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Abstract

We consider the stochastic heat equation ∂su = 1
2 ∆u + (βV (s, y)− λ)u, driven by a smooth

space-time stationary Gaussian random field V (s, y), in dimensions d ≥ 3, with an initial condi-
tion u(0, x) = u0(εx). It is known that the diffusively rescaled solution uε(t, x) = u(ε−2t, ε−1x)
converges weakly to a scalar multiple of the solution ū of a homogenized heat equation with an
effective diffusivity a, and that fluctuations converge (again, in a weak sense) to the solution of
the Edwards-Wilkinson equation with an effective noise strength ν. In this paper, we derive a
pointwise approximation wε(t, x) = ū(t, x)Ψε(t, x) + εuε

1(t, x), where Ψε(t, x) = Ψ(t/ε2, x/ε), Ψ
is a solution of the SHE with constant initial conditions, and u1 is an explicit corrector. We
show that Ψ(t, x) converges to a stationary process Ψ̃(t, x) as t → ∞, that wε(t, x) converges
pointwise (in L1) to uε(t, x) as ε → 0, and that ε−d/2+1(uε − wε) converges weakly to 0 for
fixed t. As a consequence, we derive new representations of the diffusivity a and effective noise
strength ν. Our approach uses a Markov chain in the space of trajectories introduced in [1313], as
well as tools from homogenization theory. The corrector uε

1(t, x) is constructed using a seemingly
new approximation scheme on “long but not too long time intervals”.

1 Introduction
We consider the long time and large space behavior of the solutions u(s, y) of the random heat
equation with slowly varying initial conditions

∂su = 1
2∆u+ (βV (s, y)− λ)u, (1.1)

u(0, y) = u0(εy), (1.2)

with y ∈ Rd, d ≥ 3. The potential V (s, y) is a smooth space-time homogeneous mean-zero Gaussian
random field with a finite correlation length. We assume it has the form

V (s, y) =
ˆ
Rd+1

µ(s− s′)ν(y − y′) dW (s′, y′), (1.3)

where µ and ν are nonnegative functions of compact support, such that ν is isotropic and

suppµ ⊂ [0, 1], supp ν ⊂ {y | |y| ≤ 1/2}.
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The covariance function of V (s, y) has the form

R(s, y) := E(V (s+ s′, y + y′)V (s′, y′)) =
ˆ
R
µ(s+ t)µ(t) dt

ˆ
Rd
ν(y + z)ν(z) dz.

The constant λ in (1.11.1) ensures that the solutions of (1.11.1) -(1.21.2) do not grow exponentially as t→ +∞
– otherwise, one would need to rescale them by a simple exponential in time factor. The small
parameter ε� 1 measures the ratio of the typical scale of variation of the initial condition and the
correlation length of the random potential. As we are interested in the long time behavior of the
solution to (1.11.1)-(1.21.2) , we consider its macroscopic rescaling:

uε(t, x) = u(ε−2t, ε−1x),

that satisfies the correspondingly rescaled problem

∂tu
ε = 1

2∆uε + 1
ε2

(
βV ( t

ε2 ,
x

ε
)− λ

)
uε

uε(0, x) = u0(x).
(1.4)

It was shown in [1313, 1414], and also in [1515] at the level of the expectation, that there exists β0 > 0 so
that, if 0 < β < β0, there exists λ depending on β, µ, ν, and c̃ > 0, so that

vε(t, x) = c̃uε(t, x) (1.5)

converges weakly as ε→ 0 to the solution u(t, x) to the homogenized problem

∂tu = 1
2a∆u

u(0, x) = u0(x),
(1.6)

with an effective diffusivity a > 0. It was also shown that the fluctuation

1
εd/2−1 (vε(t, x)− Evε(t, x)), (1.7)

converges in law and weakly in space as ε→ 0 to the solution U of the Edwards-Wilkinson equation

∂tU (t, x) = 1
2a∆U (t, x) + βνu(t, x)Ẇ (t, x)

U (0, x) = 0,
(1.8)

with an effective noise strength ν > 0.
The results of [1313, 1414] concern weak convergence, that is, after integration against a macroscopic

test function. In the present paper, we seek to understand the microscopic behavior of the solutions,
somewhat in the spirit of the classical random homogenization theory, and explain how the micro-
scopic behavior leads to the macroscopic results in [1313, 1414]. We are also interested in a more explicit
interpretation of the macroscopic parameters: the renormalization constant λ(β), the effective dif-
fusivity a in (1.61.6), the renormalization constant c̃ in (1.51.5) and the effective noise ν in (1.81.8), also in
terms of the classical objects of the homogenization approach to PDEs with random coefficients. We
mention that as this paper was being written, we learned of the very interesting recent paper [66],
where a limit theorem for local fluctuations for the solution uε in the special case when the random
potential V (t, x) is white in time and u0 = 1, was obtained. This result is complementary to ours,
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and the methods of proof are quite different. We also mention that the restriction to dimension d ≥ 3
is crucial: for d = 2 the behavior is different, see in particular [44] and [55].

As is standard in the PDE homogenization theory, it is natural to introduce fast variables and
consider a formal asymptotic expansion for the solutions uε to (1.41.4) in the form

uε(t, x) = u(0)(t, x, t
ε2 ,

x

ε
) + εu(1)(t, x, t

ε2 ,
x

ε
) + ε2u(2)(t, x, t

ε2 ,
x

ε
) + · · · , (1.9)

There are two known issues that often arise in such expansions – first, the existence of stationary
correctors is difficult to prove, and may actually be false, and, second, higher order correctors may
have slower decaying correlations. This means that, after integration against a test function, all terms
could contribute to the same order, and including more correctors may not improve the expansion as
far as the weak approximation is concerned. Some relevant discussions on the random fluctuations
in elliptic homogenization can be found in [99, 1212]. In the present case, it is easy to see that the
leading order term in (1.91.9) should have the form

u(0)(t, x, t
ε2 ,

x

ε
) = u(t, x)Ψ( t

ε2 ,
x

ε
), (1.10)

where Ψ(s, y) is a solution to (1.11.1). The corrector Ψ(s, y) is “universal” in the sense that it does not
depend on the initial condition u0(x) in (1.21.2). As we have mentioned, ideally, one would want Ψ(s, y)
to be a stationary solution to (1.11.1) and capture the behavior of uε. However, as we will see, such a
choice would lead to the aforementioned “large” macroscopic errors, after integration against a test
function. Instead, we will let Ψ(s, y) be the solution to the same problem with a constant initial
condition:

∂sΨ(s, y) = 1
2∆Ψ(s, y) + (βV (s, y)− λ)Ψ(s, y)

Ψ(0, y) = 1,
(1.11)

and let u(t, x) be a function of the macroscopic variables that will end up being the solution to the
homogenized problem (1.61.6).

Existence of a stationary solution and the leading order term in the expansion

Our first result gives an explanation for the choice of λ = λ(β): if λ is chosen appropriately,
then Ψ(s, y) approaches a global in time stationary solution Ψ̃(s, y) as s→∞. Thus, it is reasonable
to take Ψε(t, x) = Ψ(t/ε2, x/ε) as a proxy for the stationary solution in the leading order term for
the asymptotic expansion (1.91.9) – note that both are equally “universal” in the sense that they do
not depend on the initial condition u0(x) for (1.11.1).

Theorem 1.1. There is a β0 > 0 so that for all 0 ≤ β < β0, there is a λ = λ(β) > 0 and a
space-time stationary random function Ψ̃(s, y) > 0 that solves

∂sΨ̃(s, y) = 1
2∆Ψ̃(s, y) + (βV (s, y)− λ)Ψ̃(s, y), (1.12)

and for any y ∈ Rd, we have
lim
s→∞

E|Ψ(s, y)− Ψ̃(s, y)|2 = 0. (1.13)

Throughout the paper, we will always assume that λ = λ(β) is chosen as in the statement of
Theorem 1.11.1. Theorem 1.11.1 can be seen as an extension of [1616, Theorem 2.1] to the colored-noise
setting, even though that result was formulated in different terms. Some of the other relevant results
in the literature are [88] and [1818], which establish existence of stationary solutions and convergence
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along subsequences in weighted L2 spaces, also in the white-noise setting case. The proof of Theo-
rem 1.11.1 is similar in spirit to that of [1616, Theorem 2.1] but uses the framework of [1313] to deal with
the necessary renormalization parameter λ, and is presented in Section 33. For elliptic operators in
divergence form, the existence of stationary correctors in high dimensions was studied in [22, 1010, 1111],
and we refer to the recent monograph [11] for a more complete list of references.

As an application of the existence of the stationary solution, we will show in Section 44 that the
effective noise strength ν in (1.81.8), which has a complicated expression given in [1313, (5.6)], has a more
intuitive expression in terms of the stationary solution. To set the notation, let

Ga(t, x) = (2πat)−d/2 exp(−|x|2/(2at))

be the Green function for the heat equation with diffusivity a, and note that there exists a constant c̄
so that ˆ ∞

0

ˆ
Rd
Ga(r, z)Ga(r, z + x) dz dr = c̄

a|x|d−2

Theorem 1.2. The effective noise strength ν in (1.81.8) has the expression

ν2 =
a limε→0

´ ´
g(x)g(x̃)

(
1

εd−2 Cov
(
Ψ̃
(
0, xε

)
, Ψ̃
(
0, x̃ε

)))
dx dx̃

c̄β2e2α∞
´ ´

g(x)g(x̃)|x− x̃|2−d dx dx̃ (1.14)

for any test function g ∈ C∞c (Rd). The deterministic constant α∞ is defined in (2.32.3) below.

Theorem 1.21.2 is a weak version of the asymptotics

Cov(Ψ̃(0, 0), Ψ̃(0, y)) ∼ c̄β2ν2e2α∞

a|y|d−2 , |y| � 1,

so that the effective noise constant in the Edwards-Wilkinson equation (1.81.8) is directly related to the
decay of the covariance of the stationary solution, in the spirit of the central limit theorem applied to
integration over a large number of microscopic boxes, taking into account the correlation on various
such boxes.

Going back to the expansion (1.91.9), the leading order term in (1.101.10) is justified by the following
microscopic convergence result.

Theorem 1.3. Suppose that 0 ≤ β < β0, and set Ψε(t, x) = Ψ(t/ε2, x/ε). If u0 ∈ C∞c (Rd), then

lim
ε→0

E|uε(t, x)− u(t, x)Ψε(t, x)|2 = 0. (1.15)

One can now see how the renormalization constant c̃ in the non-divergent renormalization (1.51.5)
shows up: Ψ(s, y) → Ψ̃(s, y) during the initial time layer on the “microscopically large” time scale.
However, even though Ψ(0, y) ≡ 1, E(Ψ̃(s, y)) is not necessarily equal to one, hence the need for
the renormalization to ensure convergence to the effective diffusion equation (1.61.6) with the initial
condition u0(x) – and not c̃u0(x). In light of Theorems 1.11.1 and 1.31.3, one may wonder if one should
be using Ψ̃(t/ε2, x/ε) rather than Ψ(t/ε2, x/ε) in the approximation (1.151.15) – we will see below that
the answer is that Ψ(t/ε2, x/ε) improves the weak error.

A higher order approximation

In order to obtain higher order corrections in the asymptotic expansion, if we plug (1.91.9) into (1.41.4)
and group terms by the powers of ε, we obtain the following equations for u1 and u2:

∂su1(t, x, s, y) = 1
2∆yu1(t, x, s, y) + (βV (s, y)− λ)u1(t, x, s, y) +∇yΨ(s, y) · ∇xu(t, x), (1.16)
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and

∂su2(t, x, s, y) = 1
2∆yu2(t, x, s, y) + (βV (s, y)− λ)u2(t, x, s, y) +∇y · ∇xu1(t, x, s, y)

+ 1
2(1− a)Ψ(s, y)∆xu(t, x).

(1.17)

As we will show in Section 55, the effective diffusivity a can be recovered from a formal solvability
condition for (1.171.17) to have a solution u2 that is stationary in the fast variables – a rather standard
situation in the homogenization theory. However, here, as stationary correctors are not expected
to exist in low dimensions, a justification of this expression requires a construction of approximate
correctors and passage to a large time limit, similar to the “large box” limit in the elliptic homog-
enization theory. In particular, Theorem 5.15.1 below provides a computational tool to evaluate the
effective diffusivity in purely PDE terms.

Our last result concerns the connection between the local expansion (1.91.9) and the weak approxi-
mation of the solution. As we have mentioned, typically, the leading order terms in such expansions
in stochastic homogenization only provide a local approximation, while control of the the weak error
(after integration against a test function) requires extra terms. This is partly because the higher the
order of the corrector, the slower the spatial decay of its covariance function, leading to accumulation
of errors from terms of all orders. We circumvent this issue by borrowing some ideas reminiscent
of the “straight line” approximation of trajectories on “long but not too long” time scales in ran-
dom finite-dimensional models of particles in a random velocity fields or random forces. If we look
at (1.161.16) for each macroscopic t > 0 and x ∈ Rd fixed, as an evolution problem in s, we would have
a “complete separation of scales” factorization

u1(t, x, s, y) =
d∑

k=1
ζ(k)(s, y)∂u(t, x)

∂xk
, (1.18)

where ζ(s, y) is a solution to the microscopic problem

∂sζ
(k) = 1

2∆ζ(k) + (βV (s, y)− λ)ζ(k) + ∂Ψ(s, y)
∂yk

, (1.19)

defined for all s > 0 and y ∈ Rd. Instead of using (1.181.18) directly, we consider “microscopically long
but macroscopically short” time intervals in s of the size ε−γ , with some γ ∈ (1, 2). Accordingly, for
each j ≥ 1, let θ(k)

j (s, y), with 1 ≤ k ≤ d, be the solution to

∂sθ
(k)
j = 1

2∆yθ
(k)
j + (βV (s, y)− λ)θj + ∂Ψ(s, y)

∂yk
, s > ε−γ(j − 1),

θ
(k)
j (ε−γ(j − 1), y) = 0.

(1.20)

Then, define u1;j(s, y) as the solution to

∂su1;j = 1
2∆u1;j + (βV (s, y)− λ)u1;j , s > ε−γj,

u1;j(ε−γj, y) =
d∑

k=1
θ

(k)
j (ε−γj, y)∂u(ε2−γj, εy)

∂xk
,

(1.21)

and finally put

uε1(t, x) =
[εγ−2t]∑
j=1

u1;j(ε−2t, ε−1x) + θ[εγ−2t]+1(ε−2t, ε−1x) · ∇u(t, x). (1.22)
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This is similar to putting s = t/ε2, y = x/ε in the formal PDE (1.161.16), except that rather than
continuously multiplying the forcing by ∇u, the multiplication by ∇u happens only at discrete
times. With this definition of uε1, we have a weak convergence theorem for the fluctuations:

Theorem 1.4. Suppose that 0 ≤ β < β0, and let g ∈ C∞c (Rd). For any ζ < (1 − γ/2) ∧ (γ − 1),
there exists C > 0 so that

Var
(
ε−d/2+1

ˆ
g(x) [uε(t, x)−Ψε(t, x)u(t, x)− εuε1(t, x)] dx

)
≤ Cε2ζ . (1.23)

The optimal bound in Theorem 1.41.4 is achieved when γ = 4/3, in which case ζ is required to be
less than 1/3.

We note that it would be hopeless to get a convergence-of-fluctuations result like Theorem 1.41.4
even with an error of size εd/2−1 as in (1.71.7)–(1.81.8), using only the first term of the expansion as in
Theorem 1.31.3. This is because at that scale, [1313] gives different central limit theorem statements for
u and for Ψu: the rescaled and renormalized fluctuations of u converge to a solution of the SPDE

∂tU (t, x) = 1
2a∆U (t, x) + βνu(t, x)Ẇ (t, x), (1.24)

while the rescaled and renormalized fluctuations of Ψ converge to a solution of the SPDE

∂tψ(t, x) = 1
2a∆U (t, x) + βνẆ (t, x), (1.25)

and so the rescaled and renormalized fluctuations of Ψu converge to a solution of the SPDE

∂t(ψu)(t, x) = 1
2au(t, x)∆ψ(t, x) + βνu(t, x)Ẇ (t, x) + 1

2aψ(t, x)∆u(t, x)

= 1
2a∆(ψu)(t, x)− a∇ψ(t, x) · ∇u(t, x) + βνu(t, x)Ẇ (t, x). (1.26)

The limiting SPDEs (1.241.24) and (1.261.26) are not the same, so some extra corrector is needed. It is
also important to note that Theorem 1.41.4 holds precisely because we take the leading order term
with Ψ(s, y) rather than the stationary solution Ψ̃(s, y). It is a combination of the “correct” lead-
ing order and the specific construction of uε1 that leads to the expansion capturing correctly the
macroscopic error after integration against a test function.

Let us explain intuitively how the definitions (1.201.20)–(1.221.22) come from (1.161.16). They sit midway
between two natural ways of interpreting (1.161.16). On one hand, (1.161.16), for fixed x and t, can be
solved as in (1.181.18)-(1.191.19). However, defining the corrector u1 by (1.181.18) and evaluating at s = t/ε2

and y = x/ε does not seem to yield a good convergence result, because ∇xu(τ, x) is not constant on
the time scale from τ = 0 to τ = ε2s = t. Instead, (1.201.20)–(1.221.22) gives a way to solve the corrector
problem on shorter time intervals and sum up the contributions from each time interval, so that an
appropriate value of ∇xu(τ, x) is used for each time interval. On the other hand, (1.161.16) could be
solved by plugging t = ε2s, x = εy into (1.161.16), yielding the PDE

∂su1(s, y) = 1
2∆yu1(s, y) + (βV (s, y)− λ)u1(s, y) +∇yΨ(s, y) · ∇xu(ε2s, εy). (1.27)

However, we do not obtain a convergence result along the lines of Theorem 1.41.4 for this definition
of u1 either. This is because the Feynman–Kac formula that arises from the solution to (1.271.27)
involves the behavior of the Markov chain of [1313] (reviewed in Section 22 below) on short time scales,
while the limits appear to arise from the averaged behavior of the Markov chain on long time scales.
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The delay in multiplying by ∇xu introduced by the updates on the time scale ε−γ allows the short-
time fluctuations to be averaged out, leaving only the effect of the long-time scales, which allows
us to see the limiting behavior. Once again, this is not unrelated to the strategy in the proofs of
the convergence of particle in random velocity fields and the random acceleration problem to the
corresponding diffusive limits.

Organization of the paper. Our results all rely on the Feynman–Kac formula, and in partic-
ular a certain Markov chain representing a tilted Brownian path introduced in [1313]. Thus we review
the relevant results from that work in Section 22. Section 22 also contains additional facts about the
tilted Markov chain that will be necessary in our proofs. In Section 33 we establish the existence of
the stationary solution Ψ̃ (Theorem 1.11.1). The next two sections are devoted to the parameters a
and ν obtained in [1313]: in Section 44 we prove Theorem 1.21.2 regarding the effective noise strength ν,
and in Section 55 we show how the effective diffusivity can be recovered from the formal asymp-
totic expansion. Finally, in the last two sections we establish our convergence results for the formal
asymptotic expansion: the strong convergence Theorem 1.31.3 in Section 66, and the weak convergence
of fluctuations Theorem 1.41.4 in Section 77.

Acknowledgments. AD was supported by an NSF Graduate Research Fellowship, YG by NSF
grant DMS-1613301/1807748 and the Center for Nonlinear Analysis at CMU, LR by NSF grant
DMS-1613603 and ONR grant N00014-17-1-2145, and OZ by an Israel Science Foundation grant
and the ERC advanced grant LogCorFields. We would like to thank S. Chatterjee, F. Hernandez,
G. Papanicolaou, and M. Perlman for helpful comments and discussions.

2 The Markov chain for the tilted paths

Preliminaries and basic facts

In this section, we recall some facts on the Markov chain for the tilted path from [1313] that appears
naturally in the Feynman-Kac formula for the solutions to the random heat equation that we will use
extensively in the rest of the paper. Let us introduce some notation. By EyB we denote expectation
with respect to the probability measure in which B = (B1, . . . , Bd) is a standard d-dimensional
Brownian motion with B0 = y. For any A ⊂ R, we set

VA[B] =
ˆ
A
V (s− τ,Bτ ) dτ. (2.1)

We will often use the shorthand Vs = V[0,s]. We define, for any A, Ã ⊂ R,

R
A,Ã

[B, B̃] = E
(
VA[B]V

Ã
[B̃]
)

=
ˆ
Ã

ˆ
A
R(τ − τ̃ , Bτ − B̃τ̃ ) dτ dτ̃ . (2.2)

We will often use the abbreviations Rs,s̃ = R[0,s],[0,s̃], RA = RA,A, and Rs = Rs,s. We will also
abbreviate R•[B] = R•[B,B], where the • can be replaced by any of the allowable subscripts for R.
The tilted measure P̂yB;• is determined by

ÊyB;•F [B] = 1
Z•

EyB
[
F [B] exp

{1
2β

2R•[B]
}]
, Z• = EyB exp

{1
2β

2R•[B]
}
,

for any measurable functional F on the space C([0,∞);Rd), where again the • can be replaced by
any of the allowable subscripts for R. We further define

αs = logZs − λs, (2.3)
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and note that, according to [1313, Lemma A.1] and its proof, there exists a unique λ = λ(β) such that

|αs − α∞| ≤ Ce−cs. (2.4)

for some α∞ > 0, c > 0 and C > 0. This is where the constant λ(β) comes from. We fix this value
for the rest of the paper. We denote by ΞT = {ω ∈ C([0, T ]) | ω(0) = 0}, and, given Wi ∈ ΞTi , we
define [W1, . . . ,Wk] ∈ ΞT , for T =

∑
Ti by the concatenation of the increments, as in [1313].

The expectation with respect to the product measure P̂yB;• ⊗ P̂ỹ
B̃;•

will be denoted by Êy,ỹ
B,B̃;•

.

Theorem 2.1 ([1313]). Let T > 1 and N = [T ]− 1. Then there is a Markov chain

w0, w1, . . . , wN , wN+1

such that w0 ∈ ΞT−[T ] and wj ∈ Ξ1 for 1 ≤ j ≤ N + 1 and the transition probability

π̂(wj , wj+1) = Law(wj+1 | wj)

does not depend on j for j = 1, . . . , N − 1 and such that if we put W = [w0, . . . , wN+1] ∈ ΞT then
we have, for any bounded continuous function F on ΞT , that

ÊB;TF [B] = ẼW [F [W ]G [wN ]] , (2.5)

where ẼW is expectation with respect to the measure in which W is obtained from the Markov chain,
and G : Ξ1 → R is bounded, measurable, even, and independent of T . Moreover, there is an auxiliary
sequence of i.i.d. Bernoulli random variables ηWj , j = 1, 2, . . ., with distribution not depending on
T , so that Law(wj | ηj = 1, wi, i < j) = π, where π is the invariant measure of π̂.

We will denote
ẼyWF [W ] = ẼWF [y +W ]. (2.6)

Define the stopping times σW0 = 0, σWn = min{t ≥ σn−1 | ηWt = 1}, and put, for n ≥ 0,

WW
n = WσWn+1

−WσWn
.

Lemma 2.2 ([1313, Lemma A.1]). The family {WW
n }n≥0 is a collection of independent, symmetric,

mean-0 random variables with exponential tails. Moreover, WW
1 ,WW

2 , . . . are identically distributed.

The above procedure can be applied to pairs of paths as well. Given two independent copiesW, W̃
of the Markov chain, define

ηW,W̃j = ηWj η
W̃
j ,

and the stopping times

σW,W̃n =

0 n = 0
min{t ≥ σn−1 | ηW,W̃t = 1} n ≥ 1.

Put

WW,W̃
n = W

σW,W̃n+1
−W

σW,W̃n

W̃W,W̃
n = W̃

σW,W̃n+1
− W̃

σW,W̃n

.

Analogously to (2.62.6), we use the notation P̃y,ỹ
W,W̃

= P̃yW ⊗ P̃ỹ
W̃
.
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Corollary 2.3 ([1313, p. 17]). The family {WW,W̃
n }n≥0 ∪ {W̃W,W̃

n }n≥0 is a collection of independent,
symmetric, mean-0 random variables with exponential tails. Moreover,

WW,W̃
1 ,WW,W̃

2 , . . . ,W̃W,W̃
1 ,W̃W,W̃

2 , . . .

are all identically distributed.

Let us set
κW = P(ηj = 1), κW,W̃ = P(ηW,W̃j = 1) = P(ηWj = 1)2. (2.7)

The next proposition gives an expression for the effective diffusivity in (1.61.6) in terms of the Markov
chain.

Proposition 2.4 ([1313, Proposition 4.1]). There is a diagonal d× d matrix

a = aId×d = κW ẼW [WW
n (WW

n )>] (2.8)

so that as ε → 0, the process {εWε2τ}0≤τ≤t converges in distribution in C([0, t]) (under P̃W ) to a
Brownian motion with covariance matrix a.

Proposition 2.5 ([1313, Corollary 4.4]). If d ≥ 3, there is a β0 > 0 and a constant C <∞ so that if
0 ≤ β < β0 then for any s ≥ 0, y, ỹ ∈ Rd, we have

Ẽy,ỹ
W,W̃

[
exp

{
β2R[s,∞][W, W̃ ]

}
| Fs

]
≤ C a.s.

Here, Fs is the sigma algebra generated by the paths W, W̃ up to time s; we emphasize that the
constant C in Proposition 2.52.5 is deterministic.

We will require a slightly strengthened version of Proposition 2.52.5, which can be proved similarly.

Proposition 2.6. If d ≥ 3, there is a β0 > 0 and a constant C <∞ so that if 0 ≤ β < β0 then for
all r, r̃ > 0, we have

Ẽ
W,W̃

[
exp

{
β2R∞[W, W̃ ]

} ∣∣∣Wr, W̃r̃

]
≤ C, a.s.

In Proposition 2.62.6, the constant C is deterministic and the sigma-algebra Wr, W̃r̃ is the one
generated by the paths W, W̃ up to times r, r̃ respectively.

We also need some estimates from [1313] on various error terms.

Lemma 2.7 ([1313, (4.30)]). There is a constant Cv so that

ẼW
∣∣εWε−2t2 − εWε−2t1

∣∣2 ≤ Cv(t2 − t1). (2.9)

Lemma 2.8 ([1313, Lemma A.3]). For any χ > 0, there are constants 0 < c,C < ∞ so that if FT :
ΞT → R is a family of uniformly bounded functions for each T fixed, and {Sn}, {Tn} are sequences
of real numbers such that Sn, Tn, Sn − Tn →∞, then∣∣∣ẼWFTn(W �[0,Tn])− ẼWFTn(W �[0,Tn])G (wSn)

∣∣∣
≤ C

(
ẼW

(
FTn(W �[0,Tn])

)χ)1/χ
exp {−c(Tn ∧ (Sn − Tn))} .

Here, G is as in Theorem 2.12.1.
Remark 2.9. The rate of convergence is not stated explicitly in [1313] but it comes from the proof
there.

Lemma 2.10 ([1313, Lemma A.2]). We have constants 0 < c, C <∞ so that

P̃x,x̃
W,W̃

[
max

r,r̃∈[σn,σn+2]

(
|Wr −W

σW,W̃n

|+ |W̃r̃ − W̃
σW,W̃n

|
)
> a

]
≤ Ce−ca.
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Estimates on path intersections

Finally, we prove a fact about the tilted Markov chain that will be essential for us: that two paths
started at points at distance of order ε−1 get close to each other with probability εd−2.

Proposition 2.11. There is a constant C so that

P̃x,x̃
W,W̃

 inf
r,r̃>0
|r−r̃|≤1

∣∣∣Wr − W̃r̃

∣∣∣ ≤ 1

 ≤ C

|x− x̃|d−2 .

In order to prove Proposition 2.112.11, we first prove the same result just at regeneration times. For
the rest of this section, to economize on notation we will put σn = σW,W̃n .

Lemma 2.12. We have

P̃x,x̃
W,W̃

[
inf
n≥0

∣∣∣Wσn − W̃σn

∣∣∣ ≤ A] ≤ Ad−2

|x− x̃|d−2 .

Proof. Let
Xn = Wσn − W̃σn ,

and set
q(z) = 1

(|z| ∨A)d−2 .

For any z ∈ Rd with |z| ≥ A and anyM > 0, if we let dS denote the surface measure on {|z̃−z| = M},
then we have  

|z̃−z|=M
q(z̃) dS(z̃) ≤

 
|z̃−z|=M

1
|z̃|d−2 dS(z̃) ≤ 1

|z|d−2 = q(z) (2.10)

by the mean-value inequality for superharmonic functions, as z 7→ |z|−d+2 is superharmonic. Let ω
be the smallest n such that |Xn| ≤ A, or∞ if |Xn| > A for all A. Since the distribution of Xn−Xn−1
is radially symmetric for each n ≥ 1, (2.102.10) means that the sequence (q(Xn∧ω)) is a supermartingale.
By the optional stopping theorem, for any n we have

1
|x− x̃|d−2 = q(X0) ≥ Ẽ

W,W̃
q(Xn∧ω) ≥ 1

Ad−2 P̃W,W̃ (ω ≤ n).

Therefore, we have

P̃
W,W̃

(ω <∞) ≤ Ad−2

|x− x̃|d−2

by Fatou’s lemma.

Proof of Proposition 2.112.11. Let

Bn = max
r,r̃∈[σn,σn+2]

(
|Wr −WσW,W̃n

|+ |W̃r̃ − W̃
σW,W̃n

|
)

and
ωM = inf

{
n ≥ 0 : |Wσn − W̃σn | ≤ 2M

}
.
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We have

{
inf
|r−r̃|≤1

∣∣∣Wr − W̃r̃

∣∣∣ ≤ 1
}
⊆

∞⋃
M=0

∞⋃
n=0

({∣∣∣Wσn − W̃σn

∣∣∣ ≤ 2M
}
∩
{
Bn ≥ 2M−1 − 1

})
⊆

∞⋃
M=0

[
{ωM <∞} ∩

( ∞⋃
n=ωM

({∣∣∣Wσn − W̃σn

∣∣∣ ≤ 2M
}
∩
{
Bn ≥ 2M−1 − 1

}))]
. (2.11)

Therefore, we can estimate (abbreviating P = P̃x,x̃
W,W̃

and letting the constant C change from line to
line)

P
[

inf
|r−r̃|≤1

|Wr − W̃r̃| ≤ 1
]
≤

∞∑
M,`=0

P [ωM = `]
∞∑
n=`

P
[
|Wσn − W̃σn | ≤ 2M

∣∣∣ ωM = `
]
P
[
Bn ≥ 2M−1 − 1

]

≤ C
∞∑

M=0
e−c(2M−1−1)

∞∑
`=0

P [ωM = `]
∞∑
n=`

2Md

(n− `+ 1)d/2 = C
∞∑

M=0
e−c(2M−1−1)+CMdP [ωM <∞]

≤ C
∞∑

M=0
e−c(2M−1−1)+CMd · 2(d−2)M

|x− x̃|d−2 ≤
C

|x− x̃|d−2 ,

(2.12)
where the first inequality is by (2.112.11), the second is by Lemma 2.102.10 and a local central limit theorem
([1717] as applied in [1313, (4.36)]), and the third is by Lemma 2.122.12.

We will also need a slightly different version of the bound in Proposition 2.112.11:

Proposition 2.13. There is a constant C so that

P̃x,x̃
W,W̃

[
inf

r,r̃>s,|r−r̃|≤1

∣∣∣Wr − W̃r̃

∣∣∣ ≤ 1
]
≤ Cs−(d/2)+1.

To show this, we first need to establish another simple lemma.

Lemma 2.14. Suppose that T1, . . . , TJ are iid geometric random variables taking values n = 1, 2, . . . ,
omitting n = 0. There exists c > 0 so that

P
( J∑
j=1

Tj > 2JETi
)
≤ e−cJ .

Proof. The result follows from large deviations estimates in the form of Cramer’s theorem. We
instead provide a direct proof based on Chebyshev’s inequality. Let m = ETi. We have

P
( J∑
j=1

Tj > 2mJ
)

= P
(

exp
{
ξ

J∑
j=1

Tj
}
> exp {2ξmJ}

)
≤

E exp
{
ξ
∑J
j=1 Tj

}
exp {2ξmJ} =

(E exp {ξTj}
exp {2ξm}

)J
=
(
(me−ξ − (m− 1))e2mξ

)−J
:= (α(ξ))−J .

(2.13)
As

dα(ξ)
dξ

∣∣∣
ξ=0

= d

dξ

(
(me−ξ − (m− 1))e2mξ

) ∣∣∣
ξ=0

= m > 0, (2.14)

there is a ξ > 0 small enough so that α(ξ) > 1, which proves the lemma.
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Proof of Proposition 2.132.13. Recall the definition (2.72.7) of κW,W̃ and put

n0 = s

2κW,W̃
.

We can then estimate

P
[

inf
r,r̃>s,|r−r̃|≤1

|Wr − W̃r̃| ≤ 1
]
≤ P

[
inf

r,r̃>σn0 ,|r−r̃|≤1

∣∣∣Wr − W̃r̃

∣∣∣ ≤ 1
]

+ P [σn0 ≥ s] .

By Lemma 2.142.14, we have that

P [σn0 ≥ s] ≤ e−cn0 ≤ Cs1−d/2,

so it suffices to show that

P
[

inf
r,r̃>σn0 ,|r−r̃|≤1

∣∣∣Wr − W̃r̃

∣∣∣ ≤ 1
]
≤ Cn1−d/2

0 .

Define
Bk = max

r,r̃∈[σk,σk+2]

(
|Wr −Wσk(s)|+ |W̃r̃ − W̃σk(s)|

)
,

then we have

P
[

inf
r,r̃>σn0 ,|r−r̃|≤1

∣∣∣Wr − W̃r̃

∣∣∣ ≤ 1
]
≤

∞∑
M=0

∞∑
k=n0

P
[∣∣∣Wσk − W̃σk

∣∣∣ ≤ 2M
]
P
[
Bk ≥ 2M−1 − 1

]

≤ C
∞∑

M=0
e−c(2M−1−1)

∞∑
k=n0

2Md

kd/2 = Cn
1−d/2
0

∞∑
M=0

e−c(2M−1−1)+CMd ≤ Cn1−d/2
0 ,

where the second inequality uses the local limit theorem of [1717].

3 Existence of a stationary solution
In this section we prove Theorem 1.11.1. The strategy is typical for such problems: we consider the
Cauchy problem on the time interval s ∈ (−S,∞) and pass to the limit S → +∞, obtaining a
global in time solution to the problem that satisfies appropriate uniform bounds, provided that the
Lyapunov exponent λ(β) is chosen so that (2.42.4) holds. To this end, put

Ψ(s, y;S) =
{

1 s ≤ −S,
EyB exp {βVs+S [B]− λ(s+ S)} s > −S,

(3.1)

where we recall that
Vs+S [B] =

ˆ s+S

0
V (s− τ,Bτ )dτ.

By the Feynman–Kac formula, Ψ solves the Cauchy problem

∂sΨ(s, y;S) = 1
2∆Ψ(s, y) + βV (s, y)Ψ(s, y)− λΨ(s, y), s > −S

Ψ(s, y;S) = 1, s ≤ −S.
(3.2)

We first prove a preliminary lemma. Recall the notation R, see (2.22.2).
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Lemma 3.1. There exists a constant C <∞ so that for all β sufficiently small, the following holds.
If s ≤ s′ ≤ s̃ ≤ s̃′, then

Ẽy,ỹ
W,W̃

∣∣∣exp
{
β2Rs̃,s̃′ [W, W̃ ]

}
− exp

{
β2Rs,s′ [W, W̃ ]

}∣∣∣ ≤ C(s− 1)1−d/2. (3.3)

Proof. We have

Ẽy,ỹ
W,W̃

∣∣∣exp
{
β2Rs̃,s̃′ [W, W̃ ]

}
− exp

{
β2Rs,s′ [W, W̃ ]

}∣∣∣
≤ Ẽy,ỹ

W,W̃

∣∣∣exp
{
β2R∞[W, W̃ ]

}
− exp

{
β2Rs[W, W̃ ]

}∣∣∣
≤ Ẽy,ỹ

W,W̃
exp

{
β2R∞[W, W̃ ]

}
1

R∞[W,W̃ ]6=Rs[W,W̃ ]

≤ Ẽy,ỹ
W,W̃

exp
{
β2R∞[W, W̃ ]

}
1{(∃r, r̃ ≥ s− 1) |Wr − W̃r̃| ≤ 1}.

(3.4)

On the event {R∞[W, W̃ ] 6= Rs[W, W̃ ]}, let τ < τ̃ be the first pair of times after s − 1 such
that |τ − τ̃ | ≤ 1 and |Wτ − W̃τ̃ | ≤ 1. Then, we have

Ẽy,ỹ
W,W̃

∣∣∣exp
{
β2Rs̃,s̃′ [W, W̃ ]

}
− exp

{
β2Rs,s′ [W, W̃ ]

}∣∣∣
≤
ˆ ∞
s−1

ˆ r+1

r
Ẽy,ỹ
W,W̃

[
exp

{
β2R∞[W, W̃ ]

}
| τ = r, τ̃ = r̃

]
dP(τ = r, τ̃ = r̃)

≤ CP̃y,ỹ
W,W̃

[
(∃r, r̃ ≥ s− 1) |Wr − W̃r̃| ≤ 1

]
≤ C(s− 1)1−d/2,

(3.5)

where the second inequality is by Proposition 2.62.6 and the last is by Proposition 2.132.13.

The next proposition is a key step to show the convergence of the family Ψ(s, y;S) as S → +∞.

Proposition 3.2. If β is sufficiently small then, for 0 ≤ S1 ≤ S2, we have

E (Ψ(0, y;S2)−Ψ(0, y;S1))2 ≤ CS−d/2+1
1 ,

Proof. Without loss of generality, we consider y = 0. We have, with αs as in (2.32.3) and V as in (2.12.1),

EE
B,B̃

exp
{
βVS1 [B]− λS1 + βVS2 [B̃]− λS2

}
= eαS1 +αS2 ÊB;S1ÊB̃;S2

exp
{
β2RS1,S2 [B, B̃]

}
.

Therefore, we have

E (Ψ(0, 0;S2)−Ψ(0, 0;S1))2 = E (EB [exp {βVS2 [B]− λS2} − exp {βVS2 [B]− λS1}])2

= e2αS2 Ê
B,B̃;S2

exp
{
β2RS2 [B, B̃]

}
− 2eαS2 +αS1 ÊB;S2ÊB̃;S1

exp
{
β2RS2,S1 [B, B̃]

}
+ e2αS1 Ê

B,B̃;S1
exp

{
β2RS1 [B, B̃]

}
, (3.6)

which can be re-written as

E (Ψ(0, 0;S2)−Ψ(0, 0;S1))2 = Ẽ
W,W̃

[
e2αS2 exp

{
β2RS2 [W, W̃ ]

}
G [w[S2]−1]G [w̃[S2]−1]

− 2eαS2 +αS1 exp
{
β2RS2,S1 [W, W̃ ]

}
G [w[S2]−1]G [w̃[S1]−1]

+e2αS1 exp
{
β2RS1 [W, W̃ ]

}
G [w[S1]−1]G [w̃[S1]−1]

]
. (3.7)

13



However, for any T1 < T2 we can write

Ẽ
W,W̃

eαT2 +αT1 exp
{
β2RT2,T1 [W, W̃ ]

}
G [w[T2]−1]G [w̃[T1]−1]

= Ẽ
W,W̃

e2α∞ exp
{
β2R0.9T2,0.9T1 [W, W̃ ]

}
+ Ẽ

W,W̃
e2α∞ exp

{
β2R0.9T2,0.9T1 [W, W̃ ]

}(
G [w[T2]−1]G [w̃[T1]−1]− 1

)
+ Ẽ

W,W̃
e2α∞

(
exp

{
β2RT2,T1 [W, W̃ ]

}
− exp

{
β2R0.9T2,0.9T1 [W, W̃ ]

})
G [w[T2]−1]G [w̃[T1]−1]

+ Ẽ
W,W̃

(
eαT2 +αT1 − e2α∞

)
exp

{
β2RT2,T1 [W, W̃ ]

}
G [w[T2]−1]G [w̃[T1]−1]. (3.8)

Furthermore, (2.42.4) together with Lemma 3.13.1 and Proposition 2.62.6 imply that the last term in (3.83.8)
can be estimated as

lim
T1,T2→∞

T
d/2−1
2 Ẽ

W,W̃

(
eαT2 +αT1 − e2α∞

)
exp

{
β2RT2,T1 [W, W̃ ]

}
G [w[T2]−1]G [w̃[T1]−1] = 0, (3.9)

and the third term in (3.83.8) can be bounded using Lemma 3.13.1 as

lim sup
T1,T2→∞

T
d
2−1

1

∣∣∣Ẽ
W,W̃

e2α∞
[
exp

{
β2RT2,T1 [W, W̃ ]

}
− exp

{
β2R0.9T2,0.9T1 [W, W̃ ]

}]
G [w[T2]−1]G [w̃[T1]−1]

∣∣∣
≤ e2α∞‖G ‖2∞(T1 ∧ T2)d/2−1Ẽ

W,W̃

(
exp

{
β2RT2,T1 [W, W̃ ]

}
− exp

{
β2R0.9T2,0.9T1 [W, W̃ ]

})
<∞.
(3.10)

For the second term in (3.83.8) we can use Lemma 2.82.8 to get

lim sup
T1,T2→∞

T
d/2−1
1 Ẽ

W,W̃
e2α∞ exp

{
β2R0.9T2,0.9T1 [W, W̃ ]

}(
G [w[T2]−1]G [w̃[T1]−1]− 1

)
= 0. (3.11)

Finally, we have

lim sup
T1,T2→∞

T
d/2−1
1 Ẽ

W,W̃

[
exp

{
β2R0.9T2 [W, W̃ ]

}
− 2 exp

{
β2R0.9T2,0.9T1 [W, W̃ ]

}
+ exp

{
β2R0.9T1 [W, W̃ ]

}]
<∞, (3.12)

also by Lemma 3.13.1. Substituting (3.83.8), (3.93.9), (3.103.10), (3.113.11), and (3.123.12) into (3.73.7), we see that

E (Ψ(0, y;S2)−Ψ(0, y;S1))2 ≤ CS−d/2+1
1 ,

as desired.

Theorem 1.11.1 is an easy consequence of this proposition.

Proof of Theorem 1.11.1. For a positive weight w ∈ L1(Rd), consider the weighted space L2
w(Rd), with

the inner product
〈f, g〉L2

w(Rd) =
ˆ
f(y)g(y)w(y) dy

Then, by Proposition 3.23.2 and stationarity of V (s, y) in time, we have

E‖Ψ(s, ·;S1)−Ψ(s, ·;S2)‖2L2
w(Rd) =

ˆ
E |Ψ(0, y; s+ S1)−Ψ(0, y; s+ S2)|2w(y) dy → 0, (3.13)
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as S1, S2 → +∞, by the dominated convergence theorem, and uniformly in s on compact sets,
as E |Ψ(s, y;S)|2 is bounded uniformly in s, y, S due to the choice of λ(β). Hence, the family
Ψ(s, y;S) converges locally uniformly in s and in L2(Ω;L2

w(Rd)) to a limit Ψ̃(s, y). The stationarity
of Ψ̃ is standard.

To prove (1.131.13), we use an argument similar to the above one: note that the solution Ψ(s, y)
to (1.111.11) is stationary in y, and so is Ψ̃(s, y), thus for any y ∈ Rd fixed we have

E|Ψ(s, y)− Ψ̃(s, y)|2
ˆ
w(y′) dy′ =

ˆ
E|Ψ(s, y)− Ψ̃(s, y)|2w(y) dy

= lim
S→+∞

ˆ
E |Ψ(s, y)−Ψ(s, y;S)|2w(y) dy = lim

S→+∞

ˆ
E |Ψ(0, y; s)−Ψ(0, y;S + s)|2w(y) dy

≤ C

s1−d/2 → 0 as s→ +∞,
(3.14)

also by Proposition 3.23.2. We used stationarity of V (s, y) in the last equality above. The convergence
of Ψ to Ψ̃ locally in L2(Ω;L2

w(Rd)) implies that Ψ̃ satisfies (1.121.12) in a weak sense almost surely, and
therefore, by standard parabolic regularity, it satisfies the latter almost surely.

We record the covariance of the stationary solution for completeness.

Corollary 3.3. We have

E[Ψ̃ (s, y) Ψ̃ (s, ỹ)] = e2α∞ẼyW Ẽỹ
W̃

exp
{
β2R∞[W, W̃ ]

}
.

4 The effective noise strength
In this section, we explain how the effective noise strength parameter ν in (1.81.8) arises from the
stationary solution Ψ̃ and prove Theorem 1.21.2.

Lemma 4.1. If β is sufficiently small and g ∈ C∞c (Rd), then we have

lim
t→∞

∣∣∣∣Var
( 1
εd/2−1

ˆ
g(x)Ψ

(
t

ε2 ,
x

ε

)
dx
)
−Var

( 1
εd/2−1

ˆ
g(x)Ψ̃

(
0, x
ε

)
dx
)∣∣∣∣ = 0,

uniformly in ε.

Proof. We have∣∣∣∣∣
√

Var
( 1
εd/2−1

ˆ
g(x)Ψ

( t
ε2 ,

x

ε

)
dx
)
−
√

Var
( 1
εd/2−1

ˆ
g(x)Ψ̃

(
0, x
ε

)
dx
)∣∣∣∣∣

=
∣∣∣∣∣
√

Var
( 1
εd/2−1

ˆ
g(x)Ψ

( t
ε2 ,

x

ε

)
dx
)
−
√

Var
( 1
εd/2−1

ˆ
g(x)Ψ̃

(
t,
x

ε

)
dx
)∣∣∣∣∣

≤ 1
εd/2−1

√
E
∣∣∣∣ˆ g(x)Ψ

( t
ε2 ,

x

ε

)
dx−

ˆ
g(x)Ψ̃

(
t,
x

ε

)
dx
∣∣∣∣2

≤ 1
εd/2−1

ˆ
|g(x)|

√
E
[
Ψ
( t
ε2 ,

x

ε

)
− Ψ̃

( t
ε2 ,

x

ε

)]2
dx ≤ C

εd/2−1

(
ε2

t

) d−2
4

→ 0,

(4.1)

uniformly in ε, as t → ∞, where the first equality is due to the stationarity of Ψ̃, the first inequal-
ity due to the triangle inequality, the second due to the Cauchy-Schwarz inequality, and the last
inequality by estimates on Ψ(t, x) as in Proposition 3.23.2.
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We recall from [1313] that

lim
ε→0

Var
(e−αt/ε2

εd/2−1

ˆ
g(x)Ψ

( t
ε2 ,

x

ε

)
dx
)

= Var
(ˆ

g(x)ψ(t, x) dx
)
, (4.2)

where ψ is the solution to the Edwards-Wilkinson stochastic partial differential equation

∂tψ(t, x) = 1
2a∆ψ(t, x) + βνẆ (t, x), t > 0, x ∈ Rd,

ψ(0, x) = 0,
(4.3)

which is simply (1.81.8) with u ≡ 1.

Lemma 4.2. We have

lim
t→∞

Var
(ˆ

g(x)ψ(t, x) dx
)

= β2ν2
ˆ ∞

0

ˆ
|g(r, x)|2 dx dr, (4.4)

where g(t, x) is the solution of

∂tg(t, x) = 1
2a∆g(t, x), t > 0, x ∈ Rd,

g(0, x) = g(x).
(4.5)

Proof. As in [1313, (3.16)], we have

Var
(ˆ

g(x)ψ(t, x) dx
)

= β2ν2
ˆ t

0

ˆ
|g(t− r, x)|2 dx dr = β2ν2

ˆ t

0

ˆ
|g(r, x)|2 dx dr

→ β2ν2
ˆ ∞

0

ˆ
|g(r, x)|2 dx dr,

(4.6)

as t→∞ by the monotone convergence theorem.

Now we are ready to prove Theorem 1.21.2.

Proof of Theorem 1.21.2. Given δ > 0, by Lemmas 4.14.1 and 4.24.2, we can choose t large enough so that∣∣∣∣Var
(ˆ

g(x)ψ(t, x) dx
)
− β2ν2

ˆ ∞
0

ˆ
|g(r, x)|2 dx dr

∣∣∣∣ < δ

3 (4.7)

and ∣∣∣∣Var
( 1
εd/2−1

ˆ
g(x)Ψ

( t
ε2 ,

x

ε

)
dx
)
−Var

( 1
εd/2−1

ˆ
g(x)Ψ̃

( t
ε2 ,

x

ε

)
dx
)∣∣∣∣ < δ

3 , (4.8)

uniformly in ε. Then by (4.24.2) we can choose ε so small that∣∣∣∣∣Var
(e−αt/ε2

εd/2−1

ˆ
g(x)Ψ

( t
ε2 ,

x

ε

)
dx
)
−Var

(ˆ
g(x)ψ(t, x) dx

)∣∣∣∣∣ < δ

3 . (4.9)

Using the triangle inequality applied to (4.74.7), (4.84.8), (4.94.9), and (2.42.4), we obtain

lim
ε→0

Var
( 1
εd/2−1

ˆ
g(x)Ψ̃

(
0, x
ε

)
dx
)

= e2α∞β2ν2
ˆ ∞

0

ˆ
|g(r, x)|2 dx dr, (4.10)
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so

e2α∞ν2β2 =
( ˆ ∞

0

ˆ
|g(r, x)|2 dx dr

)−1
lim
ε→0

ˆ ˆ
g(x)g(x̃)

( 1
εd−2 Cov

(
Ψ̃
(
0, x
ε

)
, Ψ̃
(
0, x̃
ε

)))
dx dx̃,

(4.11)
and thus

1
ν2β2e2α∞ lim

ε→0

ˆ ˆ
g(x)g(x̃)

( 1
εd−2 Cov

(
Ψ̃
(
0, x
ε

)
, Ψ̃
(
0, x̃
ε

)))
dx dx̃ =

ˆ ∞
0

ˆ
|g(r, z)|2 dz dr

=
ˆ ˆ (ˆ ∞

0

ˆ
Ga(r, z − x)Ga(r, z − x̃) dz dr

)
g(x)g(x̃) dx dx̃.

(4.12)
This means that

lim
ε→0

1
εd−2 Ẽ

ε−1x
W Ẽε

−1x̃
W̃

exp
{
β2R∞[W, W̃ ]

}
=ν2β2e2α∞

ˆ ∞
0

ˆ
Ga(r, z − x)Ga(r, z − x̃) dz dr

= ν2β2e2α∞ c̄

a|x− x̃|d−2

in the sense of distributions, and moreover that

ν2 =
c̄ limε→0

´ ´
g(x)g(x̃)

(
1

εd−2 Cov
(
Ψ̃
(
0, xε

)
, Ψ̃
(
0, x̃ε

)))
dx dx̃

aβ2e2α∞
´ ´
|x− x̃|2−dg(x)g(x̃) dx dx̃ .

5 The effective diffusivity
In this section we will show how to recover the effective diffusivity a from the asymptotic expansion
(1.91.9).

5.1 The solvability condition

We first explain how the effective diffusivity can be formally recovered from the homogenization
correctors – at the moment we disregard the question of the existence of such correctors and proceed
on a purely formal level. We start with the equations (1.161.16)–(1.171.17) for the terms u1 and u2 in the
formal asymptotic expansion (1.91.9) for uε(t, x). We will replace Ψ in the right side of these equations
by the stationary solution Ψ̃, so our formal starting point is

∂su1(t, x, s, y) = 1
2∆yu1(t, x, s, y) + (βV (s, y)− λ)u1(t, x, s, y) +∇yΨ̃(s, y) · ∇xu(t, x) (5.1)

and

∂su2(t, x, s, y) = 1
2∆yu2(t, x, s, y) + (βV (s, y)− λ)u2(t, x, s, y) +∇y · ∇xu1(t, x, s, y)

+ 1
2(1− a)Ψ̃(s, y)∆xu(t, x).

(5.2)

We can now formally decompose the solution to (5.15.1) as

u1(t, x, s, y) = ω̃(s, y) · ∇xu(t, x), (5.3)
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where ω̃(s, y) = (ω̃(1)(s, y), . . . , ω̃(d)(s, y)) is a time/space stationary solution to

∂sω̃
(k) = 1

2∆yω̃
(k) + (βV (s, y)− λ)ω̃(k) + ∂Ψ̃(s, y)

∂yk
. (5.4)

We should note that unlike the random heat equation (1.121.12), the forced equation (5.45.4) may not
have stationary solutions in all d ≥ 3. Nevertheless, this computation will give us an idea on
how the effective diffusivity can be approximated. By Theorem 1.11.1, applied with time reversed,
or, equivalently, to the random heat equation with potential V (−s, y), we also have a stationary
solution Φ̃ to the equation

− ∂sΦ̃ = 1
2∆Φ̃ + βV (s, y)Φ̃− λΦ̃. (5.5)

Multiplying (5.25.2) by Φ̃ and using (5.35.3) and (5.55.5) gives

∂s(Φ̃(s, y)u2(t, x, s, y)) = 1
2Φ̃(s, y)∆yu2(t, x, s, y)− 1

2u2(t, x, s, y)∆Φ̃(s, y)

+ Φ̃(s, y) tr (∇yω̃ ·Hessu) + 1
2(1− a)Φ̃(s, y)Ψ̃(s, y)∆xu(t, x).

(5.6)

The assumed stationarity of u2 in s and the stationarity of Φ̃ in s imply that the expectation of the
left-hand side is 0. Stationarity of u2 in y, on the other hand, implies that

E
[
Φ̃(s, y)∆yu2(t, x, s, y)− u2(t, x, s, y)∆Φ̃(s, y)

]
= 0.

Therefore, taking the expectation in (5.65.6) gives

EΦ̃(s, y)
[
tr (∇yω̃ ·Hessu) + 1

2(1− a)Ψ̃(s, y)∆xu(t, x)
]

= 0. (5.7)

Due to the isotropic assumption, we have

EΦ̃(s, y)∇yω̃ = 1
d

tr
(
EΦ̃(s, y)∇yω̃

)
· Id×d = 1

d
EΦ̃(s, y) (∇y · ω̃) · Id×d,

and thus
0 = EΦ̃(s, y)

[
tr (∇yω̃ ·Hessu) + 1

2(1− a)Ψ̃(s, y)∆xu(t, x)
]

= EΦ̃(s, y)
[1
d
∇y · ω̃ + 1

2(1− a)Ψ̃(s, y)
]

∆xu(t, x),
(5.8)

leading to

a = 1 + 2
d

E[Φ̃(s, y)∇y · ω̃(s, y)]
E[Φ̃(s, y)Ψ̃(s, y)]

. (5.9)

As we have not proved that a stationary corrector ω̃(s, y) exists, expression (5.95.9) is purely formal.
In the next section, we will explain how an approximate version of ω̃ can be used to justify the
computation leading to (5.95.9).

5.2 An approximation of the effective diffusivity

In this section, we will show how approximate correctors can be used in the right side of (5.95.9) to
provide a good approximation of the effective diffusivity. Instead of trying to build a stationary
solution to the corrector equation (5.45.4) we take S > 0 and consider the solution ω(s, y;S) of the

18



Cauchy problem for (5.45.4), with the stationary forcing coming from Ψ̃(s, y) replaced by its approxi-
mation Ψ(s, y;S) used to construct Ψ̃(s, y):

∂sω
(k) = 1

2∆yω
(k) + (βV (s, y)− λ)ω(k) + ∂Ψ(s, y;S)

∂yk
, s > −S, (5.10)

and with the initial condition
ω(−S, y;S) = 0 y ∈ Rd. (5.11)

The solution is given by the Feynman-Kac formula

ω(s, y;S) = EyB

[ˆ s+S

0
exp

(
β

ˆ r

0
V (s− τ,Bτ ) dτ − λr

)
∇Ψ(s− r,Br;S) dr

]
. (5.12)

We also define Ψ(s, y;S) as in (3.13.1)–(3.23.2) and similarly consider an approximation Φ(s, y;T ) of the
stationary solution Φ̃(s, y) to the backward random heat equation (5.55.5),

Φ(s, y;T ) = EyB exp
{
βV[s−T,0][B]− λ(T − s)

}
, s < T,

which satisfies (5.55.5) with the terminal condition

Φ(T, y;T ) = 1.

We recall that
V[s−T,0][B] =

ˆ 0

s−T
V (s− τ,Bτ )dτ

where we interpret B as a two-sided Brownian motion. We define an approximate version of (5.95.9)

aS,T (s, y) = 1 + 2
d

E[Φ(s, y;T )∇y · ω(s, y;S)]
E[Φ(s, y;T )Ψ(s, y;S)] . (5.13)

The next theorem, which is the main result of this section, shows that the “large S, T” limit of (5.135.13)
agrees with the effective diffusivity (2.82.8) established in [1313].

Theorem 5.1. Let a be the effective diffusivity defined by (2.82.8). Then we have, for each s ∈ R,
and y ∈ Rd,

lim
S→∞
T→∞

aS,T (s, y) = a.

We note that if a stationary ω̃ given by

ω̃(s, y) = lim
S→∞

ω(s, y;S)

exists, then Theorem 5.15.1 verifies the formal expression (5.95.9).
We will set s = 0 and y = 0 in the proof of Theorem 5.15.1, without loss of generality. In the course

of the proof, we will denote by H(x) the standard Heaviside function and also use its approximation

Hγ(x) =


0 x ≤ 0;
γ−1x 0 < x < γ;
1 x ≥ γ,

as well as J(x) = xH(x). We begin by rewriting the Feynman–Kac formula for the numerator of
the right side of (5.135.13).
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Lemma 5.2. We have

E [Φ(0, 0;T )(∇y · ω)(0, 0;S)]

= lim
γ↓0
∇η
∣∣
η=0 · ∇ξ

∣∣
ξ=0EE

0
B exp

(
β

ˆ S

−T
V (−τ,Bτ +Hγ(τ)η + J(τ)ξ) dτ − λ(T + S)

)
. (5.14)

Proof. From (5.125.12), we can compute, using the Feynman-Kac forumla for Ψ(s, y;S):

ω(0, y;S) = EyB
ˆ S

0
exp

(
β

ˆ r

0
V (−τ,Bτ ) dτ − λr

)
∇Ψ(−r,Br;S) dr

= ∇ξ
∣∣
ξ=0E

y
B

ˆ S

0
exp

(
β

ˆ S

0
V (−τ,Bτ +H(τ − r)ξ) dτ − λS

)
dr. (5.15)

One check by explicit differentiation of both expressions that the right side of (5.155.15) can be re-written
as

ω(0, y;S) = ∇ξ
∣∣
ξ=0E

y
B exp

(
β

ˆ S

0
V (−τ,Bτ + τξ) dτ − λS)

)
. (5.16)

Similarly, we can write

(∇y · ω)(0, 0;S) = ∇η
∣∣
η=0 · ∇ξ

∣∣
ξ=0E

0
B exp

(
β

ˆ S

0
V (−τ,Bτ + η + τξ) dτ − λS)

)
.

Using the Feynman-Kac formula for Φ(s, y;T ), we obtain

Φ(0, 0;T )(∇y · ω)(0, 0;S) = ∇η
∣∣
η=0 ·∇ξ

∣∣
ξ=0E

0
B exp

(
β

ˆ S

−T
V (−τ,Bτ+H(τ)η+J(τ)ξ) dτ−λ(T+S)

)
.

(5.17)
Taking the expectation above gives

E [Φ(0, 0;T )(∇ · ω)(0, 0;S)] = ∇η
∣∣
η=0 ·∇ξ

∣∣
ξ=0e−λ(T+S)E0

B exp
(1

2β
2R[−T,S][B +Hη + Jξ]

)
, (5.18)

with the notation as explained below (2.22.2). This expression is almost (5.145.14) except we need to add
the regularization of H by Hγ in (5.185.18). To do this, we write out the gradients in the right side
of (5.145.14). Define δf(τ, τ̃) = f(τ)− f(τ̃). Then we have, for all γ ≥ 0,

∇η
∣∣
η=0 · ∇ξ

∣∣
ξ=0e−λ(T+S)EyB exp

(
β2R[s−T,s−S][B +Hγη + Jξ]

)
(5.19)

= β2e−λ(T−S)EyB (g1;γ(B) + g2;γ(B) · g3;γ(B)) exp
(
β2R[−T,S][B]

)
, (5.20)

where, because the support of R(s) is in [−1, 1], we have

g1;γ [B] =
¨

[−2,2]2

δHγ(τ, τ̃)δJ(τ, τ̃)∆R(τ − τ̃ , δB(τ, τ̃)) dτ dτ̃

g2;γ [B] =
¨

[−S,−T ]2

δJ(τ, τ̃)∇R(τ − τ̃ , δB(τ, τ̃)) dτ dτ̃

g3;γ [B] =
¨

[−2,2]2

δHγ(τ, τ̃)∇R(τ − τ̃ , δB(τ, τ̃)) dτ dτ̃ .
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The bounded convergence theorem then implies that

lim
γ↓0
∇η
∣∣
η=0 · ∇ξ

∣∣
ξ=0e−λ(T+S)EyB exp

(
β2R[−T,S][B +Hγη + Jξ]

)
= ∇η

∣∣
η=0 · ∇ξ

∣∣
ξ=0e−λ(T+S)EyB exp

(
β2R[−T,S][B +Hη + Jξ]

)
.

The reason why the γ-regularization in (5.145.14) is useful is clear from the next lemma.

Lemma 5.3. We have

aS,T (0, 0) = 1 + 2 lim
γ↓0

Ê0
B;[−T,S]

( 1
γd
BS ·Bγ − 1

)
. (5.21)

Proof. We use the Girsanov formula, writing

∇η
∣∣
η=0 · ∇ξ

∣∣
ξ=0E

y
B exp

(
β

ˆ S

−T
V (−τ,Bτ +Hγ(τ)η + J(τ)ξ) dτ − λ(T + S)

)
= ∇η

∣∣
η=0 · ∇ξ

∣∣
ξ=0E

y
B

[
exp

(
β

ˆ S

−T
V (−τ,Bτ ) dτ

)
× exp

(
− λ(T + S) + 1

γ
〈Bγ , η〉 −

1
2γ |η|

2 − 〈ξ, η〉+ 〈BS , ξ〉 −
1
2 |ξ|

2S
)]

= EyB( 1
γ
BS ·Bγ − d) exp

(
β

ˆ S

−T
V (−τ,Bτ ) dτ − λ(T + S)

)
.

Passing to the limit as γ ↓ 0, and taking expectations shows that

E [Φ(0, 0;T )(∇ · ω)(0, 0;S)] = e−λ(T+S) lim
γ↓0

E0
B

(
γ−1BS ·Bγ − d

)
exp

{
β2R[−T,S][B]

}
. (5.22)

Finally, for the denominator of (5.135.13) we have

Φ(0, 0;T )Ψ(0, 0;S) = E0
B exp

{
βV[−T,S][B]− λ(T + S)

}
,

where V[−T,S][B] =
´ S
−T V (−τ,Bτ )dτ , so

EΦ(0, 0;T )Ψ(0, 0;S) = e−λ(T+S)E0
B exp

{
β2R[−T,S][B]

}
. (5.23)

Dividing (5.225.22) by (5.235.23) and plugging into (5.135.13) yields (5.215.21).

Lemma 5.4. We have
lim
γ↓0

1
γd

Ê0
B;[−T,S]|Bγ |

2 = 1,

uniformly in S and T .

Proof. We have

Ê0
B;−T,S |Bγ |2 − E0

B|Bγ |2 = E0
B|Bγ |2

(
1

Z−T,S
exp{1

2β
2R[−T,S][B]} − 1

)

= 1
Z−T,S

E0
B|Bγ |2

(
exp{1

2β
2R[−T,S][B]} − exp{1

2β
2R[−T,S][B̃]}

)
,
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where B̃ is a Brownian motion whose increments on [−T, 0] and [γ, S] are identical to those of B and
whose increments on [0, γ] are independent of those of B. (The second equality is because R[−T,S][B̃]
is independent of Bγ .) This means that

∣∣∣Ê0
B;−T,S |Bγ |2 − E0

B|Bγ |2
∣∣∣ =

E0
B

(
exp{β2R[−T,0][B]}+ exp{β2R[γ,S][B]}

)
Z−T,S

× E0
B|Bγ |2

∣∣∣∣∣exp
{

2β2
ˆ γ

−1

ˆ 1

τ∨0
R(τ − τ̃ , Bτ −Bτ̃ ) dτ̃ dτ

}

− exp
{

2β2
ˆ γ

−1

ˆ 1

τ∨0
R(τ − τ̃ , B̃τ − B̃τ̃ ) dτ̃ dτ

}∣∣∣∣∣
≤ C(E0

B|Bγ |4)1/2(E0
B(exp{4β2 max

0≤s≤γ
|Bs − B̃s|} − 1)2)1/2

≤ Cγ2,

where C is a constant that may depend on β and R. Since E0
B|Bγ |2 = γd, this proves the lemma.

Corollary 5.5. We have
aS,T (0, 0) = lim

γ↓0
aS,T ;γ , (5.24)

where
aS,T ;γ = 1 + 2

dγ
Ê0
B;[−T,S](BS −Bγ) · (Bγ −B0).

Proof. This is a simple consequence of Lemma 5.35.3 and Lemma 5.45.4.

Lemma 5.6. The limit
lim
T→∞
S→∞

aS,T (0, 0) (5.25)

exists.

Proof. We have, for any τ1 < τ2 < τ3 < τ4 ≤ τ5,

ÊB;τ5(Bτ4 −Bτ3) · (Bτ2 −Bτ1) = ẼW (Wτ4 −Wτ3) · (Wτ2 −Wτ1)G (W[τ5]−1)
= ẼW (Wτ4∧σ −Wτ3∧σ) · (Wτ2 −Wτ1),

(5.26)

where σ is the first regeneration time after τ4 and the second equality comes from the fact that G is
even and the increments of W after a regeneration time are isotropic. This makes it clear that there
are constants 0 < c, C <∞ so that

ÊB;τ5(Bτ4 −Bτ3) · (Bτ2 −Bτ1) ≤ Ce−c(τ3−τ2). (5.27)

Then it follows from Corollary 5.55.5 that aS,T is Cauchy in S, and thus the limit (5.255.25) exists.

Now we prove Theorem 5.15.1.

Proof of Theorem 5.15.1. We have, from (2.82.8),

a = lim
U→∞

1
dU

ẼW (W3U −W0) · (W2U −WU ) = lim
U→∞

1
dU

Ê0
B;3U (B3U −B0) · (B2U −BU ) , (5.28)

where the second equality is by (5.275.27) and Lemma 2.82.8. Define

τ
(γ)
j = (U + jγ) ∧ 2U
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and note that

B2U −BU =
dU/γe−1∑
j=1

(B
τ

(γ)
j+1
−B

τ
(γ)
j

).

Substituting this into (5.285.28) yields

a = lim
U→∞

1
dU

lim
γ↓0

Ê0
B;3U (B3U −B0) ·

dU/γe−1∑
j=0

(B
τ

(γ)
j+1
−B

τ
(γ)
j

)

= lim
U→∞

1
dU

lim
γ↓0

dU/γe−1∑
j=0

Ê0
B;3U

(
(B3U −Bτ (γ)

j+1
) + (B

τ
(γ)
j+1
−B

τ
(γ)
j

) + (B
τ

(γ)
j

−B0)
)
· (B

τ
(γ)
j+1
−B

τ
(γ)
j

)

Now by Lemma 5.45.4, we have

lim
U→∞

1
dU

lim
γ↓0

dU/γe−1∑
j=0

Ê0
B;3U (B

τ
(γ)
j+1
−B

τ
(γ)
j

) · (B
τ

(γ)
j+1
−B

τ
(γ)
j

) = 1.

Moreover, we have by (5.135.13) that

Ê0
B;3U (B3U −Bτ (γ)

j+1
) · (B

τ
(γ)
j+1
−B

τ
(γ)
j

) = γd

2 (a3U−τ (γ)
j ,τ

(γ)
j ;τ (γ)

j+1−τ
(γ)
j

− 1)

Ê0
B;3U (B

τ
(γ)
j

−B0) · (B
τ

(γ)
j+1
−B

τ
(γ)
j

) = γd

2 (a
τ

(γ)
j+1,3U−τ

(γ)
j+1;τ (γ)

j+1−τ
(γ)
j

− 1).

Therefore,

a = 1 + lim
U→∞

1
dU

lim
γ↓0

dU/γe−1∑
j=0

(
γd

2 (a3U−τ (γ)
j ,τ

(γ)
j ;τ (γ)

j+1−τ
(γ)
j

− 1) + γd

2 (a
τ

(γ)
j+1,3U−τ

(γ)
j+1;τ (γ)

j+1−τ
(γ)
j

− 1)
)

= lim
U→∞

1
U

lim
γ↓0

γ

2

dU/γe−1∑
j=0

(a3U−τ (γ)
j ,τ

(γ)
j ;τ (γ)

j+1−τ
(γ)
j

+ a
τ

(γ)
j+1,3U−τ

(γ)
j+1;τ (γ)

j+1−τ
(γ)
j

)

= lim
T→∞
S→∞

aS,T (0, 0),

where the last inequality is by Lemma 5.65.6.

6 Convergence of the leading-order term
In this section, we prove Theorem 1.31.3. We begin by deriving an expression for the error in (1.151.15)
using the Feynman–Kac formula. We use the normalization

û0(ω) =
ˆ

e−i〈ω,x〉u0(x) dx
(2π)d , u0(x) =

ˆ
ei〈ω,x〉û0(ω) dω

for the Fourier transform of a function u0(x)∈ C∞c (Rd). In this section, ω, ω̃ denote Fourier variables
and not the function ω from Section 55.

Proposition 6.1. We have that

E |uε(t, x)−Ψε(t, x)u(t, x)|2 = e
2αt/ε2

ˆ ˆ
ei〈ω+ω̃,x〉û0(ω)û0(ω̃)ÊB,ε−2tÊB̃,ε−2tA

ε
t;ω,ω̃[B, B̃] dω dω̃,

(6.1)
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where

A ε
t;ω,ω̃[B, B̃] = exp

{
β2Rε−2t[B, B̃]

}
E ε
t,ω[B]E ε

t,ω̃[B̃] (6.2)

E ε
t,ω[B] = e〈iω,ε(Bε−2t−B0)〉 − e−

1
2at〈ω,ω〉. (6.3)

Proof. We start with the Feynman–Kac formula for (1.11.1):

uε(t, x) = Eε
−1x
B exp

{
βVε−2t[B]− λε−2t

}
u0(εBε−2t), (6.4)

and note that

u0(εBε−2t) =
ˆ

ei〈ω,εBε−2t〉û0(ω) dω, u(t, x) =
ˆ

ei〈ω,x〉− 1
2at〈ω,ω〉û0(ω) dω,

so, if B0 = ε−1x, then

u0(εBε−2t)− u(t, x) =
ˆ

ei〈ω,x〉E ε
t,ω[B]û0(ω) dω. (6.5)

The Feynman–Kac formula also shows that

Ψε(t, x) = Eε
−1x
B exp

{
βVε−2t[B]− λε−2t

}
. (6.6)

Combining (6.46.4), (6.56.5), and (6.66.6) yields

uε(t, x)−Ψε(t, x)u(t, x) = Eε
−1x
B exp

{
βVε−2t[B]− λε−2t

}ˆ
ei〈ω,x〉E ε

t,ω[B]û0(ω) dω.

We finish the proof of the lemma by simply computing the second moment:

E(uε(t, x)−Ψε(t, x)u(t, x))2 = E
(
Eε
−1x
B exp

{
βVε−2t[B]− λε−2t

}ˆ
ei〈ω,x〉E ε

t,ω[B]û0(ω) dω
)2

=
ˆ ˆ

ei〈ω+ω̃,x〉û0(ω)û0(ω̃)Eε−1x
B Eε

−1x
B̃

E exp
{
Vε−2t[B] + Vε−2t[B̃]− 2λε−2t

}
E ε
t,ω[B]E ε

t,ω̃[B̃] dω dω̃

= e2αε−2t

ˆ ˆ
ei〈ω+ω̃,x〉û0(ω)û0(ω̃)ÊB,ε−2tÊB̃,ε−2tA

ε
t;ω,ω̃[B, B̃] dω dω̃.

To prove Theorem 1.31.3, we will bound the expression in the right side of (6.16.1) using the techniques
of [1313] recalled in Section 22. The proof will be very similar to that of [1313, Lemma 5.2]. The key idea
is that, with high probability, the only significant contributions to exp

{
β2Rε−2t[B, B̃]

}
come from

times close to 0. Therefore, B and B̃ in (6.26.2) are “nearly” independent. Moreover, the expectation
of (6.36.3) is approximately 0 since the Markov chain has effective diffusivity a.

Our first lemma is that the correction G on the end of the Markov chain that appears in (2.52.5)
does not matter.

Lemma 6.2. We have

lim
ε→0

∣∣∣ÊB,B̃;ε−2tA
ε
t;ω,ω̃[B, B̃]− ẼW,W̃A ε

t;ω,ω̃[W, W̃ ]
∣∣∣ = 0. (6.7)
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As this lemma is a technical point, we defer its proof to the end of the section. We note that

∂2

∂r∂r̃
exp

{
β2Rr,r̃[W, W̃ ]

}
= ∂

∂r

[(
β2

ˆ r

0
R(τ − r̃,Wτ − W̃r̃) dτ

)
exp

{
β2Rr,r̃[W, W̃ ]

}]
= Qr,r̃[W, W̃ ] exp

{
β2Rr,r̃[W, W̃ ]

}
, (6.8)

where

Qr,r̃[W, W̃ ] = β2R(r− r̃,Wr−W̃r̃)+β4
ˆ r

r̃−2
R(τ − r̃,Wτ −W̃r̃) dτ

ˆ r̃

r−2
R(r− τ̃ ,Wr−W̃τ̃ ) dτ̃ . (6.9)

We note that
Qr,r̃[W, W̃ ] ≥ 0 (6.10)

almost surely, as the functions µ(s) and ν(y) in (1.31.3) are non-negative. We can now write

ẼW,W̃A ε
t;ω,ω̃[W, W̃ ] = ẼW,W̃E ε

t,ω[W, W̃ ] exp
{
β2Rε−2t[W, W̃ ]

}
=
ˆ ε−2t

0

ˆ ε−2t

0
ẼW,W̃E ε

t;ω,ω̃[W, W̃ ]Qr,r̃[W, W̃ ] exp
{
β2Rr,r̃[W, W̃ ]

}
dr dr̃, (6.11)

with the shorthand
E ε
t;ω,ω̃[W, W̃ ] = E ε

t,ω[W ]E ε
t,ω̃[W̃ ].

The next lemma gives an estimate for the contribution to the integral (6.116.11) from each r, r̃. The
key point is that, if B is a Brownian motion with diffusivity σ2, then exp{i〈ω,Bt〉 + 1

2 tσ
2|ω|2} is a

martingale. Since W is converging to a Brownian motion with diffusivity a, the contribution to the
integrand in (6.116.11) from E ε

t;ω,ω̃[W, W̃ ]− E ε
r;ω,ω̃[W, W̃ ] should be small.

Lemma 6.3. For fixed r, r̃ ≥ 0, we have

lim
ε→0

ẼW,W̃E ε
t;ω,ω̃[W, W̃ ]Qr,r̃[W, W̃ ] exp

{
β2Rr,r̃[W, W̃ ]

}
= 0, (6.12)

Proof. To simplify the notation, in this proof we will avoid writing the dependencies on r and r̃,
treating them as fixed. Using the objects of Theorem 2.12.1, we will put σj = σW,W̃j and κ = κW,W̃ ,
and let j0 = min{j ≥ 0 | σj ≥ r∨ r̃}, and the σ-algebra Fj0 be generated by the collection of random
variables

{ηW,W̃n | n < σj0} ∪ {wn | n < σj0} ∪ {w̃n | n < σj0}.

We note that
Qr,r̃[W, W̃ ] exp

{
β2Rr,r̃[W, W̃ ]

}
∈ Fj0 .

Therefore, we have

ẼW,W̃E ε
t;ω,ω̃[W, W̃ ]Qr,r̃[W, W̃ ] exp

{
β2Rr,r̃[W, W̃ ]

}
= ẼW,W̃

(
ẼW,W̃

[
E ε
t;ω,ω̃[W, W̃ ]

∣∣∣Fj0] exp
{
β2Rr,r̃[W, W̃ ]

}
Qr,r̃[W, W̃ ]

)
= ẼW,W̃

(
ei〈ω,εWj0 〉ẼW

[
ei〈ω,ε(Wε−2t−Wj0 )〉

∣∣∣Fj0]− e− 1
2at|ω|

2)
×
(
ei〈ω̃,εW̃j0 〉ẼW

[
ei〈ω̃,ε(W̃ε−2t−W̃j0 )〉

∣∣∣Fj0]− e− 1
2at|ω̃|

2)
Qr,r̃[W, W̃ ] exp

{
β2Rr,r̃[W, W̃ ]

}
.

(6.13)
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Observe that

ẼW
[
ei〈ω,ε(Wε−2t−Wj0 )〉

∣∣∣Fj0] = ẼW
[
ei〈ω,ε(Wε−2t−Wj0 )〉

∣∣∣ j0]→ e−
1
2at|ω|

2

almost surely as ε→ 0 by Proposition 2.42.4, and similarly for ẼW
[
ei〈ω̃,ε(W̃ε−2t−W̃j0 )〉

∣∣∣Fj0]. In addition,
we have

ei〈ω̃,εW̃j0 〉 → 1

almost surely. The statement of the lemma then follows from the bounded convergence theorem
applied to (6.136.13).

Lemma 6.4. We have
lim
ε→0

ẼW,W̃A ε
t;ω,ω̃[W, W̃ ] = 0.

Proof. We have, using (6.106.10), that∣∣∣ẼW,W̃E ε
t;ω,ω̃[W, W̃ ]Qr,r̃[W, W̃ ] exp

{
β2Rr,r̃[W, W̃ ]

}∣∣∣ ≤ 4ẼW,W̃Qr,r̃[W, W̃ ] exp
{
β2Rr,r̃[W, W̃ ]

}
,

and by (6.86.8) that

ˆ q̃

0

ˆ q

0
ẼW,W̃Qr,r̃[W, W̃ ] exp

{
β2Rr,r̃[W, W̃ ]

}
dr dr̃

= ẼW,W̃ exp
{
β2Rq,q̃[W, W̃ ]

}
≤ ẼW,W̃ exp

{
β2R∞[W, W̃ ]

}
<∞,

where the last inequality is by Proposition 2.52.5. The dominated convergence theorem applied to the
integral (6.116.11), in light of the pointwise convergence (6.126.12), then implies the result.

We are now ready to prove Theorem 1.31.3.

Proof of Theorem 1.31.3. Combining Lemma 6.26.2 and Lemma 6.46.4, we see that the integrand in (6.16.1)
converges pointwise to 0 as ε → 0. On the other hand, as long as β < β0, there is a constant C so
that ∣∣∣ÊB,B̃;ε−2tA

ε
t;ω,ω̃

∣∣∣ ≤ C
independently of ε, ω, ω̃. As u0 ∈ C∞c (Rd), the dominated convergence theorem and (2.42.4) then imply
that

|uε(t, x)−Ψε(t, x)u(t, x)| → 0

as ε→ 0.

It remains to prove Lemma 6.26.2.

Proof of Lemma 6.26.2. We have

ÊB,B̃;ε−2tA
ε
t;ω,ω̃[B, B̃] = ÊB,B̃;ε−2tE

ε
t;ω,ω̃[B, B̃] exp

{
β2Rε−2t[B, B̃]

}
= ẼW,W̃G [w[ε−2t]]G [w̃[ε−2t]]E ε

t;ω,ω̃[W, W̃ ] exp
{
β2Rε−2t[W, W̃ ]

}
. (6.14)
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Let γ ∈ (0, 2) be arbitrary, then

ẼW,W̃
∣∣∣E ε
t;ω,ω̃[W, W̃ ] exp

{
β2Rε−2t[W, W̃ ]

}
− E ε

t−εγ ;ω,ω̃[W, W̃ ] exp
{
β2Rε−2(t−εγ)[W, W̃ ]

}∣∣∣
≤ ẼW,W̃

∣∣∣E ε
t;ω,ω̃[W, W̃ ]− E ε

t−εγ ;ω,ω̃[W, W̃ ]
∣∣∣ exp

{
β2Rε−2t[W, W̃ ]

}
+ ẼW,W̃

∣∣∣E ε
t−εγ ;ω,ω̃[W, W̃ ]

∣∣∣ ∣∣∣exp
{
β2Rε−2t[W, W̃ ]

}
− exp

{
β2Rε−2(t−εγ)[W, W̃ ]

}∣∣∣ .
(6.15)

Let’s address the first term of (6.156.15). By (2.92.9), we have

ẼW
∣∣∣εWε−2t − εWε−2(t−εγ)

∣∣∣2 ≤ Cvε
γ ,

which in particular means that

lim
ε→0

∣∣∣εWε−2t − εWε−2(t−εγ)

∣∣∣ = 0 (6.16)

in probability. The same statement holds for W̃ . We then have, using Hölder’s inequality,

lim
ε→0

ẼW,W̃
∣∣∣E ε
t;ω,ω̃[W, W̃ ]− E ε

t−εγ ;ω,ω̃[W, W̃ ]
∣∣∣ exp

{
β2Rε−2t[W, W̃ ]

}
≤ Cδ lim

ε→0

(
ẼW,W̃

∣∣∣E ε
t;ω,ω̃[W, W̃ ]− E ε

t−εγ ;ω,ω̃[W, W̃ ]
∣∣∣ 1
δ

+1
) δ

1+δ
= 0, (6.17)

by Proposition 2.52.5 and the bounded convergence theorem in light of (6.166.16).
Finally, let us look at the second term of (6.156.15), which is easier. Here, we have

lim
ε→0

ẼW,W̃
∣∣∣E ε
t−εγ ;ω,ω̃[W, W̃ ]

∣∣∣ ∣∣∣exp
{
β2Rε−2t[W, W̃ ]

}
− exp

{
β2Rε−2(t−εγ)[W, W̃ ]

}∣∣∣
≤ 4 lim

ε→0
ẼW,W̃

∣∣∣exp
{
β2Rε−2t[W, W̃ ]

}
− exp

{
β2Rε−2(t−εγ)[W, W̃ ]

}∣∣∣ = 0 (6.18)

by the dominated convergence theorem, again in light of (2.92.9). Applying (6.176.17) and (6.186.18) to (6.156.15)
implies that

lim
ε→0

ÊW,W̃
∣∣∣Ea,ω,ε,t[W, W̃ ] exp

{
β2Rε−2t[W, W̃ ]

}
− Ea,ω,ε,t−εγ [W, W̃ ] exp

{
β2Rε−2(t−εγ)[W, W̃ ]

}∣∣∣ = 0.
(6.19)

Combining (6.146.14), (6.196.19), and Lemma 2.82.8, and recalling that G is bounded above and away from
zero, completes the proof of the lemma.

7 The second term of the expansion
In this section we will prove Theorem 1.41.4. We first introduce some notation. Having fixed γ ∈ (1, 2),
for each s > 0 we define a discrete set of times

rk =
{

0 k = 0
s− ε−γ([εγs]− (k − 1)) k > 0,

(7.1)

and set

I ε
t [B] =

Kε
t∑

k=0
(εBrk+1 − εBrk) · ∇u(t− ε2rk, εBrk), (7.2)
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with

Kε
t = [εγ−2t] (7.3)

The next lemma gives a Feynman–Kac formula for the corrector uε1 defined in (1.221.22).

Lemma 7.1. We have

uε1(t, x) = 1
ε
Eε
−1x
B exp

{
Vε−2t[B]− λε−2t

}
I ε
t [B]. (7.4)

Proof. The Feynman–Kac formula applied to (1.201.20), in the same way as in (5.165.16), gives the following
expression for the solution θj(s, y) to that equation:

θj(s, y) = EyB
ˆ s−ε−γ(j−1)

0
exp

{ˆ r

0
[βV (s− τ,Bτ )− λ] dτ

}
∇Ψ(s− r,Br) dr

= EyB∇ξ
∣∣
ξ=0

ˆ s−ε−γ(j−1)

0
exp

{ˆ s

0
[βV (s− τ,Bτ +H(τ − r)ξ)− λ] dτ

}
dr

= ∇ξ
∣∣
ξ=0E

y
B exp

{ˆ s

0
[βV (s− τ,Bτ + (τ ∧ (s− ε−γ(j − 1)))ξ)− λ] dτ

}
,

where H(x) is the Heaviside function. The Girsanov formula yields

θj(s, y) = ∇ξ
∣∣
ξ=0E

y
B exp

{
Vs[B]− λs+ (Bs−ε−γ(j−1) − y) · ξ − s− ε−γ(j − 1)

2 |ξ|2
}

= EyB(Bs−ε−γ(j−1) − y) exp {Vs[B]− λs} .

Given this expression for θj , we use it in (1.211.21) to write

u1;j(s, y) = EyB exp
{ˆ s−ε−γj

0
[βV (s− τ,Bτ )− λ] dτ

}
θj(ε−γj, Bs−ε−γj) · ∇u(ε2−γj, εBs−ε−γj)

= EyB(Bs−ε−γ(j−1) −Bs−ε−γj) · ∇u(ε2−γj, εBs−ε−γj) exp {Vs[B]− λs} ·

Finally, by (1.221.22) we have
uε1(t, x) = u1(ε−2t, ε−1x)

where

u1(s, y) =
[εγs]∑
j=1

EyB(Bs−ε−γ(j−1) −Bs−ε−γj) · ∇u(ε2−γj, εBs−ε−γj) exp {Vs[B]− λs}

+ EyB(Bs−ε−γbεγsc − y) exp {Vs[B]− λs} · ∇u(ε2s, εy)

= EyB exp {Vs[B]− λs}
[εγs]∑
k=0

(Brk+1 −Brk) · ∇u(ε2(s− rk), εBrk), (7.5)

with rk defined in (7.17.1). Rescaling (7.57.5) yields (7.47.4).

Next, we consider the error term

qε(t, x) = uε(t, x)−Ψε(t, x)u(t, x)− εuε1(t, x).
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Combining (6.46.4), (6.66.6), and (7.47.4) gives an expression

qε(t, x) = Eε
−1x
B [u0(εBε−2t)− u(t, x)−I ε

t [B]] exp
{
Vε−2t[B]− λε−2t

}
,

with its expectation given by

Eqε(t, x) = exp{αt/ε2}Êε−1x
B;ε−2t [u0(εBε−2t)− u(t, x)−I ε

t [B]] .

Taking covariances, we obtain

Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)

= exp{2αt/ε2}Êε
−1x,ε−1x̃
B,B̃;ε−2t

(u0(εBε−2t)− u(t, x)−I ε
t [B])

(
u0(εB̃ε−2t)− u(t, x̃)−I ε

t [B̃]
)

×
(
exp

{
β2Rε−2t[B, B̃]

}
− 1

)
= exp{2αt/ε2}Ẽx/ε,x̃/ε

W,W̃
(u0(εWε−2t)− u(t, x)−I ε

t [W ])
(
u0(εW̃ε−2t)− u(t, x̃)−I ε

t [W̃ ]
)

×
(
exp

{
β2Rε−2t[W, W̃ ]

}
− 1

)
G (wN )G (w̃N ). (7.6)

In the last equality of (7.67.6) we used Theorem 2.12.1.
In line with the framework of Section 22, we will proceed to approximate the times rk by nearby

regeneration times of the Markov chains. Thus, we define

σW (k) = (ε−2t) ∧min{r ≥ rk | ηWr = 1}.

Before we begin our argument in earnest, we recall bounds on the relevant error terms. Put

Y = max
0≤k≤Kε

t

(σW (k)− rk), F (τ) = max
r∈[0,ε−2t−τ ]

|Wr+τ −Wr|,

and
Z = εγ/2F (ε−γ + Y ).

Lemma 7.2. We have constants C and c so that

P̃W (Y ≥ C| log ε|+ ξ) ≤ Ce−cξ, (7.7)

P̃W (F (Y ) ≥ C| log ε|+ ξ) ≤ Ce−cξ, (7.8)

and
P̃W (Z ≥ C| log ε|+ ξ) ≤ Ce−cξ. (7.9)

These bounds are simple consequences of the regeneration structure of the Markov chain de-
scribed in Section 22 and of [1313, Lemma A.1]. We begin our approximation procedure by replacing
the deterministic times rk in the definition (7.27.2) of I ε

t,x by their regeneration approximations.

Lemma 7.3. Let

Ĩ ε
t [W ] =

Kε
t∑

k=0
(εWσW (k+1) − εWσW (k)) · ∇u(t− ε2σW (k), εWσW (k)), (7.10)

then for any 1 ≤ p <∞ and any ζ < γ − 1 there exists a constant C = C(p, ζ, ‖u0‖C2) ≤ ∞ so that(
ẼxW |I ε

t [W ]− Ĩ ε
t [W ]|p

)1/p
≤ Cεζ . (7.11)
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Proof. We have

I ε
t [W ]− Ĩ ε

t [W ]

=
Kε
t∑

k=0
(εWrk+1 − εWrk) ·∇u(t− ε2rk, εWrk)− (εWσW (k+1)− εWσW (k)) ·∇u(t− ε2σW (k), εWσW (k)),

hence

|I ε
t [W ]− Ĩ ε

t [W ]| ≤
Kε
t∑

k=0
|(εWrk+1 − εWrk)− (εWσW (k+1) − εWσW (k))| · |∇u(t− ε2rk, εWrk)|

+
Kε
t∑

k=0
|εWσW (k+1) − εWσW (k)| · |∇u(t− ε2rk, εWrk)−∇u(t− ε2σW (k), εWσW (k))|. (7.12)

We estimate the first term in the right side by

|(εWrk+1 − εWrk)− (εWσW (k+1) − εWσW (k))| · |∇u(t− ε2rk), εWrk)| ≤ 2F (Y )ε‖u‖C1 , (7.13)

and the second by

|εWσW (k+1) − εWσW (k)| · |∇u(t− ε2rk, εWrk)−∇u(t− ε2σW (k), εWσW (k))|

≤ εF (Y + ε−γ)‖u‖C2(ε2Y + εF (Y )) = ε1−γ/2Z‖u‖C2(ε2Y + εF (Y )). (7.14)

Combining (7.127.12), (7.137.13) and (7.147.14), and recalling (7.37.3), gives us

|I ε
t [W ]− Ĩ ε

t [W ]| ≤ εγ−2t
[
2F (Y )ε‖u‖C1 + ε1−γ/2Z‖u‖C2(ε2Y + εF (Y ))

]
,

which in light of Lemma 7.27.2 implies (7.117.11).

Lemma 7.4. For any power 1 ≤ p <∞, there exists a C = C(p, t, ‖u0‖C2) <∞ so that(
Ẽx/εW

∣∣∣u0(εWε−2t)− u(t, x)− Ĩ ε
t [W ]

∣∣∣p)1/p
≤ Cεζ , (7.15)

for any ζ < 1− γ/2.

Proof. To ease the notation, in this proof we will abbreviate σ = σW . We write the Taylor expansion

u(t− ε2σ(k + 1), εWσ(k+1))− u(t− ε2σ(k), εWσ(k))
= −ε2 (σ(k + 1)− σ(k)) ∂tu(t− ε2σ(k), εWσ(k)) + ε(Wσ(k+1) −Wσ(k)) · ∇u(t− ε2σ(k), εWσ(k))

+ 1
2ε

2 Qu(t− ε2σ(k), εWσ(k))(Wσ(k+1) −Wσ(k)) + Yk[W ], (7.16)

where Qu is the quadratic form associated to the Hessian of u (so Qu(V ) = Hessu(V, V )) and
Yk[W ] is the remainder term. By Taylor’s theorem, we have

|Yk[W ]| ≤ C‖u‖C3

(
ε4|σ(k + 1)− σ(k)|2 + ε3|Wσ(k+1) −Wσ(k)|3

)
. (7.17)

Note that the second term in the second line of (7.167.16) appears in the definition (7.107.10) of Ĩ ε
t . Thus,

we can telescope the left side of (7.167.16) to obtain

Ĩ ε
t [W ] = u0(εWε−2t)− u(t− ε2σ(0), εWσ(0)) +

Kε
t∑

k=0

(
ε2Xk[W ] + Yk[W ]

)
, (7.18)
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where

Xk[W ] = (σ(k + 1)− σ(k)) ∂tu(t− ε2σ(k), εWσ(k))−
1
2 Qu(t− ε2σ(k), εWσ(k))(Wσ(k+1) −Wσ(k))

= (σ(k + 1)− σ(k)) 1
2a∆u(t− ε2σ(k), εWσ(k))−

1
2 Qu(t− ε2σ(k), εWσ(k))(Wσ(k+1) −Wσ(k)).

We now deal with each piece of this expression in turn.
The drift terms. We first define

X̃k = (σ̃(k + 1)− σ̃(k)) 1
2a∆u(t− ε2σ(k), εWσ(k))−

1
2 Qu(t− ε2σ(k), εWσ(k))(Wσ̃(k+1) −Wσ̃(k)),

where σ̃(k) = min{r ≥ rk | ηWr = 1}. Using the relation (2.82.8) between the effective diffusivity a and
the variance of the increments WσWn+1

−WσWn
, as well as the isotropy of W , we see that

ẼW X̃k[W ] = 0 (7.19)

for each k. We also note the simple bound

|X̃k[W ]| ≤ a‖u‖C2(ε−γ + Y ) + ‖u‖C2
(
F (ε−γ + Y )

)2 ≤ a‖u‖C2(ε−γ + Y ) + ‖u‖C2ε−γZ2. (7.20)

Therefore, by Lemma 7.27.2, we have

ẼW |X̃k[W ]|p ≤ Cε−pξ, (7.21)

for any ξ > γ. We further define

M` =
∑̀
k=0

X̃k[W ]. (7.22)

For each ` ≥ 0, define G` to be the σ-algebra generated by {Wt | t ≤ σ(`)} ∪ {ηWt | t ≤ σ(`)}. Then,
according to (7.197.19), {M`} is a martingale with respect to the filtration {G`}. An Lp-version of the
Burkholder-Gundy inequality [77] (see also [33, Theorem 9]) implies that

(
ẼW |ε2MKε

t
|p
)1/p

≤ Cε2
[
(Kε

t + 1)p/2−1
Kε
t∑

k=0
ẼW |X̃k[W ]|p

]1/p
≤ Cεζ (7.23)

for any ζ < 1− γ/2. We used (7.37.3) and (7.217.21) in the second inequality above.
On the other hand, we note that Xk[W ]− X̃k[W ] can be nonzero for at most one k, so we have∣∣∣∣∣∣

Kε
t∑

k=0
(Xk[W ]− X̃k[W ])

∣∣∣∣∣∣ =
Kε
tmax

k=0

∣∣∣Xk[W ]− X̃k[W ]
∣∣∣ ≤ C‖u‖C2ε−γ/2Z, (7.24)

so ẼW
∣∣∣∣∣∣ε2

Kε
t∑

k=0
(Xk[W ]− X̃k[W ])

∣∣∣∣∣∣
p1/p

≤ Cεζ (7.25)

for any ζ < 2− γ/2.
The error term. By (7.177.17), we have

∣∣∣ Kε
t∑

k=0
Y ε
j [W ]

∣∣∣ ≤ C‖u‖C3

Kε
t∑

j≥0

(
ε4|σ(k + 1)− σ(j)|2 + |εWσ(k+1) − εWσ(k)|3

)
≤ C‖u‖C3Kε

t

(
ε4 (ε−γ + Y

)2 +
∣∣εF (ε−γ + Y )

∣∣3) ≤ C‖u‖C3

(
ε2−γ (1 + εγY )2 + ε1−γ/2Z3

)
,
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so by Lemma 7.27.2 we have (
ẼW

∣∣∣ Kε
t∑

k=0
Y ε
j [W ]

∣∣∣p)1/p
≤ Cεζ (7.26)

for any ζ < 1− γ/2.
The initial term. Finally, we observe that(
ẼW

∣∣∣u(t− ε2σ(0), εWσ(0))− u(t, x)
∣∣∣p)1/p

≤ ‖u‖C1

(
ẼW (ε2σ(0) + ε|Wσ(0)|)p

)1/p
≤ Cεζ (7.27)

for any ζ < 1− γ/2.
Applying the bounds (7.237.23), (7.257.25), (7.267.26), and (7.277.27) to (7.187.18) gives us (7.157.15).

Corollary 7.5. For any 1 ≤ p <∞ and ζ < (γ − 1) ∧ (1− γ/2) there exists C = C(p, ζ, t, ‖u0‖C2)
so that (

Ẽx/εW |u0(εWε−2t)− u(t, x)−I ε
t [W ]|p

)1/p
≤ Cεζ . (7.28)

Proof. This is a simple consequence of the triangle inequality applied to Lemma 7.37.3 and Lemma 7.47.4.

We will need the following auxiliary lemma.

Lemma 7.6. There is a β0 > 0 so that if χβ2 < β2
0 , then there is a constant C = C(α, β) < ∞ so

that for any ε > 0 and x, x̃ ∈ R2 we have

Ẽx/ε,x̃/ε
W,W̃

(
exp

{
β2Rε−2t[W, W̃ ]

}
− 1

)χ
< C

(
ε

|x− x̃|
∧ 1
)d−2

. (7.29)

Proof. As Rt[W, W̃ ] ≥ 0, we have

Ẽx/ε,x̃/ε
W,W̃

(
exp

{
β2Rε−2t[W, W̃ ]

}
− 1

)χ
≤ P̃x/ε,x̃/ε

W,W̃

(
Rε−2t[W, W̃ ] > 0

)
× sup
r>0,W �[0,r],W̃ �[0,r]

Ẽx/ε,x̃/ε
W,W̃

exp
{
χβ2R[r,ε−2t][W, W̃ ]

}
≤ C

(
ε

|x− x̃|
∧ 1
)d−2

, (7.30)

by Proposition 2.112.11 and Proposition 2.52.5, as long as χβ2 < β2
0 is sufficiently small.

Proposition 7.7. For all χ > 1 and for any ζ < (1− γ/2) ∧ (γ − 1), there exists C so that

|Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)| ≤ C
(
|x− x̃|−

d−2
χ ε

2ζ+ d−2
χ ∧ ε2ζ

)
.

Proof. Take p so that 1
χ + 2

p = 1. We go back to (7.67.6) and apply Hölder’s inequality, as well as (7.287.28)
and (7.297.29) to get the bound

|Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)| ≤ ‖G ‖2∞
(

sup
x

Ẽx/εW |u0(εWε−2t)− u(t, x)−I ε
t [W ]|p

)2/p

×
(
Ẽx/ε,x̃/ε
W,W̃

(
exp

{
β2Rε−2t[W, W̃ ]

}
− 1

)χ)1/χ
≤ Cε2ζ

(
ε

|x− x̃|
∧ 1
) d−2

χ

.

We are finally ready to prove Theorem 1.41.4.
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Proof of Theorem 1.41.4. By Proposition 7.77.7, we have, for any ζ < (1− γ/2) ∧ (γ − 1) and any χ > 1,

ε−(d−2)E
(ˆ

g(x)qε(t, x) dx− E
ˆ
g(x)qε(t, x) dx

)2

= ε−(d−2)
ˆ ˆ

g(x)g(x̃) [Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)] dx dx̃

≤ Cε(d−2)(1/χ−1)+2ζ
ˆ ˆ

g(x)g(x̃)|x− x̃|−
d−2
χ dx dx̃

by Proposition 7.77.7. The integral in the last line is finite because g is smooth and compactly supported.
Now by taking χ sufficiently close to 1, and reducing ζ slightly, we achieve (1.231.23).
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