null-space N (B), and satisfying Assumption 3.2.

In Section 6 we will exhibit a subclass of operators B ∈ Π additionally fulfilling the compactness
and closure Assumption 3.3.
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3.2. The PGV - total generalized variation. We introduce below the definition of the PDE-
constrained total generalized variation seminorms.

Definition 3.5. Let u ∈ L1(Q) be given. For every α = (α0, α1) ∈ R2
+ and B : D′(Q;RN ) →

D′(Q;RN×N ), B ∈ Π, we consider the seminorm

PGV 2
α,B(u) := inf

{
α0 |Du− v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N ) : v ∈ BVB(Q;RN )

}
, (3.3)

where the space BVB is introduced in Definition (3.1).

We note that for all α ∈ R2
+ , the seminorms PGV 2

α,B are topologically equivalent. With a slight

abuse of notation, in what follows we will write PGV 2
B instead of PGV 2

α,B whenever the depen-

dence of the seminorm on a specific multi-index α ∈ R2
+ will not be relevant for the presentation

of the results.

We introduce below the set of functions with bounded PDE -generalized variation-seminorms.

Definition 3.6. We define

BPGV 2
B(Q) :=

{
u ∈ L1(Q) : PGV 2

1,B(u) < +∞
}
,

and we write

‖u‖BPGV 2
B(Q) := ‖u‖L1(Q) + PGV 2

1,B(u).

We next show that the PGV 2
B -seminorm is finite if and only if the TV -seminorm is.

Proposition 3.7. Let u ∈ L1(Q) and recall PGV 2
B(u) from Definition 3.5. Then, PGV 2

B(u) <
+∞ if and only if u ∈ BV (Q).

Proof. We notice that by setting v = 0 in (3.3), we have

PGV 2
B(u) ≤ |Du|Mb(Q;RN ) (3.4)

for every u ∈ L1(Q). Thus, if u ∈ BV (Q) then PGV 2
B(u) < +∞ .

Conversely, assume that PGV 2
B(u) < +∞ . Then, there exists v̄ ∈ BVB(Q) such that

PGV 2
B(u) ≥ |Du− v̄|Mb(Q;RN ) + |Bv̄|Mb(Q;RN×N ) − 1.

It suffices to observe that

|Du|Mb(Q;RN ) ≤ |Du− v̄|Mb(Q;RN ) + ‖v̄‖L1(Q;RN ) ≤ PGV 2
B(u) + 1 + ‖v̄‖L1(Q;RN ) < +∞.

�

We prove that the infimum problem in the right-hand side of (3.3) has a solution.

Proposition 3.8. Let u ∈ BV (Q). Then, for α ∈ R2
+ there exists a function v ∈ BVB(Q;RN )

attaining the infimum in (3.3).

Proof. Let u ∈ BV (Q) and, without loss of generality, assume that α = (1, 1). In view of Propo-
sition 3.7 we have PGV 2

B(u) < +∞ .
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The existence of a minimizer v ∈ L1(Q;RN ) with Bv ∈ Mb(Q;RN×N ) follows from the Direct
Method of the calculus of variations. Indeed, let {vn}∞n=1 ⊂ BVB(Q;RN ) be such that

|Du− vn|Mb(Q;RN ) + |Bvn|Mb(Ω;RN×N ) ≤ PGV
2
B(u) + 1/n

for every n ∈ N . Then,

‖vn‖L1(Q;RN ) ≤ |Du− vn|Mb(Q;RN ) + |Du|Mb(Q;RN ) ≤ PGV
2
B(u) + |Du|Mb(Q;RN ) + 1/n, (3.5)

and
|Bvn|Mb(Q;RN×N ) ≤ PGV

2
B(u) + 1/n, (3.6)

for every n ∈ N . In view of Assumption 3.2, and together with (3.5) and (3.6), we obtain a function
v ∈ L1(Q;RN ) with Bv ∈ Mb(Q;RN×N ) such that, up to the extraction of a subsequence (not
relabeled), there holds

vn → v strongly in L1(Q;RN ),

and
lim inf
n→∞

|Bvn|Mb(Q;RN×N ) ≥ |Bv|Mb(Q;RN×N ) .

The minimality of v follows by lower-semicontinuity.

�

We close this section by studying the asymptotic behavior of the PGV 2
B seminorms in terms of the

operator B for subclasses of Π satisfying Assumption 3.3.

Proposition 3.9. Let u ∈ BV (Q). Let {Bn}∞n=1 ⊂ Π and {αn}∞n=1 ⊂ R2
+ be such that Bn → B

in `∞ and
αn → α ∈ R2

+. (3.7)

Assume that {Bn}∞n=1 satisfies Assumption 3.3. Then

lim
n→∞

PGV 2
αn,Bn

(u) = PGV 2
α,B(u).

Proof. We first claim that
lim inf
n→∞

PGV 2
αn,Bn

(u) ≥ PGV 2
α,B(u). (3.8)

Indeed, by Proposition 3.8 for each n ∈ N there exists vn ∈ BVBn
(Q;RN ) such that, setting

αn = (α0
n, α

1
n),

PGV 2
αn,Bn

(u) = α0
n |Du− vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N ) .

From (3.4) and (3.7),we see that

α0
n |Du− vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N ) ≤ α
0
n |Du| < +∞,

which from (3.7) implies that sup{‖vn‖BVBn (Q;RN ) + ‖Bn‖`∞} is finite. Therefore, by Assumption

3.3 there exist B ∈ Π and v ∈ BVB(Q) such that vn → v strongly in L1(Q;RN ) and

lim inf
n→∞

|Bnvn|Mb(Q;RN×N ) ≥ |Bv|Mb(Q;RN×N ) . (3.9)

Fix ε > 0. By (3.7), for n big enough there holds α0
n ≥ (1− ε)α0 , and α1

n ≥ (1− ε)α1 . Thus, by
(3.9) we have

lim inf
n→∞

PGV 2
αn,Bn

(u) = lim inf
n→∞

[
α0
n |Du− vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N )

]
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≥ (1− ε)α0lim inf
n→∞

|Du− vn|Mb(Q;RN ) + (1− ε)α1lim inf
n→∞

|Bnvn|Mb(Q;RN×N )

≥ (1− ε)α0 |Du− v|Mb(Q;RN ) + (1− ε)α1 |Bv|Mb(Q;RN×N )

≥ (1− ε)PGV 2
α,B(u),

where in the last inequality we used (3.3). The arbitrariness of ε concludes the proof of (3.8).

We now claim that

lim sup
n→∞

PGV 2
αn,Bn

(u) ≤ PGV 2
α,B(u). (3.10)

By Proposition 3.8 there exists v ∈ BVB(Q;RN ) such that

PGV 2
α,B(u) = α0 |Du− v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N ) .

In view of the density result in Assumption 3.2, Statement 2, we may assume that v ∈ C∞(Q;RN )
and, for ε > 0 small,

PGV 2
α,B(u) ≥ α0 |Du− v|Mb(Ω;RN ) + α1 |Bv|Mb(Ω;RN×N ) − ε. (3.11)

Since

PGV 2
αn,Bn

(u) ≤ α0
n |Du− v|Mb(Q;RN ) + α1

n |Bnv|Mb(Q;RN×N ) ,

we obtain

lim sup
n→∞

PGV 2
αn,Bn

(u) ≤ α0 |Du− v|Mb(Q;RN ) + lim sup
n→∞

α1
n |Bnv|Mb(Q;RN×N )

≤ α0 |Du− v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N )

≤ PGV 2
α,B(u) + ε,

where in the last inequality we used (3.11). Claim (3.10) is now asserted by the arbitrariness of
ε > 0.

�

4. Γ-convergence of functionals defined by PGV - total generalized variation
seminorms

In this section we prove a Γ-convergence result with respect to the operator B . For r > 0 we
denote (see (2.3))

(B)r := {B′ ∈ Π : ‖B′ −B‖`∞ ≤ r} . (4.1)

Throughout this section, let uη ∈ L2(Q) be a given datum representing a corrupted image.

Definition 4.1. Let B ∈ Π, α ∈ R2
+ . We define the functional Iα,B :L1(Q)→ [0,+∞] as

Iα,B(u) :=

{
‖u− uη‖2L2(Q) + PGV 2

α,B(u) if u ∈ BV (Q),

+∞ otherwise.

The following theorem is the main result of this section.
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Theorem 4.2. Let {Bn}∞n=1 ⊂ Π satisfy Assumption 3.3, and let {αn}∞n=1 ⊂ R2
+ be such that

Bn → B in `∞ and αn → α ∈ R2
+ . Then the functionals Iαn,Bn satisfy the following compact-

ness properties:

(Compactness) Let un ∈ BV (Q) , n ∈ N , be such that

sup {Iαn,Bn(un) : n ∈ N} < +∞.

Then there exists u ∈ BV (Q) such that, up to the extraction of a subsequence (not relabeled),

un
∗
⇀ u weakly∗ in BV (Q).

Additionally, Iαn,Bn
Γ-converges to Iα,B in the L1 topology. To be precise, for every u ∈ BV (Q)

the following two conditions hold:

(Liminf inequality) If

un → u in L1(Q)

then

Iα,B(u) ≤ lim inf
n→+∞

Iαn,Bn
(un).

(Recovery sequence) For each u ∈ BV (Q) , there exists {un}∞n=1 ⊂ BV (Q) such that

un → u in L1(Q)

and

lim sup
n→+∞

Iαn,Bn(un) ≤ Iα,B(u).

We subdivide the proof of Theorem 4.2 into two propositions.

For B ∈ Π, we consider the projection operator

PB : L1(Q;RN )→ N (B).

Note that this projection operator is well defined owing to the assumption that N (B) is finite
dimensional (see [7, page 38, Definition and Example 2] and [6, Subsection 3.1]).
Next we have an enhanced version of Korn’s inequality.

Proposition 4.3. Let B ∈ Π and let r > 0. Then there exists a constant C = C(B, Q),
depending only on B and on the domain Q , such that

‖v − PB′(v)‖L1(Q;RN ) ≤ C |B
′v|Mb(Q;RN×N ) , (4.2)

for all v ∈ L1(Q) and B′ ∈ (B)r .

Proof. Suppose that (4.2) fails. Then there exist sequences {Bn}∞n=1 ⊂ (B)r and {vn}∞n=1 ⊂ L1(Q)
such that

‖vn − PBn
(vn)‖L1(Q;RN ) ≥ n |Bnvn|Mb(Q;RN×N )

for every n ∈ N . Up to a normalization, we can assume that

‖vn − PBn(vn)‖L1(Q;RN ) = 1 and |Bnvn|Mb(Q;RN×N ) ≤ 1/n (4.3)
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for every n ∈ N . Since {Bn}∞n=1 ⊂ (B)r , up to a subsequence (not relabeled), we have Bn → B̃

in `∞ , for some B̃ ∈ (B)r . Next, let

ṽn := vn − PBn
(vn).

Note that for each n ∈ N
PBn

(ṽn) = 0. (4.4)

Thus, by (4.3) we have

‖ṽn‖L1(Q;RN ) = 1 and |Bnṽn|Mb(Q;RN×N ) ≤ 1/n. (4.5)

In view of Assumption 3.3, up to a further subsequence (not relabeled), there exists ṽ ∈ BVB̃(Q;RN )

such that ṽn → ṽ strongly in L1(Q) and |B̃ṽ|Mb(Q;RN×N ) = 0. Moreover, in view of (4.5), we also
have ‖ṽ‖L1(Q;RN ) = 1.

Since the projection operator is Lipschitz, by (4.4) we have∥∥PB̃(ṽ)
∥∥
L1(Q)

=
∥∥PBn(ṽn)− PB̃(ṽ)

∥∥
L1(Q)

≤ C ‖ṽ − ṽn‖L1(Q) → 0.

Thus, PB̃(ṽ) = 0. However, |B̃ṽ|Mb(Q;RN×N ) = 0 implies that ṽ ∈ N [B̃] with ṽ = PB̃(ṽ), and
hence we must have ṽ = 0, contradicting the fact that ‖ṽ‖L1(Q;RN ) = 1. �

The following proposition is instrumental for establishing the liminf inequality.

Proposition 4.4. Let {Bn}∞n=1 ⊂ Π satisfy Assumption 3.3, and let {αn}∞n=1 ⊂ R2
+ be such that

Bn → B in `∞ and αn → α ∈ R2
+ . For every n ∈ N let un ∈ BV (Q) be such that

sup {Iαn,Bn
(un) : n ∈ N} < +∞. (4.6)

Then there exists u ∈ BV (Q) such that, up to the extraction of a subsequence (not relabeled),

un
∗
⇀ u weakly∗ in BV (Q) (4.7)

and
lim inf
n→∞

PGV 2
αn,Bn

(un) ≥ PGV 2
α,B(u),

with
lim inf
n→∞

Iαn,Bn(un) ≥ Iα,B(u).

Proof. Fix r > 0 and recall the definition of (B)r from (4.1). We claim that if r is small enough
then there exists Cr > 0 such that

‖u‖BPGV 2
B′ (Q) ≤ ‖u‖BV (Q) ≤ Cr ‖u‖BPGV 2

B′ (Q) , (4.8)

for all u ∈ BV (Q) and B′ ∈ (B)r .

Indeed, by Definitions 3.5 and 3.6 we always have

‖u‖BPGV 2
B′ (Q) ≤ ‖u‖BV (Q) ,

for all B′ ∈ Π and u ∈ BV (Q).

The crucial step is to prove that the second inequality in (4.8) holds. Set

Nr(B) := {ω ∈ L1(Q;RN ) : there exists B′ ∈ (B)r for which ω ∈ N (B′)}.
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We claim that there exists C > 0, depending on r , such that for each u ∈ BV (Q) and ω ∈ Nr(B)
we have

|Du|Mb(Q;RN ) ≤ C
(
|Du− ω|Mb(Q;RN ) + ‖u‖L1(Q)

)
. (4.9)

Suppose that (4.9) fails. Then we find sequences {un}∞n=1 ⊂ BV (Q) and {ωn}∞n=1 ⊂ Nr(B) such
that

|Dun|Mb(Q;RN ) ≥ n
(
|Dun − ωn|Mb(Q;RN ) + ‖un‖L1(Q)

)
for every n ∈ N . Thus, up to a normalization, we can assume that

|Dun|Mb(Q;RN ) = 1 (4.10)

and

|Dun − ωn|Mb(Q;RN ) + ‖un‖L1(Q) ≤ 1/n, (4.11)

which implies that un → 0 strongly in L1(Q) and

|Dun − ωn|Mb(Q;RN ) → 0. (4.12)

By (4.10) and (4.11), it follows that |ωn|Mb(Q;RN ) is uniformly bounded, and hence, up to a sub-

sequence (not relabeled), there exists ω ∈ Mb(Q;RN ) such that ωn
∗
⇀ ω in Mb(Q;RN ). For

every n ∈ N let B′n ∈ (B)r be such that ωn ∈ N (B′n). Then B′nωn = 0 for all n ∈ N .
Since ‖B′n −B‖`∞ < r , in particular the sequence {ωn,B′n}

∞
n=1 ⊂ L1(Mb(Q;RN )) × Π fulfills

Assumption 3.3, and hence, upon extracting a further subsequence (not relabeled), there holds

ωn → ω0 strongly in L1(Q;RN ).

Additionally, since un → 0 strongly in L1(Q), we infer that Dun → 0 in the sense of distributions.
Therefore, by (4.12) we deduce that ω0 = 0. Using again (4.11), we conclude that

|Dun|Mb(Q;RN ) → 0,

which contradicts (4.10). This completes the proof of (4.9).

We are now ready to prove the second inequality in (4.8), i.e.,

‖u‖BV (Q) ≤ Cr ‖u‖BPGV 2
B′ (Q) (4.13)

for some constant Cr > 0, and for all B′ ∈ (B)r .

Fix B′ ∈ (B)r , and by Proposition 3.8 let vB′ satisfy

PGV 2
B′(u) = |Du− vB′ |Mb(Q;RN ) + |B′vB′ |Mb(Q;RN×N ) . (4.14)

Since PB′ [vB′ ] ∈ Nr(B), we have

|Du|Mb(Q;RN ) ≤ C(|Du− PB′ [vB′ ]|Mb(Q;RN ) + ‖u‖L1(Q))

≤ C(|Du− vB′ |Mb(Q;RN ) + |vB′ − PB′ [vB′ ]|Mb(Q;RN ) + ‖u‖L1(Q))

≤ C(|Du− vB′ |Mb(Q;RN ) + C ′ |B′vB′ |Mb(Q;RN×N ) + ‖u‖L1(Q))

≤ (C + C ′)
[
|Du− vB′ |Mb(Q;RN ) + |B′vB′ |Mb(Q;RN×N ) + ‖u‖L1(Q)

]
= (C + C ′)

[
PGV 2

B′(u) + ‖u‖L1(Q)

]
,
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where in the first inequality we used (4.9), the third inequality follows by (4.2), and in the last
equality we invoked (4.14). Defining Cr := C + C ′ + 1, we obtain

‖u‖BV (Q) = ‖u‖L1(Q) + |Du|Mb(Q;RN ) ≤ Cr(PGV
2
B′(u) + ‖u‖L1(Q)) = Cr ‖u‖BPGV 2

B′ (Q)

and we conclude (4.13).

Now we prove the compactness property. Fix ε > 0. We first observe that, since αn → α ∈ R2
+ ,

for αn = (α0
n, α

1
n), and for n small enough there holds

α0
n ≥ (1− ε)α0 and α1

n ≥ (1− ε)α1. (4.15)

In particular, in view of (4.6) we have

(1− ε) min{α0, α1} sup
{
‖un‖BPGV 2

Bn
(Q) : n ∈ N

}
< +∞. (4.16)

Since Bn → B in `∞ , choosing r = 1 there exists N > 0 such that Bn ⊂ (B)1 for all n ≥ N .
Thus, by (4.8) and (4.16), we infer that

sup
{
‖un‖BV (Q) : n ∈ N

}
≤ C1 sup

{
‖un‖BPGV 2

Bn
(Q) : n ∈ N

}
< +∞,

and thus we may find u ∈ BV (Q) such that, up to a subsequence (not relabeled), un
∗
⇀ u in

BV (Q).

Additionally, again from Proposition 3.8, for every n ∈ N there exists vn ∈ BVBn
(Q;RN ) such

that,

PGV 2
αn,Bn

(un) = α0
n |Dun − vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N ) .

By (4.6) and (4.7), and in view of Assumption 3.3, we find v ∈ BVB(Q;RN ) such that, up to a
subsequence (not relabeled), vn → v strongly in L1 . Therefore, we have

lim inf
n→∞

PGV 2
αn,Bn

(un) ≥ lim inf
n→∞

α0
n |Dun − vn|Mb(Q;RN ) + lim inf

n→∞
α1
n |Bnvn|Mb(Q;RN×N )

≥ (1− ε)α0 |Du− v|Mb(Q;RN ) + (1− ε)α1 |Bv|Mb(Q;RN×N )

≥ (1− ε)PGV 2
α,B(u),

where in the second to last inequality we used Assumption 3.3 and (4.15). The arbitrariness of ε
concludes the proof of the proposition. �

Proposition 4.5. Let {Bn}∞n=1 ⊂ Π satisfy Assumption 3.3, and let {αn}∞n=1 ⊂ R2
+ be such that

Bn → B in `∞ and αn → α ∈ R2
+ . Then for every u ∈ BV (Q) there exists {un}∞n=1 ⊂ BV (Q)

such that un → u in L1(Q) and

lim sup
n→∞

PGV 2
αn,Bn

(un) ≤ PGV 2
α,B(u).

Proof. This is a direct consequence of Proposition 3.9 by choosing un := u . �

We close Section 4 by proving Theorem 4.2.

Proof of Theorem 4.2. Properties (Compactness) and (Liminf inequality) hold in view of Proposi-
tion 4.4, and Property (Recovery sequence) follows from Proposition 4.5. �
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5. The bilevel training scheme with PGV - regularizers

Let uη ∈ L2(Q) and uc ∈ BV (Q) be the corrupted and clean images, respectively. In what follows
we will refer to pairs (uc, uη) as training pairs. We recall that Π was introduced in Definition 3.4.

Definition 5.1. We say that Σ ⊂ Π is a training set if the operators in Σ satisfy Assumption 3.3,
and if Σ is closed and bounded in `∞ .

Examples of training sets are provided in Section 7. We introduce the following bilevel training
scheme.

Definition 5.2. Let θ ∈ (0, 1) and let Σ be a training set. The two levels of the scheme (T 2
θ )are

Level 1. (α̃, B̃) := arg min

{
‖uc − uα,B‖2L2(Q) : α ∈

[
θ,

1

θ

]
2, B ∈ Σ

}
,

Level 2. uα,B := arg min
{
‖u− uη‖2L2(Q) + PGV 2

α,B(u), u ∈ BV (Q)
}
. (T 2

θ -L2)

We first show that the Level 2 problem in (T 2
θ -L2) admits a solution for every given uη ∈ L2(Q),

and for every α ∈ R2
+ .

Proposition 5.3. Let uη ∈ L2(Q). Let B ∈ Σ, and let α ∈ R2
+ . Then there exists uα,B ∈ BV (Q)

such that

‖uα,B − uη‖2L2(Q) + PGV 2
α,B(uα,B) = min

{
‖u− uη‖2L2(Q) + PGV 2

α,B(u) : u ∈ BV (Q)
}
.

Proof. Without loss of generality, we assume that α := (1, 1). Let {un}∞n=1 ⊂ BV (Q) be such that

‖un − uη‖2L2(Q) + PGV 2
B(un) ≤ inf

{
‖u− uη‖2L2(Q) + PGV 2

B(u) : u ∈ BV (Q)
}

+ 1/n, (5.1)

for every n ∈ N , and let {vn} ⊂ BVB(Q) be the associated sequence of maps provided by Propo-
sition 3.8. In view of (5.1), there exists a constant C such that

‖un − uη‖2L2(Q) + |Dun − vn|Mb(Q;RN ) + |Bvn|Mb(Q;RN×N ) ≤ C (5.2)

for every n ∈ N . We claim that

sup
{
‖vn‖L1(Q;RN ) : n ∈ N

}
< +∞. (5.3)

Indeed, if (5.3) does not hold, then, up to the extraction of a subsequence (not relabeled), we have

lim
n→+∞

‖vn‖L1(Q;RN ) = +∞.

Setting

ũn :=
un

‖vn‖L1(Q;RN )

and ṽn :=
vn

‖vn‖L1(Q;RN )

for every n ∈ N, (5.4)

and dividing both sides of (5.2) by ‖vn‖L1(Q) , we deduce that

lim
n→+∞

[∥∥∥∥ũn − uη
‖vn‖L1(Q;RN )

∥∥∥∥2

L2(Q)

+ |Dũn − ṽn|Mb(Q;RN ) + |Bṽn|Mb(Q;RN×N )

]
= 0. (5.5)

In view of (5.4) and (5.5), and by Assumption 3.3, there exists ṽ ∈ BVB(Q;RN ), with

‖ṽ‖L1(Q;RN ) = 1, (5.6)
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such that

ṽn → ṽ strongly in L1(Q;RN ), (5.7)

and

Bṽn
∗
⇀ Bṽ weakly∗ in Mb(Q;RN×N ).

Additionally, (5.5) and (5.7) yield

ũn → 0 strongly in L2(Q), (5.8)

and

lim sup
n→+∞

|Dũn − ṽ|Mb(Q;RN ) ≤ lim
n→+∞

|Dũn − ṽn|Mb(Q;RN ) + lim
n→+∞

‖ṽn − ṽ‖L1(Q;RN ) = 0. (5.9)

Since by (5.8) Dũn → 0 in the sense of distribution, we deduce from (5.9) that ṽ = 0. This
contradicts (5.6), and implies claim (5.3).

By combining (5.2) and (5.3), we obtain the uniform bound

|Dun|Mb(Q;RN ) ≤ |Dun − vn|Mb(Q;RN ) + ‖vn‖L1(Q;RN ) ≤ C

for every n ∈ N and some C > 0. Thus, by (5.2) and Assumption 3.2 there exist uB ∈ BV (Q)
and v ∈ BVB(Q) such that, up to the extraction of a subsequence (not relabeled),

un ⇀ uB weakly in L2(Q),

un
∗
⇀ uB weakly∗ in BV (Q),

vn → v strongly in L1(Q;RN ),

Bvn
∗
⇀ Bv weakly∗ in Mb(Q;RN×N ).

In view of (5.1), and by lower-semicontinuity, we obtain the inequality

‖uB − u0‖2L2(Q) + |DuB − v|Mb(Q;RN ) + |Bv|Mb(Q;RN×N )

≤ inf
{
‖u− uη‖2L2(Q) + PGV 2

B(u) : u ∈ BV (Q)
}
.

�

Theorem 5.4. The training scheme (T 2
θ ) admits at least one solution (α̃, B̃) ∈

[
θ, 1/θ]2×Σ , and

provides an associated optimally reconstructed image uα̃,B̃ ∈ BV (Q) .

Proof. By the boundedness and closedness of Σ in `∞ , up to a subsequence (not relabeled), there

exists (α̃, B̃) ∈ [θ, 1/θ]2 × Σ such that αn → α̃ in R2 and Bn → B̃ in `∞ . Therefore, in view of
Theorem 4.2 and the properties of Γ-convergence, we have

uαn,Bn

∗
⇀ uα̃,B̃ weakly∗ in BV (Q) and strongly in L1(Q), (5.10)

where uαn,Bn
and uα̃,B̃ are defined in (T 2

θ -L2).

By (5.10), we have ∥∥∥uα̃,B̃ − uc∥∥∥
L2(Q)

≤ lim inf
n→∞

‖uαn,Bn − uc‖L2(Q) ,

which completes the proof. �
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6. Training set Σ[A ] based on (A ,B) training operators pairs

This section is devoted to providing a class of operators B belonging to Π (see Definition 3.4),
satisfying Assumption 3.3, and being closed with respect to the convergence in (2.3). Recall that

Q =
(
− 1

2 ,
1
2

)N
.

6.1. A subcollection of Π characterized by (A ,B) training operators pairs.
Let U be an open set in RN , and let A : D′(U ;RN ) → D′(U ;RN ) be a d -th order differential
operator, defined as

A u :=
∑
|a|≤d

Aa
∂a

∂xa
u for every u ∈ D′(U ;RN ),

where, for every multi-index a = (a1, a2, . . . , aN ) ∈ NN ,

∂a

∂xa
:=

∂a
1

∂xa
1

1

∂a
2

∂xa
2

2

· · · ∂
aN

∂xa
N

N

is meant in the sense of distributional derivatives, and Aa is a linear operator mapping from RN
to RN . Let B be a first order differential operator, B : D′(U ;RN )→ D′(U ;RN×N ), given by

Bv :=

N∑
i=1

Bi
∂

∂xi
v for every v ∈ D′(U ;RN ),

where Bi ∈ MN3

for each i = 1, . . . , N , and where ∂
∂xi

denotes the distributional derivative with

respect to the i-th variable. We will restrict our analysis to elliptic pairs (A ,B) satisfying the
ellipticity assumptions below.

Definition 6.1. We say that (A ,B) is a training operator pair if B has finite dimensional null-
space N (B), and (A ,B) satisfies the following assumptions:

1. For every λ ∈ {−1, 1}N , the operator A has a fundamental solution Pλ ∈ L1(RN ;RN ) such
that:
a . A Pλ = λδ , where δ denotes the Dirac measure centered at the origin;
b . Pλ ∈ C∞(RN \ {0};RN ) and ∂a

∂xaPλ ∈ L1(RN ;RN ) for every multi-index a ∈ NN with
|a| ≤ d− 1 (where d is the order of the operator A );

c . for every a ∈ NN with |a| ≤ d − 1, and for every open set U ⊂ RN such that Q ⊂ U , we
have ∑

|a|=d−1

∥∥∥∥τh( ∂a

∂xa
Pλ

)
− ∂a

∂xa
Pλ

∥∥∥∥
L1(U ;RN )

=: MA (U ;h)→ 0 as |h| → 0, (6.1)

where for h ∈ RN , the translation operator τh : L1(RN ;RN )→ L1(RN ;RN ) is defined by

τhw(x) := w(x+ h) for every w ∈ L1(RN ;RN ) and for a.e.x ∈ RN . (6.2)

2. For every open set U ⊂ RN such that Q ⊂ U , and for every u ∈ W d,1(U ;RN ) and v ∈
C∞c (U ;RN )

‖(A u)i ∗ vi‖L1(U) ≤ CA

 ∑
|a|≤d−1

∥∥∥∥ ∂a∂xau
∥∥∥∥
L1(U ;RN )

 |Bv|Mb(U ;RN×N ) , (6.3)

for every i = 1, . . . , N , where the constant CA depends only on the operator A . The same
property holds for u ∈ C∞c (U ;RN ) and v ∈ BVB(U ;RN ) (see (3.1)).
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Explicit examples of operators A and B satisfying Definition 6.1 are provided in Section 7. Condi-
tion 2. in Definition 6.1 can be interpreted as an “integration by parts-requirement”, as highlighted
by the example below. Let N = 2, d = 2, B = ∇ , and let U ⊂ R2 be an open set such that
Q ⊂ U . Consider the following second order differential operator

A u :=

(
∂2u1

∂x2
1

∂2u2

∂x2
2

)ᵀ

for every u = (u1, u2)ᵀ ∈ D′(U ;R2).

Then, for every u ∈W 2,1(U ;R2) and v ∈ C∞c (U ;R2) there holds

‖(A u)i ∗ vi‖L1(U) =

∥∥∥∥∂2ui
∂x2

i

∗ vi
∥∥∥∥
L1(U)

=

∥∥∥∥∂ui∂xi
∗ ∂vi
∂xi

∥∥∥∥
L1(U)

≤ ‖∇u‖L1(U ;R2×2) ‖∇v‖L1(U ;R2×2)

= ‖∇u‖L1(U ;R2×2) ‖Bv‖L1(U ;R2×2) ,

for every i = 1, 2. In other words, the pair (A ,B) satisfies (6.3) with CA = 1.

Definition 6.2. For every A as in Definition 6.1 we denote by ΠA the following collection of first
order differential operators B ,

ΠA := {B : (A ,B) is a training operator pair} .

The main result of this section is the following.

Theorem 6.3. Let A be as in Definition 6.1. Let Π and ΠA be the collections of first order
operators introduced in Definition 3.4 and Definition 6.2, respectively. Then

ΠA ⊂ Π,

thus every operator B ∈ ΠA satisfies Assumption 3.2. Additionally, the operators in ΠA fulfill
Assumption 3.3.

We proceed by first recalling two preliminary results from the literature. The next proposition,
that may be found in [7, Theorem 4.26], will be instrumental in the proof of a regularity result for
distributions with bounded B -total-variation (see Proposition 6.7).

Proposition 6.4. Let F be a bounded set in Lp(RN ) with 1 ≤ p < +∞ . Assume that

lim
|h|→0

‖τhf − f‖Lp(RN ) = 0 uniformly in F .

Then, denoting by FbQ the collection of the restrictions to Q of the functions in F , the closure of
FbQ in Lp(Q) is compact.

We also recall some basic properties of the space BVB(Q;RN ) for B ∈ ΠA (see Definition 3.1 and
[6, Section 2]) .

Proposition 6.5. Let B ∈ ΠA . Let U be an open set in RN . Then

1. BVB(U ;RN ) is a Banach space with respect to the norm defined in (3.2);
2. C∞(U,RN ) is dense in BVB(U ;RN ) in the strict topology, i.e., for every u ∈ BVB(U ;RN )

there exists {un}∞n=1 ⊂ C∞(U,RN ) such that

un → u strongly in L1(U ;RN ) and |Bun|Mb(U ;RN×N ) → |Bu|Mb(U ;RN×N ) .

Before we establish Theorem 6.3, we prove a technical lemma.
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Lemma 6.6. Let k ∈ N . Then there exists a constant C > 0 such that, for every h ∈ RN and

w ∈W k,1
loc (RN ;RN ) , there holds

lim sup
|h|→0

∑
|a|≤k

∥∥∥∥τh( ∂a∂xaw)− ∂a

∂xa
w

∥∥∥∥
L1(Q;RN )

≤ lim sup
|h|→0

C
∑
|a|=k

∥∥∥∥τh( ∂a∂xaw)− ∂a

∂xa
w

∥∥∥∥
L1(Q;RN )

,

where τh is the operator defined in (6.2).

Proof. By the linearity of τh , we have

τh

( ∂a
∂xa

w
)
− ∂a

∂xa
w =

∂a

∂xa
(τhw − w).

On the one hand, by the Sobolev embedding theorem (see, e.g., [25]), we have∑
|a|≤k

∥∥∥∥τh( ∂a∂xaw)− ∂a

∂xa
w

∥∥∥∥
L1(Q;RN )

(6.4)

=
∑
|a|≤k

∥∥∥∥ ∂a∂xa (τhw − w)

∥∥∥∥
L1(Q;RN )

≤ C ‖τh(w)− w‖L1(Q;RN ) + C
∑
|a|=k

∥∥∥∥ ∂a∂xa (τhw − w)

∥∥∥∥
L1(Q;RN )

.

On the other hand, by the continuity of the translation operator in L1 (see, e.g., [7, Lemma 4.3]
for a proof in RN , the analogous argument holds on bounded open sets) we have

lim sup
|h|→0

‖τh(w)− w‖L1(Q;RN ) = 0. (6.5)

The result follows by combining (6.4) and (6.5). �

The next proposition shows that operators in ΠA satisfy Assumption 3.2.

Proposition 6.7. Let B ∈ ΠA , and let BVB(Q;RN ) be the space introduced in Definition 3.1.
Then the injection of BVB(Q;RN ) into L1(Q;RN ) is compact.

Proof. In view of Proposition 6.5, for every u ∈ BVB(Q;RN ) there exists a sequence of maps
{vnu}∞n=1 ⊂ C∞(Q;RN ) such that

‖vnu − u‖L1(Q;RN ) +
∣∣∣‖Bvnu‖ L1(Q;RN×N ) − |Bu|Mb(Q;RN×N )

∣∣∣ ≤ 1

n
. (6.6)

With a slight abuse of notation, we still denote by vnu the Cd -extension of the above maps to the
whole RN (see e.g. [16]), where d is the order of the operator A . Without loss of generality, up
to a multiplication by a cut-off function, we can assume that vnu ∈ Cdc (2Q;RN ) for every n ∈ N .

We first show that, setting

F :=
{
u ∈ L1(Q;RN ) : ‖u‖BVB(Q;RN ) ≤ 1

}
,

for every n ∈ N there holds

lim
|h|→0

sup
u∈F

{
‖τhvnu − vnu‖ L1(Q;RN )

}
= 0, (6.7)

where we recall τh from Theorem 6.4, and where for fixed u ∈ F , vnu is as above and satisfying
(6.6).
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Let h ∈ RN and let δh be the Dirac distribution centered at h ∈ RN . By the properties of the
fundamental solution Pλ we deduce

τh(λiv
n
u,i) = δh ∗ λivnu,i = δh ∗ (λiδ ∗ vnu,i) = δh ∗

(
(A Pλ)i ∗ vnu,i

)
= (δh ∗ (A Pλ)i) ∗ vnu,i = (A (δh ∗ (Pλ)))i ∗ v

n
u,i,

for every i = 1, . . . , N , and every λ ∈ {−1, 1}N . Therefore, we obtain that∥∥τh(λiv
n
u,i)− λivnu,i

∥∥
L1(Q;RN ) (6.8)

=
∥∥(A (δh ∗ (Pλ)))i ∗ v

n
u,i − (A Pλ)i ∗ v

n
u,i

∥∥
L1(Q;RN ) =

∥∥(A (δh ∗ (Pλ)− Pλ))i ∗ v
n
u,i

∥∥
L1(Q;RN )

≤ CA

 ∑
|a|≤d−1

∥∥∥∥τh( ∂a

∂xa
Pλ

)
− ∂a

∂xa
Pλ

∥∥∥∥
L1(Q;RN )

 |Bvnu |Mb(Q;RN×N )

for every λ ∈ {−1, 1}N , where in the last inequality we used the fact that τhPλ−Pλ ∈W d−1,d(RN ;RN )

owing to Definition 6.1, Assertion 1c, the identity τh
(
∂a

∂xaPλ
)

= ∂a

∂xa (τhPλ), as well as Definition
6.1, Assertion 2.

In particular, choosing λ̄ := (1, . . . , 1) we have

sup
u∈F

{
‖τh(vnu)− vnu‖ L1(Q;RN )

}
≤ CA

(
1 +

1

n

) ∑
|a|≤d−1

∥∥∥∥τh( ∂a

∂xa
Pλ̄

)
− ∂a

∂xa
Pλ̄

∥∥∥∥
L1(Q;RN )

,

and, in view of (6.1) and Lemma 6.6, we conclude that

lim
|h|→0

sup
u∈F

{
‖τh(vnu)− vnu‖ L1(Q;RN )

}
≤ CA

(
1 +

1

n

)
lim
|h|→0

∑
|a|=d−1

∥∥∥∥τh( ∂a∂xaPλ̄)− ∂a

∂xa
Pλ̄

∥∥∥∥
L1(Q;RN )

= 0

for every n ∈ N , which yields (6.7).

By (6.6), for n ∈ N fixed, for every h ∈ RN with |h| < 1, and for every u ∈ F there holds

‖τhu− u‖L1(Q;RN ) ≤ ‖τhu− τhv
n
u‖ L1(Q;RN ) + ‖τhvnu − vnu‖ L1(Q;RN ) + ‖vnu − u‖ L1(Q;RN )

≤ 1

n
+ ‖u‖L1(Q|h|;RN ) + ‖vnu‖ L1(Q|h|;RN ) + ‖τhvnu − vnu‖ L1(Q;RN ) ≤

2

n
+ sup
w∈F

{
‖τh(vnw)− vnw‖ L1(Q;RN )

}
,

where we have still denoted by u the extension of the above map to zero on RN \ Q , and where

Q|h| :=
(
− 1

2 − |h|,
1
2 + |h|

)N \ (− 1
2 + |h|, 1

2 − |h|
)N

. By (6.7), and since L1(Q|h|)→ 0 as |h| → 0,
we deduce

lim
|h|→0

sup
u∈F

{
‖τh(u)− u‖L1(Q;RN )

}
≤ 2

n
,

and letting n→ +∞ we get

lim
|h|→0

sup
u∈F

{
‖τh(u)− u‖L1(Q;RN )

}
= 0.
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Thus, recalling that u = 0 on RN \Q , we deduce the estimate

lim
|h|→0

sup
u∈F

{
‖τh(u)− u‖L1(RN ;RN )

}
≤ lim
|h|→0

sup
u∈F

{
‖τh(u)− u‖L1(Q;RN ) + C ‖u‖L1(Q|h|;RN )

}
= 0.

The statement now follows from Proposition 6.4. �

The following extension result in BVB is a corollary of the properties of the trace operator defined
in [6, Section 4].

Lemma 6.8. Let B ∈ ΠA , and let BVB(Q;RN ) be the space introduced in Definition 3.1. Then
there exists a continuous extension operator T : BVB(Q;RN )→ BVB(RN ;RN ) such that Tu = u
almost everywhere in Q for every u ∈ BVB(Q;RN ) .

Proof. Since N (B) is finite dimensional, in view of [6, (4.9) and Theorem 1.1] there exists a contin-
uous trace operator tr : BVB(Q;RN )→ L1(∂Q;RN ). By the classical results by E. Gagliardo (see
[17]) there exists a linear and continuous extension operator E : L1(∂Q;RN )→W 1,1(RN \Q;RN ).
The statement follows by setting

Tu := uχQ + E(tr(u))χRN\Q,

where χQ and χRN\Q denote the characteristic functions of the sets Q and RN \Q , respectively,
and by Theorem [6, Corollary 4.21]. �

We point out that, as a direct consequence of Lemma 6.8, we obtain

|B(Tu)|Mb(RN ;RN×N ) ≤ C |Bu|Mb(Q;RN×N ) ,

where the constant C depends only on Q and |B|`∞ .
We close this subsection by proving a compactness and lower-semicontinuity result for functions
with uniformly bounded BVBn

norms. We recall that the definition of MA is found in (6.1) .

Proposition 6.9. Let {Bn}∞n=1 ⊂ ΠA be such that Bn → B in `∞ . For every n ∈ N let
vn ∈ BVBn

(Q;RN ) be such that

sup
{
‖vn‖BVBn (Q;RN ) : n ∈ N

}
< +∞. (6.9)

Then there exists v ∈ BVB(Q;RN ) such that, up to a subsequence (not relabeled),

vn → v strongly in L1(Q;RN ), (6.10)

and
Bnvn

∗
⇀ Bv weakly∗ in Mb(Q;RN×N ). (6.11)

Proof. Let vn satisfy (6.9). With a slight abuse of notation we still indicate by vn the BVB

continuous extension of the above maps to RN (see Lemma 6.8). Let φ ∈ C∞c (2Q;RN ) be a cut-off
function such that φ ≡ 1 on Q , and for every n ∈ N let ṽn be the map ṽn := φvn . Note that
supp ṽn ⊂⊂ 2Q . Additionally, by Lemma 6.8 there holds

‖ṽn‖BVB(2Q;RN )≤‖vn‖L1(2Q;RN ) + |Bvn|Mb(2Q;RN×N ) (6.12)

+

∥∥∥∥∥
N∑
i=1

Bi
∂φ

∂xi

∥∥∥∥∥
L∞(2Q;MN3 )

‖vn‖L1(2Q;RN )
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≤ C1 ‖vn‖BVB(2Q;RN ) ≤ C2 ‖vn‖BVB(Q;RN ) ,

where in the last inequality we used Lemma 6.8, and where the constants C1 and C2 depend only
on the cut-off function φ . To prove (6.10) we first show that

lim
|h|→0

sup
n∈N

{
‖τhṽn − ṽn‖L1(RN ;RN )

}
= 0, (6.13)

where we recall τh from Theorem 6.4. Arguing as in the proof of (6.8), by (6.12) we deduce that
for |h| small enough, since suppφ ⊂⊂ 2Q,

‖τhṽn − ṽn‖L1(RN ;RN ) = ‖τhṽn − ṽn‖L1(2Q;RN )

≤ C

 ∑
|a|≤d−1

∥∥∥∥τh( ∂a

∂xa
Pλ

)
− ∂a

∂xa
Pλ

∥∥∥∥
L1(2Q;RN )

 |Bṽn|Mb(2Q;RN×N )

≤ C

 ∑
|a|≤d−1

∥∥∥∥τh( ∂a

∂xa
Pλ

)
− ∂a

∂xa
Pλ

∥∥∥∥
L1(2Q;RN )

 ‖vn‖BVB(Q;RN×N )

for every n ∈ N . Property (6.13) follows by (6.1). Owing to Proposition 6.4, we deduce (6.10).

We now prove (6.11). Let ϕ ∈ C∞c (Q;RN×N ) be such that |ϕ| ≤ 1. Then

lim
n→∞

ˆ
Q

ϕ · d(Bnvn) = lim
n→∞

N∑
i,j=1

ˆ
Q

ϕijd

 N∑
k,l=1

(Bn)kijl
∂(vn)l
∂xk


= lim
n→∞

N∑
i,j,k,l=1

ˆ
Q

ϕijd

(
(Bn)kijl

∂(vn)l
∂xk

)

= − lim
n→∞

N∑
i,j,k,l=1

ˆ
Q

(vn)l(Bn)kijl
∂ϕij
∂xk

dx

= −
N∑

i,j,k,l=1

ˆ
Q

vl(B)kijl
∂ϕij
∂xk

dx

where in the last step we used the fact that vn → v strongly in L1(Q) and Bn → B in `∞ .

This completes the proof of (6.11) and of the proposition. �

Proof of Theorem 6.3. Let B ∈ ΠA be given. The fact that B satisfies Assumption 3.2 follows by
Propositions 6.5 and 6.7. The fulfillment of Assumption 3.3 is a direct consequence of Proposition
6.9. �

6.2. Training scheme with fixed and multiple operators A . In this subsection we provide
a construction of training sets associated to a given differential operator A , namely collection of
differential operators B for which our training scheme is well-posed (see Definitions 5.1 and 5.2).
We first introduce a collection Σ[A ] for a given operator A of order d ∈ N .
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Definition 6.10. Let A be a differential operator of order d ∈ N . For every ε > 0 we denote by
Σε[A ] the collection

Σε[A ] := {B ∈ ΠA : ε ≤ ‖B‖`∞ ≤ 1} .

The first result of this subsection is the following.

Theorem 6.11. Fix ε > 0 . Let A be a differential operator of order d ∈ N such that Σε[A ] is
non-empty. Then the collection Σε[A ] is a training set (see Definition 5.1).

Proof. By the definition of Σε[A ] we just need to show that Σε[A ] is closed in `∞ . Let u ∈
C∞(Q;RN ) and {Bn}∞n=1 ⊂ Σε[A ] be given. Then, up to a subsequence (not relabeled), we may
assume that Bn → B in `∞ . We claim that B ∈ ΠA .

To prove that N (B) is finite-dimensional, we recall that this condition is equivalent to the in-
jectivity of the symbol B(ξ) (see (2.2)) for all ξ ∈ CN \ {0} (see [6, Remark 2.1]). Since for all
ξ ∈ CN \{0} we have that B(ξ) is the uniform limit of the sequence of injective linear maps, namely
the symbols {Bn(ξ)}∞n=1 , either B(ξ) is constant or it is injective. On the other hand, the linearity
of B(ξ) implies that it is constant only if it is identically zero. The fact that ε ≤ ‖B‖`∞ ≤ 1 for
all n ∈ N guarantees that this cannot occur, and yields the injectivity of B(ξ) and hence the fact
that the dimension of N (B) is finite.

To conclude the proof of the theorem we still need to show that (A ,B) satisfies Definition 6.1,
Assertion 2. Let U be an open set in RN such that Q ⊂ U . Let u ∈ C∞c (U ;RN×N ) and let
v ∈ BVB(U ;RN ). By Proposition 6.5 there exists {vk}∞k=1 ⊂ C∞(U ;RN ) such that

vk → v strongly in L1(U ;RN ) and |Bvk|Mb(U ;RN×N ) → |Bv|Mb(U ;RN×N ) . (6.14)

Integrating by parts we obtain

‖(A u)i ∗ (vk)i‖L1(U ;RN )
≤ CA

 ∑
|a|≤d−1

∥∥∥∥ ∂a∂xau
∥∥∥∥
L1(U ;RN )

 |Bnvk|Mb(U ;RN×N ) ,

for every i = 1, . . . , N . Taking the limit as n → ∞ first, and then as k → ∞ , since Bn → B in
`∞ and in view of (6.14), we conclude that

‖(A u)i ∗ (vk)i‖L1(U ;RN )
≤ CA

 ∑
|a|≤d−1

∥∥∥∥ ∂a∂xau
∥∥∥∥
L1(U ;RN )

 |Bv|Mb(U ;RN×N ) .

The proof of the second part of Assertion 2 is analogous. This shows that (A ,B) satisfies Definition
6.1 and concludes the proof of the theorem. �

Remark 6.12. We note that the result of Theorem 6.11 still holds if we replace the upper bound
1 in Definition 6.10 with an arbitrary positive constant.

We now consider the case of multiple operators A .

Definition 6.13. We say that collection A of differential operators A is a training set builder if

sup {CA : A ∈ A} < +∞ and lim
|h|→0

sup {MA (h) : A ∈ A} = 0, (6.15)
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where CA and MA (h) are defined in (6.3) and (7.5), respectively.

For every ε > 0 we then define the class Σε[A] via

Σε[A] := convex hull

( ⋃
A∈A

Σε[A ]

)
,

where for every A ∈ A , Σε[A ] is the class defined in Definition 6.10.

We close this section by proving the following theorem.

Theorem 6.14. Let A be a training set builder. Then Σε[A] is a training set.

Proof. The proof of this theorem follows the argument in the proof of Theorem 6.11 using the
fact that the two critical constants MA (h) and CA , in (6.1) and (6.3), respectively, are uniformly
bounded due to (6.15). �

7. Explicit examples and numerical observations

In this section we exhibit several explicit examples of operators A and training sets Σε[A ] , we
provide numerical simulations and some observations derived from them.

7.1. The existence of fundamental solutions of operators A . One important requirement
in Definition 6.1 is the existence of the fundamental solution Pλ ∈ L1(RN ,RN ) of a given operator
A . A result in this direction can be found in [22, Page 351, Section 6.3], where an explicit form of
the fundamental solution for Agmon-Douglis-Nirenberg elliptic systems with constant coefficients
is provided.

Remark 7.1. In the case in which N = 2, A has order 2 and satisfies the assumptions in [22,
Page 351, Section 6.3], the fundamental solution Pλ can be written as

Pλ(x, y) =
1

8π2
(∆Ly)

ˆ
|η|=1,η∈R2

((x− y) · η)
2

log |(x− y) · η|RA dωη, (7.1)

where L denotes the fundamental solution of Laplace’s equation, RA denotes a constant depending
on A , and the integration is taken over the unit circle |η| = 1 with arc length element dωη .

In the special case in which

A w := ∆w +∇(divw) for w ∈ D′(Q;R2), (7.2)

the fundamental solution Pα , with A Pα = αδ for α ∈ R2 , is given by

Pα(x) :=
3α

8π
log

1

|x|
+

x

8π

α · |x|
|x|2

.

We observe that ∇Pα is positively homogeneous of degree −1(= 1−N). Also, since RA in (7.1)
is a constant, ∇Pλ must have the same homogeneity as ∇Pα , which is 1−N .

Proposition 7.2. Let A be a differential operator of order d ∈ N , and assume that its fundamental
solution Pλ is such that ∂a

∂xaPλ is positively homogeneous of degree 1 − N for all multi-indexes

a ∈ NN with |a| = d− 1. Then Assertion 1c. in Definition 6.1 is satisfied.
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Proof. Let s ∈ (0, 1) be fixed. Since ∂a

∂xaPλ is positively homogeneous of degree 1 − N for all

multi-indexes a ∈ NN with |a| = d− 1, by [32, Lemma 1.4] we deduce the estimate∑
|a|=d−1

∣∣∣∣τh( ∂a

∂xa
Pλ(x)

)
− ∂a

∂xa
Pλ(x)

∣∣∣∣ (7.3)

≤ C
[
max

{
sup

{∣∣∇d−1Pλ(z)
∣∣ : |z| = 1

}
, sup

{∣∣∇dPλ(z)
∣∣ : |z| = 1

}}]
·

· |h|s
[

1

|x|N−1+s
+

1

|x+ h|N−1+s

]
.

for every x ∈ RN , 0 ≤ s ≤ 1, and |h| ≤ 1/2, where the constant C is independent of x and h .

Next, for every bounded open set U ⊂ RN satisfying Q ⊂ U we haveˆ
U

1

|x|N−1+s
dx ≤

ˆ
B(0,2)

1

|x|N−1+s
dx+

ˆ
U\B(0,2)

1

|x|N−1+s
dx (7.4)

≤ 2π

ˆ 2

0

r−sdr +
1

2N−1+s
|U \B(0, 2)| < +∞,

The analogous computation holds for 1
|x+h|N−1+s . Since Pλ is a fundamental solution and A Pλ =

λδ , we have that Pλ ∈ C∞(RN \B(0, ε)) for every ε > 0. In particular,

max
{

sup
{∣∣∇d−1P (z)

∣∣ : |z| = 1
}
, sup

{∣∣∇dP (z)
∣∣ : |z| = 1

}}
=: M < +∞. (7.5)

This, together with (7.3) and (7.4), yields∥∥∥∥∥∥
∑
|a|=d−1

∣∣∣∣τh( ∂a

∂xa
Pλ(x)

)
− ∂a

∂xa
Pλ(x)

∣∣∣∣
∥∥∥∥∥∥
L1(U ;RN )

≤ CM |h|s ,

for some C > 0, and thus

lim
h→∞

∥∥∥∥∥∥
∑
|a|=d−1

∣∣∣∣τh( ∂a

∂xa
Pλ(x)

)
− ∂a

∂xa
Pλ(x)

∣∣∣∣
∥∥∥∥∥∥
L1(U ;RN )

= 0,

and (6.1) is established. �

Remark 7.3. As a corollary of Proposition 7.2 and Remark 7.1, we deduce that all operators A
satisfying the assumptions in [22, Page 351, Section 6.3] comply with Definition 6.1, Assertion 1.
In particular, differential operators A which can be written in the form A = B∗ ◦C , where B∗ is
the first order differential operator associated to B and having as coefficients the transpose of the
matrices Bi , i = 1, . . . , N , and where C is a differential operator of order d − 1 having constant
coefficients, are such that (A ,B) complies with Definition 6.1.

7.2. The unified approach to TGV 2 and NsTGV 2 - an example of Σ[A ] . In this section
we give an explicit construction of an operator A such that the seminorms NsTGV 2 and TGV 2 ,
as well as a continuum of topologically equivalent seminorms connecting them, can be constructed
as operators B ∈ Σ[A ] .
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We start by recalling the definition of the classical symmetrized gradient,

Ev =
∇v + (∇v)T

2
=

[
∂1v1

(∂1v2+∂2v1)
2

(∂1v2+∂2v1)
2 ∂2v2

]
, (7.6)

for v = (v1, v2) ∈ C∞(Q;R2). Let

B1
sym =

[
1 0 1/2 0
0 1/2 0 0

]
and B2

sym =

[
0 0 1/2 0
0 1/2 0 1

]
,

and let Bsym(v) be defined as in (2.1) with B1
sym and B2

sym as above. Then Bsym(v) = Ev for all

v ∈ C∞(Q;R2), and N (Bsym) is finite dimensional. In particular,

N (Bsym) =

{
v(x) = α

(
x2

−x1

)
+ b : α ∈ R and b ∈ R2

}
.

The first part of Definition 6.1 follows from Remark 7.3. Next we verify that (6.3) holds. Indeed,
choosing A as in (7.2), we first observe that

(A w) ∗ v =

N∑
j=1

[∆wj + ∂jdiv(w)] ∗ vj =

N∑
i,j=1

(∂iwj + ∂jwi) ∗ ∂ivj (7.7)

=

N∑
i,j=1

(∂iwj + ∂jwi) ∗ (∂ivj + ∂jvi) = (Bsymw) ∗ (Bsymv),

for every w ∈ W 1,2(Q;R2) and v ∈ C∞c (Q;R2). That is, for every open set U ⊂ RN such that
Q ⊂ U we have

|(A w) ∗ v|Mb(U ;R2) ≤ |(Bsymw) ∗ (Bsymv)|Mb(U ;M2×2) ≤ ‖∇w‖L1(U ;M2×2) |Bsym(v)|Mb(U ;M2×2) .

The same computation holds for w ∈ C∞c (Q;R2) and v ∈ BVB(Q;R2). This proves that Assertion
2 in Definition 6.1 is also satisfied.

We finally construct an example of a training set Σ[A ] . For every 0 ≤ s, t ≤ 1, we define

Bt :=

[
1 0 t 0
0 (1− t) 0 0

]
and Bs :=

[
1 0 s 0
0 1− s 0 0

]
,

and we set

Bs,t(v) := Bt∂1v +Bs∂2v =

[
∂1v1 (1− t)∂1v2 + (1− s)∂2v1

t∂1v2 + s∂2v1 ∂2v2

]
. (7.8)

By a straightforward computation, we obtain that N (Bs,t) is finite dimensional for every 0 ≤
s, t ≤ 1. Additionally, Assertion 1 in Definition 6.1 follows by adapting the arguments in Remark
7.3. Finally, arguing exactly as in (7.7), we obtain that

(A w) ∗ v = (Bt,sw) ∗ (Bs,t(v)), for every w, v ∈ C∞(Q̄;R2),

which implies that

|(A w) ∗ v|Mb(Q;R2) ≤ ‖Bt,sw‖L1(Q;M2×2) |Bs,t(v)|Mb(Q;M2×2)

≤ 2 ‖∇w‖L1(Q;RN×N ) |Bs,t(v)|Mb(Q;M2×2) .
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Hence, we deduce again Statement 2 in Definition 6.1. Therefore, the collection Σ[A ] given by

Σ[A ] := {Bs,t : 0 ≤ s, t ≤ 1}

is a training set according to Definition 6.10. We remark that Σ[A ] includes the operator TGV 2

(with s = t = 1/2) and the operator NsTGV 2 (with t = 0 and s = 1), as well as a collection of
all “interpolating” regularizers. In other words, our training scheme (T 2

θ ) with training set Σ[A ]
is able to search for optimal results in a class of operators including the commonly used TGV 2 and
NsTGV 2 , as well as any interpolation regularizer.

7.2.1. Comparison with other works. In [8] the authors analyze a range of first order linear operators
generated by diagonal matrixes. To be precise, letting D = diag(β1, β2, β3, β4), [8] treats first order
operators B defined as

Bv := Q ·B ·Q · (∇v)T ,

where

Q :=


0 1 −1 0
1 0 0 1
−1 0 0 1
0 1 1 0

 and ∇v = [∂1v1, ∂1v2, ∂2v1, ∂2v2].

That is, instead of viewing ∇v as a 2× 2 matrix as we do, in [8] ∇v is represented as a vector in
R4 . In this way, the symmetric gradient Ev in (7.6) can be written as

Ev = Q · diag(0, 1/2, 1/2, 1/2) ·Q · (∇v)T =


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

 · [∂1v1, ∂1v2, ∂2v1, ∂2v2]T

= [∂1v1, 0.5(∂1v2 + ∂2v1), 0.5(∂1v2 + ∂2v1), ∂2v2].

However, the representation above does not allow to consider skewed symmetric gradients Bs,t(v)
with the structure introduced in (7.8). Indeed, let s = t = 0.2. We have

B0.2,0.2(v) =

[
∂1v1 0.8∂1v2 + 0.8∂2v1

0.2∂1v2 + 0.2∂2v1 ∂2v2

]
.

Rewriting the matrix above as a vector in R4 , we obtain

B0.2,0.2(v) = [∂1v1, 0.2(∂1v2 + ∂2v1), 0.8(∂1v2 + ∂2v1), ∂2v2]

=


1 0 0 0
0 0.8 0.8 0
0 0.2 0.2 0
0 0 0 1

 · [∂1v1, ∂1v2, ∂2v1, ∂2v2]T .

That is, we would have

QD′Q =


1 0 0 0
0 0.8 0.8 0
0 0.2 0.2 0
0 0 0 1

 or D′ =


0 0 0 0.3
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 ,
which are not diagonal matrices. Hence, this example shows that our model indeed covers more
operators that those discussed in [8].
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7.3. Numerical simulations and observations. Let A be the operator defined in Subsection
7.2, and let

Σ[A ] := {Bs,t : s, t ∈ [0, 1]}
where, for 0 ≤ s, t ≤ 1, Bs,t are the first order operators introduced in (7.8). As we remarked
before, the seminorm PGV 2

Bs,t
interpolates between the TGV 2 and NsTGV 2 regularizers. We

define the cost function C(α, s, t) to be

C(α, s, t) :=
∥∥uα,Bs,t

− uc
∥∥
L2(Q)

. (7.9)

From Theorem 5.4 we have that C(α, s, t) admits at least one minimizer (α̃, s̃, t̃) ∈ R+×[0, 1]×[0, 1].

To explore the numerical landscapes of the cost function C(α, s, t), we consider the discrete box-
constraint

(α0, α1, s, t) ∈ {0.025, 0.05, 0.075, . . . , 1}
× {0.025, 0.05, 0.075, . . . , 1} × {0, 0.025, 0.05, . . . , 1} × {0, 0.025, 0.05, . . . , 1} . (7.10)

We perform numerical simulations of the images shown in Figure 1: the first image represents
a clean image uc , whereas the second one is a noised version uη , with heavy artificial Gaussian
noise. The reconstructed image uα,B in Level 2 of our training scheme is computed by using the
primal-dual algorithm presented in [9].

Figure 1. From left to right: the test image of a Pika; a noised version (with
heavy artificial Gaussian noise); the optimally reconstructed image with TGV
regularizer; the optimally reconstructed image with PGV regularizer.

It turns out that the minimum value of (7.9), taking values in (7.10), is achieved at α̃0 = 0.072,
α̃1 = 0.575, s̃ = 0.95, and t̃ = 0.05. The optimal reconstruction uα̃,Bs̃,t̃

is the last image in Figure
1, whereas the optimal result with Bs,t ≡ E , i.e., uα̃,TGV , is the third image in Figure 1. Although
the optimal reconstructed image uα̃,Bs̃,t̃

and uα̃,E do not present too many differences to the naked
eye, we do have that

C(α̃, s̃, t̃) < C(α̃, 0.5, 0.5)

(see also Table 1 below). That is, the reconstructed image uα̃,Bs̃,t̃
is indeed “better” in the sense

of our training scheme (L2 -difference).
To visualize the change of cost function produced by different values of (s, t) ∈ [0, 1]2 , we fix
ᾱ0 = 0.072 and ᾱ1 = 0.575 and plot in Figure 2 the mesh and contour plot of C(ᾱ, s, t).
We again remark that the introduction of PGVα,B[k] regularizers into the training scheme is only
meant to expand the training choices, but not to provide a superior seminorm with respect to the
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Regularizer optimal solution minimum cost value
TGV 2 α̃0 = 0.074, α̃1 = 0.625 C(α̃, 0.5, 0.5) = 18.653

PGV 2 α̃0 = 0.072, α̃1 = 0.575, s̃ = 0.95, t̃ = 0.05 C(α̃, s̃, t̃) = 17.6478

Table 1. minimum cost value with different regularizers. The minimum value of
the cost function for the PGV 2 - regularizer is approximately 5% below that of
the TGV 2 - regularizer.

Figure 2. From the left to the right: mesh and contour plot of the cost function
C(ᾱ, s, t) in which ᾱ = (ᾱ0, ᾱ1) is fixed, (s, t) ∈ [0, 1]2 .

popular choices TGV 2 or NsTGV 2 . The fact whether the optimal regularizer is TGV 2 , NsTGV 2

or an intermediate regularizer is completely dependent on the given training image uη = uc + η .

We conclude this section with a further study of the numerical landscapes associated to the cost
function C(α, s, t). We consider also in this second example the discrete box-constraint in (7.10),
and we analyze the images shown in Figure 3: also in this second example the first image represents
the clean image uc , whereas the second one is a noised version uη . The reconstructed image uα,B
in Level 2 of our training scheme is again computed by using the primal-dual algorithm presented
in [9].
We report that the minimum value of (7.9), taking values in (7.10), is achieved at α̃0 = 5.6,
α̃1 = 1.2, s̃ = 0.8, and t̃ = 0.2. The optimal reconstruction uα̃,Bs̃,t̃

is the last image in Figure 3,
whereas the optimal result with Bs,t ≡ E , i.e., uα̃,TGV , is the third image in Figure 3. Although
the optimal reconstructed image uα̃,Bs̃,t̃

and uα̃,TGV do not present too many differences with
respect to our eyesight, we do have, also in this case, that∥∥∥uα̃,Bs̃,t̃

− uc
∥∥∥
L2(Q)

< ‖uα̃,TGV − uc‖L2(Q) .

Namely, the reconstructed image uα̃,Bs̃,t̃
is indeed “better” in the sense of our training scheme

(L2 -difference).
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Figure 3. From left to right: the test image of a space shuttle; a noised version
(with artificial Gaussian noise); the optimally reconstructed image uα̃,E , where
α̃0 = 5.2, α̃1 = 1.9; the optimally reconstructed image uα̃,Bs̃,t̃

, where α̃0 = 5.6,

α̃1 = 1.2, s̃ = 0.8, and t̃ = 0.2

To visualize the change of cost function produced by different values of (s, t) ∈ [0, 1]2 , we fix
ᾱ0 = 5.6 and ᾱ1 = 1.9 and plot in Figure 4 the mesh and contour plot of C(ᾱ, s, t) as follows.

0.5 1

0.5

1

Figure 4. From left to right: mesh and contour plot of the cost function C(ᾱ, s, t)
in which ᾱ = (ᾱ0, ᾱ1) is fixed, (s, t) ∈ [0, 1]2 . The function C(ᾱ, s, t) achieves the
minimum at s̃ = 0.8 and t̃ = 0.2.



Page 31 Section 7

Acknowledgements

The work of Elisa Davoli has been funded by the Austrian Science Fund (FWF) projects F65, V
662, and I 4052, as well as by BMBWF through the OeAD-WTZ project CZ04/2019. Irene Fonseca
thanks the Center for Nonlinear Analysis for its support during the preparation of the manuscript.
She was supported by the National Science Foundation under Grants No. DMS-1411646 and DMS-
1906238. The work of Pan Liu has been supported by the Centre of Mathematical Imaging and
Healthcare and funded by the Grant ”EPSRC Centre for Mathematical and Statistical Analysis
of Multimodal Clinical Imaging” with No. EP/N014588/1. All authors are thankful to the Erwin
Schrödinger Institute in Vienna, where part of this work has been developed during the workshop
“New trends in the variational modeling of failure phenomena”.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford

Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

[2] T. Barbu and G. Marinoschi. Image denoising by a nonlinear control technique. International Journal of
Control, 90 (2017),1005–1017.

[3] K. Bredies and M. Holler. Regularization of linear inverse problems with total generalized variation. Journal
of inverse and ill-posed problems, 22 (1993), 871–913.

[4] K. Bredies, K. Kunisch, and T. Pock. Total generalized variation. SIAM J. Imaging Sci. 3 (2010), 492–526.

[5] K. Bredies and T. Valkonen. Inverse problems with second-order total generalized variation constraints. Pro-
ceedings of SampTA 2011 - 9th International Conference on Sampling Theory and Applications, Singapore,

(2011).

[6] D. Breit, L. Diening, and F. Gmeineder. Traces of functions of bounded A-variation and variational problems
with linear growth. Preprint arXiv:1707.06804.

[7] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New

York, 2011.
[8] E.-M. Brinkmann, M. Burger, and J. S. Grah. Unified models for second-Order TV-type regularisation in

imaging - a new perspective based on vector operators. Journal of Mathematical Imaging and Vision, 61

(2019), 571–601.
[9] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to

imaging. Journal of Mathematical Imaging and Vision, 40 (2011), 120–145.

[10] Y. Chen, T. Pock, R. Ranftl, and H. Bischof. Revisiting loss-specific training of filter-based MRFs for image
restoration. In Pattern Recognition, pages 271–281. Springer, 2013.

[11] Y. Chen, R. Ranftl, and T. Pock. Insights into analysis operator learning: From patch-based sparse models to
higher order MRFs. IEEE Transactions on Image Processing, 23 (2014), 1060–1072.

[12] E. Davoli and P. Liu. One dimensional fractional order TGV : Gamma-convergence and bilevel training scheme.

Commun. Math. Sci. 16 (2018), 213–237.
[13] J. C. De Los Reyes, C.-B. Schönlieb, and T. Valkonen. The structure of optimal parameters for image restoration

problems. J. Math. Anal. Appl. 434 (2016), 464–500.
[14] J. C. De los Reyes, C.-B. Schönlieb, and T. Valkonen. Bilevel parameter learning for higher-order total variation

regularisation models. Journal of Mathematical Imaging and Vision, 57 (2017), 1–25.
[15] J. Domke. Generic methods for optimization-based modeling. In AISTATS, volume 22, pages 318–326, 2012.

[16] C. Fefferman. Cm extension by linear operators. Ann. of Math. (2) 166 (2007), 779–835.
[17] E. Gagliardo. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili.

Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305.
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