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1. Introduction

1.1. Main result. We are interested in the 2D KPZ equation driven by a mollified
spacetime white noise and starting from flat initial data:
(1.1) ∂thε =

1
2∆hε + β

2
√

∣ log ε∣
∣∇hε∣

2
+ Ẇε(t, x), hε(0, x) ≡ 0, x ∈ R2,

where
Ẇε(t, x) =

1
ε2 ∫R2

ϕ(x−y
ε

)Ẇ (t, y)dy,

with Ẇ a spacetime white noise built on the probability space (Ω,F ,P) and 0 ≤ ϕ ∈

C∞c (R2). The covariance function of Ẇε is formally written as
(1.2)
E[Ẇε(t, x)Ẇε(s, y)] = δ(t − s)

1
ε2
R(

x−y
ε

), with R(x) = ∫
R2
ϕ(x + y)ϕ(y)dy.

Without loss of generality, assume ϕ(x) = 0 for ∣x∣ ≥ 1
2 and ∫R2 ϕ(x)dx = 1. The

following is our main result:

Theorem 1.1. There exists β0 depending on ϕ such that if β < β0 ≤
√

2π, then for
any t > 0 and test function g ∈ C∞c (R2), we have

(1.3) ∫
R2

(hε(t, x) −E[hε(t, x)]) g(x)dx⇒ ∫
R2

H (t, x)g(x)dx

in distribution as ε→ 0, where H solves the Edwards-Wilkinson equation
∂tH = 1

2∆H + νeffẆ (t, x), H (0, x) ≡ 0,
with the effective variance
(1.4) ν2

eff = 2π
2π−β2 .

There is a lot of activities on the study of the 1D KPZ equation over the past
decade. We refer to the reviews [7, 17] for a summary of some recent developments.
Progresses in d ≥ 3 can be found in [8, 13], where results similar to Theorem 1.1 were
proved. In two dimensions, the tightness of {hε}ε∈(0,1), as a sequence of random
distributions, was proved in the recent work of Chatterjee-Dunlap [5]. To prove
Theorem 1.1, we implement the same strategy laid out in [8].

The convergence in (1.3) is expected to hold for all β ∈ (0,
√

2π), and our proof
seems to only work for β small enough. After the completion of this paper, we learnt
the very recent work of Caravenna-Sun-Zygouras [4] which proved Theorem 1.1 for
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all β ∈ (0,
√

2π), using a different method. While their result is more general and
covers the entire “subcritical” regime, the proof presented here seems to be simpler
and offers another perspective. We compare the two approaches in Section 2.4.

At the critical β =
√

2π, the early work of Bertini-Cancrini [1] identified the
limiting covariance function of the corresponding stochastic heat equation. While
the limiting distribution remains an open question, we refer to the work of [3, 9] in
this direction.

1.2. Connection to the stochastic heat equation and heuristics. Through
a Hopf-Cole transformation, the hε defined in (1.1) is related to the solution of the
heat equation with a weak random potential

(1.5) ∂tu =
1
2∆u + βεV (t, x)u, u(0, x) ≡ 1, x ∈ R2,

with

(1.6) βε =
β√

∣ log ε∣
,

and
V (t, x) = ∫

R2
ϕ(x − y)Ẇ (t, y)dy.

Here, the product V (t, x)u in (1.5) is interpreted in the Itô sense. Consider uε(t, x) =
u( t

ε2
, x
ε
), which solves

∂tuε =
1
2∆uε + βε

ε2
V ( t

ε2
, x
ε
)uε.

By the scaling property of the spacetime white noise and the fact that d = 2, we
have

(1.7) 1
ε2
V ( t

ε2
, x
ε
)

law
= Ẇε(t, x).

Applying Itô’s formula yields

β−1
ε (loguε −E[loguε])

law
= hε −E[hε].

From now on, we focus on loguε rather than hε.
Our proof of Theorem 1.1 implies a similar result of uε: for β < β0,

(1.8) β−1
ε ∫R2

(uε(t, x) − 1)g(x)dx⇒ ∫
R2

H (t, x)g(x)dx

in distribution. This was previously proved in [2, Theorem 2.17] for all β ∈ (0,
√

2π).
Let us explain the mechanism behind the convergence of (1.8) for the stochastic
heat equation (SHE) and how it relates to the convergence for KPZ in (1.3).

First, the variance of the l.h.s. of (1.8) is
(1.9)
Var[β−1

ε ∫R2
uε(t, x)g(x)dx] = β

−2
∣ log ε∣∫

R4
Cov[u( t

ε2
, x
ε
), u( t

ε2
, y
ε
)]g(x)g(y)dxdy.

The covariance is written explicitly by the Feynman-Kac formula:
(1.10)
u(t, x) = EB[eβε ∫

t
0 V (t−s,x+Bs)ds− 1

2β
2
εR(0)t

],

Cov[u( t
ε2
, x
ε
), u( t

ε2
, y
ε
)] = EB[eβ

2∣ log ε∣−1 ∫
t/ε2
0 R(x−y

ε
+B1

s−B
2
s)ds] − 1 = F ( t

ε2
, x−y
ε

) − 1,

where B1,B2 are independent Brownian motions starting from the origin and EB
denotes the expectation with respect to the Brownian motions. Here F solves the
deterministic PDE

∂tF = ∆F + β2
∣ log ε∣−1R(x)F, F (0, x) ≡ 1.
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Similar to u, we have omitted the dependence of F on ε. The above equation can
be written in the mild formulation as

F ( t
ε2
, x−y
ε

) = 1 + β2
∣ log ε∣−1

∫

t/ε2

0
∫
R2
G2(t/ε2−`)(

x−y
ε
−w)R(w)F (`,w)dwd`,

where we denote Gt(x) = (2πt)−1 exp(−∣x∣2/2t) as the standard heat kernel. After a
change of variable `↦ `/ε2, we have

(1.11) β−2
∣ log ε∣ [F ( t

ε2
, x−y
ε

) − 1] = ∫
t

0
∫
R2
G2(t−`)(x − y − εw)R(w)F ( `

ε2
,w)dwd`.

By the Feynman-Kac representation of F in (1.10), we know that F (`/ε2,w) mea-
sures the intersection time of the two Brownian motions during [0, `/ε2]. By a
classical result of Kallianpur-Robbins [12, Theorem 1], for β > 0, ` > 0 and w ∈ R2,
the following convergence in distribution holds:
(1.12)

∣ log ε∣−1
∫

`/ε2

0
R(w +B1

s −B
2
s)ds

law
= (2∣ log ε∣)−1

∫

2`/ε2

0
R(w +Bs)ds⇒

1
2πExp(1),

where we used the fact that ∫ R = 1. Together with some uniform integrability we
will establish later, this implies

(1.13) F ( `
ε2
,w) = EB[eβ

2∣ log ε∣−1 ∫
`/ε2
0 R(w+B1

s−B
2
s)ds]→ 2π

2π−β2 = ν2
eff

for small β, as ε→ 0. Combining (1.11) and (1.13), the variance in (1.9) converges:
(1.14)

Var[β−1
ε ∫R2

uε(t, x)g(x)dx]→ν
2
eff ∫

t

0
∫
R6
G2(t−`)(x − y)R(w)g(x)g(y)dxdydwd`

= Var[∫
R2

H (t, x)g(x)dx].

The above calculation and the convergence in (1.13) interprets the effective variance
ν2

eff in terms of the intersection of two Brownian paths.
Now we explain the origin of the Gaussianity. It is important to note that the

main contribution to the integral in (1.12) comes from s ∈ [0,Kε] provided that
∣ log(ε2Kε)∣ ≪ ∣ log ε∣. Actually, the heat kernel in d = 2 satisfies that Gt(x) ∼ t−1 for
those x around the origin, so we have

(1.15)

∣ log ε∣−1
(∫

`/ε2

0
−∫

Kε

0
)EB[R(w +B1

s −B
2
s)]ds

= ∣ log ε∣−1
∫

`/ε2

Kε
EB[R(w +B1

s −B
2
s)]ds

∼ ∣ log ε∣−1
∣ log(ε2Kε)∣→ 0.

Thus, we can e.g. pick Kε =
1

ε2∣ log ε∣ = o(ε
−2) and replace F (`/ε2,w) in (1.11) by

F (Kε,w) without changing the asymptotic covariance:
(1.16)

β−2
∣ log ε∣ [F ( t

ε2
, x−y
ε

) − 1] ≈∫
t

0
∫
R2
G2(t−`)(x − y − εw)R(w)F (Kε,w)dwd`.

Recall that
Var[β−1

ε ∫R2
uε(t, x)g(x)dx] = ∫

R4
β−2

∣ log ε∣ [F ( t
ε2
, x−y
ε

) − 1]g(x)g(y)dxdy.

The r.h.s. of (1.16) shows the main contribution to the variance of our interested
quantity, from the perspective of Brownian paths intersections. In microscopic
variables, we have two Brownian paths, starting from x

ε
and y

ε
respectively and

running backwards in time. After first meeting each other at the time (t − `)/ε2 for
some ` ∈ (0, t), the two paths spend Kε = o(ε

−2) amount of time “intersecting” before
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splitting again. As a result, the random environment involved in this “intersection”
only consists of Ẇ (s, ⋅) with s ∈ [`/ε2 − o(ε−2), `/ε2], which induces a temporal
decorrelation for different `1 ≠ `2 ∈ (0, t) and creates the Gaussianity. Together
with the variance convergence in (1.14), this implies the Edwards-Wilkinson limit
in (1.8). The results in [10] for d ≥ 3 is based on the above heuristics.

For the KPZ equation, the Gaussianity comes from a similar temporal decor-
relation discussed above (we will prove it by a different method though). The
convergence of the variance

Var[∫
R2
hε(t, x)g(x)dx] = Var[β−1

ε ∫R2
loguε(t, x)g(x)dx]

→ Var[∫
R2

H (t, x)g(x)dx]

is however more involved. While we do not have a Feynman-Kac representation for
Cov[loguε(t, x), loguε(t, y)] as (1.10), an application of the Clark-Ocone formula
will help us express the covariance in terms of an integral of

(1.17) E[D loguε(t, z)∣Fr] = E[u−1
ε (t, z)Duε(t, z)∣Fr], z = x, y, r ≤ t

ε2
.

Here D is the Malliavin derivative with respect to the random noise and Fr is the
filtration generated by {Ẇ (s, ⋅), s ≤ r}. The key difficulty in analyzing (1.17) is to
deal with the factor u−1

ε and to evaluate the conditional expectation given Fr. By the
same discussion for (1.15), the random variable uε(t, ⋅) mainly depends on the noise
Ẇ (s, ⋅) for s ∈ [t/ε2 − o(ε−2), t/ε2], so we could replace the factor u−1

ε (t, ⋅) in (1.17)
with a small error by something that is independent of Fr for those r < t

ε2
− o(ε−2).

The rest of the discussion is similar to the SHE case.

1.3. Notation. We use the following notation and conventions.
(i) We use a ≲ b for a ≤ Cb for some constant C independent of ε.
(ii) We use (p, q) to denote the Hölder exponents 1

p
+ 1
q
= 1, and always choose

p≫ 1.
(iii) Gt(x) = (2πt)−1 exp(−∣x∣2/2t) denotes the standard heat kernel.
(iv) We let H denote the Hilbert space L2(R2+1), with norm ∥ ⋅ ∥H and inner

product ⟨⋅, ⋅⟩H .
(v) We use ∥ ⋅ ∥p to denote the Lp norm of the probability space (Ω,F ,P) for

p ≥ 1.
(vi) {Bjt ∶ t ≥ 0, j = 1, . . .} is a family of standard independent 2−dimensional

Brownian motions built on another probability space (Σ,A,PB). We will use EB ,PB
when taking the expectation and the probability with respect to B.

(vii) We use dTV(⋅, ⋅) to denote the total variation distance between two distribu-
tions.

(viii) We let ∥ ⋅ ∥op denotes the operator norm.
(viiii) We use [0, t]n< to denote the n−dimensional simplex {0 ≤ t1 < . . . < tn ≤ t}.

Acknowledgments. We would like to thank Li-Cheng Tsai for his initial involve-
ment in this project and multiple inspiring discussions. The research is supported by
NSF grant DMS-1613301/1807748 and the Center for Nonlinear Analysis of CMU.
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2. Sketch of the proof

The main result (1.3) is equivalent with the convergence in distribution of

(2.1) β−1
ε ∫R2

(loguε(t, x) −E[loguε(t, x)])g(x)dx⇒ ∫
R2

H (t, x)g(x)dx.

We rely on the Feynman-Kac representation of the solution to (1.5):

(2.2) u(t, x) = EB [eβε ∫
t
0 V (t−s,x+Bs)ds− 1

2β
2
εR(0)t

] ,

which has the same distribution, if viewed as a random field in x with t fixed, as

Z(t, x) = EB[M(t, x)], with M(t, x) = exp(βε ∫
t

0
V (s, x +Bs)ds −

1
2β

2
εR(0)t) .

We keep in mind that M,Z depend on ε through the small factor βε defined in (1.6)
but omit its dependence to simplify the notation. For fixed B and x, M(⋅, x) is a
martingale. Defining

Zε(t, x) = Z( t
ε2
, x
ε
), Mε(t, x) =M( t

ε2
, x
ε
),

and
Xε(t) = ∫

R2
logZε(t, x)g(x)dx.

The convergence in (2.1) is equivalent to

β−1
ε (Xε(t) −E[Xε(t)])⇒ ∫

R2
H (t, x)g(x)dx.

Throughout the paper, we fix the variable t > 0 and sometimes omit its dependence.
Define

(2.3) σ2
t = Var[∫ H (t, ⋅)g(⋅)] = ν2

eff ∫
t

0
∫
R4
g(x1)g(x2)G2s(x1 − x2)dx1dx2ds,

where we recall that Gt(x) is the standard heat kernel. The proof of Theorem 1.1
consists of two steps:

Proposition 2.1. As ε→ 0, β−2
ε Var[Xε(t)]→ σ2

t .

Proposition 2.2. As ε→ 0,
Xε(t) −E[Xε(t)]
√

Var[Xε(t)]
⇒ N(0,1).

2.1. Negative moments. Throughout the paper, we rely on the existence of
negative moments of Zε(t, x) for small β.

Proposition 2.3. There exits β0 > 0 such that if β < β0,
sup
t∈[0,T ]

sup
ε∈(0,1)

E[Zε(t, x)
−n

] ≤ Cβ,n,T .

The proof is presented in Appendix B.

2.2. The Clark-Ocone representation. For each realization of the Brownian
motion B, we can write

∫

t/ε2

0
V (s, x

ε
+Bs)ds =∫

t/ε2

0
(∫

R2
ϕ(x

ε
+Bs − y)Ẇ (s, y)dy)ds

=∫
R3

Φεt,x,B(s, y)dW (s, y),

with
Φεt,x,B(s, y) = 1[0,t/ε2](s)ϕ(

x
ε
+Bs − y).
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Therefore,
Ds,yZε(t, x) =Ds,yEB[Mε(t, x)] = βεEB [Mε(t, x)Φεt,x,B(s, y)] ,

where Ds,y denotes the Malliavin derivative operator with respect to Ẇ . By [8,
Lemma A.1], we have

Ds,y logZε(t, x) =
Ds,yZε(t, x)

Zε(t, x)
,

and the Clark-Ocone formula says

Xε −E[Xε] = ∫
R3

E[Ds,yXε∣Fs]dW (s, y)

= ∫
R3

E[∫
R2

Ds,yZε(t, x)

Zε(t, x)
g(x)dx∣Fs]dW (s, y)(2.4)

= βε ∫
t/ε2

0
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Zε(t, x)
∣Fs]dx)dW (s, y).

Here Fs is the filtration generated by Ẇ (`, ⋅) up to ` ≤ s.
For

(2.5) Kε =
1

ε2∣ log ε∣α

with some α > 0 to be determined, we decompose the stochastic integral in (2.4)
into three parts:

β−1
ε (Xε −E[Xε]) = I1,ε + I2,ε + I3,ε,

with

(2.6) I1,ε = ∫
Kε

0
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Zε(t, x)
∣Fs]dx)dW (s, y),

(2.7)

I2,ε = ∫
t/ε2

Kε
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Z(Kε, x/ε)
(
Z(Kε, x/ε)

Z(t/ε2, x/ε)
− 1) ∣Fs]dx)dW (s, y),

and

(2.8) I3,ε = ∫
t/ε2

Kε
∫
R2

(∫
R2
g(x)E[

EB[Mε(t, x)Φεt,x,B(s, y)]

Z(Kε, x/ε)
∣Fs]dx)dW (s, y).

Since 1 ≪ Kε ≪ ε−2 and we expect that Z(Kε, x/ε) is close to Z(t/ε2, x/ε), the
contribution from I1,ε, I2,ε is small compared to that from I3,ε. For I3,ε, the
integration is in s ≥Kε, so the random variable Z(Kε, x/ε) is Fs−measurable, and
(2.9)

I3,ε = ∫
t/ε2

Kε
∫
R2

(∫
R2

g(x)

Z(Kε, x/ε)
E[EB[Mε(t, x)Φεt,x,B(s, y)]∣Fs]dx)dW (s, y).

Note that the procedure we took here is slightly different from the heuristics provided
in Section 1.2 due to the time reversal and the fact that we considered Z(t, x) rather
than u(t, x). Mathematically they are equivalent.

2.3. The second order Poincaré inequality. To simplify the notation, we define

Yε =
Xε−E[Xε]√

Var[Xε]
.

To show that Yε ⇒ N(0,1), we apply the second order Poincaré inequality, which
was originally proved in the discrete setting in [6] and generalized to the continuous
setting in [15]. Since E[Yε] = 0 and Var[Yε] = 1, with ζ a standard centered Gaussian
random variable, by [15, Theorem 1.1], we have

(2.10) dTV(Yε, ζ) ≲ E[∥DYε∥
4
H]

1/4E[∥D2Yε∥
4
op]

1/4,
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where ∥D2Yε∥op denotes the operator norm of the mapping H ⊗H ∋D2Yε ∶H ↦H
defined as D2Yεh ∶= ⟨h,D2Yε⟩H .

Since

DYε =
DXε√

Var[Xε]
, D2Yε =

D2Xε√
Var[Xε]

,

and Var[Xε] ∼ ∣ log ε∣−1 from Proposition 2.1, to show dTV(Yε, ζ)→ 0 using (2.10),
we only need to prove

(2.11) E[∥DXε∥
4
H]

1/4E[∥D2Xε∥
4
op]

1/4
= o(∣ log ε∣−1

), as ε→ 0.

Another possible way to prove the Gaussianity is to utilize the fast temporal
mixing, as explained heuristically in Section 1.2 and implemented in d ≥ 3 in [10].

2.4. A comparison with [4]. The basic ideas behind both approaches are similar,
and the key is to modify the partition function so that logZ( t

ε2
, x
ε
) can be “linearized”

in some sense. As we will prove later, I3,ε is the main contribution to the random
fluctuations, which essentially corresponds to the partition function of a directed
polymer {Bs}s≥0 that interacts only with the random environment Ẇ (s, ⋅) in s ≥Kε.
The initial layer in s <Kε only determines the starting point BKε for this interaction.
By our choice of Kε = o(ε

−2), it is easy to show that in the weak disorder regime
(β small), εBKε → 0 as ε → 0 under the polymer measure, indicating that the
initial layer plays no role in the limit. Given this heuristics, if we ignore the factor
Z(Kε, x/ε)

−1 in (2.9), then I3,ε becomes

I3,ε ↦∫
t/ε2

Kε
∫
R2

(∫
R2
g(x)E[EB[Mε(t, x)Φεt,x,B(s, y)]∣Fs]dx)dW (s, y)

= ∫

t/ε2

Kε
∫
R2

(∫
R2
g(x)EB[M(s, x

ε
)Φεt,x,B(s, y)]dx)dW (s, y)

= ∫
R2
g(x)(∫

t/ε2

Kε
∫
R2

E[Ds,yZ( t
ε2
, x
ε
)∣Fs]dW (s, y))dx.

The last expression precisely describes the fluctuation of the partition function
that only involves the environment in s ≥Kε. A similar heuristics was given in [4,
Section 2.1], and the ZB≥N,βN (x) − 1 defined in [4, Equation (2.11)] corresponds to
the above expression. The Clark-Ocone formula seems to be particularly handy for
this “linearization”. It is worth mentioning that a naive Taylor expansion does not
necessarily work for f(Z( t

ε2
, x
ε
)) with arbitrary smooth f, as shown in [8, Theorem

1.2].
Another difference between the two approaches is the proof of the Gaussianity.

After the “linearization” in [4, Proposition 2.3], the convergence to the Edwards-
Wilkinson limit follows from the convergence of SHE proved in [2, Theorem 2.17],
which was based on a polynomial chaos expansion and the fourth moment theorem
[14, 16]. In our case, we directly employ the second order Poincaré inequality to
the KPZ equation, which simplifies some analysis. On the other hand, the fourth
moment theorem covers more general distributions of the random environment and
the convergence of a discrete directed polymer model to the Edwards-Wilkinson limit
was proved in [4, Theorem 1.6], while we only deal with the continuous Gaussian
environment in our setting.
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3. Variance convergence

To simplify the notation, we define

Mε,j(t, x) ∶= exp(βε ∫
t/ε2

0
V (s, x

ε
+Bjs)ds −

β2
εR(0)t
2ε2 ) ,

where {Bj}j are independent Brownian motions. For any set I ⊂ R+, x ∈ R2 and
Brownian motions Bi,Bj , we define

(3.1) R(I, x,Bi,Bj) = ∫
I
R(x +Bis −B

j
s)ds

as the intersection time of Bi,Bj during the interval I, and x is the initial distance.
For I = [0, T ], we write R(T,x,Bi,Bj) =R([0, T ], x,Bi,Bj).

The following lemma will be used repeatedly and is taken from [8, Lemma 3.1].

Lemma 3.1. For any n ∈ Z+ and q > 1, there exists β(n, q) > 0 such that if β <

β(n, q), then for any random variable F (B1, . . . ,Bn) ≥ 0, t > 0 and {xj ∈ R2}j=1,...,n,
we have

(3.2) E [
EB[∏

n
j=1Mε,j(t, xj)F (B1, . . . ,Bn)]

∏
n
j=1Zε(t, xj)

] ≲ EB[F (B1, . . . ,Bn)q]1/q.

Proof. By the Cauchy-Schwarz inequality and Proposition 2.3, the square of the
l.h.s. of (3.2) is bounded by

E
⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRR

EB[
n

∏
j=1

Mε,j(t, xj)F (B1, . . . ,Bn)]
RRRRRRRRRRR

2⎤
⎥
⎥
⎥
⎥
⎦

= EBE
⎡
⎢
⎢
⎢
⎣

2n
∏
j=1

Mε,j(t, xj)F (B1, . . . ,Bn)F (Bn+1, . . . ,B2n
)
⎤
⎥
⎥
⎥
⎦
,

where xj+n = xj for j = 1, . . . , n. Evaluating the expectation with respect to Ẇ , we
obtain

E
⎡
⎢
⎢
⎢
⎣

2n
∏
j=1

Mε,j(t, xj)
⎤
⎥
⎥
⎥
⎦
= exp

⎛

⎝

β2
ε

2

2n
∑
j,k=1

1j≠kR( t
ε2
,
xj−xk
ε

,Bj ,Bk)
⎞

⎠
.

With p = q
q−1 , Lemma A.1 shows that the r.h.s. of the above expression has an Lp

norm that is bounded uniformly in ε and xj , provided that β is chosen small. We
apply Hölder inequality to complete the proof. ◻

3.1. The analysis of I1,ε. Recall that I1,ε is defined in (2.6).

Lemma 3.2. For Kε =
1

ε2∣ log ε∣α with α > 1, we have E[I2
1,ε]→ 0 as ε→ 0.

Proof. Writing I1,ε = ∫
Kε

0 ∫R2 E[Ys,y ∣Fs]dW (s, y) for the appropriate Ys,y, we have
by Itô’s isometry that

E[I2
1,ε] = ∫

Kε

0
∫
R2

E[∣E[Ys,y ∣Fs]∣
2
]dyds ≤ ∫

K

0
∫
R2

E[Y2
s,y]dyds,

and

E[Y2
s,y] = ∫R4

g(x1)g(x2)E
⎡
⎢
⎢
⎢
⎢
⎣

EB[∏
2
j=1Mε,j(t, x)Φεt,xj ,Bj(s, y)]
Zε(t, x1)Zε(t, x2)

⎤
⎥
⎥
⎥
⎥
⎦

dx1dx2.

Using the fact that

∫

Kε

0
∫
R2

2
∏
j=1

Φεt,xj ,Bj(s, y)dyds = ∫
Kε

0
R(x1−x2

ε
+B1

s−B
2
s)ds =R(Kε,

x1−x2
ε

,B1,B2
),
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where we recall that R(x) = ∫ ϕ(x + y)ϕ(y)dy, we have

E[I2
1,ε] ≲ ∫R4

∣g(x1)g(x2)∣E
⎡
⎢
⎢
⎢
⎣

EB[∏
2
j=1Mε,j(t, xj)R(Kε,

x1−x2
ε

,B1,B2)]

Zε(t, x1)Zε(t, x2)

⎤
⎥
⎥
⎥
⎦
dx1dx2.

By Lemma 3.1, we have

(3.3)
E[I2

1,ε] ≲∫R4
∣g(x1)g(x2)∣

√

EB[R2(Kε,
x1−x2
ε

,B1,B2)]dx1dx2

≲

√

∫
R4

∣g(x1)g(x2)∣EB[R2(Kε,
x1−x2
ε

,B1,B2)]dx1dx2.

We apply Lemma A.2 to deduce

E[I2
1,ε] ≲

√
(1 + logKε)ε2Kε ≲

1
∣ log ε∣(α−1)/2 → 0.

The proof is complete. ◻

3.2. The analysis of I2,ε. Recall that I2,ε is defined in (2.7).

Lemma 3.3. For Kε =
1

ε2∣ log ε∣α with α > 0, we have E[I2
2,ε]→ 0 as ε→ 0.

Proof. By the same calculation as in the proof of Lemma 3.2, we have

E[I2
2,ε] ≲ ∫R4

g(x1)g(x2)Aε(x1, x2)dx1dx2,

with
Aε(x1, x2)

= E
⎡
⎢
⎢
⎢
⎣

EB[∏
2
j=1Mε,j(t, xj)R([Kε, t/ε

2], x1−x2
ε

,B1,B2)]

Z(Kε, x1/ε)Z(Kε, x2/ε)

2
∏
j=1

(
Z(Kε, xj/ε)

Z(t/ε2, xj/ε)
− 1)

⎤
⎥
⎥
⎥
⎦
.

Applying Proposition 2.3, Hölder inequality, and the fact that Z(t, x) is stationary
in x, we have

∣Aε(x1, x2)∣ ≲ ∥a∥8∥b∥2∥b∥4,

where we simply denoted

a = EB[
2
∏
j=1

Mε,j(t, xj)R([Kε, t/ε
2
], x1−x2

ε
,B1,B2

)], b = Z(Kε,0) −Z(t/ε2,0).

First, we write b4 = b2+δb2−δ and apply Hölder inequality to bound ∥b∥4 ≲ ∥b∥
2−δ
4

2 .
Further applying Lemma 3.4 below yields

∥b∥2∥b∥4 ≲ ∥b∥
6−δ
4

2 ≲
1

∣ log ε∣ 34−δ′

for some δ′ > 0 that is sufficiently close to zero. Now we apply Lemma 3.1 to derive

∥a∥8
8 = E[∣EB[

2
∏
j=1

Mε,j(t, xj)R([Kε, t/ε
2
], x1−x2

ε
,B1,B2

)]∣
8
]

≲ ∥R([Kε, t/ε
2
], x1−x2

ε
,B1,B2

)∥
8
2.

This implies

∫
R4

∣g(x1)g(x2)∣ × ∥a∥8 dx1dx2

≲

√

∫
R4

∣g(x1)g(x2)∣ × ∥R([Kε, t/ε2], x1−x2
ε

,B1,B2)∥2
2dx1dx2 ≲

√
∣ log ε∣,

where the second ≲ comes from Lemma A.2. The proof is completed by choosing
δ′ < 1

4 . ◻
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Lemma 3.4. For any δ > 0, there exists β(δ) > 0 such that if β < β(δ), we have

E[∣Z( t
ε2
,0) −Z(Kε,0)∣2] ≲

1
∣ log ε∣1−δ

.

Proof. By the second moment calculation, we have
E[∣Z( t

ε2
,0) −Z(Kε,0)∣2] = E[Z( t

ε2
,0)2

] −E[Z(Kε,0)2
]

= EB [eβ
2
ε ∫

t/ε2
0 R(B2s)ds − eβ

2
ε ∫

Kε
0 R(B2s)ds] .

Applying the simple inequality ∣ex − ey ∣ ≤ (ex + ey)∣x − y∣, Hölder inequality and
Lemma A.1, we have

(3.4) EB [eβ
2
ε ∫

t/ε2
0 R(B2s)ds − eβ

2
ε ∫

Kε
0 R(B2s)ds] ≲

1
∣ log ε∣

∥∫

t/ε2

Kε
R(B2s)ds∥

q

for any q > 1 (provided that β < β(q)). To estimate the above Lq norm, we note
that

∥∫

t/ε2

Kε
R(B2s)ds∥

1
≲ log ∣ log ε∣, ∥∫

t/ε2

Kε
R(B2s)ds∥

2
≲
√

∣ log ε∣(log ∣ log ε∣),

with both estimates coming from the same proof of Lemma A.2. For θ ∈ (0,1) and
q = 2

2−θ , by the Lp−interpolation inequality we have

(3.5) ∥∫

t/ε2

Kε
R(B2s)ds∥

q

≲ ∥∫

t/ε2

Kε
R(B2s)ds∥

1−θ

1
∥∫

t/ε2

Kε
R(B2s)ds∥

θ

2
≲ ∣ log ε∣δ,

provided that θ is chosen sufficiently close to zero (i.e., q is sufficiently close to 1).
The proof is complete. ◻

3.3. The analysis of I3,ε. Recall that I3,ε is defined in (2.8). Using the fact that
E[M(t/ε2, x/ε)∣Fs] =M(s, x/ε), we have that

I3,ε = ∫
t/ε2

Kε
∫
R2

(∫
R2

g(x)

Z(Kε, x/ε)
EB[M(s, x/ε)Φεt,x,B(s, y)]dx)dW (s, y).

For any T > 0, x1, x2 ∈ R2 and a standard 2-dimensional Brownian motion B̄, we
define the deterministic function

Hε(T,x1, x2) = EB̄ [eβ
2
ε ∫

T
0 R(x1+B̄2s)ds∣B̄2T = x2] .

We introduce the following notation: for any x, y ∈ R2, the expectation Êx,y is
defined as

Êx,y[F ] = E [
EB[M1(Kε, x)M2(Kε, y)F ]

Z(Kε, x)Z(Kε, y)
]

for any random variable F . In particular, we will consider functional of
XKε = B

1
Kε −B

2
Kε ,

so

Êx,y[F (XKε)] = E [
EB[M1(Kε, x)M2(Kε, y)F (B1

Kε
−B2

Kε
)]

Z(Kε, x)Z(Kε, y)
] .

Note that we have omitted the dependence of the expectation Êx,y on ε to simplify
the notation.

The following three lemmas combine to show the convergence of
(3.6) E[I2

3,ε]→ σ2
t

with σ2
t given in (2.3).
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Lemma 3.5. E[I2
3,ε] = ∫

t−ε2Kε
0 Gε(s)ds, with

(3.7)
Gε(s) = ∫

R6
g(x −w)g(x)R(y)

× Ê−w/ε,0 [G2s(w + εy − εXKε)Hε(
s
ε2
, y,XKε −

w
ε
− y)]dxdydw.

Lemma 3.6. There exists β0 > 0 so that there exists γ ∈ (0,1) such that, for all
β < β0, Gε(s) ≲ s−γ for s ∈ (0, t).

Lemma 3.7. For any s ∈ (0, t), Gε(s) → ν2
eff ∫R4 g(x − w)g(x)G2s(w)dwdx, as

ε→ 0.

The proof of Lemmas 3.5 and 3.6 is the same as [8, Lemma 3.5, 3.6].
Proof of Lemma 3.7. Recall that

Gε(s) = ∫
R6
g(x −w)g(x)R(y)

× Ê−w/ε,0 [G2s(w + εy − εXKε)Hε(
s
ε2
, y,XKε −

w
ε
− y)]dxdydw.

Since s > 0 is fixed and the term Hε is uniformly bounded by Lemma A.1, the
expectation in the above expression is bounded uniformly in x, y,w, ε, so we only
need to pass to the limit of the expectation for fixed x, y,w ∈ R2 and w ≠ 0. The
proof is divided into three steps.

(i) We show that Ê−w/ε,0[∣G2s(w + εy − εXKε) −G2s(w)∣] → 0 as ε → 0. Using
the fact that

∣G2s(w + εy − εXKε) −G2s(w)∣ ≲ ε∣y∣ + ε∣XKε ∣,

it suffices to show Ê−w/ε,0[∣εXKε ∣]→ 0. We apply Lemma 3.1 to derive

(3.8) Ê−w/ε,0[∣εXKε ∣] ≲
√
EB[∣εXKε ∣

2] =
√

2ε2Kε → 0.

(ii) Define sε = s
ε2∣ log ε∣ and

H̃ε = EB̄ [eβ
2
ε ∫

sε
0 R(y+B̄2r)dr∣B̄2s/ε2 = XKε −

w
ε
− y] ,

we show that
(3.9) Ê−w/ε,0[H̃ε]→

2π
2π−β2 , as ε→ 0.

We first note that H̃ε can be written more explicitly by conditioning on B̄2sε :

H̃ε =EB̄ [eβ
2
ε ∫

sε
0 R(y+B̄2r)dr ×

G2s(1−∣ log ε∣−1)(εXKε −w − εy − εB̄2sε)

G2s(εXKε −w − εy)
]

=
1

(1 − ∣ log ε∣−1)
EB̄ [eβ

2
ε ∫

sε
0 R(y+B̄2r)dre

−
(εXKε−w−εy−εB̄2sε )

2

4s(1−∣ logε∣−1
) e

(εXKε−w−εy)
2

4s ] .

There are three factors inside the above expectation. By an application of Lemma 3.1
again and the fact that ε2Kε → 0 as ε→ 0, we have

lim sup
ε→0

Ê−w/ε,0[e
λ∣εXKε ∣

2
] ≲ 1,

for any λ > 0. Thus by the same proof as for (i), we can replace the second factor by
e−w

2/4s with a negligible error. Similarly, we use the inequality ∣ex−ey ∣ ≤ (ex+ey)∣x−y∣

to replace the third factor by ew
2/4s with a negligible error. In the end, we note

that by [12, Theorem 1],

β2
ε ∫

sε

0
R(y+B̄2r)dr =

β2 log 2sε
2∣ log ε∣

1
log 2sε ∫

2sε

0
R(y+B̄r)dr⇒ λβExp(1), λβ =

β2

2π
.
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Lemma A.1 ensures the uniform integrability, and we pass to the limit to obtain
(3.9).

(iii) We show that

(3.10) Ê−w/ε,0[∣Hε(
s
ε2
, y,XKε −

w
ε
− y) − H̃ε∣]→ 0

as ε→ 0. For the fixed w ≠ 0, define the event Aw ∶= {∣εXKε ∣ > w/2}. First, we have

∣H( s
ε2
, y,XKε −

w
ε
− y) − H̃ε∣

= ∣H( s
ε2
, y,XKε −

w
ε
− y) − H̃ε∣1Aw + ∣H( s

ε2
, y,XKε −

w
ε
− y) − H̃ε∣1Acw

≲ 1Aw + ∣H( s
ε2
, y,XKε −

w
ε
− y) − H̃ε∣1Acw ,

where we applied Lemma A.1. Thus

Ê−w/ε,0[∣H( s
ε2
, y,XKε −

w
ε
− y) − H̃ε∣]

≲ Ê−w/ε,0[1Aw] + Ê−w/ε,0[∣H( s
ε2
, y,XKε −

w
ε
− y) − H̃ε∣1Acw].

The first term on the r.h.s. goes to zero as ε→ 0 by (3.8). For the second term, we
have

Ê−w/ε,0[∣H( s
ε2
, y,XKε −

w
ε
− y) − H̃ε∣1Acw]

≤ Ê−w/ε,0 [EB[eβ
2
ε ∫

s/ε2
0 R(y+B̄2r)drβ2

ε ∫

s/ε2

sε
R(y + B̄2r)dr∣B̄2s/ε2 = XKε −

w
ε
− y]1Acw] .

The conditional expectation can be bounded by

(3.11)

EB[eβ
2
ε ∫

s/ε2
0 R(y+B̄2r)drβ2

ε ∫

s/ε2

sε
R(y + B̄2r)dr∣B̄2s/ε2 = XKε −

w
ε
− y]

≲
1

∣ log ε∣

¿
Á
ÁÀEB[∣∫

s/ε2

sε
R(y + B̄2r)dr∣2∣B̄2s/ε2 = XKε −

w
ε
− y].

In the event Acw, we have ∣εXKε ∣ ≤ w/2, thus c1w ≤ ∣εXKε −w − εy∣ ≤ c2w for some
c1, c2 > 0 (note that y is fixed). Recall that sε = s

ε2∣ log ε∣ , we apply Lemma A.3 to
derive

EB[∣∫

s/ε2

sε
R(y + B̄2r)dr∣

2
∣B̄2s/ε2 = XKε −

w
ε
− y] ≲ ∣ log ε∣(log ∣ log ε∣),

uniformly in ∣εXKε ∣ ≤ w/2, so we pass to the limit in (3.11), then obtain (3.10).
To summarize, we have

Gε(s)→
2π

2π−β2 ∫
R3d

g(x −w)g(x)R(y)G2s(w)dxdydw

= ν2
eff ∫R4

g(x −w)g(x)G2s(w)dxdw,

which completes the proof. ◻

3.4. Proof of Proposition 2.1. Recall that Xε −E[Xε] = βε(I1,ε + I2,ε + I3,ε). We
combine Lemmas 3.2, 3.3 and (3.6) to derive

β−2
ε Var[Xε] = E[∣I1,ε + I2,ε + I3,ε∣

2
]→ σ2

t .



GAUSSIAN FLUCTUATIONS OF THE 2D KPZ EQUATION 13

4. Gaussianity

Recall the goal is to show

E[∥DXε∥
4
H]

1/4E[∥D2Xε∥
4
op]

1/4
= o(∣ log ε∣−1

), as ε→ 0,

where Xε = ∫R2 logZε(t, x)g(x)dx. Since

DXε = ∫
R2

DZε(t, x)

Zε(t, x)
g(x)dx,

we have

D2Xε =D∫
R2

DZε(t, x)

Zε(t, x)
g(x)dx

= ∫
R2

Zε(t, x)D
2Zε(t, x) −DZε(t, x)⊗DZε(t, x)

Z2
ε (t, x)

g(x)dx.

Using the Feynman-Kac representation (2.2),

D2Zε(t, x) = β
2
εEB[Mε(t, x)Φεt,x,B ⊗Φεt,x,B],

so

Zε(t, x)D
2Zε(t, x) = β

2
εEB

⎡
⎢
⎢
⎢
⎣

2
∏
j=1

Mε,j(t, x)Φεt,x,B2 ⊗Φεt,x,B2

⎤
⎥
⎥
⎥
⎦
,

and

DZε(t, x)⊗DZε(t, x) = β
2
εEB

⎡
⎢
⎢
⎢
⎣

2
∏
j=1

Mε,j(t, x)Φεt,x,B1 ⊗Φεt,x,B2

⎤
⎥
⎥
⎥
⎦
.

Thus we can write

D2Xε = β
2
ε ∫R2

EB[∏
2
j=1Mε,j(t, x)(Φεt,x,B2 −Φεt,x,B1)⊗Φεt,x,B2]

Z2
ε (t, x)

g(x)dx = P2 −P1,

where

H ⊗H ∋ Pk = β
2
ε ∫R2

EB[∏
2
j=1Mε,j(t, x)Φεt,x,Bk ⊗Φεt,x,B2]

Z2
ε (t, x)

g(x)dx.

Thus,
∥D2Xε∥

4
op ≲ ∥P1∥

4
op + ∥P2∥

4
op,

and we only need to estimate E[∥Pk∥
4
op].

4.1. The first derivative.

Lemma 4.1. For any δ > 0, there exists β(δ) > 0 such that if β < β(δ),

E[∥DXε∥
4
H]

1/4
≲ ∣ log ε∣−

1
2+δ.

Proof. A direct calculation gives

∥DXε∥
4
H = β4

ε ∫R8

4
∏
j=1

g(xj)

Zε(t, xj)
EB

⎡
⎢
⎢
⎢
⎣

4
∏
j=1

Mε,j(t, xj)R( t
ε2
, x1−x2

ε
,B1,B2

)R( t
ε2
, x3−x4

ε
,B3,B4

)
⎤
⎥
⎥
⎥
⎦
dx,

with R defined in (3.1). Taking the expectation and applying Lemma 3.1, we have

β−4
ε E[∥DXε∥

4
H] ≲∫

R8

4
∏
j=1

∣g(xj)∣EB [R
q
( t
ε2
, x1−x2

ε
,B1,B2

)R
q
( t
ε2
, x3−x4

ε
,B3,B4

)]
1/q

dx

≲(∫
R4

∣g(x1)g(x2)∣EB[R
q
( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
2/q

.
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We can view the factor ∣g(x1)g(x2)∣ as a weight (without loss of generality assume
∫ ∣g∣ = 1), so the integral

∫
R4

∣g(x1)g(x2)∣EB[R
q
( t
ε2
, x1−x2

ε
,B1,B2

)]dx

can be viewed as an expectation of Rq( t
ε2
, x1−x2

ε
,B1,B2) with x1, x2 independently

sampled from the density ∣g∣. Therefore, by the Lp−interpolation inequality and
arguing similarly as (3.5), we have

(4.1)

(∫
R4

∣g(x1)g(x2)∣EB[R
q
( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
1/q

≲(∫
R4

∣g(x1)g(x2)∣EB[R( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
1−θ

× (∫
R4

∣g(x1)g(x2)∣EB[R
2
( t
ε2
, x1−x2

ε
,B1,B2

)]dx)
θ/2

for θ = 2 − 2
q
. Applying Lemma A.2, we know that the first factor on the r.h.s. is

uniformly bounded and the second factor is bounded by ∣ log ε∣θ/2. Thus,

E[∥DXε∥
4
H] ≲

∣ log ε∣θ
∣ log ε∣2 .

By choosing q sufficiently close to 1, we can make θ arbitrarily small, which completes
the proof. ◻

4.2. The second derivative. To estimate ∥Pk∥op, we use the contraction inequality
[15, Proposition 4.1], which says that

∥Pk∥
4
op ≤ ∥Pk ⊗1 Pk∥

2
H⊗H .

4.2.1. The case k = 1. A direct calculation gives
P1 ⊗1 P1

= β4
ε ∫R4

EB[∏
4
j=1Mε,j(t, xj)R( t

ε2
, x−y
ε
,B1,B3)Φεt,x,B2 ⊗Φεt,y,B4]

Z2
ε (t, x)Z

2
ε (t, y)

g(x)g(y)dxdy,

where we write x1 = x2 = x,x3 = x4 = y to simplify the notations. Thus,

∥P1 ⊗1 P1∥
2
H⊗H = β8

ε ∫R8
g(x)g(y)g(z)g(w)

⎛

⎝

8
∏
j=1

Zε(t, xj)
⎞

⎠

−1

×EB
⎡
⎢
⎢
⎢
⎢
⎣

8
∏
j=1

Mε,j(t, xj) ∏
(i,k)∈O

R( t
ε2
, xi−xk

ε
,Bi,Bk)

⎤
⎥
⎥
⎥
⎥
⎦

dxdydzdw,

where x5 = x6 = z, x7 = x8 = w, and the set O is O = {(1,3), (5,7), (2,6), (4,8)}.

Lemma 4.2. For any δ > 0, there exists β(δ) such that if β < β(δ),

E[∥P1 ⊗1 P1∥
2
H⊗H] ≲ ∣ log ε∣−4+δ.

Proof. Applying Lemma 3.1, we have

β−8
ε E[∥P1 ⊗1 P1∥

2
H⊗H]

≲ ∫
R8

∣g(x)g(y)g(z)g(w)∣EB[ ∏
(i,k)∈O

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]

1/q
dxdydzdw

≲
⎛

⎝
∫
R8

∣g(x)g(y)g(z)g(w)∣EB[ ∏
(i,k)∈O

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]dxdydzdw

⎞

⎠

1/q

=∶ aq
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for some q > 1 and we used the simplified notation aq. Again we apply the
Lp−interpolation inequality as in (4.1), with θ = 2 − 2

q
, we have

aq ≤ a
1−θ
1 aθ2.

Note that the process (Bi,Bk) are independent for different pairs of (i, k) ∈ O.
Applying Lemma A.2 yields

EB[ ∏
(i,k)∈O

R( t
ε2
, xi−xk

ε
,Bi,Bk)] ≲ ∏

(i,k)∈O
(1 + ∣ log ∣xi − xk ∣∣),

EB[ ∏
(i,k)∈O

R
2
( t
ε2
, xi−xk

ε
,Bi,Bk)] ≲ ∣ log ε∣4 ∏

(i,k)∈O
(1 + ∣ log ∣xi − xk ∣∣).

Thus we have a1 ≲ 1 and a2 ≲ ∣ log ε∣2, which implies aq ≲ ∣ log ε∣2θ. By choosing q
sufficiently close to 1 so that θ is sufficiently close to 0, we complete the proof. ◻

4.2.2. The case k = 2. In this case,

P2 = β
2
ε ∫R2

EB[Mε(t, x)Φεt,x,B ⊗Φεt,x,B]

Zε(t, x)
g(x)dx,

so
P2 ⊗1 P2

= β4
ε ∫R4

EB[∏
2
j=1Mε,j(t, xj)R( t

ε2
, x1−x2

ε
,B1,B2)Φεt,x1,B1 ⊗Φεt,x2,B2]

Zε(t, x1)Zε(t, x2)
g(x1)g(x2)dx1dx2,

and

∥P2⊗1P2∥
2
H⊗H = β8

ε ∫R8

4
∏
j=1

g(xj)

Zε(t, xj)
EB[

4
∏
j=1

Mε,j(t, xj) ∏
(i,k)∈Õ

R( t
ε2
, xi−xk

ε
,Bi,Bk)]dx,

with the set Õ = {(1,2), (3,4), (1,3), (2,4)}.

Lemma 4.3. For any δ > 0, there exists β(δ) such that if β < β(δ),

E[∥P2 ⊗1 P2∥
2
H⊗H] ≲ ∣ log ε∣−3+δ.

Proof. By Lemma 3.1 and the fact that g is compactly supported, we have

β−8
ε E[∥P2 ⊗1 P2∥

2
H⊗H] ≲∫

R8

4
∏
j=1

∣g(xj)∣EB[ ∏
(i,k)∈Õ

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]

1/q
dx

≲
⎛

⎝
∫
R8

4
∏
j=1

∣g(xj)∣EB[ ∏
(i,k)∈Õ

R
q
( t
ε2
, xi−xk

ε
,Bi,Bk)]dx

⎞

⎠

1/q

=∶ aq.

Arguing in the same way as in the proof of Lemma 4.2, we have aq ≤ a1−θ
1 aθ2 with

θ = 2− 2
q
. By Lemma 4.4, we know that a1 ≤ ∣ log ε∣. For a2, to simplify the notation

we write
∏

(i,k)∈Õ
R

2
( t
ε2
, xi−xk

ε
,Bi,Bk) =R2

1R
2
2R

2
3R

2
4,

with Rj denoting R( t
ε2
, xi−xk

ε
,Bi,Bk) for different (i, k) ∈ Õ. Applying Hölder

inequality and Lemma A.2, we derive

EB[ ∏
(i,k)∈Õ

R
2
( t
ε2
, xi−xk

ε
,Bi,Bk)] ≤∥R1∥

2
4∥R2∥

2
8∥R3∥

2
16∥R4∥

2
16

≲∣ log ε∣2(
3
4+

7
8+

15
16+

15
16 ) ∏

(i,k)∈Õ
(1 + ∣ log ∣xi − xk ∣∣)

αi,k



16 YU GU

for some αi,k > 0. After integration in xj , we have a2 ≲ ∣ log ε∣ 34+ 7
8+

15
16+

15
16 . Thus, by

choosing q sufficiently close to 1, the proof is complete. ◻

Lemma 4.4. Assume 0 ≤ f, h ∈ C∞c (R2), then

∫
R8

EB
⎡
⎢
⎢
⎢
⎢
⎣

4
∏
j=1

f(xj) ∏
(i,k)∈Õ

∫

t/ε2

0
h(xi−xk

ε
+Bis −B

k
s )ds

⎤
⎥
⎥
⎥
⎥
⎦

dx ≲ ∣ log ε∣.

Proof. Without loss of generality, assume h is even. We write

∏
(i,k)∈Õ

∫

t/ε2

0
h(xi−xk

ε
+Bis −B

k
s )ds = ∫[0,t/ε2]4

4
∏
j=1

h(
xj−xj−1

ε
+Bjsj −B

j−1
sj )ds,

where x0 = x4,B
0 = B4. Denoting f̂(ξ) = ∫ f(x)e−iξ⋅xdx as the Fourier transform of

f , we have

∫
R8

4
∏
j=1

f(xj)h(
xj−xj−1

ε
+Bjsj −B

j−1
sj )dx

=
1

(2π)8 ∫R16

4
∏
j=1

f(xj)ĥ(ηj)e
iηj ⋅(xj−xj−1)/εe

iηj ⋅(Bjsj−B
j−1
sj

)
dηdx

=
1

(2π)8 ∫R8

4
∏
j=1

f̂(
ηj−ηj−1

ε
)ĥ(ηj)e

i(ηj ⋅Bjsj−ηj+1⋅Bjsj+1
)
dη,

with η0 = η4, η5 = η1, s5 = s1. Thus, it suffices to estimate

∫
[0,t/ε2]4

∫
R8

4
∏
j=1

f̂(
ηj−ηj−1

ε
)ĥ(ηj)EB[ei(ηj ⋅Bsj−ηj+1⋅Bsj+1)]dηds

= ∫
[0,t]4

∫
R8

4
∏
j=1

f̂(ηj − ηj−1)ĥ(εηj)EB[ei(ηj ⋅Bsj−ηj+1⋅Bsj+1)]dηds,

where we changed variables sj ↦ sj/ε
2, ηj ↦ εηj and used the scaling property of the

Brownian motion. Without loss of generality, consider the set A1 = {(s1, . . . , s4) ∈
[0, t]4 ∶ s1 ≥ sj , j ≠ 1}, it is clear that in A1 we have

4
∏
j=1

EB[ei(ηj ⋅Bsj−ηj+1⋅Bsj+1)] ≤ e−
1
2 ∣η1∣2(s1−s2),

which implies

∫
A1
∫
R8

4
∏
j=1

∣f̂(ηj − ηj−1)ĥ(εηj)∣EB[ei(ηj ⋅Bsj−ηj+1⋅Bsj+1)]dηds

≤ ∫
A1
∫
R8
e−

1
2 ∣η1∣2(s1−s2)

4
∏
j=1

∣f̂(ηj − ηj−1)ĥ(εηj)∣dηds

≲ ∫
A1
∫
R8
e−

1
2 ∣η1∣2(s1−s2)∣ĥ(εη1)f̂(η̃2)f̂(η̃3)f̂(η̃4)∣dη1dη̃ds.

In the last “≲” we bounded ∣f̂(η1 − η4)∣ ≲ 1 and changed variables ηj − ηj−1 ↦ η̃j , j =
2,3,4. The last integral can be computed explicitly, and we use the fact that

∫

t

0
∫
R2
e−

1
2 ∣η1∣2s∣ĥ(εη1)∣dη1ds = ∫

t/ε2

0
∫
R2
e−

1
2 ∣η1∣2s∣ĥ(η1)∣dη1ds ≲ ∣ log ε∣

to complete the proof. ◻



GAUSSIAN FLUCTUATIONS OF THE 2D KPZ EQUATION 17

4.3. Proof of Proposition 2.2. Recall that Yε = Xε−E[Xε]√
Var[Xε]

. Since

dTV(Yε, ζ) ≲ E[∥DYε∥
4
H]

1/4E[∥D2Yε∥
4
op]

1/4
= 1

Var[Xε]E[∥DXε∥
4
H]

1/4E[∥D2Xε∥
4
op]

1/4,

using the fact that Var[Xε] ∼ ∣ log ε∣−1 and applying Lemmas 4.1, 4.2 and 4.3, we
have

dTV(Yε, ζ) ≲ ∣ log ε∣ × ∣ log ε∣−
1
2+δ × (∣ log ε∣−4+δ

+ ∣ log ε∣−3+δ)
1
4 .

By choosing δ small, the r.h.s. goes to zero as ε→ 0.

Appendix A. Auxiliary lemmas

Recall that βε = β√
∣ log ε∣

and Gt(x) is the standard heat kernel.

Lemma A.1. Fix t > 0, there exists β0 > 0 such that if β < β0, we have in d = 2
that

(A.1) sup
x∈R2,ε∈(0,1)

EB [eβ
2
ε ∫

t/ε2
0 R(x+Bs)ds] <∞,

and

(A.2) sup
x,y∈R2,ε∈(0,1)

EB [eβ
2
ε ∫

t/ε2
0 R(x+Bs)ds∣Bt/ε2 = y] <∞.

Proof. It suffices to prove (A.2) since (A.1) follows from an integration in y. We
claim (A.2) is implied by

(A.3) sup
x,y∈R2,ε∈(0,1)

∣ log ε∣−1
∫

t/ε2

0
EB[R(x +Bs)∣Bt/ε2 = y]ds ≤ C.

The proof essentially follows Portenko’s lemma and we sketch it here for the
convenience of readers. For any n ≥ 1, we can write

EB [(∫

t/ε2

0
R(x +Bs)ds)

n

∣Bt/ε2 = y] = n!∫
[0,t/ε2]n

<

EB
⎡
⎢
⎢
⎢
⎣

n

∏
j=1

R(x +Bsj)∣Bt/ε2 = y
⎤
⎥
⎥
⎥
⎦
ds.

By conditioning on Bsn−1 and applying (A.3) to the integral in sn, we have

∫
[0,t/ε2]n

<

EB
⎡
⎢
⎢
⎢
⎣

n

∏
j=1

R(x +Bsj)∣Bt/ε2 = y
⎤
⎥
⎥
⎥
⎦
ds ≤ C ∣ log ε∣∫

[0,t/ε2]n−1
<

EB
⎡
⎢
⎢
⎢
⎣

n−1
∏
j=1

R(x +Bsj)
⎤
⎥
⎥
⎥
⎦
ds.

Iterating this procedure yields

EB [(∫

t/ε2

0
R(x +Bs)ds)

n

∣Bt/ε2 = y] ≤ n!(C ∣ log ε∣)n,

which completes the proof of (A.2).
It remains to show (A.3). For the Brownian bridge, we only need to show

∫

t/2ε2

0
EB[R(x +Bs)∣Bt/ε2 = y]ds ≤ C ∣ log ε∣

for some constant C independent of x, y, ε. Note that Bs has the Gaussian distribu-
tion with mean ys

t/ε2 and variance s(t/ε2−s)
t/ε2 , so its density is bounded from above by

1
s
when s ≤ t

2ε2 . Thus, we have

∫

t/2ε2

0
EB[R(x +Bs)∣Bt/ε2 = y]ds ≲ 1 + ∫

t/2ε2

1
∫
R2
R(x +w) 1

s
dwds ≲ 1 + log t

2ε2 .

The proof is complete. ◻
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Lemma A.2. For any 0 ≤ g ∈ Cc(R2) and t > 1, we have

(A.4)
∫
R4
g(x1)g(x2)EB [∣∫

t

0
R(x1−x2

ε
+Bs)ds∣

2
]dx1dx2 ≤ C(1 + log t)ε2t,

∫
R4
g(x1)g(x2)EB [∫

t

0
R(x1−x2

ε
+Bs)ds]dx1dx2 ≤ Cε

2t,

with some constant C independent of t, ε. Fix t > 0, n ∈ Z+, we also have

(A.5) EB [∣∫

t/ε2

0
R(x

ε
+Bs)ds∣

n
] ≤ C ∣ log ε∣n−1

(1 + ∣ log ∣x∣∣)

with some constant C independent of x, ε.

Proof. To prove (A.4), we write the expectation explicitly:
(A.6)

EB [∣∫

t

0
R(x

ε
+Bs)ds∣

2
] =2∫

t

0
ds∫

s

0
duEB[R(x

ε
+Bs)R(x

ε
+Bu)]

=2∫
t

0
ds∫

s

0
du∫

R4
R(y)R(z)Gu(z −

x
ε
)Gs−u(y − z)dzdy.

Integrating in s and y yields

∫

t

u
∫
R2
R(y)Gs−u(y − z)dyds ≲ 1 + ∫

t

u+1
∫
R2
R(y) 1

s−udyds ≲ 1 + log t,

which implies

(A.7) EB [∣∫

t

0
R(x

ε
+Bs)ds∣

2
] ≲ (1 + log t)∫

t

0
∫
R2
R(z)Gu(z −

x
ε
)dzdu.

Since the integral ∫
t

0 ∫R2 R(z)Gu(z −
x
ε
)dzdu = EB[∫

t
0 R(x

ε
+Bs)ds], to prove (A.4),

we only need to note that

∫
R4
g(x1)g(x2)∫

t

0
du∫

R2
R(z)Gu(z −

x1−x2
ε

)dz

= ε2

(2π)2 ∫

t

0
∫
R2

∣ĝ(ξ)∣2R̂(εξ)e−
1
2 ∣εξ∣

2udξdu ≲ ε2t.

To prove (A.5), by the same argument above, we have

EB [∣∫

t/ε2

0
R(x

ε
+Bs)ds∣

n
] ≲ ∣ log ε∣n−1

∫

t/ε2

0
∫
R2
R(z)Gu(z −

x
ε
)dzdu.

We estimate the integral in u by

∫

t

0
Gu(z−

x
ε
)du ≲ ∫

t

0
u−1e−

∣z−x/ε∣2
2u du ≲ ∫

∞

∣z−x/ε∣2
2t

λ−1e−λdλ ≲ 1+ ∣ log ∣εz−x∣∣+ ∣ log ε2t∣.

For the integral in z, recall that R(z) = 0 for ∣z∣ ≥ 1, we have

∫
R2
R(z)∣ log ∣εz−x∣∣dz ≲ ∫

∣z∣≤1
∣ log ∣εz−x∣∣dz ≲ 1+ ∣ log ∣x∣∣+1∣x∣≤3ε∣ log ε∣ ≲ 1+ ∣ log ∣x∣∣.

The proof is complete. ◻

Lemma A.3. Fix t > 0 and w ≠ 0, we have

E
⎡
⎢
⎢
⎢
⎢
⎣

(∫

t
ε2

t
ε2∣ log ε∣

R(Bs)ds)
2
∣Bt/ε2 =

w

ε

⎤
⎥
⎥
⎥
⎥
⎦

≲ ∣ log ε∣(log ∣ log ε∣).
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Proof. To simplify the notation, denote t1 = t
ε2∣ log ε∣ and t2 =

t
ε2
, and write

(∫

t2

t1
R(Bs)ds)

2
= 2∫

[t1,t2]2<
R(Bs)R(Bu)1s>ududs.

Now we compute the conditional expectation

E[R(Bs)R(Bu)∣Bt2 = w/ε] =∫
R4
R(x)R(y)

Gu(y)Gs−u(x − y)Gt2−s(
w
ε
− x)

Gt2(
w
ε
)

dxdy

=∫
R4
R(x)R(y)

Gu(y)Gs−u(x − y)Gt−ε2s(w − εx)

Gt(w)
dxdy.

Since w ≠ 0 and t > 0 is fixed, and R is compactly supported (so the x−variable in
the above integral is bounded), we have

Gt−ε2s(w − εx)

Gt(w)
≲ 1,

uniformly in s ≤ t/ε2 and ∣x∣ ≤ 1, so the conditional expectation is bounded by

E[R(Bs)R(Bu)∣Bt2 = w/ε] ≲ ∫
R4
R(x)R(y)Gu(y)Gs−u(x − y)dxdy,

which implies

E
⎡
⎢
⎢
⎢
⎢
⎣

(∫

t
ε2

t
ε2∣ log ε∣

R(Bs)ds)
2
∣Bt/ε2 = w/ε

⎤
⎥
⎥
⎥
⎥
⎦

≲ ∫
[t1,t2]2<

∫
R4
R(x)R(y)Gu(y)Gs−u(x − y)dxdyduds.

By the same proof as for Lemma 3.4, the above integral bounded by
log(t2 − t1) log t2

t1
≲ ∣ log ε∣(log ∣ log ε∣),

which completes the proof. ◻

Appendix B. Negative moments of Zε(t, x)

The goal is to show there exists β0 > 0 such that if β < β0 and n ∈ Z+, we have
(B.1) sup

t∈[0,T ]
sup
ε∈(0,1)

E[Zε(t, x)
−n

] ≤ Cβ,n,T

for some constant Cβ,n,T > 0. The result is essentially implied by [11, Theorem
4.6], and we only present the details here for the convenience of the readers. Since
Zε(t, x) has the same distribution as u( t

ε2
, x
ε
) and is stationary in the x−variable,

it suffices to estimate the small ball probability P[u( t
ε2
, x) ≤ r] for r ≪ 1. From now

on, we will fix ε > 0 and derive an estimate that is uniform in ε > 0 and t ∈ [0, T ].
We fix t > 0, x ∈ R2.

We first define an approximation of the spacetime white noise

Ẇδ(t, x) = e
−δ(t2+∣x∣2)

∫
R3
φδ(t − s, x − y)dW (s, y),

where φδ(t, x) = ε−4φ( t
δ2 ,

x
δ
) with φ ∈ C∞c (R3) such that φ is even and ∫ φ = 1. Thus,

we have almost surely that Ẇδ ∈ L
2(R3) ∩ C∞(R3). Define

Vδ(t, x) = ∫
R2
ϕ(x − y)Ẇδ(t, y)dy, Rδ(t, s, x, y) = E[Vδ(t, x)Vδ(s, y)],

and Uε,δ(t, x) = EB [eVε,δ(t,B)], with

Vε,δ(t,B) = βε ∫
t/ε2

0
Vδ(

t
ε2
− s, x +Bs)ds −

1
2β

2
εQδ(

t
ε2
, x, x,B,B),
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where
Qδ(t, x, y,B

1,B2
) = ∫

[0,t]2
Rδ(t − s, t − `, x +B

1
s , y +B

2
` )dsd`.

By [11, Proposition 4.2], for each fixed ε > 0, Uε,δ(t, x)→ u( t
ε2
, x) in probability as

δ → 0, so we only need to estimate P[Uε,δ(t, x) ≤ r] for r ≪ 1, uniformly in ε, δ > 0
and t ∈ [0, T ].

With any given Ẇδ, define the expectation

EẆδ

B [F (B1,B2
)] =

EB[F (B1,B2)eVε,δ(t,B
1)+Vε,δ(t,B2)]

EB[eVε,δ(t,B
1)+Vε,δ(t,B2)]

.

To emphasize the dependence of Uε,δ on Ẇδ, we write Uε,δ(t, x) = Uε(t, x, Ẇδ). For
any λ > 0, define the set

Aλ(t, x) = {Ẇδ ∶ Uε(t, x, Ẇδ) >
1
2 , β2

ε ∫

t/ε2

0
EẆδ

B [R(B1
s −B

2
s)]ds ≤ λ} .

Lemma B.1. For any Ẇδ ∈ Aλ(t, x), we have

Uε(t, x, Ẇδ) ≥
1
2e

−
√
λ∥Ẇδ−Ẇδ∥L2

(R3
) .

Proof. We write

Uε(t, x, Ẇδ) = EB[eVε,δ(t,B)
] =EB[eVε,δ(t,B)

]
EB[eVε,δ(t,B)−Vε,δ(t,B)eVε,δ(t,B)]

EB[eVε,δ(t,B)]

=Uε(t, x, Ẇδ)EẆδ

B [eVε,δ(t,B)−Vε,δ(t,B)
],

where Vε,δ(t,B) is obtained by replacing Ẇδ by Ẇδ in the expression of Vε,δ(t,B).
By the fact that Ẇδ ∈ Aλ and Jensen’s inequality, we have

Uε(t, x, Ẇδ) ≥
1
2 exp(EẆδ

B [Vε,δ(t,B) − Vε,δ(t,B)]).

It remains to show that
(B.2) ∣EẆδ

B [Vε,δ(t,B) − Vε,δ(t,B)]∣ ≤
√
λ∥Wε − W̃ε∥L2(R3).

We write

Vε,δ(t,B) − Vε,δ(t,B) = βε ∫
t/ε2

0
∫
R2
ϕ(x +Bs − y)[Ẇδ(

t
ε2
− s, y) − Ẇδ(

t
ε2
− s, y)]dyds,

and apply Cauchy-Schwarz to derive

∣EẆδ

B [Vε,δ(t,B) − Vε,δ(t,B)]∣

≤ ∥Ẇδ − Ẇδ∥L2(R3)

√

β2
ε ∫

t/ε2

0
∫
R2

∣EẆδ

B [ϕ(x +Bs − y)]∣2dyds

= ∥Ẇδ − Ẇδ∥L2(R3)

√

β2
ε ∫

t/ε2

0
EẆδ

B [R(B1
s −B

2
s)]ds ≤

√
λ∥Ẇδ − Ẇδ∥L2(R3),

which completes the proof. ◻

Lemma B.2. There exists constants λ, c > 0 independent of ε, δ > 0 and t ∈ [0, T ]

such that P[Aλ(t, x)] ≥ c.

Proof. We have
P[Aλ(t, x)] ≥ P[Uε(t, x, Ẇδ) >

1
2 ] − P[Bλ(t, x)],

with

Bλ(t, x) = {Ẇδ ∶ Uε(t, x, Ẇδ) >
1
2 , β

2
ε ∫

t/ε2

0
EẆδ

B [R(B1
s −B

2
s)]ds > λ} .
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Using the fact that E[Uε(t, x, Ẇδ)] = 1 and the Paley-Zygmund’s inequality, we
have

P[Uε(t, x, Ẇδ) >
1
2 ] ≥

1
4E[Uε(t, x, Ẇδ)

2]
=

1
4EB[eβ

2
εQδ(t/ε2,x,x,B1,B2)]

.

For Bλ(t, x), we have

P[Bλ(t, x)] ≤P [β2
ε ∫

t/ε2

0
EB[R(B1

s −B
2
s)e

Vε,δ(t,B1)+Vε,δ(t,B2)
]ds > λ

4 ]

≤ 4
λ
EB [eβ

2
εQδ(t/ε

2,x,x,B1,B2)β2
ε ∫

t/ε2

0
R(B1

s −B
2
s)ds]

≤ 4C
λ
EB [e2β2

εQδ(t/ε
2,x,x,B1,B2)

]
1/2

for some constant C > 0, where the last “≤” comes from an application of Cauchy-
Schwarz inequality and Lemma A.1. By Lemma B.3 and choosing λ large, there
exists some constants c, λ > 0 independent of ε, δ > 0 such that P[Aλ(t, x)] ≥ c, which
completes the proof. ◻

Lemma B.3. There exists β0 > 0 such that if β < β0, we have

1 ≤ sup
t∈[0,T ]

sup
ε,δ∈(0,1)

EB [eβ
2
εQδ(t/ε

2,x,x,B1,B2)
] ≤ Cβ,T .

Proof. Recall that Qδ(t, x, x,B1,B2) = ∫[0,t]2 Rδ(t− s, t− `, x+B
1
s , x+B

2
` )dsd`. We

write Rδ explicitly:

Rδ(t1, t2, x1, x2) =∫
R4
ϕ(x1 − y1)ϕ(x2 − y2)E[Ẇδ(t1, y1)Ẇδ(t2, y2)]dy1dy2

≤∫
R4
ϕ(x1 − y1)ϕ(x2 − y2)φδ ⋆ φδ(t1 − t2, y1 − y2)dy1dy2,

with “⋆” denoting the convolution. By the fact that ϕ,φ have compact supports, it
is clear that

Rδ(t1, t2, x1, x2) ≲ δ
−2
1∣x1−x2∣≤c,∣t1−t2∣≤cδ2

for some c > 0. Thus, we have

Qδ(t/ε
2, x, x,B1,B2

) ≲∫
[0,t/ε2]2

δ−2
1∣s−`∣≤cδ21∣B1

s−B2
`
∣≤cdsd`

≲ ∫

c

0
(∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)ds.

By Jensen’s inequality, we have

EB[eβ
2
εQδ(t/ε

2,x,x,B1,B2)
] ≤EB [exp(c′ ∫

c

0
(β2
ε ∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)ds)]

≤ 1
c ∫

c

0
EB[exp (cc′β2

ε ∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)]ds,

for some c, c′ > 0. Clearly we have

sup
s∈[0,c]

EB[exp (cc′β2
ε ∫

t/ε2

0
1∣B1

`+δ2s
−B2

`
∣≤cd`)]

≤ sup
x∈R2

EB[exp (cc′β2
ε ∫

t/ε2

0
1∣x+B1

`
−B2

`
∣≤cd`)] ≲ 1

for small β, where the last “≲” comes from Lemma A.1. The proof is complete. ◻
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Now we can write

(B.3)
P[Uε,δ(t, x, Ẇδ) ≤ r] ≤P[ 1

2e
−
√
λdist(Ẇδ,Aλ(t,x)) ≤ r]

≤P [dist(Ẇδ,Aλ(t, x)) ≥
log(2r)−1

√
λ

] ,

where dist(Ẇδ,Aλ(t, x)) = inf{∥Ẇδ − Ẇδ∥L2(R3) ∶ Ẇδ ∈ Aλ(t, x)}. Now we can apply
[11, Lemma 4.5] to derive that

(B.4) P [dist(Ẇδ,Aλ(t, x)) ≥ τ + 2
√

log 2
c
] ≤ 2e−τ

2/4

for all τ > 0, where λ, c > 0 are chosen as in Lemma B.2 and are independent of
ε, δ > 0 and t ∈ [0, T ]. Combining (B.3) and (B.4), we have

P[Uε(t, x, Ẇδ) ≤ r] ≤ 2 exp(− 1
4 (

log(2r)√
λ

+ 2
√

log 2
c
)

2
) ,

which implies E[Uε(t, x, Ẇδ)
−n] ≲ 1 and completes the proof of (B.1).
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