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ABSTRACT. A variational model in the context of the gradient theory for fluid-fluid
phase transitions with small scale heterogeneities is studied. In particular, the case
where the scale ¢ of the small homogeneities is of the same order of the scale governing
the phase transition is considered. The interaction between homogenization and the
phase transitions process will lead, in the limit as ¢ — 0, to an anisotropic interfacial
energy.

1. INTRODUCTION

In order to describe the behavior at equilibrium of a fluid under isothermal conditions
confined in a container @ C RY and having two stable phases (or a mixture of two
immiscible and non-interacting fluids with two stable phases), Van der Waals in his
pioneering work [37]| (then rediscovered by Cahn and Hilliard in [12]) introduced the
following Gibbs free energy per unit volume

E.(u) ::/Q[W(u)+52|Vu|2] dz. (1.1)

Here € > 0 is a small parameter, W : R — [0, +00) is a double well potential vanishing
at two points, say +1 and —1 (the simplified prototype being W (t) := (1 — t2)2), and
u : 2 — R represents the phase of the fluid, where v = 41 correspond to one stable
phase and u = —1 to the other one. According to this gradient theory for first order
phase transitions, observed stable configurations minimize the energy E. under a mass
constraint [, u = m, for some fixed m € (—[Q],]9]).

The gradient term present in the energy (1.1) provides a selection criterion among
minimizers of I : u — [, W(u) dz. If neglected then every field u such that W(u) =0
in € and satisfying the mass constraint is a minimizer of I. The singular perturbation
u +— €%|Vul? provides a selection criterion and it competes with the potential term
in that it penalizes inhomogeneities of v and acts as a regularization for the problem.
In particular, the parameter € > 0 is related to the thickness of the transition layer
between the two phases. It was conjectured by Gurtin (see [27]) that for 0 < e < 1 the
minimizer u. of the energy E. will approximate a piecewise constant function, u, taking
values in the zero set of the potential W, and minimizing the surface area HN"1(.J,) of
the interface separating the two phases. Here H"V~! denotes the (N — 1)-dimensional
Hausdorff measure and J, is the set of jump points of w.

Gurtin’s conjecture has been proved by Modica in [32] (see also the work of Sternberg
[36]) using I'-convergence techniques introduced by De Giorgi and Franzoni in [17]|. In
particular, it has been showed that

lim LB (u.) = vHN (),

e—0 ¢

where the constant v > 0 plays the role of the surface energy density per unit area
required to make a transition from one stable phase to the other, and it is given by

1
’y::/ VW (t)dt.
-1
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Several variants of the Van der Waals-Cahn-Hilliard gradient theory for phase transi-
tions have been studied analytically. Here we recall the extension to the case of d non-
interacting immiscible fluids, with a vector-valued density u : RY — R9. In [25] Fonseca
and Tartar treated the case of two stable phases (i.e., the potential W : R? — [0, 00)
has two zeros), while the general case of several stable phases has been solved by Baldo
in [6]. In [6] and [25] it has been proved that the limit of a sequence {uc}c>0, where u,
is a minimizer of F., is a minimal partition of the container 2, where each set satisfies
a volume constraint and corresponds to a stable phase, i.e., a zero of W.

Other generalizations of (1.1) include the work of Bouchitté [8], who studied the case
of a fluid where its two stable phases change from point to point, in order to treat the
situation where the temperature of the fluid is not constant inside the container, but
given a priori. From the mathematical point of view, this corresponds to considering
the energy (1.1) with a potential of the form W (x,u) vanishing on the graphs of two
non constant functions z1, 22 :  — R TFonseca and Popovici in [24] dealt with the
vectorial case of the energy (1.1) where the term |Vu| is substituted with a more general
expression of the form h(z, Vu), while the full coupled singular perturbed problem in
the vectorial case, with the energy density of the form f(z,u,eVu), has been studied by
Barroso and Fonseca in [7]. The case in which Dirichlet boundary conditions are con-
sidered was addressed by Owen, Rubinsten and Sternberg in [35], while in [33] Modica
studied the case of a boundary contact energy. We refer to the works [36] of Sternberg
and [1] of Ambrosio for the case where the zeros of the potential W are generic compact
sets. Finally, in [28] Kohn and Sternberg studied the convergence of local minimizers for
singular perturbation problems.

This paper is part of an ongoing project aimed at studying the interaction between
phase transitions and homogenization, namely when small scale heterogeneities are
present in the fluids. In particular, we treat the case of a mixture of d non-interacting
immiscible fluids with two minimizing phases in isothermal conditions. To be precise,
for € > 0 we consider the energy

£.(u) :z/g)[W(i,u(x))—l—sﬂVu(m)F dz | (12)

where W : RNV x R? — [0,00) is a double well potential that is 1-periodic in the first
variable and with two zeros (see Section 1.1 for more precise details on the hypotheses
on W). The small scale heterogeneities are modeled by the fast oscillations in the first
variable of the potential .

Since lim._,o min &, = 0, in order to understand the behavior of minimizing sequences
as € — 0 we need to consider the rescaled energy F. := e 1'&.. In the main result of this
paper (see Theorem 1.6) we identify the variational limit (in the sense of I'-convergence)
of the rescaled energies F; as € — 0. In particular, we will prove that the limiting energy
is given by an anisotropic surface functional. We refer to Section 1.1 for the precise
statement of the result. Since the scaling e~! of the energy coincides with the scaling of
the fine oscillations in the potential, we expect to observe, in the limit, an interaction
between the phase transition and the homogenization process.

The transition layer between the two phases has a thickness of size €, which is the
same scale of the micro-structures that form within this layer due to the potential term.
The main challenge of this work will be to handle the situation in which the orientation
of the interface is not aligned with the directions of periodicity of the potential W. This
misalignment will give rise to the anisotropy in the limiting energy (see Figure 2). In
particular, the cell problem for the limiting energy density (see Definition 1.3) cannot
be reduced to a one dimensional optimal profile problem, as in the case of the energy
(1.1) (see Figure 1). This phenomenon is well known in models for solid-solid phase
transitions, when higher derivatives are considered in the energy (see, for instance, [13]).
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F1GURE 1. In the transition layer of size € between the region where
u = a and uw = b, microstructures with the same scale ¢ will develop due
to homogenization effects.

The case where different scalings are present, namely when the small heterogeneities
are at a scale d(¢) with lim._,o @ € {0,00}, will be treated in a forthcoming paper.
Moreover, the case in which the wells of the potential W depend on the spatial variable
x, modeling non-isothermal condition, is currently under investigation.

In the literature we can find other problems treating simultaneously phase transitions
and homogenization. In [5] (see also [4]) Ansini, Braides and Chiado Piat considered the
family of functionals

S.(u) ::/Q [iW(u(x))—i—a‘f ((Sé)Vu)] dz |

and identified the I'-limit in all three regimes

e

) € . €
g%@— —— =c>0, lim — = 400, (1.3)

ig% é(e) e—00(e)
using abstract I'-convergence techniques to prove the general form of the limiting func-
tional, and more explicit arguments to derive the explicit expression in the three regimes
(actually, in the first case they need to assume €%/25-1(g) — 0 as e — 0).

Moreover, we mention the articles [19] and [20] by Dirr, Lucia and Novaga regarding
a model for phase transition with an additional bulk term modeling the interaction of
the fluid with a periodic mean zero external field. In [19] they considered, for a € (0, 1),
the family of functionals

V) = [ | W ute)) + 9P+ o (

for some g € L*°(Q2), while in [20] they treated the case

0,

x

)u(z)} d,

s

VO (u) = / [iW(u(m)) +¢|Vul? + Vo (g) : Vu(x)] dz,
Q
where v € WH°(RY). Notice that V&(l) is a particular case of F@ when o = 1 and
v € H?(Q) has vanishing normal derivative on dQ. An explicit expression of the I'-limit
is provided in both cases.
The work [11] by Braides and Zeppieri is similar in spirit to the ongoing project of
ours where we consider the case of the wells of W depending on the space variable x.
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Indeed, in [11] the authors studied the asymptotic behavior of the family of functionals

G (u) = /01 [W(k) ((S(’;),u(x)> +521u’(t)\2} dt

for §(¢) > 0 and the potential W) defined, for k € [0, 1), as

[ W(s—k) te(0,L),
wies) = { et e

with W(t) := min{(t — 1), (¢t + 1)2}. For k € (0,1) the fact that the zeros of W)
oscillate at a scale of §(e) leads to the formation of microscopic oscillations, whose effect
is studied by identifying the zeroth, the first and the second order I'-limit expansions
(with the appropriate rescaling) in the three regimes (1.3).

In the context of the gradient theory for solid-solid phase transition, we mention the
work [26] by Francfort and Miller, where the asymptotic behavior of the energy

Lc(u) :—/Q [W (g,Vu(x)) —&-EZ\AUIQ} dz.

for v > 0 is studied under some growth conditions on the potential W.

Finally, in [30] the authors studied the gradient flow of the energy (1.2) in the case
where the parameter € in front of the term |Vu|? is kept fixed and only the parameter e
in W(x/e,u) is allowed to vary.

1.1. Statement of the main result. In the following Q C R denotes the unit cube
centered at the origin with faces orthogonal to the coordinate axes, Q := (—1/2,1/2)V.
Consider a double well potential W : RV x R% — [0, 00) satisfying the following proper-
ties:
(HO) z +— W(x,p) is Q-periodic for all p € R?,
(H1) W is a Carathéodory function, i.e.,
(i) for all p € RY the function = — W (x,p) is measurable,
(ii) for a.e. x € @ the function p — W (z,p) is continuous,
(H2) there exist a,b € R? such that W(x,p) = 0 if and only if p € {a,b}, for a.e.
reQ, N N
(H3) there exists a continuous function W : R? — [0, 00) such that W (p) < W(z,p)
for a.e. z € Q and V[N/(p) = 0 if and only if p € {a, b}.
(H4) there exist C > 0 and ¢ > 2 such that 5[p|?—C < W(z,p) < C(1+ |p|?) for a.e.
z € @ and all p € R?.

Remark 1.1. The choice ¢ > 2 is connected to the exponent we used in the term |Vu|?
of the energy (1.2). If that term is substituted with |Vul|?, in (H4) we would need to
take ¢ > q.

Hypotheses (H1), (H2) (H3) and (H4) conform with the prototypical potential

k
=1

where F; C @ are measurable pairwise disjoint sets with @ = Uf”zlEi, and W; : R —
[0, 00) are continuous functions with quadratic growth at infinity and such that W;(p) = 0
if and only if p € {a,b}, modeling the case of a heterogeneous mixture composed of k

different compositions. Here W in (H3) may be taken as W := min{W,..., Wy}.

Let Q € RY be an open bounded set with Lipschitz boundary. For € > 0 consider the
energy F. : H'(Q;RY) — [0, 00] defined as

F(u) :_/Q [1W<§,u(x)) +€]Vu(ac)2] d, (1.4)
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FicURE 2. The misalignment between a square (), with two faces orthog-
onal to v and the directions of periodicity of W (the grid in the picture)
is the reason for the anisotropy character of the limiting surface energy.

where |Vu(x)| denotes the Euclidean norm of the d x N matrix Vu(x) € R™>Y (matrices
with d rows and N columns).

We introduce some definitions. For v € S¥~1, with SV¥~! the unit sphere of RV, we
denote by Q, the family of cubes (), centered at the origin with two faces orthogonal to
v and with unit length sides.

Definition 1.2. Let v € S¥~! and define the function o RN 5 R? a5

_Joa ify-vr<0,

Fix a function p € C°(B(0,1)) with [px p(z)dz = 1, where B(0,1) is the unit ball in
RN, For T > 0, set pr(z) := TN p(Tx) and

ZZp,T,l/ = PpT *RUQY - (16)

When it is clear from the context, we will abbreviate @, 7, as tur,.
Definition 1.3. We define the function o : S¥=! — [0, 00) as
o(v):= lim g(v,T),
T—o0
where
.
g(”) T) = Wlnf{ /Q [W(y,u(y)) + |VU‘2] dy : Qll € Qllv u e C(,O, Ql/aT) } )
TQu
and
Clp, Q) i= {u € HATQuRY) : =Ty, on 0(TQ,) }.
Just as before, if there is no possibility of confusion, we will write C(p, Q,,T) as C(Q,,T).
Remark 1.4. For every v € S¥=1, 5(v) is well defined and finite (see Lemma 4.1) and

its definition does not depend on the choice of the mollifier p (see Lemma 4.3). Moreover,
the function v+ o(v) is upper semi-continuous on SV ~! (see Proposition 4.4).
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Using (9], it is possible to prove that the infimum in the definition of g(v,T") may be
taken with respect to one fixed cube Q, € Q,. Namely, given v € SV~ and Q, € Q, it
holds

T—o0

. 1.
o(v) = lim Wmf{ /Q,, [W(y,u(y)) + |Vu\2] dy : weC(Qy,T) } .

Remark 1.5. In the context of homogenization when dealing with nonconvex potentials
W it is natural to consider, in the cell problem for the limiting density function o, the
infimum over all possible cubes T'Q),.. For instance, this was observed by Miiller in [34],
where the asymptotic behavior as € — oo of the family of functionals

x
G:(u) := /QW (g, Vu) dz,
defined for u € H'(Q;R?), is studied. The limiting energy is of the form

/Q W(Vu(z)) dz,

with

_ 1
W) =inf inf [ W(yA+ Vi(y)) dy.
() ety BV g (4, A+ Vi(y)) dy

In the case where W is convex, the infimum over k € N is not needed (see [31]).

Consider the functional Fo : L'(€;R%) — [0, 0o] defined by

/ o(wa(z))dHN"Yz) if u e BV(Q;{a,b}),
o*A

Fo(u) := (1.7)

400 else,

where A := {u = a} and v4(x) denotes the measure theoretic external unit normal to
the reduced boundary 9*A of A at x (see Definition 2.6).

We now state the main result of this paper that ensures compactness of energy bounded
sequences and identifies the asymptotic behavior of the energies F..

Theorem 1.6. Let {e,}nen be a sequence such that €, — 0 as n — co. Assume that
(H0), (H1), (H2), (H3) and (H4) hold.
(1) If {un}neny C H' (4 RY) is such that

sup Fe, (up) < +00
neN

then, up to a subsequence (not relabeled), u, — u in L'(QR?), where u €
BV (4 {a,b}),

71
(ii) Asn — oo, it holds Fe, =5 Fo.
Moreover, the function o : SN=1 — [0, 00) is continuous.

Remark 1.7. The limiting functional Fq is an anisotropic perimeter functional, whose
limiting energy density o is defined via a cell problem describing the intricate interaction
between homogenization and phases transition. It is interesting to notice that in phase
transitions models of the form

/Q [1W(u(x))+£h(Vu(x)) dz

g

one would expect the limiting model to be isotropic if A is. Instead, in our case, the
anisotropy originates from the mismatch between the square @ related to the periodicity
of W(-,p), and a square having two faces orthogonal to the normal v to the interface.
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Once Theorem 1.6 is established, using well known arguments to deal with the mass
constraint (see [32]) and the result by Kohn and Sternberg ([|28]) for approximating
isolated local minimizers, we also obtain the following.

Corollary 1.8. Letm € (0,|Q|) and consider, fore > 0, the functionals G. : L'(Q;RY) —
[0, +o0] given by

Fo(u) if [qu(x)dez=ma+ (|Q —m)b,
Ge(u) :==
400 otherwise .
Under the assumptions of Theorem 1.6 it holds that G. F%Ll Go, where G : L'(Q; RY) —
[0, 400] is given by

Fo(u) if [qu(z)dz =ma+ (|Q] —m)b,
Go(u) :=

400 otherwise .

In particular, every cluster point of a sequence of e-minimizers for {Ge}e>0 is a minimizer
for Go, and, moreover, every isolated local minimizer u of Gy can be obtained as the L'
limit of {ue}e>0, where ue is a local minimizer of Ge.

The proof of the Theorem 1.6 will be divided in several parts. We would like to briefly
comment on the main ideas we will use.

After recalling some preliminary concepts in Section 2 and establishing auxiliary tech-
nical results in Section 3, we will prove the compactness result of Theorem 1.6 (i) (see
Proposition 5.1) by reducing our functional to the standard Cahn-Hilliard energy (1.1).

In Proposition 6.1 we will obtain the liminf inequality by using the blow-up method
introduced by Fonseca and Miiller in [22]| (see also [23]). Although this strategy can
nowadays be considered standard, for clarity and completeness we include the argument.

The limsup inequality is presented in Proposition 7.1 and requires new geometric
ideas. This is due to the fact that the periodicity of W in the first variable is an essential
ingredient to build a recovery sequence. It turns out (see Proposition 3.5) that there
exists a dense set A C SV~! such that, for every v; € A there exists T,, € N and
va,...,on € A for which W(z + Ty, v;,p) = W(x,p) for a.e. x € Q, all p € RV and all
i=1,...,N, and such that {v1,...,vx} is an orthonormal basis of R". Using this fact,
in the first step of the proof of Proposition 7.1 we obtain a recovery sequence for the
special class of functions u € BV (Q;{a,b}) for which the normals to the interface 0* A,
where A := {u = a}, belong to A. We decided to construct a recovery sequence only
locally, in order to avoid the technical problem of gluing together optimal profiles for
different normal directions to the transition layer. For this reason, we first prove that the
localized version of the I'-limit is a Radon measure absolutely continuous with respect
to HV"1L9*A, and then we show that its density, identified using cubes whose faces
are orthogonal to elements of A, is bounded above by ¢. Finally, in the second step we
conclude using a density argument that will invoke Reshetnyak’s upper semi-continuity
theorem (see Theorem 2.9) and the upper semi-continuity of o (see Proposition 4.4).

2. PRELIMINARIES

In this section we collect basic notions needed in the paper.

2.1. Finite nonnegative Radon measures. The family of finite nonnegative Radon
measures on a topological space (X, 7) will be denoted by M(X).
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Definition 2.1. Let (X,d) be a o-compact metric space. We say that a sequence
{tin tnen € M(X) weakly-+ converges to a finite nonnegative Radon measure p if

/wdun%/wdu
X X

as n — oo, for all p € Cy(X), where Cy(X) is the completion in the L norm of the
space of continuous functions with compact support on X. In this case we write uy X -

The following compactness result for Radon measures is well known (see |21, Propo-
sition 1.202]).

Theorem 2.2. Let (X,d) be a o-compact metric space and let {py }neny C M(X) be such
that sup, ey pn(X) < co. Then the exist a subsequence (not relabeled) and € M(X)

such that p, — p.

2.2. Sets of finite perimeter. We recall the definition and some well known facts
about sets of finite perimeter (we refer the reader to 3] for more details).

Definition 2.3. Let £ C RY with |E| < oo and let  C RY be an open set. We say
that E has finite perimeter in  if

P(E;Q) := sup{/ divedz : p € CHLRY) ) ||lollpe < 1} < 00.
E

Remark 2.4. E C RY is a set of finite perimeter in Q if and only if x5 € BV (Q), i.c.,
the distributional derivative Dy g is a finite vector valued Radon measure in {2, with

/ @dDXE:/diwpdw
RN E

for all o € CL(Q;RY), and |Dxg|(R2) = P(E;Q).

Remark 2.5. Let Q C RY be an open set, let a,b € RY, and let u € L'(Q; {a,b}). Then
u is a function of bounded variation in 2, and we write v € BV(£;{a,b}), if the set
{u=a}:={r €Q : ulx) = a} has finite perimeter in Q.

Definition 2.6. Let E C RY be a set of finite perimeter in the open set Q C RY. We
define 0*E, the reduced boundary of E, as the set of points € R for which the limit

vp(z) = — lim XE@TTQ)
r—0 |Dxg|(z + Q)
exists and is such that |vg(xz)| = 1. The vector vg(z) is called the measure theoretic

exterior normal to E at x.

We now recall the structure theorem for sets of finite perimeter due to De Giorgi
(see [3, Theorem 3.59] for a proof of the following theorem).

Theorem 2.7. Let E C RY be a set of finite perimeter in the open set Q C RY. Then

(i) for all x € O*FE the set E, = E;x converges locally in LY(RY) as r — 0 to the
halfspace orthogonal to vg(z) and not containing vg(z),
(ii) Dxg = —ve HN "1 LO*E,
(iii) the reduced boundary 0*E is HN"1-rectifiable, i.e., there ewist Lipschitz functions
fi : RN-1 5 RN €N, such that

0'E = fi(K),
i=1

where each K; C RVN™! is a compact set.
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Remark 2.8. Using the above result it is possible to prove that (see |2, Proposition
2.2])

L D@ +rQ)
(o) = = i =
for all z € 9*F.

Finally, we state a result due to Reshetnyak in the form we will need in this paper
(for a statement and proof of the general case see, for instance, |3, Theorem 2.38]).

Theorem 2.9. Let {E,}5°, be a sequence of sels of finite perimeter in the open set
Q c RN such that Dxp, — Dxg and |Dxg, |(Q) — |Dxg|(R), where E is a set of finite
perimeter in Q. Let f: SV — [0,00) be an upper semi-continuous bounded function.
Then

n—00 0*ENQ

. N—1 N—-1
lim sup /a L @) a0 ) < / f (ws(z)) AV (z).

2.3. I'-convergence. We refer to [10] and [14] for a complete study of I'-convergence in
metric spaces.

Definition 2.10. Let (X, m) be a metric space. We say that F,, : X — [—o0, +o0]
I-converges to F': X — [—o00, +00], and we write F, - F, if the following hold:

(i) for every x € X and every x,, — = we have

F(z) <liminf F,,(x,),
n—oo

(ii) for every z € X there exists {z,}7°; C X (so called a recovery sequence) with
T, — x such that
limsup F,(x,) < F(x).

n—o0

In the proof of the limsup inequality we will need to show that a certain set function
is actually (the restriction to the family of open sets of) a finite Radon measure. The
classical way to prove this is by using the De Giorgi-Letta coincidence criterion (see [18]),
namely to show that the set function is inner regular as well as super and sub additive.
In this paper we will use a simplified coincidence criterion due to Dal Maso, Fonseca
and Leoni (see [15, Corollary 5.2]). Given  C R an open set, we denote by A(Q) the
family of all open subsets of 2.

Lemma 2.11. Let X : A(2) — [0,00) be an increasing set function such that:
(i) for all U,V,W € A(Q) with U CV C W it holds

AW) < AWN\T) + V),

(1)) N\UNV)=XU)+ AXV), for all U,V € AQ) withUNV =0,
(113) there exists a measure p : B(Q) — [0,00) such that

AU) < p(U)

for all U € A(RY), where B(S2) denotes the family of Borel sets of Q.
Then X is the restriction to A(Q2) of a measure defined on B(Q2).
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3. PRELIMINARY TECHNICAL RESULTS

The first result relies on De Giorgi’s slicing method (see [16]), and it allows to adjust
the boundary conditions of a given sequence of functions without increasing the energy,
by carefully selecting where to make the transition from the given function to one with
the right boundary conditions. Although the argument is nowadays considered to be
standard, we include it here for the convenience of the reader.

For € > 0, we localize the functional F. by setting

x

Fe(u, A) ::/A {1W (;u(x)) +5|Vu(x)|2} dz,

€
where A € A(Q) and u € H'(A;RY). Also, for j € N, we define
AV .= {r e A : d(z,04) <1/j}.

Lemma 3.1. Let D € A(Q) be a cube with 0 € D and let v € SN~1. Let {Dy}ren C
A(Q) with Dy, C D be cubes, let {nx}ren with ny — 0 as k — oo, and let u, €
HY(Dy;RY), with k € N, satisfy

(i) xp, = xp in L'(RY),
(ii) ukxp, — uo, in LY(D;RY),
(iii) supgen Fny (U, Di) < 00.
Let p € C(B(0,1)) with [pn p(x)de = 1. Then there exists a sequence {wy}ren C

fl gD;Rd),hwith wy = ﬂp’kl;/nk’y in D,({L’“),hwhere Up 1y 18 defined as in (1.6), for some
Jk Yken with j — o0 as k — oo, such that

lim inf 7, (ug, Di) > limsup F,, (wg, D) .
k—o0 k—o0

Moreover, wy, — uq,, in LY(D;R?) as k — oo, where ¢ > 2 is as in (HJj).
Proof. Assume, without loss of generality, that
lim inf Fy, (ug, Dy) = Um Fy, (ug, Dy) < +00 (3.1)

and that, as n — oo, un(x)xp, () = o, () for a.e. z € D.

Step 1. We claim that

i lug = o || Lo(p,ma) = 0- (32)
Indeed, using (H4), we get
lup(2) — w0 (2)|7 < C (W (;,uk(x)> 4 1) , (3.3)
k

for z € Dy. From (3.1) we have xp, (#)W (-, uk(x)) — 0 as k — oo for a.e. z € D, and
thus

C|D| — limsup ||ux — uo \qu(Dk.Rd)
k—o0 ’

k—o00

zliminf/Dk [(JW (;,uk(x)> + O — uy(a) u[)’,,(:c)|q} da

Z/Dngggfxpk(x) [CW (;,uk(@«)) +C—|uk(x)—u07y(x)\q] dz

> C|DJ,

where we used Fatou’s lemma and (3.3).
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Step 2. Here we abbreviate i, /5, as Uy g, Set vy = Uy/y, , and A == [Jurxp, —
Vg L2(p;ray- Using Step 1, since ¢ > 2 we get limg o0 A, = 0. For every k, j € N divide
D,(cj) into My, ; equidistant layers L};j of width mpAg, for i = 1,..., My ;. It holds

1
My jneA, = 7 (3.4)

For every k,j € N let Lzoj, with ig € {1,..., M} ;}, be such that

1
/Z_ ag(z) dz < 7 '/<. ar(z) dz, (3.5)
Lk‘?]. k,j Dk])

where

a(x) = nlk(lJr |ug — vk |7+ |og|?) + Jug () — v (@) + ne (|Vur(@)]* + [Vop(z)]?)

A
Further, consider cut-off functions ¢y, ; € C2°(D) with

C
0<pp; <1, IVorill < ——, (3.6)
Mk Ak
such that
io—1 ‘
orj(r) =1, for x € ( U Lﬁw-) U (Dg \ D,(f)), (3.7)
i=1
Mk,j )
orj(x) =0, forze | J Li; | U(D\Dy). (3.8)
1=19+1
Set

{U/k,j = Pk UL + (1 - gok,j)vk .
Tt holds that limj oo limy o0 [|Wk,j — 0| La(p;ray = 0. Tet jx € N be such that D ¢
Uilsyy L, - Then @y ; = vy, in DY™). We claim that
li’gn inf F,, (ug, D) > limsup lim sup F,, (wy, j, D) . (3.9)
— 00

j—00 k—o0

Indeed

i0—1 i .
Fnk(@k,pDk) = ‘Fﬂk (Ulm ( U L%,j) U (Dk: \ Dl(gj))> +‘F77k ({EkJ’L;co,j>
i=1

My, A
i=ig+1
=: Ak,j + Bk,j + Ck,j . (310)

To estimate the first term in (3.10) we notice that

lim inf F,, (ug, D) > limsup limsup Ay, ; . (3.11)
k—o0 Jj—o0 k—o0

Consider the term By, ;. Using (H4) together with (3.6) we have that

1 ~
Byj < C/io [nk(l + @k 17) + 7 ([Veonj | luk — viel® + [Vug* + Vvk|2)} dz

k.3

1 1
|:(1 + \uk — vk‘q + ‘Uk‘q) + 3 |uk — Uk|2 + Mk (|Vuk|2 + |V1)k’2):| dz
Nk nk)\k

14 Jup — vel? |ug — vg|?
Mk oy

+ Mk (|Vuk|2+ |Vvk]2)]dx, (3.12)
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where in the last step we used (3.5) and the fact that supyey [|vg || o (pray < 00. Since
for a cube r@ with side length r we have
) IN N-1
rQ)V)| < =,
J
and the cubes Dy, are all contained in the bounded cube D, we can find j € N such that
for all j > 5 and k € N we get
D’ _ ¢
My e — J Mg i

= C\p. (3.13)

Step 1 (see (3.2)) yields
C
M5k

[ U = onlt) do < Cin [ug = 0l e + 1] < Cidee (10
k

Moreover, by (3.4) we obtain

1 9 .
- _ < ]
YAy /D,(j) lugp — vg|” doe < CyAg, (3.15)
Uk/ |Vug|? dy < limsup Fy, (ug, Di) < o0, (3.16)
Dk k—o0
and, since
C
Vol < —, (3.17)
Nk
Nk 2 C .
Vgl dy < =Cj. 3.18
Ve L Tl dy < 3 = i (318)
From (3.12), (3.13), (3.14), (3.15), (3.16) and (3.18) we get
lim lim By, =0. (3.19)

j—00 k—oo

We now estimate the term C} ;. Using (3.17), we obtain

1
Cos o [, . (W) 4T dy

i
i=ig+1 Lk

IN

9

C .
%‘D,(j)ﬂ{azeD Sl v <k}

and so
lim lim C; =0. (3.20)

Jj—00 k—o0

Similarly, it holds that
~ C
lim F, (wg;, D\ D) < lim —|(D\Dp)N{zx €D : |z -v|<nm} =0. (3.21)
k—o0 k—ro00 Mg
Using (3.10), (3.11), (3.19), (3.20) and (3.21) we obtain (3.9).

Applying a diagonalizing argument, it is possible to find an increasing sequence
{j(k)}ren such that
Jim [By k) + Oy + Fn (@ k), D\ D)l = 0,
and limg o0 || Wy j() —U07V||L1(D;Rd) = 0. Thus, the sequence {wy }ren, With wy = Wy, ;)
satisfies the claim of the lemma.

Remark 3.2. In the paper we will make use of the basic idea behind the proof of Lemma
3.1 in several occasions. In particular, it is possible to see that the result of Lemma 3.1
still holds true if the set D C R is a finite union of cubes, and Dy, = D for all k € N.
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The proof of the limsup inequality, Proposition 7.1, uses periodicity properties of the
potential energy W. In particular, we will show that W is periodic in the first variable not
only with respect to the canonical set of orthogonal direction, but also with respect to a
dense set of orthogonal directions. In the sequel we will use the notation A := QN NSN—!
and {e1,...,ex} will denote the standard orthonormal basis for RY. We first recall the
following extension theorem for isometries (for a proof see, for instance, [29, Theorem
10.2]).

Theorem 3.3. (Witt’s Extension Theorem) Let V' be a finite dimensional vector space
over a field K with characteristic different from 2, and let B be a symmetric bilinear form
on V with B(u,u) >0 for all w # 0. Let U, W be subspaces of V and let T : U — W be
an isometry, that is, B(u,v) = B(Tu,Tv) for all u,v € U. Then T can be extended to
an isometry fromV to V.

Lemma 3.4. Let v € A. Then there exist a rotation R, : RN — RN and \, € N such
that Ryen = v and A\ R, e; € ZVN foralli=1,... N.

Proof. Let v € A be fixed. Consider the spaces
U := Span(en), W := Span(v)

as subspaces of V := QY over the field K := Q, with B being the standard Euclidean
inner product. Then, the linear map 7' : U — W defined by T'(ex) := v is an isometry.
Apply Theorem 3.3 to extend T as a linear isometry 7' : QN — QY. In particular,
T(e;) - T(ej) = ;5. Up to redefining the sign of T'(e;) so that detT" > 0, we can assume
T to be a rotation. Let A, € N be such that \,T(e;) € Z" for all i = 1,..., N. Finally,
define R, : RY — R¥ to be the unique continuous extension of T to all of RY, which is
well defined as isometries are uniformly continuous. O

Proposition 3.5. Let vy € A. Then there exist v1,...,uny_1 € A and T € N such that
Vl,...,UN_1,UN 15 an orthonormal basis of R, and for a.e. = € Q it holds W (x +
Tvi,p) = W(x,p) forallpc R andi=1,...,N.

Proof. Let R : RY — RY be a rotation and let T := )\, € N be given by Lemma 3.4
relative to vy. Set v; := Re; for i = 1,...,N — 1. We have that Tv; € ZV for all
i=1,...,N. Fix i € {1,...,N} and write Ty; = Z;V:l)\jej, for some \; € Z. For
p € R? using the periodicity of W (-, p) with respect to the canonical directions, for a.e.
x € @ we have that

N
W(z+Tv,p) =W x+2)\jej,p = W(x,p).
j=1

O

In the following, given a linear map L : RY — R we will denote by ||L|| the Euclidean
norm of L, i.e., | L||? := Zgj:l[L(ei) - e;]2. For the sake of notation, we will also define
the set of rational rotations SO(N;Q) C SO(N) as the rotations R € SO(N) such that
Re; € QN forie {1,...,N}.

Lemma 3.6. Let ¢ > 0, v € A, and let S : RN — RY be a rotation with S(ey) = v.
Then there exists a rotation R € SO(N;Q) such that R(ey) =v and |R— S| < €.

Proof. Step 1 We claim that SO(N;Q) is dense in SO(N) for every N > 1.

We proceed by induction on N. When N = 1, SO(N) consists of the identity, so the
claim is trivial. Let N > 1 be fixed and let £ > 0 and S € SO(N) be arbitrary. By density
of Q¥ NSV~ we can find a sequence {g, }nen € A with |g,| = 1 such that ¢, — S(en)
as n — oco. By Lemma 3.4 we can find R, € SO(N;Q) such that R,(en) = ¢n. Since
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SO(N) is a compact set, we can extract a convergent subsequence (not relabeled) of
{R,} such that R, — R € SO(N), with R(ey) = lim,, o Rn(en) = S(en).

Thus, the rotation R~!0 S fixes ey and may be identified with a rotation T € SO(N —
1), i.e., writing e; =: (€},0),7 = 1,..., N—1, it follows that Re; = (T¢},0),i =1,...,N—
1. By the induction hypotheses, we can find 7" € SO(N — 1;Q) such that

€
T —T'| < 3
Define R’ € SO(N;Q) by
Fe i {(T'e;,O) i=1,...,N—1,
enN i=N.
Let ng be so large that
IR = Ryl < 5.
We claim that our desired rotation is R,, o R’ € SO(N;Q). Indeed,
|Rngo R — S| <||Rng o R — Rpgo R o S|+ |Rygo R 10 S — S|
=R~ R o8| + Ry, — Rl
=T =T| + |Rn, — R| < &.

Step 2 Let S € SO(N) with S(en) = v be given. If N = 1, there is nothing else to
prove, so we proceed with N > 1.

By Lemma 3.4 we can find a rotation Ry € SO(N;Q) such that Ry(ey) = v. Since
Ry !0 S is a rotation with (R ' 0S)(en) = en, as in Step 1 we can identify R~ o S with
a rotation T} € SO(N —1). Also by Step 1, SO(N — 1; Q) is dense in SO(N — 1), so we
can find T, € SO(N — 1;Q) such that |72 — T1|| < €. As before, identifying T5 with a
rotation Ry € SO(N;Q) that fixes ey, we set R := Rj o Ry € SO(N;Q). We have that
(R1 0 Ry)(en) = Ri(eny) =v and

|RioRy— S| =Ry — Ry "o S| =|Ta — Th|| <e.
O

Definition 3.7. Let V C SV, We say that a set £ C RY is a V-polyhedral set if OF
is a Lipschitz manifold contained in the union of finitely many affine hyperplanes each
of which is orthogonal to an element of V.

A variant of well known approximation results of sets of finite perimeter by polyhedral
sets yields the following (see |3, Theorem 3.42]).

Lemma 3.8. Let V. .C SN7! be a dense set. If E is a set with finite perimeter in Q,
then there exists a sequence {Ey}nen of V-polyhedral sets such that

lim ||xg, — XEHLl(Q) =0, lim |P(E,;Q) — P(E;Q)|=0.
n—oo n—o0

Proof. Using [3, Theorem 3.42] it is possible to find a family {F},},.eny C RY of polyhedral
sets such that

1 1
IxF, — xEl1 (@) < e |P(Fn; Q) — P(E; Q)| < .
For every n € N, let an), . ,Féﬁ) be the hyperplanes whose union contains the boundary

of F,,. Let Z/YZ), e ,ygz) € SN=1 be such that I'; = (ul.(”))L. Then it is possible to find
rotations Rgn) : RY — RY such that Rgn) VZ-(n) € V and, denoting by E, C RY the set
(n) V(ﬂ))L
(2 (2

2
n

enclosed by the hyperplanes (R , we get

2
Ixe, = xelloi@ < IP(Ewi ) - PEQ)| < -

Y
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4. PROPERTIES OF THE FUNCTION o

The aim of this section is to study properties of the function ¢ introduced in Defini-
tion 1.3 that we will need in the proof of Proposition 7.1 in order to prove the limsup
inequality.

Lemma 4.1. Let v € SN71. Then o(v) is well defined and is finite.
Proof. Let v € SN~ For T > v/N let Q1 € Q, and ur € C(Qr,T) be such that

i 1
N1 / Wy, ur(y)) + [Vur(y)*dy < g(T) + =, (4.1)
T TQr T
where, for simplicity of notation, we write g(T") for g(v,T). Let {Vé—‘l), e ,Vq(ﬂN)} be an

orthonormal basis of RY normal to the faces of Q@ such that v = V,}N). We define an

oriented rectangular prism centered at 0 via
P(a,B) :={z eRY :|z-v| <3 and |x-1/¥)]§afor1§i§]\ffl}.
Let S > T + 3+ +vN. We claim that for all m € N with 2 <m < T, we have
9(5) < g(T) + R(m,S5,T), (4.2)
where the quantity R(m,S,T) does not depend on v and is such that
lim lim lim R(m,S,T)=0.

m—00 T'—o00 S—00
Note that if this holds then
limsup ¢(S) < liminf g(7"),
S—o0 T—o0
and this ensures the existence of the limit in the definition of o. Therefore, the remainder
of Step 1 is dedicated to proving (4.2).

The idea is to construct a competitor ug for the infimum problem defining g(S) by
taking L%JNfl copies of TQ, Nt centered on v+ N SQ, in each of which we define ug
to be (a translation of) up. In order to compare the energy of ug to the energy of up, we
need the copies of the cube T'Q, to be integer translations of the original. Moreover, we
also have to ensure that the boundary conditions render ug admissible for the infimum
problem defining g(S). For this reason, we need the centers of the translated copies of
TQ, Nvt to be close to v+ N SQ, (recall that the mollifiers pr,, and pg, only depend
on the direction v).

Set

and notice that

. A
A, Jm, gt Mrs = 1 (43)

M
We can tile (S — %) Qr with disjoint prisms {pi +P <T+ VN +2,5 — %)} " S0
that

1 1
pi+P<T+\/]v+2,S—T>C<S—T>QT, p; € U,

for each i € {1,...,Mrs}. In each cube p; + VNQr we can find z; € ZV since
dist(-,ZY) < V/N in RV, and we have

2+ (T +2)Qr C pi + (T + VN +2)Qr.
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SQr

(T+L)Qr

Ficure 3. Construction of the function ug: in each yellow cube x;+T Q1
we defined it as a copy of ur and we use the grey region (x; + (T +
LYQr) \ (z; + TQr) around it to adjust the boundary conditions and
make them match the value of ug in the green region. Finally, in the
pink region SQr \ (S — £)Qr we make the transition in order for ug to
be an admissible competitor for the infimum problem defining g(.5).

Consider, for m € N and i € {1,..., Mz g} cut-off functions ¢p,; € Ce(z; + (T +
%)QT; [0,1]) be such that

0 ifze 0(%—1— (T—i— %)QT),
(z) = [Vem,illLee < Cm, (4.4)

1 ifxex, +TQr,

Pm.i

for some C > 0. Define ug : SQ7 — R? by

( ur(x — x;) ifzex+TQr,
wa) e 4 @08 10} o+ i = )+ (1= i) (% ) 2)
S\ - if € (xi + (T + 2)Qr) \ (w: + TQr),
L (p*uop)(z) otherwise.

Notice that since p; - v =0, if x € d(x; + TQr) we have
up(x — ;) = (p* uow)(x — i) = (p* uow) (T + pi — ).

Thus us € HY(SQr;RY) and, if € 0(SQr) then ug(z) = (p * up,)(x), so ug is
admissible for the infimum in the definition of ¢(S). In particular,

0(9) < gy [ [Wees(e) + 9us(op s
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SN v F1(us, SQr)
= Il(Tas)+I?(T7S>m)+13(T757m)¢ (45)

where

1 Mt s
(T, S) EgN—T Z Fi(us, i + TQr),
1=1

Mt s

I(T, S,m) ;:ﬁ Y A <us, (x + (T + ;) QT> \ (@i + TQT)) :
1=1

1
I3(T, S, m) S 1 F1(us, Er.5.m),

and we set
Mr,s

1
Ersm = SQr\ U1 <:c + (T + m) QT> .
1=
We now bound each of terms I, 2, I3 separately. We start with I;(7,S). Since
z; € ZN, the periodicity of W together with (4.1) yield

I(T,8) = gy~ 1M5T/TQ W, ur(@)) + |Vur(z)?] de

1 N 1
< gy MrsT 1( (T)+T>- (4.6)
In order to estimate I(7T,S,m), notice that, since for every x € R the function t
(p * up)(x + tv) is constant outside of an interval of size 1, we have that for every
ie{l,...,Mrg} it holds

/( T+ )0\ T@) IV (p1 *uow)(z+p; — 331’)’2 dz
Z4 ) QT )\ (i T

) 1 N-1
< IVeswl[(T+5) -
Thus, using (4.4) and (4.7) we obtain
VN
BT 5.m) < g Mrs | (Y +1)! )+ 9% 0,

+ ||V (p = uoy)\\%m} [(T n ;) N-1 - TNl}

C YN
SSN 1MTS(1+m) T+E -T

TN-1 1 \N-1
<OS MTS(l—I—m)[(l—I-M) —1}
< C?;iMT,S (14+m?) (NT;;> =: Jo(T, S, m) (4.8)
where in the last step we used the inequality
A+t 1<14+CWN -1t (4.9)

for t < 1, that is valid here when T > 1.
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We can finally estimate I3(7,S,m) as

1
I3(T,S,m) = SN—I/E [W(a:,p* uo) + |V(p* uoy,,)|2] dz
T,S,m

< et |Brsm 0 {rx < 1}] (1 . ||v<p*uo,y>\im>
< 55_1 [SN_I - MT,STN_1:| =: J3(T, S, m). (4.10)

Taking into account (4.8) and (4.10) we obtain
lim lim lim [Jo(T,S,m)+ J3(T,S,m)] = 0. (4.11)

m—00 T—o0 S—

Thus, in view of (4.5), (4.6), (4.3) and (4.1), we conclude (4.2) with
R(m, S,T) == Jo(T, S,m) + J5(T, S, m). (4.12)

Notice that R(m,S,T) does not depend on v nor on Qp.

Finally, to prove that o(v) < oo for all v € S¥~! we notice that, by sending S — oo
in (4.2) we get

o(v) <g(T)+ Slim R(m,S,T).
— 00

Since ¢(T) < oo and, by (4.11) and (4.12), limg_,oo R(m,S,T) < oo for all T > 0, we
conclude. O

Remark 4.2. The proof of Lemma 4.1 shows, in particular, that

lim %inf{ /TQ (W uy)) + Vul?] dy : u e @.1) )

T—o0

exists, for every v € SV~ and every Q € Q,. This will be used later in the proof of
Lemma 4.6.

Next we show that the definition of o(v) does not depend on the choice of the mollifier
p we choose to impose the boundary conditions.

Lemma 4.3. For every v € SN™1 the definition of o(v) does not depend on the choice
of the mollifier p.

Proof. Fix v € S¥=1 and let {T},},,en be such that T,, — oo as n — oo. Let p(M), p(?) €
C>(B(0,1)) be two mollifiers and let us denote by o(v, p)) and o (v, p?) the functions
defined as in Definition 1.3 using p") and p®, respectively, to impose the boundary
conditions for the admissible class of functions. Let {Q,}nen C Q, and {u,(ll)}neN C

HY (T, Qn:; RY) with ug) = p(l) * up,, on 01,Qy be such that

Jim e P, T,Qu) = (). (413)
For every n € N, consider the cubes (7, + 1) @, and a function ¢, € C*((T,, + 1)Qy)
with 0 < ¢, < 1 such that ¢, =1 in T,,Qn, ¢, = 0 on O[(T,, + 1)@Q,]. For every n € N
define ug) c H'((T, + 1)Q;R?) as

u® (z) = uy) () if € T,,Qn,
" ' on(2) (PN xug,) () + (1 — pu()) (0P % ug,)(x) otherwise .

Then u\?) = p? % ug,, on (T + 1)Q,] and u'? is constant (taking values a or b)
outside of the set {(z/,x,) € RY : 2/ € Q),z, = svfors € [-1,1]} where Q/, :=
(T 4+ 1)Qn \ T,Qn]) N v+. We have

1 1
Wfl (Ug)a (T, +1) Qn) < W}-l(Ug)anQn) + Ry, (4.14)
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where

: /
T ) +10\T.Q.
c N-1 -
< gt (@ -]
C
< = )
=T
where in the last inequality we use (4.9). Using (4.13) and (4.14) we get
1
o(v, p?) < liminf Ty A (ug), (T, + 1) Qn> < o(v, pV).

Ry : (W (y,ulP () + [VulP ()|*] dy

By swapping the roles of p(!) and p(® we get the desired result. U
We now prove a regularity property for the function o.
Proposition 4.4. The function o : S¥=1 — [0, 00) is upper semi-continuous.

Proof. Step 1. Fix v € S¥~! and let {vy,}nen € SV~! be such that v, — v as n — oo.
We first prove that, for fixed T' > 0, the function v — ¢(v,T') is continuous. We claim
that limsup,,_,. g(vn,T) < g(v,T). Fix e > 0. Let Q, € Q, and u € C(T'Q,,v) be such
that

TN_lg(V, T)— / [W(y,u(y)) + |Vu\2] dy| < e. (4.15)
TQv

Without loss of generality, by density, we can assume that u € L>®(€;R%). For every
n €N, let R, : RN — RN be a rotation such that R,v, = v and R,, — Id as n — o,
where Id : RV — RY is the identity map. Moreover, thanks to Lemma 4.3, we can
assume the mollifier p and the rotations R, to be such that p(R,y) = p(y) for all
y € RY and n € N. Notice that it is possible to satisfy this condition because Rpv, = v
for all n € N. Define u,, € C(TQ,,,,vn) as un(y) := u(Rny). By (4.15) we have

Yl ) < [ W) + V] dy

< /T W) + 9] dy 45,

< TN g, T) + e+ 0, (4.16)

where

Op = Wy, un(y))dy — Wy, u(y))dy
TQu, TQ.

We claim that d,, — 0 as n — oco. Since € > 0 is arbitrary in (4.16), this would confirm
the claim.

Fix n > 0 and let M := C(1 + |jul|%), where C > 0 and ¢ > 2 are given by (H4).
Let K C RY be a compact set such that 7Q, € K and TQ,, C K for every n € N.
Notice that W(z,u(x)) < M for all z € T'Q),. Using the Scorza-Dragoni theorem (see
[21, Theorem 6.35]) and the Tietze extension theorem (see [21, Theorem A.5|), we can
find a compact set E C K with |E| < n and continuous map W:KxRI— [0, 00) such
that W(:C, ) = Wi(x,-) for all x € K \ E and |W(x,u(m))| < M for every x € K. We
claim that

L W) = Wt ay < cn. (417)
and that V N
L W) = W mw)] ay < on. (1.18)
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Indeed
L W) =W uw) | dv= [ W uw) - W] a

< 2M|E|
<2Mn.
A similar argument yields (4.18). Since 7'Q), is bounded

|| Ruutw) - Wi uw)) | ay o, (1.19)
TQu

as n — oo. Thus, from (4.17), (4.18) and (4.19) we obtain
limsup §,, < 2Cn.
n—oo

The claim follows from the arbitrariness of 7.
In an analogous way it is possible to show that liminf,, . g(vp,T) > g(v,T), and
thus we conclude that the function v — ¢(v,T') is continuous.

Step 2. Fix v € S¥~1, >0, and let T > 0 be such that

lg(v,T) —o(v)| < €. (4.20)
Let {vn}nen be a sequence converging to v. By Step 1 we have that
lim g(v,,T) = g(v,T). (4.21)
n—oo

Then, for S > T 4 3 + /N, using (4.2) and (4.20) we get, for m € {1,...,T},
9g(wn,S) < g(vn, T) + R(m,S,T)

=g, T)+ g(vn,T) —g(v,T)+ R(m,S,T)

<oWw)+e+gwnT)—gv,T)+ R(m,S,T).
Taking the limit as S — oo we obtain

o(vn) <o) +e+gwnT)—9gw,T)+ qu;II;O R(m,S,T).
Letting n — oo, by (4.21)
limsupo(v,) <o(v)+e+ él;rréo R(m,S,T).

n—0o0

Finally, taking T'— oo and then m — oo, using (4.12), we conclude that

limsupo(v,) <o(v)+e

n—oo

for every € > 0, and thus we obtain upper-semicontinuity. O

The following technical results, that will be fundamental in the proof of the limsup
inequality (see Proposition 7.1), aim at providing two different ways to obtain, for v €
SN=1 the value o(v).

Lemma 4.5. Let v € A. Then
o(v) = lim ¢*v,T), (4.22)

T—o00

where
901 = o] [ W) + Vel dy - Que @ wec@n) ).

and QD is the family of cubes with unit length side centered at the origin with two faces
orthogonal to v and the other faces orthogonal to elements of A.
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Proof. Fix v € A. From the definition of o(v) it follows that
o(v) < liminf g*(v,T). (4.23)
T—o00

Let {7} }nen with T, — 0o as n — oo. By Lemma 4.1, let {Qn }neny € Qu and {up }nen
with u, € C(Qn, Ty) N L®(T,,Qn; R?Y) be such that
. 1
nh_}n(go W}-l(uanQn) =o(v). (4.24)

For every fixed T),, an argument similar to the one used in Step 1 of the proof of
Proposition 4.4 together with Lemma 3.6 ensure that it is possible to find rotations
Ry : RY — RY with R,(en) = v and Ry (e;) € A foralli=1,...,N — 1 such that

~ 1
‘Jrl(uanQn) - fl(uanRn(Qn))’ < E: (4-25)
where iy, (1) := u, (R, 'z). Thus

1
lim sup g™ (v, T') < lim sup W]ﬂ (Un, T Rn(Qn))

n—oo n—o0

. 1
< lim sup Wfl (tn, TnQn)

n—00 n

=o(v), (4.26)

where the last step follows from (4.24), while in the second to last step we used (4.25). By
(4.23) and (4.26) and the arbitrariness of the sequence {7, } nen, we conclude (4.22). O

Lemma 4.6. For v € SV~ and Q € Q, define
Q) = lim g%, T),
T—o0
where

W, T) = % inf{ /TQ [W(y,u(y)) + |Vu|2] dy : ©weC(Q,T) } )

Then there exists {Qntnen C Qo such that 0% (v) — a(v) as n — oo. In particular, if
v € A it is possible to take {Qn}nen C QN

Proof. First of all notice that, in view of Remark 4.2, 09 (v) is well defined. By definition,
we have o(v) < 0Q(v) for all Q € Q,. Thus, it suffices to prove that it is possible to find
a sequence {Qntnen C Q, such that 0% (v) < o(v) + Ry, where R,, — 0 as n — oo.
Let {T},}nen be an increasing sequence with T,, — oo as n — oo such that

g T < o(v) + %

It is then possible to find {Qn}nen C Q, (or, using Lemma 4.5, {Qy ey C QO in case
v € A) such that for all n € N it holds

1
g9 (v, Ty,) < g(v, Tp,) + . (4.27)
An argument similar to the one used in Lemma 4.1 to establish (4.2) shows that for
every v €SV Qe Q,, T >0,8>T+3++Nand m € {1,...,T}, it holds

g?w,8) < g%, T)+ R(m, S,T), (4.28)

where R(m,S,T) is independent of v € S¥~! and of Q € Q, (see (4.12)), and is such
that
lim lim lim R(m,S,T)=0.

m—00 T—o00 S—00

In particular, for all n € N| it is possible to choose m,, € {1,...,T,} such that
lim lim R(my,S,T,) = 0. (4.29)

n—00 S—o0
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Thus, we get

g° (v, 8) < g9 (v, T},) + R(mn, S, T},). (4.30)
From (4.27) and (4.30), sending S — oo, we get

2
o9 (v) <o(v) + = + lim R(my,S,Ty).
n  S—oo
Using (4.29) we conclude that

o(v)= nlg]goo (v).

5. COMPACTNESS

Proposition 5.1. Let {u,}nen C HY(Q;RY) be a sequence with sup,, ey Fe, (un) < 400,
where e, — 07. Then there exists u € BV (Q;{a,b}) such that, up to a subsequence (not
relabeled), u, — u in L'(;RY).

Proof. Let W : R¢ — [0,00) be the continuous function given by (H3). Let R > 0
be such that Z|p|9 — C > 0 for |p| > R, where C > 0 and ¢ > 2 are as in (H4), and
lal, |b| < R. Take a function ¢ € C°°(R?) such that ¢ = 1 in Br(0) and ¢ = 0 in Byg(0).
Define the function W : R — [0, 00) by

W) i= o @) + (1= 9(0)  lol* =€)

for p € RY. Notice that W(p) = 0 if and only if p € {a,b}. Since W(p) < W(z,p) for
a.e. T € Q, we get

Feuln) 2 [ | W (un(a)) 4 eV, | do =5 7 (),

and, in turn, we have that sup,,cy F-,(un) < +00. We now proceed as in [25] to obtain
a subsequence of {u, },en and u € BV (Q; {a,b}) such that u,, — u in L'(Q;R9). O

6. LIMINF INEQUALITY
This section is devoted to the proof of the liminf inequality.

Proposition 6.1. Given a sequence {e, }nen with e, — 0%, let {u, }nen C HY(Q;RY)
be such that u, — u in L'(Q;R?). Then

Fo(u) < lin_1>inf Fe, (up) -

Proof. Let {up}neny C H'(;R?Y) with u, — u in L'(Q;R?). Without loss of generality,
and possibly up to a subsequence, we can assume that
liminf 7., (uy) = lim F, (up) < 0. (6.1)
n—oo n—o0
By Proposition 5.1, we get u € BV (Q;{a,b}). Set A := {u = a}. Consider, for every
n € N, the finite nonnegative Radon measure
1
Ap = [W (f,un(w)) + €]Vun(x)\2} LN LQ.
€ €
From (6.1) we have that sup, ey An(€2) < co. Thus, up to a subsequence (not relabeled),

A 2> A, for some finite nonnegative Radon measure X in €. In particular,

lirginf Fe, (up) = lirginf An(2) > A(Q). (6.2)
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We claim that for N l-a.e. 2y € 9*A it holds

dA

3, (®0) 2 o(val@o)), (6.3)

where p:= HN~11L9*A. The liminf inequality follows from (6.2) and (6.3). The rest of
the proof is devoted at showing the validity of (6.3).

Step 1. For HN"la.e. z € 9*A we have
—(z) < o0. (6.4)

dp

Fix zp € 0*A satisfying (6.4) and a cube Q, € Q,, with v := v4(z). Let {Jx}ren be
a sequence with d; — 0 as k — oo, such that A(0Q, (xo,dx)) = 0, where Q. (zo,0x) :=
xg + 0, Q, for all £ € N. Then it holds

dA _ MQu (0, 01)) - An(Qu (0, Or))
au ") = B T = T (6
We have
n(Qu (o, 1 1
Awﬁﬁ%”=N4/j [W(fwm0+%w%@w}m
Oy, Oy, Qu(wo,0%) L En n
1
= 5k/ [EW (%—;W,un(wo + 5k2)> + en|Vuy (o + 5kz)|2] dz
= Ok (2 Vun(yP) | d 6.6
= Jop o 12V G, —Y, un(yr) | +enlVun(yp)l” | dy, (6.6)

where in the last step, for the sake of simplicity, we set y}' := xg + 6y + €555, we wrote
20 = my — sp, with m,, € ZN and |s,| < VN, and we used the periodicity of W to
snnphfy, for z=y+ % 58, 2 € Qu,

$+5 +@Sn
W@o;%a.):w(o Aths >,.):W(mn+gky,.)zw<gky,.).

Consider the functions uy () := up(zo + dgz), for n,k € N. We claim that

kli{{.lo nhﬁ\m Huk n = U0,u(x0) HLl(Qy;]Rd) =0, (6.7)

where U, (z) 18 defined as in (1.5). Set Qf :=Q, N{z € RN : z-v > 0} and Q,, its
complement in @,. We get

klggogl_}m ||uk:n UO,VA(aco)HLl(QD;Rd)

= lim lim [/ |un(zo + 0xz) — al dz —|—/ |un (20 + Orz) — b| d:c}
Qv QF

k—o00 n—00

= lim [/ lu(zo + o0rz) — a| dx +/ |u(zo + 0px) — b daz]

1
—Jim e | [ u(y) ~aldy + | [uly) — b dy
koo 03 | JQu(wo.di)nH Qu (20,0K)NH;F

‘Ql,(ajo,(sk)ﬁHy_ﬂB| ‘Qy(xo,(sk)ﬂﬂjﬂA‘
N + N
5k3 5k’

= |b—al lim [
k—o0

=0,
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where H} := {z € RN : x-v > xo-v}, H, is its complement in R and B := Q\ A.
The last step follows from (i) of Theorem 2.7.

Step 2. Using a diagonal argument, and (6.7), it is possible to find an increasing
sequence {ny}ren such that, setting

Eny,
77k = %}: ) T = lesnk ) ’U}k(ﬂ?) = uk,nk (QU - xk) )

the following hold:
(1) limp o0 i = 03
(ii) hmk—mo T = O;
(iii) wg — uo, in L9(Q,; RY) for all ¢ > 1;
(iv) we have

) 1 e n
oy [W (yjumykk)) +ank\wnk<ykk>\2} dy
Qu—2xy, UL

k—o0 Eny,
. . 1 5k’ n ny |2
= lim lim d — W =y, un(yr) | +enVun(yp)|* | dy .
k—00 n—r00 Q,—Sns En
From (6.5), (6.6) and (iv) we get

) : 1 Yy 2

—(xp) = lim [W(,wk >+ k| Vwg :|d .

du( )= lim oo Ln” () | +nlVwr(y)l” | dy

Let Qi be the largest cube contained in @, — x centered at zero and having the same
principal axes of @,. Since zp — 0 as k — o0, Qp C Q, — z for k large and the
integrand is nonnegative, we have that

dA . 1
Pao) ztmswp [ L (L)) +miVuntl [ay. 69

Step 3. Finally we modify wy, close to 0Qy in order to render it an admissible function
for the infimum problem defining o(v) as in Definition 1.3. Using Lemma 3.1 we find a
sequence {wW }ren C HY(Q,;R?) such that

lim inf F,, (wg, Qx) > limsup F, (w0, Qu) , (6.9)
k—o0 k—o0
and with wy = (ug)1/p,,, on 0Q,, where (ug);,y, , is defined as in (1.6). Hence, by (6.8)
and (6.9)
dA . 1 Yy _ _ 2
—(x thsup/ [W (,wk Y ) + k| Vg (y ]dy
dM(O) msup | LW ) ) + melVior(y)|
—tiwsup [ [ W ) + V() P dz
k—o00 %QV
= limsup 7y /1 (W (2, 08(2)) + |Vur(2)* ] dz
k—o00 e Qv
> o(v),
since wy, € C(Qy, nik), where vg(2) := wk(nxz), and this concludes the proof. O

7. LIMSUP INEQUALITY

In this section we construct a recovery sequence.
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Proposition 7.1. Let u € BV (Q;{a,b}). Given a sequence {e, tnen with ¢, — 0T as
n — 0o, there ewist {up}nen € HY(RY) with uy, — u in LY(Q;RY) as n — oo such
that
lim sup F¢, (un) < Fo(u). (7.1)
n—oo
Proof. Notice that it is enough to prove the following: given any sequence {&;, }nen with
en, — 0 as n — o0, it is possible to extract a subsequence {e,, }ren for which there exists
{up}ren C HY(Q;R?) with up — u in L' (Q;R?) as k — oo such that
limsup Fe, (ux) < Fo(u)-
k—o00

Since L'(2;RY) is separable, we conclude using the Urysohn property of the I-limit (see
[14, Proposition 8.3]).

Case 1. Assume that the set A := {u = a} is a A-polyhedral set (see Definition 3.7).
We need to localize the I'-limit of our sequence of functionals. For {, }nen with 6, — 0,
ve LY RY) and U € A(Q) we set

Wis,y (v;U) = inf { lim inf Fs, (0, U) : vp — v in LYU;RY), v, € Hl(U;Rd)} :

Let C be the family of all open cubes in ) with faces parallel to the axes, centered at
points x € 2N Q and with rational edgelength. Denote by R the countable subfamily
of A(€2) whose elements are € and all finite unions of elements of C, i.e.,

k
R:={Q} U {UCi:kEN,CZ'EC}.
i=1
Let €, — 07. We will select a suitable subsequence in the following manner. We
enumerate the elements of R by {R;}ien. First considering R;, by a diagonalization
argument we can find a subsequence {e,,}jen C {&n}nen and functions {ufl }ien C
H'(Ry;R?) such that

R .
u;* —u in LY(R;;RY),

and
W{sn]. } (u; Ry) = jlg(r)lo .7:5”]_ (uf‘1 ,R1).

Now, considering Ry, we can extract a further subsequence {e,, i }een and find functions

{ukRZ} C H'(Ry;R?) such that
ukR2 —u in L'(Ry;RY), uﬁl —u in LY'(Ry;RY),
and
™

}(us Rp) = lim Fe, (u?, Ro), W{ }(U;Rl) = lim 7., (ujl, Ry).

Eng k—o0 eIk

Ik e
Continuing along the {R;} in this fashion and employing a further diagonalization argu-
ment, we can assert the existence of a subsequence {7 },,en of {&, }nen with the following

property: for every C € R, there exists a sequence {USR}HEN C HY(C;R?) such that
uSR —u in Ll(C’;Rd)7
and

Wiy (u; C) = lim Fig(us,C). (7.2)

n—o0

We claim that
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FIGURE 4. Thesets UCV Cc W,and VP c V, W c W\ U.

(C1) the set function A : A(2) — [0, 00) given by
A(B) := Wiry(u; B)

is a positive finite Radon measure absolutely continuous with respect to p :=

HN-LL %A,
(C2) for HN~Lae. o€ dA, it holds
dA
@(aﬁo) < o(v(z)) . (7.3)

This allows us to conclude. Indeed, we have that
lim faﬁ(u?R,Q) = Wery (u; Q)

= /{Mo Zi(a?) dHNfl(x)
N-1

< /a | ol(@) @)

= Fo(u).

Step 1. We first prove claim (C1).

We use the coincidence criterion in Lemma 2.11 to show that A\(B) is the restriction
of a positive finite measure to A(2).

We will first prove (i) in Lemma 2.11. Let U, V,W € A(2) be such that U cC V C W.
For § > 0, let V9 and W? be two elements of R such that VO c V, W c W \ U, and

N (a*AO AW\ (VU W‘S))> <. (7.4)

Let {vp}neny € HY (VO RY) and {wylnen € HY(W?;RY) be such that v, — u in
LYV RY), wy, — win LYW R?), and (see (7.2))

Wicpy (us V?) = lim Fop(vn, V°), (7.5)
Wiery (u; W) = lim For (wn, W0). (7.6)

Let p: RY — [0, +00) be a symmetric mollifier, and define

() i= (ngp(;%) - (7.7)
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From Remark 3.2 we can assume that w, = &, * w on OW?® and v, = &, * u on V.
Using a similar argument to the one found in Lemma 3.1 applied to the sets F, :=
(WIO\VO\ (WO\ V™ and E := W\ V? with boundary data &, % u, it is possible to
find functions {@,} C C®°(W?) with supp Vi, C Lo (here we are using the notation
of the proof of Lemma 3.1) such that, if we define the function u, : W — R? as

U, = Xysuws (ntn + (1 — on)wn) + X(W\(V5UW5)(§n *u),
we have that u, € H'(W;R?) and
lim F_x (un, L{0) = 0. (7.8)

n—oo

Notice that u, — u in L*(W;R?) as n — co. Moreover, we get
Wiery (u; W) < lirginf Fer (tn, W)
< liminf | Fog (un, V) + For (tn, W)
+ Foe (n, WA (V2 U WD) + Fop (un, L)
< Wery (u; VO) + Wiery (u; W°)
+ lim inf F_z (un, W\ (VO uWw?)) (7.9)
where in the last step we used (7.5), (7.6) and (7.8). We see that
lim inf P (un, W\ (VOuUw?))
= lirginf Fer <§n su, {x € W\ (VOUW?) : dist(z,0A4) < 55})
N 4 0N . A < &R
< Climinf LY{z e W\ (VOUW?) : dist(z,04) <er})

n—o0 823

= OHN! (aA AW\ (VU W5)))
< s, (7.10)

where in the last step we used (7.4). Using (7.9), (7.10) and the fact that V% CV and
W Cc W\ U, we get

Wiery (s W) < C8 4+ Wiery (45 V) + Wiery (u; W)
Letting 6 — 07, we obtain (i).
We proceed to proving (ii) in Lemma 2.11. Let U,V € A() be such that UNV = ().
Fixing n > 0, we can find u,, € H'(U U V;R?) such that u, — u and
Wiery(w; UUV) > linginf Fer(un, UUV) —n.
Then, since the restriction of u, to U and V converges to u in these sets,
and

Wiery (us V) < liminf For (up, V)

n—oo
by definition, we have
AU)+AV) < liniinf For (un,U) + linginf For (un, V)

< liminf For (up, UUV) < AU UV) + 1.

n—o0
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Sending n — 07, we conclude
AMU)+ V) <AUNYV).
To prove the opposite inequality, as in the proof of (i), we select U 0 c U, VO CV with
U°, V% € R and
N1 (E)*Ao N ((U Uv)\ <U5 U V5>)) <. (7.11)

Again we may select v, € H'(V%R?) and u, € H'(U%R?) such that v, — u in
LY (VO RY), u, — uin LY(U%;RY) and

Wier) (un; U°) < liminf Fop (un, U°), (7.12)
Wiery (vn; V0) < lim inf F.r (vn, Vo). (7.13)

As in the proof of (i) of Lemma 2.11, we may assume without loss of generality that
Up = Epxuon U, v, = &, %v on OV, and we can find functions ¢,, € C*(UNV;[0,1])
so that, defining

wy, = Xpouys (Pntin + (1 — @n)vn) + X@wuv)\@wsuve)én * u
we have w, € H'(U UV;R%) and
lim F_r (wy, L) = 0, (7.14)

n
n—oo

where Vo, C LSO), again using the notation of Lemma 3.1. Observing that w, — u in
LY U UV;RY), we get

AUUV) < lirginf};;z (wy, UUYV)
< | For (un, U®) + For (00, V°)

+ For (0, (UUV)\ (U UV?)) + For (wn, Lﬁfo)}

< ANU®) + A(V?) + liminf For (wy,, (U UV)\ (U UV?))

n—oo

where in the last step we used (7.12), (7.13), and (7.14). Noticing that

lim inf Fog (wn, (U U V) \ (U° UVP)) < CHN (8*A0 N ((U Uv)\ (U5 U V‘5>)>

n—oo

and by (7.11) we have
AU UV) < AMU) + MV 4+ Co < AMU) + A\V) +C6

and, letting 0 — 0, we conclude (ii).

We prove (iii) in Lemma 2.11. Let ' CcC Q. Recalling (7.7), we know that u x &,
is constant outside a tubular neighborhood of width e around 0*A and that ||V (u *
&n)llze < % . Thus

M) = Wiery () < liminf For (u* &, ) < CHYHQ' no*A) = Cu(Y). (7.15)
This shows, by the coincidence criterion Lemma 2.11, that AL is a Radon measure.
Since p is a finite Radon measure in Q and (7.15) holds for every Q' CC 2, we conclude
that A is a finite Radon measure in € absolutely continuous with respect to p, which
was the claim (C1).
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Step 2. We now prove (C2). Let 2o € QN 0*A be on a face of 9*A (since the set is
polyhedral) and write v := v4(z¢). Using Proposition 3.5 it is possible to find a rotation
R, and T € N such that, setting Q, := R,Q, we get Q, € Q, and

W (x 4+ nTv,p) = W(x,p),

for a.e. = € Q, every v € A that is orthogonal to one face of Q,, every p € RY and
n € N. By Remark 2.8 it follows that for u-almost every zy € 2,
dx o AMQu(zo,¢€))
@(%) B 51—1>Ig)l+ gh-1 7
where Q,(zg,¢) := x9 + Q. In view of Lemma 4.6, it is possible to find {Tj}reny C TN
with T}, — 0o as k — oo, and {ug tren C C(Qy,T)) such that

)= Jim e [ W) + (T dy

(7.16)

k—o00 Tév_l
1
= lim [TkW(Tkx,vk(x)) + vuk(g;)yﬂ dz, (7.17)
k—o0 Qv Ty
where v, @ Q, — R? is defined as vg(x) := up(Thz) and 0@ (v) is defined as in

Lemma 4.6. Without loss of generality, by density, we can assume uy € C(Q,,Tk) N
L>®(TQ,; RY). Since the choice of mollifier p € C°(B(0,1)) is arbitrary by Lemma 4.3,
we will assume here that supp p C B(0, 3) and thus

. 1
up (Trpx) = wop(x) if |Trz| > 3

For z € RN let x, := 2 - v and 2’ := x — z,v. Moreover, set Q! := Q, Nv*.

For t € (—3,3), extend the function 2’ — vy (2’ 4 tv) to the whole v+ by periodicity,
and define

ug, () if |z,| > 5%?’“,

v, () = (7.18)
w(cft) it ol < k.
The idea behind the definition of the function USL is the following (see Figure 5): for
every fixed € > 0 and k € N we are tiling the face of A orthogonal to v with e*X-rescaled
copies of the optimal profile u;. The fact that A is a A-polyhedral set and that T € TN
ensure that it is possible to use the periodicity of W to estimate the energy in each cube

of edge length EZ}% The presence of the factor € in (7.18) localizes the function around
the point xp and accommodates the blow-up method we are using to prove the limsup
inequality and, because of periodicity, will play no essential role in the fundamental
estimate (7.25).

Let m,, € R, (TZN) and s, € [0,7)" be such that & = My + sp, and let

En
Tep 1= ———8p .

Note that for every £ > 0 we have
lim z., =0. (7.19)

n—0o0

Define the functions u, . 1 € HY(Q,(xg,¢); RY) by

Tr — X0
U e k(T) := ’USL ( - mg,n) )

We claim that there is £'(xq) such that for every 0 < & < &’(x¢) and any k € N

lim |’uTL7€’k - UHLI(Q,,(zO,a);Rd) =0. (720)

n—oo
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QV(CEO’ 6)

()

FIGURE 5. The construction of the recovery sequence v, ;.: for every

e > 0 and k € N fixed, we defined it as g, in the green region and, in
6§Tk
3

each yellow square of side length , as arescaled version of the function

Uk -

Since g is on a face of 0*A, we can find &’ such that v = g, (z — x¢) in Q,(zo,€’).
Changing variables,

/ e (@) — ()| de
Qu(l‘o,S)

(e (2
/(eQ e )Ntz |< Tk ) U"”“(E) —ulo + 2 +ewen)\dz.
v—ecdemn HE S

Since the functions vr(f;c are uniformly bounded with respect to n € N, we prove our

. - . R Ty
claim by noticing that [(eQ, — exen) N {2 : |2, < 255} — 0 as n — oo.
Thus, using the definition of A and (7.20), we get
W < linrr_l)ioréf ENL—l]:éfﬁ (Un e ks Qu(o, €)). (7.21)
We want to rewrite the right-hand side of (7.21) in terms of the functions v; ,. To do
so, changing variables, we write ’

1
F:N—_lfeﬁ (un,e,ka Qu (-T07 5))

€ Tot+¢€
= [ [ (B nstoo o)) + < Tamenton + o) |

eRk R
c TotEy ) En 17, ©) 2
- a_RW R ,Un’k(y — Ten) | + ?|an,k(y — Tep)|” | dy
€ o+ (Y + Tep) eR
- /Q ~ [E—RW( R 7vff,i<y>) + Vo) | dy

€ € ex
[ (G (e Frtdw )+ 90 |0y
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R
_ = (¢) n 190© (2 | d
/C;u—lsn |:5RW< R,Unk( )> + g |vvn7k(y)‘ y
—]:R( nk;qu l‘a,n)a

where in the second to last step we used the periodicity of W.
We claim that

lim sup lim sup lim sup F_z (v}, 4, (Qu — 2Zen) \ Q) = 0. (7.22)

k—o00 e—0t n— 00 -

Indeed, using Fubini’s Theorem and a change of variables, we have

Fﬁ (Ufz,]w (QV - xe,n) \ Qu)

Ry,
> < gy (e) (e) 2
/m/( L—rem)\Q) [55 (€R’U”k(y)> WU ) ] y
g [P (i ) on (7 0))
k k +Trx,v |, vk +x,v
1@ zen)\@, eRX Ty eRTy

1 ! 2
+ Wk(jsz +a,v ) ]d?—[Nl(x’)dml,.

Fix k € N. By (7.19), for each ¢ > 0, let n(¢) € N be such that |z, | < € for all n > n(e).
In particular we have (Q, — z.,)\ @, C (1+2)Q,\ Q.. Set 5" := g For every
xy, € (— 2, 2) the functions f, g : @), — R defined by

2
f(@) =W (T + Trzov), vp(z’ + zpv)),  g(@') := ‘Vvk <x' + l/xl,>

are (!, periodic. The Riemann-Lebesgue Lemma yields

lim f( Sk AHN ()

n—0o0
= U / W (Typa! + Typzov), vi(a' + zv)) dHY 1 (2')  (7.23)
Q,
and
lim | g(uy SR AHN T (2) |Uy/ Vo (2 + z,v) | aHN " (2) (7.24)
e Q,

for every open and bounded set U ¢ RN¥~!. Thus we get
limsup 7 (vn ks (Qu = 2e) \ Q)

n—oo
/ /
< limsup/ / T;JV((T]C ;ZCT +Tk:v,,1/>,vk< ;2 +x,,y>>
n—o0 5/ (1+9)Q1\Q) En Lk Enlk
1 ex’ 2
+ T V’Uk< RTk +x,v )

k
<fa+aa,\ @l A T (T oe) + - (Vo) o).

Sending € — 0 we obtain (7.22).
Finally, we claim that

hmsuphmsuphmsup]: r (V4 Qu) = o (). (7.25)

k—o0 e—0t n—o0
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Recalling the definition of the functions vff;e (see (7.18)) and using Fubini’s Theorem we
can write

R
Fip (000 = F (10 @01 {Joul < 27 })

5

/n = / ’+z—::v,,1/ ez’ N ETLV

v
BTk Jg 5R eR " eR R\ eRTy, T eRT,
ex! cx, v\ |?
—|—Vvk<—i— )‘ ]dx’d:z:
ndg EET]@ 6773T]€ v
3 rwlT ex! T ex!
—/ // k ksﬁTk + Ly, Vg RT} + v

ex’
Vg <€RTk + tu)

Thus, using (7.23) and (7.24) (that are independent of €), we obtain

1
lim lim lim ]: = (v nk,Qy) = hm (TkW(Tkx,vk(az)) + T]Vvk($)|2>dx
k

k—o00 e—0+t n—oo I k—o00
Qu

— UQV(V)‘
From (7.21), (7.22) and (7.25) we get

A € 1
lim M < lim sup lim sup lim sup e N7 LR (Une ks Qu(To,€))
e—0 e k—o0 e—0t n—o00

< o). (7.26)

In order to conclude, we use Lemma 4.6 to find a sequence {Qn}neny C Q2 such that
0% (v) = o(v) as n — oo. Using (7.26) we obtain for every n € N

dA (Qn(l'(),{f)) Q
R— e NN < n
du( 0) = il—>0 gN-1 S0 (v)
and, letting n — oo we have
dX
@(.’L’O) S 0'(1/).

Using the Urysohn property, we conclude that if the set A := {u = a} is A-polyhedral,
then there exists a sequence {uy }neny C H'(;R?) with u, — u in L'(Q;R?) such that
lim sup F,, (un) < Fo(u).

n—oo

Case 2. We now consider the general case of a function v € BV (€Q;{a,b}). Using
Lemma 3.8 it is possible to find a sequence of functions {vi}reny C BV (€;{a,b}) with
the following properties: the set A := {vx = a} is a A-polyhedral set and, setting
A :={u = a}, we have

m {|xa, = xallr) =0, lim |P(Ag; ©2) — P(A; Q)] =

k—o0 k—o0
From the result of Case 1, for every k € N it is possible to find a sequence {uF},en C
H'(Q;RY) with uf — vg as n — oo, such that

lim sup Fe,, (uf) < Folvg) .

n—o0
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Choose an increasing sequence {n(k)}ren such that, setting uy := ufl(k),

1 1
lure =l < = Fenup) < Fo(vx) + . (7.27)
Recalling that the function o is upper semi-continuous on S™V~! (see Proposition 4.4),
from Theorem 2.9 and (7.27) we get

limsup 7- (uF) < limsup Fo(vg) < Fo(u).

k—o00 k—o00

This concludes the proof of the limsup inequality. O

8. CONTINUITY OF o

To prove that the function v +— o(v) is continuous, notice that Theorem 1.6 implies,
in particular, that the functional Fy is lower semi-continuous with respect to the L!
convergence. It then follows from [3, Theorem 5.11] that the function o, when extended
1-homogeneously to the whole R is convex. Since o(v) < oo for every v € SV=1 (see
Lemma 4.1), we also deduce that o is continuous.

For the convenience of the reader, we recall here the argument used in |3, Theorem
5.11] to prove convexity. Take vy, vi,vy € RY such that vy = v1 + vo. We claim that
o(vo) < o(v1)+o(v2). Using the 1-homogeneity of o, this is equivalent to convexity. To
prove the claim, let £ := {z € Q : z -1y < a}, where @ € R is such that Q\ E # ()
and QN E # (. Let X C RY be the the two dimensional space generated by v; and
vy, consider the unit two dimensional square Q' and a triangle T with outer normals

— 20 PLoand #2 and such that
[vol” vl [val

L ol el
lwol™ [rol

are the lengths of the side of T orthogonal to v, v1, and vy respectively. Let Q@ C RY be

the unit cube and Q := {:c’ € RN=2:(0,0,2') € Q}. Let R : RY — RY be a rotation

such that R ({(z1,22,0,...,0) € RN : (z1,22) € (-1/2,1/2)?}) = Q'. Let z € RN and

r > 0 be such that z+rQ C Q\ E. Then there exists A such that AT C rQ’. For n € N,

let
n 1 _

where the z;’s are such that the elements in the second union are pairwise disjoint and
z + </\T X Q) C z+ rQ. It can be shown that xg, — Xxg, so that by lower semi-
continuity of Fy we obtain

L (o) + 0(m) — o (w)].

0 <Timinf [ Fo(xz,) — Folxe)] = ol

This proves the claim.
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