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Abstract. We quantitatively study the interaction between diffusion and
mixing in both the continuous, and discrete time setting. In discrete time, we
consider a mixing dynamical system interposed with diffusion. In continuous
time, we consider the advection diffusion equation where the advecting vector
field is assumed to be sufficiently mixing. The main results of this paper
estimate the dissipation time and energy decay based based on an assumption
quantifying the mixing rate.

1. Introduction.
Diffusion and mixing are two fundamental phenomena that arise in a wide variety

of applications ranging from micro-fluids to meteorology, and even cosmology. In
incompressible fluids, stirring induces mixing by filamentation and facilitates the
formation of small scales. Diffusion, on the other hand, efficiently damps small
scales and the balance between these two phenomena is the main subject of our
investigation. Specifically, our aim in this paper is to quantify the interaction
between diffusion and mixing in a manner that often arises in the context of
fluids [DT06,CKRZ08,LTD11,Thi12].

In the absence of diffusion, the mixing of tracer particles passively advected
by an incompressible flow has been extensively studied. Several authors [MMP05,
LTD11,Thi12] measured mixing using multi-scale norms and studied how efficiently
incompressible flows can mix (see for instance [Bre03,LLN+12,IKX14,ACM16,YZ17]
and references therein). In this scenario, however, there is no apriori limit to the
resolution attainable via mixing.

In contrast, in the presence of diffusion, the effects of mixing may be enhanced,
balanced, or even counteracted by diffusion (see for instance [FP94,TC03,FNW04,
CKRZ08,INRZ10,KX15,MDTY18,MD18]). In this paper we quantify this interaction
by studying the energy dissipation rate. Roughly speaking, our main results can be
stated as follows:

(1) In the continuous time setting we show (Theorem 2.9) that if the flow is
strongly mixing with a square integrable rate function, then the dissipation
time is bounded by C/(ν|ln ν|δ) for some explicit δ > 0. Here ν is the
diffusivity, and we recall that the dissipation time (see Definition 2.1, below)
is the time required for the system to dissipate a constant fraction of its
initial energy. We also obtain a similar result if the flow is weakly mixing
instead (Theorem 2.10).

2010 Mathematics Subject Classification. Primary 76F25; Secondary 37A25, 76R50.
Key words and phrases. Enhanced dissipation, mixing.
This material is based upon work partially supported by the National Science Foundation under

grants DMS-1252912, DMS-1814147 and the Center for Nonlinear Analysis.
1



2 FENG AND IYER

(2) Under similar assumptions in the discrete time setting we obtain stronger
results (Theorems 2.3 and 2.4), and show that the dissipation time is now
at most C/νδ for some explicit δ ∈ (0, 1).

(3) In the discrete time setting we show (Theorem 2.7) that the energy can not
decay faster than double exponentially in time. Moreover, using elementary
Galois theory, we obtain a family of examples where the energy indeed
decays double exponentially in time. (In the continuous time setting the
double exponential lower bound is known [Poo96], however, to the best of
our knowledge there are no smooth flows which are known to attain this
lower bound.)

(4) In bounded domains, Berestycki et. al. [BHN05] studied asymptotics of
the principal eigenvalue of the operator −ν∆ + u · ∇ as ν → 0. We show
(Proposition 2.13) that one can use the dissipation time to obtain quantitative
bounds on the rate at which the principal eigenvalue approaches 0.

We remark that our results on strongly mixing flows only require the mixing
rate function to be square integrable. If the mixing rate function has exponentially
decaying tails, then we expect that stronger bounds on the dissipation time can be
obtained. Our techniques, however, do not yield stronger bounds for exponentially
mixing maps.

Plan of this paper. We begin by defining mixing rates, and state our main
results in Section 2. Next, in Section 2.1, we prove the dissipation time bounds
in the discrete time setting (Theorems 2.3 and 2.4). In Section 4 we study toral
automorphisms, and use them to prove our result on energy decay (Theorem 2.7).
These proofs require certain facts on algebraic number fields, and may be skipped
by readers who are not familiar with this material. In Section 2.2 we prove the
dissipation time bounds in the continuous time setting. The proofs are similar to the
discrete case, with a few key differences that we highlight. Finally we conclude this
paper with two appendices. The first (Appendix A) provides a brief introduction
to mixing and the notion of mixing rates we use to formulate our results. The
second (Appendix B) shows that the characterization of relaxation enhancing flows
in [CKRZ08,KSZ08] still applies in the context of pulsed diffusions.

Acknowledgements. We would like to thank Giovani Alberti, Boris Bukh, Gian-
luca Crippa, Charles R. Doering, Tarek M. Elgindi, Anna L. Mazzucato, Jean-Luc
Thiffeault, and Xiaoqian Xu for many helpful discussions.

2. Main Results.
We devote this section to stating our main results. In the discrete time setting we

consider pulsed diffusions (mixing maps interposed with diffusion), and our results
concerning these are stated in Section 2.1, below. In the continuous time setting we
consider the advection diffusion equation, and our results in this setting are stated
in Section 2.2, below.

2.1. Pulsed Diffusions. In our setup we will consider a mixing map on a closed
Riemannian manifold. While the primary manifold we are interested in is the torus,
there are, to the best of our knowledge, no known examples of smooth exponentially
mixing maps on the torus that can be realized as the time one map of the flow of a
smooth incompressible vector field. There are, however, several examples of closed
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Riemannian manifolds that admit such maps (see [Dol98,BW16] and references
therein). Since working on closed Riemannian manifolds does not increase the
complexity by much, we state our results in this context instead of restricting our
attention to the torus.

Let M be a closed d-dimensional Riemannian manifold, and ϕ : M → M be a
smooth volume preserving diffeomorphism. For simplicity we will subsequently
assume that the volume form on M is normalized so that the total volume, |M |,
is 1. Let ν > 0 be the strength of the diffusion, ∆ denote the Laplace-Beltrami
operator onM , and L2

0 = L2
0(M) denote the space of all mean zero square integrable

functions on M . Given θ0 ∈ L2
0, we consider the pulsed diffusion defined by

θn+1 = eν∆Uθn .(2.1)

Here U : L2(M) → L2(M) is the Koopman operator associated with ϕ, and is
defined by Uf = f ◦ ϕ. Our aim is to understand the asymptotic behaviour of the
energy ‖θn‖L2

0
in the long time, small diffusivity limit. For notational convenience,

we will use ‖·‖ to denote the L2
0 norm, and 〈·, ·〉 to denote the L2

0 inner-product.
Since ϕ is volume preserving, the operator U is unitary and hence if ν = 0 the

system (2.1) conserves energy. If ν > 0 and ϕ is mixing, then Koopman operator U
produces fine scales which are rapidly damped by the diffusion. We quantify this
using the notion of dissipation time in [FW03] (see also [FNW04,FNW06]).

Definition 2.1 (Dissipation time). We define the dissipation time of the operator
U by

τd
def= inf

{
n ∈ N

∣∣∣ ‖(eν∆U)n‖L2
0→L2

0
<

1
e

}
= inf

{
n ∈ N

∣∣∣ ‖θn‖ < ‖θ0‖
e

for all θ0 ∈ L2
0

}
.

Since U is unitary we clearly have ‖θn‖ 6 e−νλ1‖θn−1‖, where λ1 > 0 is the
smallest non-zero eigenvalue of −∆ on M . Consequently, we always have

(2.2) τd 6
1
νλ1

,

Our aim is to investigate how (2.2) can be improved given an assumption on
the “mixing rate” of ϕ. Recall, (strongly) mixing maps are those for which the
correlations 〈Unf, g〉 decay to 0 as n→∞ for all f, g ∈ L2

0. Weakly mixing maps
are those for which the Cesàro averages of |〈Unf, g〉|2 decay to 0 (see Appendix A for
a brief introduction and [EFHN15,KH95,SOW06] for a comprehensive treatment).
We quantify the mixing rate of ϕ by imposing a rate at which these convergences
occur.

Definition 2.2. Let h : N → (0,∞) be a decreasing function that vanishes at
infinity.

(1) Given α, β > 0, we say that ϕ is strongly α, β mixing with rate function h
if for all f ∈ Ḣα, g ∈ Ḣβ and n ∈ N the associated Koopman operator U
satisfies ∣∣〈Unf, g〉∣∣ 6 h(n)‖f‖α‖g‖β . (2.3)

(2) Given α, β > 0, we say that ϕ is weakly α, β mixing with rate function h
if for all f ∈ Ḣα, g ∈ Ḣβ and n ∈ N the associated Koopman operator U
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satisfies ( 1
n

n−1∑
k=0

∣∣〈Ukf, g〉∣∣2)1/2
6 h(n)‖f‖α‖g‖β . (2.4)

Here Ḣα = Ḣα(M) is the homogeneous Sobolev space of order α, and ‖·‖α
denotes the norm in Ḣα. In the dynamical systems literature it is common to
use Hölder spaces instead of Sobolev spaces, and study strongly mixing maps that
are exponentially mixing (i.e. h(t) = c1e

−c2t for some c1 <∞ and c2 > 0). Using
Sobolev spaces and asymmetric norms on f and g, however, is more convenient for
our purposes. In order not to detract from our main results, we briefly motivate
and study the above notions of mixing in Appendix A. Our main results on the
dissipation time are as follows:

Theorem 2.3. Suppose ϕ is strongly α, β mixing with rate function h, where
α, β > 0 and

∑∞
0 h(n)2 <∞. Then there exists a constant C > 0 such that

τd 6 C
( ∞∑

0
h(n)2

) 2
1+2α+2β

ν−
2α+2β

1+2α+2β ,

for all ν sufficiently small.

Theorem 2.4. Suppose ϕ is weakly α, β mixing with rate function h, where α, β > 0.
Then the dissipation time τd is bounded by

(2.5) τd 6
17
νλN

.

Here 0 < λ1 < λ2 6 · · · are the eigenvalues of the Laplacian, where each eigenvalue
is repeated according to its multiplicity, and N = N(ν) is the largest integer which
satisfies

λN

(
h−1

((
2Nλα+β

N

)−1/2
)

+ 1
)2
6

1
ν
.

where h−1, defined by

h−1(x) def= inf
{
n ∈ N

∣∣ h(n) 6 x
}
.

is the upper inverse function of h.
If further the rate function h is the power law

(2.6) h(n) = c1
ns

,

for some s ∈ (0, 1/2], then the dissipation time is bounded by

(2.7) τd 6 Cν
− d+2β+2α
d+2s+2β+2α .

for some explicit constant C = C(c1, s).

Note that in both the bounds provided Theorem 2.3 and 2.4, we have ντd → 0.
Thus the results of both Theorems 2.3 and 2.4 are stronger than the elementary
bound (2.2).

Remark 2.5. Notice that if ϕ is strongly α, β mixing with rate function h, then it is
also weakly α, β mixing with rate function

hw(n) def=
( 1
n

n−1∑
k=0

h(k)2
)1/2
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If further H def=
∑
h(n)2 < ∞, then hw(n) 6

√
H/n. In this case, however, one

immediately sees that the bound provided by Theorem 2.4 is weaker than that
provided by Theorem 2.3.

Before proceeding further, we note that Fannjiang et. al. [FNW04] (see also [FW03,
FNW06]) also obtain bounds on the dissipation time τd assuming the time decay of
the correlations of the diffusive operator eν∆U for sufficiently small ν. Explicitly
they assume sufficient decay of 〈(eν∆U)nf, g〉 as n→∞, and then show that the
dissipation time τd is at most C/|ln ν|. In contrast, our results only assume decay
of the correlations of the operator U (without diffusion) as in Definition 2.2.

In continuous time, Constantin et. al. [CKRZ08] (see also [KSZ08]) characterized
flows for which the dissipation time is o(1/ν). Their result can directly be adapted
to pulsed diffusions as follows.

Proposition 2.6. The Koopman operator U has no eigenfunctions in Ḣ1 if and
only if

lim
ν→0

ντd = 0 .

Since the proof is a direct adaptation of [CKRZ08,KSZ08], we relegate it to
Appendix B. We remark, however, that without a quantitative assumption on the
mixing rate of ϕ, it does not seem possible to obtain more information regarding
the rate at which ντd → 0.

We now turn to studying the energy decay as n→∞. Clearly

‖θn‖ 6
∥∥∥((eν∆U)τd

)bn/τdcθ0

∥∥∥ 6 ∥∥(eν∆U)τd
∥∥bn/τdc‖θ0‖ 6 e−n/τd‖θ0‖ ,

and thus the energy ‖θn‖ decays at least exponentially with rate 1/τd as n→∞.
We believe, however, that that the above bound is not from optimal. In fact,
we conjecture that for any exponentially mixing map the energy decays double
exponentially in n. The reason we expect a double exponential decay rate is twofold:
First, for the continuous time advection diffusion a double exponential lower bound
was proved in [Poo96]. Adapting this to the discrete time setting we can prove the
same lower bound. Second, if ϕ is the Arnold cat map, it is well known [TC03] that
the energy decays double exponentially. We show that this remains true for a large
class of toral automorphisms. The following theorem states our results concerning
energy decay.

Theorem 2.7 (Energy decay). For any θ0 ∈ Ḣ1, there exist finite constants
C = C(ϕ) > 0 and γ = γ(ϕ) > 1 for which the double exponential lower bound

(2.8) ‖θn‖2 > ‖θ0‖2 exp
(
−Cν‖θ0‖21
‖θ0‖2

γn
)
,

holds. Moreover, there exists a map ϕ for which the above bound is achieved.
Explicitly, if ϕ is an toral automorphisms which has no invariant proper rational
subspaces, and no eigenvalues that are roots of unity, then there exists finite constants
C and γ > 1 such that

(2.9) ‖θn‖2 6 ‖θ0‖2 exp
(
−νγ

n

C

)
,

for all θ0 ∈ L2
0.
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We prove Theorem 2.7 in Section 4. Recall toral automorphisms are diffeomor-
phisms of the torus onto itself that can be lifted to a linear transformation on the
covering space Rd, and Section 4 also contains a brief introduction to such maps.

Note that for maps ϕ that achieve the upper bound (2.9), the dissipation time
satisfies
(2.10) τd 6 C|ln ν| .
We will show (Proposition 4.1) that the toral automorphisms considered in Theo-
rem 2.7 are all exponentially mixing. This gives a large class of exponentially mixing
diffeomorphisms for which the dissipation time is of order |ln ν|. For general expo-
nentially mixing diffeomorphisms, however, it is not known whether the dissipation
time is still of order |ln ν|.

Observe that the bound on the dissipation time provided by Theorem 2.3 is
only algebraic, and hence weaker than (2.10). This is because Theorem 2.3 only
requires the mixing rate function h to have a square integrable tail. In principle, the
faster the tail of h decays, the smaller the dissipation time should be. Our proof of
Theorem 2.3, however, does not utilize the decay rate of the tail of h, and provides
the same upper bound (up to constants) for all square integrable rate functions.

2.2. Advection Diffusion Equation. We now turn to the continuous time setting.
Let M be a (smooth) closed Riemannian manifold, and u be a smooth, time
dependent, divergence free vector field on M . Let θ be a solution to the advection-
diffusion equation

(2.11)
{
∂tθs + (u(t) · ∇)θs − ν∆θs = 0 in M , for t > s,

θs(t) = θs,0 for t = s.

for t > s, with initial data θs(0) = θs,0 ∈ L2
0(M). Since u is divergence free we have

(2.12) 1
2∂t‖θs(t)‖

2 + ν‖θs(t)‖21 = 0 ,

and hence
(2.13) ‖θs(t)‖ 6 e−νλ1(t−s)‖θs,0‖ .
Our interest, again, is to to investigate how this decay rate can be quantifiably
improved when the flow of u is mixing. Similar to our treatment of pulsed diffusions,
we define the dissipation time of u by

τd
def= sup

s∈R
inf
{
t− s

∣∣∣ t > s, and ‖θs(t)‖ 6 ‖θs,0‖
e

for all θs,0 ∈ L2
0

}
= sup

s∈R
inf
{
t− s

∣∣∣ t > s, and ‖Ss,t‖L2
0→L2

0
6

1
e

}
,

where Ss,t is the solution operator to (2.11).
From (2.13) we immediately see that for any smooth divergence free advecting

field u we again have
τd 6

1
νλ1

,

where λ1 is the smallest non-zero eigenvalue of −∆ on M . If the flow of u is mixing,
then we expect that τd to be much smaller than than 1/(λ1ν). It turns out that
all stationary vector fields for which ντd → 0 can be elegantly characterized in
terms of the spectrum of the operator u · ∇. Indeed, seminal work of Constantin
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et. al. [CKRZ08] shows1 that for time independent incompressible vector fields u,
ντd → 0 if and only if ντd → 0. Consequently, it follows that if the flow generated
by u is weakly mixing, we must have ντd → 0 as ν → 0.

Our aim is to obtain bounds on the rate at which ντd → 0, under an assumption
on the rate at which the flow of u mixes. The analogue of Definition 2.2 in continuous
time is as follows.

Definition 2.8. Let h : [0,∞)→ [0,∞) be a continuous, decreasing function that
vanishes at ∞, and α, β > 0. Let ϕs,t : M →M be the flow map of u defined by

∂tϕs,t = u(ϕs,t, t) and ϕs,s = Id .

(1) We say that the vector field u is strongly α, β mixing with rate function h
if for all f ∈ Ḣα, g ∈ Ḣβ we have∣∣〈f ◦ ϕs,t, g〉∣∣ 6 h(t− s)‖f‖α‖g‖β . (2.14)

(2) We say that ϕ is weakly α, β mixing with rate function h if for all f ∈ Ḣα,
g ∈ Ḣβ we have( 1

t− s

∫ t

s

∣∣〈f ◦ ϕs,r, g〉∣∣2 dr)1/2
6 h(t− s)‖f‖α‖g‖β . (2.15)

Our first result bounds the dissipation time of vector fields u that are strongly
α, β mixing with a square integrable rate function.

Theorem 2.9. Suppose u is strongly α, β mixing with rate function h, where
α, β > 0, and H def=

∫∞
0 h2 <∞. Let N = N(ν) to be the largest integer such that

(2.16) λ1−α−β
N exp

(
8H‖∇u‖L∞λα+β

N

)
6

2H‖∇u‖2L∞

ν
,

where ‖∇u‖L∞ denotes the space time L∞ norm of ∇u. Then

(2.17) τd 6
5

νλN
,

and consequently

τd 6
C

ν|ln ν|1/(α+β)

for some finite constant C = C(α, β,H, ‖∇u‖L∞).

Theorem 2.10. Suppose u is weakly α, β mixing with rate function h, where
alpha, β > 0. Let N = N(ν) to be the largest integer such that

λN exp
(

2‖∇u‖L∞h−1( 1
2λ
−α+β

2
N

))
h−1

( 1
2λ
−α+β

2
N

) 6
‖∇u‖2L∞

2ν ,(2.18)

where h−1 denotes the inverse function of h. Then

(2.19) τd 6
5

νλN
.

1 More precisely, in [CKRZ08] the authors show that an incompressible, time independent,
vector field u is relaxation enhancing if and only if (u · ∇) has no eigenfunctions in Ḣ1. It is,
however, easy to see that a vector field is relaxation enhancing if and only if ντd → 0.
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If further the rate function h is power law

h(t) = c1
ts
,(2.20)

for some s ∈ (0, 1
2 ], consequently we have

τd 6
C

ν|ln ν|
2s
α+β

,(2.21)

for some finite constant C = C(α, β, ‖∇u‖L∞).
Remark 2.11 (Comparison with pulsed diffusions). In continuous time, the estimate
on the dissipation time (2.17) is weaker than that of a pulsed diffusion, with the
same mixing rate function. In particular, if h decays algebraically, then ντd decays
algebraically for pulsed diffusions (as in Theorem 2.3) but only logarithmically (as
in Theorem 2.9) for the advection diffusion equation. The reason the bound in
Theorem 2.9 is weaker than that in Theorem 2.3 is because pulsed diffusions are
better approximated by the underlying dynamical system than solutions to (2.11)
are. Thus when studying pulsed diffusions one is able to better use the mixing
properties of the underlying dynamical system.
Remark 2.12 (Shear Flows). In the particular case of shear flows a stronger estimate
on the dissipation time can be obtained using Theorem 1.1 in [BCZ17]. Namely let
u = u(y) be a smooth shear flow on the 2-dimensional torus with non-degenerate
critical points, and let L2

0 denote the space of all functions whose horizontal average
is 0. Now Theorem 1.1 in [BCZ17] guarantees that the dissipation time is bounded
by

(2.22) τd 6 C
|ln ν|2

ν1/2 ,

for some constant C > 0.
To place this in the context of our results, we restrict our attention to L2

0 functions
on T2 whose horizontal averages are all 0. On this space, the method of stationary
phase one can show that the flow generated by u is strongly 1, 1 mixing with rate
function h(t) = Ct−1/2 (see equation (1.8) in [BCZ17]). Since the rate function is not
square integrable in time, Theorem 2.9 will not apply. However, after time averaging,
we see that the flow of u is weakly 1, 1 mixing with rate function (ln t/t)1/2. In
this case Theorem 2.10 will apply, however, the dissipation time bound provided by
Theorem 2.10 is weaker than (2.22).

In terms of optimality, we recall that Poon [Poo96] showed the double exponential
lower bound
(2.23) ‖θs(t)‖ > exp

(
−Cνγt−s

)
‖θs,0‖ ,

for some constants C > 0 and γ > 1. To the best of our knowledge, there are no
incompressible smooth divergence free vector fields for which the lower bound (2.23)
is attained. Similar to the case of pulsed diffusions, we conjecture that (2.23) is
attained whenever the flow generated by u is exponentially mixing. However, recent
work of Miles and Doering [MD18] suggests that the Batchelor length scale may
limit the long term effectiveness of mixing leading to slower energy decay.

Notice that if (2.23) is indeed attained for exponentially mixing flows, then the
dissipation time would be bounded by
(2.24) τd 6 C|ln ν| .
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This is a stronger than the bound provided by Theorem 2.9. As in the case of pulsed
diffusions Theorem 2.9 only requires the tail of the mixing rate function h to be
square integrable. We expect that one should be able to obtain better bounds on τd
using the precise decay rate of h, however, we are presently unable to do so using
our methods.

Finally, we turn our attention to studying the principal eigenvalue of the opera-
tor −ν∆ +u · ∇ in a bounded domain Ω with Dirichlet boundary conditions. In this
case, in addition to u being smooth and divergence free, we also assume u is time
independent and tangential on the boundary (i.e. u · n̂ = 0 on ∂Ω, where n̂ denotes
the outward pointing unit normal). Let µ0(ν, u) denote the principal eigenvalue of
−ν∆ + u · ∇ with Dirichlet boundary conditions.

By Rayleigh’s principle we note

µ0(ν, u) > µ0(ν, 0) = νµ0(1, 0)

where µ0(1, 0) is the principal eigenvalue of the Laplacian. Our interest is in
understanding the behaviour of µ0(ν, u)/ν as ν → 0. Berestycki et. al. [BHN05]
showed that µ0(ν, u)/ν →∞ if and only if u ·∇ has no first integrals in H1

0 . That is,
µ0(ν, u)/ν →∞ if and only if there does not exist w ∈ H1

0 (Ω) such that u · ∇w = 0.
In general it does not appear to be possible to obtain a rate at which µ0(ν, u)/ν →

∞. If, however, the flow generated by u is sufficiently mixing then we can show
µ0(ν, u)/ν →∞ logarithmically.

Proposition 2.13. If u is a smooth, time independent, incompressible vector field
which is tangential on ∂Ω, then

(2.25) µ0(ν, u) > 1
τd
.

Consequently, if α, β > 0 and u is strongly α, β mixing with a square integrable rate
function h, then there exists a constant C = C(α, β, h) such that

(2.26) µ0(ν, u)
ν

>
|ln ν|1/(α+β)

C
.

We prove Proposition 2.13 in Section 5.3. We remark, however, that in view
of (2.24) and (2.25), we expect that if u that generates an exponentially mixing
flow, then

µ0(ν, u)
ν

>
1

Cν|ln ν| .

We are, however, presently unable to prove this stronger bound.
The rest of this paper is devoted to the proofs of the main results, and a brief

plan can be found at the end of Section 1.

3. Dissipation Enhancement for Pulsed Diffusions.
In this section we prove Theorems 2.3 and 2.4. The main idea behind the proof

is to split the analysis into two cases. In the first case, we assume ‖θn‖1/‖θn‖ is
large, and obtain decay of ‖θn‖ using the energy inequality. In the second case,
‖θn‖1/‖θn‖ is small, and hence the dynamics are well approximated by that of the
underlying dynamical system. The mixing assumption now forces the generation of
high frequencies, and the rapid dissipation of these gives an enhanced decay of ‖θn‖.
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3.1. The Strongly Mixing Case. We begin by stating two lemmas handling each
of the cases stated above.

Lemma 3.1. Given θ ∈ L2
0, define Eνθ by

(3.1) Eνθ
def= 1
ν

∥∥(1− e2ν∆)1/2Uθ
∥∥2
.

If for θ0 ∈ L2
0 and c0 > 0 we have

(3.2) Eνθ0 > c0‖θ0‖2 ,
then

‖θ1‖2 6 e−νc0‖θ0‖2 .

Lemma 3.2. Let 0 < λ1 < λ2 6 · · · be the eigenvalues of the Laplacian, where
each eigenvalue is repeated according to its multiplicity. Let H =

∑∞
0 h(n)2, and

define N = N(ν) to be the largest integer such that

(3.3) λN 6
( 1

16H2ν

)1/(1+2α+2β)
.

If
(3.4) Eνθ0 < λN‖θ0‖2 ,

then for m0 = d2Hλα+β
N e+ 1, we have

(3.5) ‖θm0‖2 6 exp
(
−νλNm0

8

)
‖θ0‖2 .

Momentarily postponing the proofs of Lemmas 3.1 and 3.2 we prove Theorem 2.3.

Proof of Theorem 2.3. Choosing c0 = λN and repeatedly applying Lemmas 3.1
and 3.2 we obtain an increasing sequence of times nk such that

‖θnk‖2 6 exp
(
−νλNnk8

)
‖θ0‖2 , and nk+1 − nk 6 m0 .

This immediately implies

(3.6) τd 6
16
νλN

+m0 .

Note by choice of m0 and λN we have

m0 6 2H
( 1

16H2ν

) α+β
2α+2β+1 + 2 ,

and
1

νλN
> (16H2)

1
2α+2β+1 ν−

2α+2β
2α+2β+1 .

Thus when ν is sufficiently small, we can ensure m0 < 1/(νλN ). Using this in (3.6)
gives

(3.7) τd 6
17
νλN

.

To finish the proof, we only need the asymptotic growth of the eigenvalues of the
Laplacian. Recall by Weyl’s lemma (see for instance [MP49]) we know

(3.8) λj ≈
4π Γ(d2 + 1)2/d

vol(M)2/d j2/d ,



DISSIPATION ENHANCEMENT BY MIXING 11

asymptotically as j → ∞. This implies λj+1 − λj = o(λj), and hence the eigen-
value λN chosen in (3.3) will satisfy

1
2

( 1
16H2ν

)1/(1+2α+2β)
6 λN 6

( 1
16H2ν

)1/(1+2α+2β)
,

when ν is sufficiently small. Substituting this in (3.7) finishes the proof. �

It remains to prove Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. Note first that (2.1) and (3.1) imply the energy equality

‖θ1‖2 =
∞∑
i=1

e−2νλi |〈Uθ0, ei〉|2 =
∞∑
i=1
|〈Uθ0, ei〉|2 − νEνθ0

= ‖θ0‖2 − νEνθ0 .(3.9)

Now using (3.2) immediately implies
�(3.10) ‖θ1‖2 6 (1− c0ν)‖θ0‖2 6 e−c0ν‖θ0‖2 .

In order to prove Lemma 3.2, we first need to estimate the difference between
the pulsed diffusion and the underlying dynamical system. We do this as follows.

Lemma 3.3. Let φn, defined by
φn = Unθ0 ,

be the evolution of θ0 under the dynamical system generated by ϕ. Then for all
n > 0 we have

(3.11) ‖θn − φn‖ 6
n−1∑
k=0

√
νEνθk .

Proof. Since φn = Uφn−1, we have

‖θn − φn‖ 6 ‖(eν∆ − 1)Uθn−1‖+ ‖U(θn−1 − φn−1)‖

=
( ∞∑
i=1

(e−νλi − 1)2|〈Uθn−1, ei〉|2
)1/2

+ ‖θn−1 − φn−1‖

6
( ∞∑
i=1

(1− e−2νλi)|〈Uθn−1, ei〉|2
)1/2

+ ‖θn−1 − φn−1‖

6
√
νEνθn−1 + ‖θn−1 − φn−1‖ ,

and hence (3.11) follows by induction. �

We now prove Lemma 3.2.

Proof of Lemma 3.2. By (3.9), we have

‖θm0‖2 = ‖θ1‖2 − ν
m0−1∑
m=1

Eνθm .(3.12)

Thus the decay of ‖θm0‖ is governed by the growth of
∑m0−1
m=1 Eνθm. In order to

estimate Eνθm we claim
2‖θm+1‖21 6 Eνθm 6 2‖Uθm‖21 , for all m ∈ N .(3.13)
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Indeed, by definition of Eν (equation (3.1)) we have

νEνθm =
∞∑
k=1

(
1− e−2νλk

)
|(Uθm)∧(k)|2 ,

where (Uθm)∧(k) def= 〈Uθm, ek〉 is the k-th Fourier coefficient of Uθm, and ek is
the eigenfunction of the Laplacian corresponding to the eigenvalue λk. Now (3.13)
follows from the inequalities

2νλke−2νλk 6 1− e−2νλk 6 2νλk .
We next claim that for all sufficiently small ν we have

‖θ1‖21 < λN‖θ1‖2 .(3.14)
To see this, note that (3.4) and (3.13) imply

(3.15) ‖θ1‖21 6
1
2Eνθ0 <

λN
2 ‖θ0‖2 .

Moreover, our choice of λN (in equation (3.3)) guarantees λN 6 1/(2ν) for all ν
sufficiently small. Thus

‖θ1‖2 = ‖θ0‖2 − νEνθ0 > (1− νλN )‖θ0‖2 >
1
2‖θ0‖2 ,

and substituting this in equation (3.15) gives (3.14) as claimed.
We now claim that for N and m0 as in the statement of Lemma 3.2 we have

(3.16)
m0−1∑
m=1

Eνθm >
λN (m0 − 1)

4 ‖θ1‖2 .

Note equation (3.16) immediately implies (3.5). Indeed, by (3.12), we have

‖θm0‖2 6
(

1− νλN (m0 − 1)
4

)
‖θ1‖2

6 exp
(
−νλN (m0 − 1)

4

)
‖θ1‖2 6 exp

(
−νλNm0

8

)
‖θ0‖2 ,

since m0/2 6 m0 − 1 and ‖θ1‖ 6 ‖θ0‖.
Thus it only remains to prove equation (3.16). For this we let φm, defined by

φm = Um−1θ1 ,

be the evolution of θ1 under the dynamical system generated by ϕ. Let PN : L2
0 → L2

0
defined by

PNf =
N∑
k=1

f̂(k)ek ,

be the projection operator onto span{e1, . . . , eN}. Using (3.13) we have
m0−1∑
m=1

Eνθm > 2
m0−1∑
m=1
‖θm+1‖21

> 2λN
m0−1∑
m=1
‖(I − PN )θm+1‖2

> 2λN
(1

2

m0−1∑
m=1
‖(I − PN )φm+1‖2 −

m0−1∑
m=1
‖(I − PN )(θm+1 − φm+1)‖2

)
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> λN
(

(m0 − 1)‖φ1‖2 −
m0−1∑
m=1
‖PNφm+1‖2 − 2

m0−1∑
m=1
‖θm+1 − φm+1‖2

)
.(3.17)

Now using Lemma 3.3 we estimate the last term on the right of (3.17) by
m0−1∑
m=1
‖θm+1 − φm+1‖2 6

m0−1∑
m=1

( m∑
l=1

√
νEνθl

)2
6
m0−1∑
m=1

mν

m∑
l=1
Eνθl

6
m0(m0 − 1)ν

2

m0−1∑
l=1
Eνθl 6

m2
0ν

2

m0−1∑
l=1
Eνθl .(3.18)

For the second term on the right of (3.17) we note that since U is strongly α, β
mixing with rate function h, we have

‖Umf‖−β 6 h(m)‖f‖α ,

for every f ∈ Ḣα (see also (A.5) in Appendix A). This implies
m0−1∑
m=1
‖PNφm+1‖2 6

m0−1∑
m=1

λβN‖φm+1‖2−β 6
m0−1∑
m=1

λβNh(m)2‖φ1‖2α

6 HλβN‖φ1‖2α 6 Hλ
β
N‖θ1‖2−2α‖θ1‖2α1 6 Hλ

α+β
N ‖θ1‖2 ,(3.19)

where the last inequality followed from (3.14).
Substituting (3.18) and (3.19) in (3.17) we obtain

m0−1∑
m=1

Eνθm >
(m0 − 1)λN
1 + λNνm2

0

(
1− Hλα+β

N

m0 − 1

)
‖θ1‖2 .

By choice of N andm0, equation (3.16) follows. This finishes the proof of Lemma 3.2.
�

3.2. The Weakly Mixing Case. We now turn our attention to Theorem 2.4. The
proof is very similar to the proof of Theorem 2.3, the only difference is that the
analogue of Lemma 3.4 is not as explicit.

Lemma 3.4. Define N = N(ν) to be the largest integer such that

λN

(
h−1

((
2Nλα+β

N

)−1/2
)

+ 1
)2
6

1
ν
.(3.20)

If
Eνθ0 < λN‖θ0‖2 ,

then for

m0 = h−1
((

2Nλα+β
N

)−1/2
)

+ 1 ,

we have

‖θm0‖2 6 exp
(
−νλNm0

8

)
‖θ0‖2 .

Given Lemma 3.4, the proof of Theorem 2.4 is essentially the same as the proof
of Theorem 2.3.
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Proof of Theorem 2.4. Choosing c0 = λN and repeatedly applying Lemmas 3.1
and 3.4 we obtain an increasing sequence of times nk such that

‖θnk‖2 6 exp
(
−νλNnk8

)
‖θ0‖2 , and nk+1 − nk 6 m0 .

This immediately implies

(3.21) τd 6
16
νλN

+m0 .

By the choice of m0 and N , we notice that

m0 6
1√
νλN

+ 1 6 1
νλN

.

The last inequality follows because (3.20) implies νλN 6 1/4. This proves (2.5).
In the case when h is given by (2.6), observe

h−1(x) =
⌈(c1

x

)1/s⌉
.

Substituting this in (3.20) gives

λN

(
c

1
s
1 (2N) 1

2sλ
α+β

2s
N + 2

)2
6

1
ν
.

Using Weyl’s law (3.8), this gives

N ≈ ν−
ds

d+2s+2β+2α , λN ≈ ν−
2s

d+2s+2β+2α .

This proves (2.7) as desired. �

It remains to prove Lemma 3.4.

Proof of Lemma 3.4. We first claim that (3.16) still holds if λN , m0 chosen as in
the statement of Lemma 3.4. Once (3.16) is established, then the remainder of the
proof is identical to that of Lemma 3.2.

To prove (3.16), we observe that the lower bound (3.17) (from the proof of
Lemma 3.2) still holds in this case. For last term on the right of (3.17), we use the
bound (3.18). The only difference here is to estimate the second term using the
weak mixing assumption (2.4) instead. Observe

1
m0 − 1

m0−1∑
m=1
‖PNφm+1‖2 =

N∑
l=1

1
m0 − 1

m0−1∑
m=1
|〈el, Umθ1〉|2 .

Since ϕ is weak α, β-mixing with rate function h, the assumption (2.4) yields

1
m0 − 1

m0−1∑
m=1
|〈el, Umθ1〉|2 6 h(m0 − 1)2‖Uθ1‖2αλ

β
l 6 h(m0 − 1)2λβN‖θ1‖2α

6 h(m0 − 1)2λβN‖θ1‖2−2α‖θ1‖2α1 6 h(m0 − 1)2λβ+α
N ‖θ1‖2 .

Together with (3.14) this gives

1
m0 − 1

m0−1∑
m=1
‖PNφm+1‖2 6 h(m0 − 1)2Nλβ+α

N ‖θ1‖2 .
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Substituting this and (3.18) in (3.17) gives
m0−1∑
m=1

Eνθm >
λN (m0 − 1)
1 +m2

0νλN

(
1− h(m0 − 1)2Nλβ+α

N

)
‖θ1‖2 .

By the choice of N and m0, this yields (3.15) as claimed. �

4. Toral Automorphisms and the Energy Decay of Pulsed Diffu-
sions.
In this section we study pulsed diffusions where the underlying map ϕ is a toral

automorphism, and prove Theorem 2.7. Recall a toral automorphism is a map of
the form
(4.1) ϕ(x) = Ax (mod Zd) ,
where A ∈ SLd(Z) is an integer valued d× d matrix with determinant 1. Maps of
this form are known as “cat maps”, and one particular example is when d = 2 and

A =
(

2 1
1 1

)
.

The reason for the somewhat unusual name is that originally “CAT” was an abbre-
viation for Continuous Automorphism of the Torus. However, it has now become
tradition to demonstrate the mixing effects of this map using the image of a
cat [SOW06].

4.1. Mixing Rates of Toral Automorphisms. It is well known that no eigen-
value of A is a root of unity, if and only if ϕ is ergodic, if and only if ϕ is strongly
mixing (see [Kat71], Page 160, problem 4.2.11 in [KH95], or Proposition 3 in [FW03]).
Our interest is in understanding the mixing rates in the sense of Definition 2.2.

Proposition 4.1. Let A ∈ SLd(Z) be such that:
(C1) No eigenvalue of A is a root of unity,
(C2) and the characteristic polynomial of A is irreducible over Q.

If α, β > 0 then the toral automorphism ϕ : Td → Td defined by (4.1) is strongly α,
β mixing with rate function

(4.2) h(n) = Cα,β exp
(
− n

C0

(
α ∧ β

d− 1

))
,

for some finite non-zero constants Cα,β = Cα,β(A,α, β) and C0 = C0(A).

For completeness, we also mention that if A satisfies Condition (C1) above,
then A is also weakly α, β if either α = 0 or β = 0 (but not both).

Proposition 4.2. Let A ∈ SLd(Z) satisfy the condition (C1) in Proposition 4.1.
(1) If either α > 0 and β = 0, or α = 0 and β > 0, then there exists a finite

constant Cα,β = C(α, β) such that ϕ is weakly α, β mixing with rate function

(4.3) h(n) =



Cα,β√
n
, α ∨ β > d

2 ,

Cα,β

( lnn
n

)1/2
, α ∨ β = d

2 ,

Cα,β
n(α∨β)/d , α ∨ β < d

2 .
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(2) If further A satisfies condition (C2) in Proposition 4.2, and both α > 0 and
β > 0, then there exists a finite constant Cα,β = C(A,α, β) such that ϕ is
weakly α, β mixing with rate function

(4.4) h(n) = Cα,β√
n
.

Remark 4.3. Condition (C2) above is equivalent to assuming that A has no proper
invariant subspaces in Qd.

When d = 2, Proposition 4.1 is well known and can be proved elementarily. In
higher dimensions, Proposition 4.1 can be deduced from the results on the algebraic
structure of toral automorphisms developed in [FW03]. These arguments, however,
rely on three sophisticated results from number theory: the Schmidt subspace
theorem [Sch80], Minkowski’s theorem on linear forms [New72, Chapter VI] and
van der Waerdern’s theorem on arithmetic progressions [vdW27,Luk48]. We will
avoid using these results, and instead instead prove Proposition 4.1 directly using
the following two algebraic lemmas.

Lemma 4.4. Suppose A ∈ SLd(Z) satisfies the assumptions (C1) and (C2) in
Proposition 4.1. There exists a basis {v1, . . . , vd} of Cd such that the following hold:

(1) Each vi is an eigenvector of A.
(2) If k ∈ Zd − 0, and ai = ai(k) ∈ C are such that

k =
d∑
1
ai(k)vi =

d∑
1
aivi ,

then we must have

(4.5)
d∏
i=1
|ai(k)| > 1 .

Lemma 4.5 (Kronecker [Kro57]). Let p be a monic polynomial with integer coeffi-
cients that is irreducible over Q. If all the roots of p are contained in the unit disk,
they must be roots of unity.

The proofs of Lemma 4.4 and 4.5 use elementary facts about algebraic number
fields, and to avoid breaking continuity, we defer the proofs to Section 4.3. These
lemmas will also be used to prove sharpness of the double exponential bound (2.8)
in Theorem 2.7. The reason these lemmas arise here is as follows. Lemma 4.5 will
guarantee that guarantee (AT )−1 has at least one eigenvalue, λ1, strictly outside
the unit disk. Lemma 4.4 now guarantees that all non-zero Fourier frequencies
have a certain minimum component in the eigenspace of λ1. This will of course
dominate the long time behaviour, leading to exponential mixing of ϕ and rapid
energy dissipation of the associated pulsed diffusion.

Proof of Proposition 4.1. Let B = (AT )−1, and f ∈ L2
0. Observe

(Uf)∧(k) =
∫
Td
e−2πik·xf(Ax) dx =

∫
Td
e−2πi(Bk)·xf(x) dx = f̂(Bk) ,

and hence

(4.6) (Unf)∧(k) = f̂(Bnk) ,
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for all n > 0. Now to prove that ϕ is exponentially mixing, let f ∈ Ḣα, and g ∈ Ḣβ .
Using (4.6) we have

〈Unf, g〉 =
∑

k∈Zd−0

f̂(Bnk)ĝ(k) =
∑

k∈Zd−0

1
|Bnk|α|k|β

|Bnk|αf̂(Bnk)|k|β ĝ(k)

Consequently

(4.7) |Unf, g| 6
(

sup
k∈Zd−0

1
|Bnk|α|k|β

)
‖f‖α‖g‖β

We now estimate the pre-factor on the right of (4.7) using Lemmas 4.4 and 4.5.
First note that B ∈ SLd(Z) also satisfies the assumptions (C1) and (C2). Let v1,
. . . , vd be the basis given by Lemma 4.4, and λ1, . . . , λd be the corresponding
eigenvalues. Since the characteristic polynomial of B satisfies the conditions of
Lemma 4.5, we see that B has at least one eigenvalue outside the unit disk. Without
loss of generality we suppose |λ1| > 1.

By equivalence of norms on finite dimensional spaces, we know there exists c∗ > 0
such that

(4.8) 1
c∗
|k′| 6

(∑
|ai(k′)|2

)1/2
6 c∗|k′| , for all k′ ∈ Zd .

Using Lemma 4.4, we note

|Bnk| =
∣∣∣∑ aiλ

n
i vi

∣∣∣ > |a1||λ1|n

c∗
>

|λ1|n

c∗|a2| · · · |ad|
>
|λ1|n

cd∗|k|d−1 .

Thus

sup
k∈Zd−0

1
|Bnk|α|k|β

6 |λ1|−nα
(

sup
k∈Zd−0

cdα∗
|k|β−(d−1)α

)
.

If (d− 1)α 6 β, (4.7) and the above shows that ϕ is strongly α, β mixing with rate
function h(n) = C|λ1|−nα. This proves (4.2) in the case (d− 1)α 6 β.

On the other hand, if (d − 1)α > β, we let α′ = β/(d − 1). By the previous
argument we know ϕ is α′, β mixing with rate function h(n) = C|λ1|−nα

′ . Since
α > α′, ‖f‖α′ 6 ‖f‖α and it immediately follows that ϕ is also α, β mixing with the
same rate function. This proves (4.2) when (d− 1)α > β completing the proof. �

Proof of Proposition 4.2. The second assertion follows immediately from Proposi-
tion 4.1. Indeed, when both α, β > 0, Proposition 4.1 implies ϕ is strongly α, β
mixing with rate function h given by (4.2). Since the rate function decays exponen-
tially, it is square summable and equation (4.4) holds with Cα,β = (

∑∞
i=1 h(i)2)1/2.

To prove the first assertion, suppose first α = 0 and β > 0. As before set
B = (AT )−1, and let f, g ∈ L2

0 and observe

1
n

n−1∑
i=0
|〈U if, g〉|2 = 1

n

n−1∑
i=0

∣∣∣∣ ∑
k∈Zd−0

f̂(Bik)ĝ(k)
∣∣∣∣2

6
‖g‖2β
n

n−1∑
i=0

∑
k∈Zd−0

|f̂(Bik)|2

|k|2β
.(4.9)

We now split the analysis into cases. First suppose β > d/2. By Kronecker’s
theorem (Lemma 4.5) we see that the matrix B can not have finite order, and hence
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k, Bk, B2k, . . . , Bn−1k are all distinct. Thus (4.9) implies

1
n

n−1∑
i=0
|〈U if, g〉|2 6

‖g‖2β
n

∑
k∈Zd−0

n−1∑
i=0

|f̂(Bik)|2

|k|2β
6
‖g‖2β
n

∑
k∈Zd−0

‖f‖2

|k|2β
.

Since β > d/2, the sum on the right is finite, showing ϕ is 0, β mixing with rate
function C/n1/2 as desired.

Suppose now β < d/2. Let m ∈ N be a large integer that will be chosen shortly,
and split the above sum as

1
n

n−1∑
i=0
|〈U if, g〉|2 6

‖g‖2β
n

( ∑
0<|k|6m

n−1∑
i=0

|f̂(Bik)|2

|k|2β
+
n−1∑
i=0

∑
|k|>m

|f̂(Bik)|2

|k|2β
)

(4.10)

6 ‖f‖2‖g‖2β
[( 1
n

∑
0<|k|6m

1
|k|2β

)
+ 1
m2β

]
(4.11)

6 ‖f‖2‖g‖2β
(Cmd−2β

n
+ 1
m2β

)
,(4.12)

for some (explicit) constant C = C(d), independent of n. (Note, we again used
the fact that k, Bk, . . . , are all distinct when computing the first sum on the right
of (4.10) to obtain (4.11).) We now choose m = Cn1/d in order to minimize the
right hand side. This implies

1
n

n−1∑
i=0
|〈U if, g〉|2 6

C‖f‖2‖g‖2β
n2/d

proving (4.3) when β < d/2.
Finally, when β = d/2 we repeat the same argument above to obtain (4.11).

When summed (4.11) now yields

(4.13) 1
n

n−1∑
i=0
|〈U if, g〉|2 6 ‖f‖2‖g‖2β

(C lnm
n

+ 1
md

)
,

and choosing m = n yields (4.3) as desired. This finishes the proof. �

4.2. Energy Decay, and the proof of Theorem 2.7. We now turn our attention
to studying the energy decay of pulsed diffusions. Our first result shows that if
a toral automorphism satisfies conditions (C1) and (C2) in Proposition 4.1, then
the energy of the associated pulsed diffusion decays double exponentially. This will
prove sharpness of the lower bound (2.8) in Theorem 2.7. Following this we will
prove lower bound (2.8) itself using a convexity argument.

Proposition 4.6. Suppose A ∈ SLd(Z) satisfies the assumptions (C1) and (C2) in
Proposition 4.1. Let ϕ be the associated toral automorphism defined in (4.1), and θn
be the pulsed diffusion defined by (2.1). Then there exists a constants c > 0 and
γ > 1 such that

(4.14) ‖θn‖ 6 exp
(
−νγ

n

c

)
Proof. Using (4.6) we see

θ̂n+1(k) = e−ν|k|
2
θ̂n(Bk) .
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Setting A∗ = AT , iterating the above, squaring and summing in k gives

(4.15) ‖θn‖2 =
∑

k∈Zd−0

exp
(
−2ν

n∑
j=1
|Aj∗k|2

)
|θ̂0(k)|2 .

Observe that the matrix A∗ also satisfies the conditions (C1) and (C2) in Propo-
sition 4.1. Let v1, . . . , vd be the basis of Cd given by Lemma 4.4, and λ1, . . . , λd
be the corresponding eigenvalues. Now (4.15) implies

‖θn‖2 6
∑

k∈Zd−0

exp
(
−2ν
c∗

n∑
j=1

d∑
i=1
|ai|2|λi|2j

)
|θ̂0(k)|2

=
∑

k∈Zd−0

exp
(
−2ν
c∗

d∑
i=1
|ai|2

( |λi|2(n+1) − |λi|2

|λi|2 − 1

))
|θ̂0(k)|2

6 ‖θ0‖2 sup
k∈Zd−0

exp
(
−2ν
c∗

d∑
i=1
|ai|2

( |λi|2(n+1) − |λi|2

|λi|2 − 1

))
.(4.16)

where c∗ is the constant in (4.8).
We will now show that the last term decays double exponentially in n. Indeed,

the inequality of the means implies
d∑
i=1
|ai|2

( |λi|2(n+1) − |λi|2

|λi|2 − 1

)
> d
( d∏
i=1
|ai|2

( |λi|2(n+1) − |λi|2

|λi|2 − 1

))1/d

= d
( d∏
i=1
|ai|2

)1/d( d∏
i=1

( |λi|2(n+1) − |λi|2

|λi|2 − 1

))1/d

> d
( d∏
i=1

( |λi|2(n+1) − |λi|2

|λi|2 − 1

))1/d
,(4.17)

where the last inequality followed from Lemma 4.4. As in the proof of Proposition 4.1,
Lemma 4.5 guarantees that maxi|λi| > 1. The right hand side of (4.17) is of order
(maxi|λi|)2n/d and substituting this in (4.16) gives (4.14) as desired. �

We now prove Theorem 2.7.

Proof. Proposition 4.6 immediately shows that the double exponential upper bound
equation (2.9) is achieved for the desired class of toral automorphisms. Thus it only
remains to prove the double exponential lower bound (2.8). For this, observe

ln‖θn+1‖2− ln‖θn‖2 = ln
(‖θn+1‖2

‖θn‖2
)

= ln
(‖θn+1‖2

‖Uθn‖2
)

= ln
(∑

i e
−2νλi |〈Uθn, ei〉|2∑
i|〈Uθn, ei〉|2

)
,

where we recall that λi are the eigenvalues of the Laplacian, and ei’s are the corre-
sponding eigenfunctions. Using concavity of the logarithm and Jensen’s inequality
to bound the last term on the right we obtain

ln‖θn+1‖2 − ln‖θn‖2 >
−2ν

∑
i λi|〈Uθn, ei〉|2∑
i|〈Uθn, ei〉|2

= −2ν ‖Uθn‖
2
1

‖Uθn‖2

> −2ν‖∇ϕ‖2L∞
‖θn‖21
‖θn‖2

.(4.18)
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We now claim

(4.19) ‖θn‖21
‖θn‖2

6 ‖∇ϕ‖2nL∞
‖θ0‖21
‖θ0‖2

.

Note that substituting (4.19) in (4.18) and summing in n immediately implies (2.8).
Thus to finish the proof we only need to prove (4.19).

For this we observe
‖θn+1‖21
‖θn+1‖2

− ‖Uθn‖
2
1

‖Uθn‖2
= ‖θn+1‖21‖Uθn‖2 − ‖θn+1‖2‖Uθn‖21

‖θn‖2‖Uθn‖2

= 1
‖θn‖2‖Uθn‖2

(∑
i,j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2
)

= 1
‖θn‖2‖Uθn‖2

(∑
i<j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2

+
∑
i>j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2
)

6
1

‖θn‖2‖Uθn‖2
(∑
i<j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2

+
∑
i>j

e−2νλj (λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2
)

= 0 .
Thus

‖θn+1‖21
‖θn+1‖2

6
‖Uθn‖21
‖Uθn‖2

= ‖Uθn‖
2
1

‖θn‖2
6 ‖∇ϕ‖2L∞

‖θn‖21
‖θn‖2

,

and iterating yields (4.19). This finishes the proof. �

4.3. Diophantine Approximation and Kronecker’s Theorem. We now prove
Lemmas 4.4 and 4.5. The proofs rely on standard facts on algebraic number fields,
and we refer the reader to the books [Mar77] and [Rib01] for a comprehensive
treatment.

Before beginning the proof, we remark that Lemma 4.4 is a weaker version of the
celebrated Schmidt subspace theorem [Sch80]. In this case the Schmidt subspace
theorem would guarantee that for any ε > 0 we have∣∣∣ d∏

i=1
ai(k)

∣∣∣ > 1
|k|ε

,

at all integer points k ∈ Zd, except on finitely many proper rational subspaces. To
use the Schmidt subspace theorem in our context we would need to handle the
exceptional subspaces. The approach taken by Fannjiang et. al. in [FW03] is to use
van der Waerdern’s theorem on arithmetic progressions [vdW27,Luk48] to construct
an equivalent minimization problem whose minimizer is guaranteed to lie outside
the exceptional subspaces. Our approach is to avoid the Schmidt subspace theorem
entirely by making do with the weaker bound (4.5).

Proof of Lemma 4.4. Let p be the characteristic polynomial of A, and λ1, . . . , λd be
the roots of p. Let F = Q(λ1, . . . , λd) and G = Gal(F/Q) denote the Galois group.
Let Gi ⊆ G be the group of field automorphisms that fix λi, and Fi = {x ∈ F |
σ(x) = x ∀σ ∈ Gi} be the fixed field of Gi. Since det(A−λiI) = 0, there must exist
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vi in the Fi vector space F di such that Avi = λivi. Viewing vi as an element of Cd,
we let V ∈ GLd(C) be the matrix with columns v1, . . . , vd. Dividing each vi by a
large integer if necessary, we may assume that each entry of V −1 is an algebraic
integer. We claim that v1, . . . , vd is the desired basis.

To see this suppose k =
∑
aivi. By construction of the basis note that if σ ∈ G is

such that σ(λi) = λj , then σ(vi) = vj . This implies that σ(ai) = aj . Note also that
since the groups Gi are conjugate, they all have the same cardinality. Consequently

p∗
def=
∏
σ∈G

σ(a1) =
(∏
σ∈G

ai

)m
,

where m = |G1|. Thus p∗ is in the fixed field of G, and hence must be rational.
Further, since ai = (V −1k) · ei, each ai must also be an algebraic integer. This

forces p∗ to be a rational algebraic integer, and hence an integer. By transitivity of
the Galois group we see that if ai = 0 for some i, then we must have aj = 0 for all j.
Thus p∗ must be a non-zero integer if k 6= 0. Hence |p∗| > 1 and (4.5) follows. �

Lemma 4.5 is due to Kronecker [Kro57]. This result was improved by Stew-
art [Ste78] and Dobrowolski [Dob79]. More generally Lehmer’s conjecture [Leh33]
asserts that if λ1, . . . , λd are the roots of p and the product

∏
(1 ∨ |λi|) is smaller

than an absolute constant µ (widely believed to be approximately 1.176 . . . ), then
each λi is a root of unity. For our purposes, however, Kronecker’s original result
will suffice. Since the proof is short and elementary, we present it below.

Proof of Lemma 4.5. Let λ1, . . . , λd be the roots of p. For any n ∈ N, let pn be
the minimal monic polynomial satisfied by λn1 . Since the Galois conjugates of λn1
are precisely λn2 , . . . , λnd , the coefficients of pn are symmetric functions of λn1 , . . . ,
λnd . By assumption |λi| 6 1, which implies |λni | 6 1, which in turn implies that the
coefficients of pn are uniformly bounded as functions of n. There are only finitely
many polynomials with degree at most d, and uniformly bounded integer coefficients.
Thus for some distinct m,n ∈ N we must have pm = pn. This forces λm1 = λn1
showing λ1 is a root of unity. �

5. Dissipation Enhancement for the advection diffusion equation.
We now prove Theorems 2.9 and 2.10, bounding the dissipation time in the

continuous time setting. The main idea is similar to the discrete time case. However,
in the continuous time setting the approximation of the diffusive system by the
underlying dynamical system is not as good as in the discrete time setting. This is
the reason why the estimates in Theorems 2.9 and 2.10 are not as strong as those
in Theorems 2.3 and 2.4.

5.1. The Strongly Mixing Case. As in Section 2.2, let θs,0 ∈ L2
0(M), let θs(t)

be the solution of (2.11). By the energy inequality (2.12) we know

‖θs(t)‖2 = ‖θs(s)‖2 exp
(
−2ν

∫ t

s

‖θs(r)‖21
‖θs(r)‖2

dr
)
.

Thus, ‖θs(t)‖ decays rapidly when the ratio ‖θs(t)‖1/‖θs(t)‖ remains large. Precisely,
if for some c0 > 0, we have

‖θs(t)‖21 > c0‖θs(t)‖2 , for all s 6 t 6 t0 ,
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then
‖θs(t)‖2 6 e−2νc0(t−s)‖θs,0‖2 , for all s 6 t 6 t0 .(5.1)

As in the proof of Theorems 2.3 and 2.4, we will show that if the ratio ‖θs,0‖1/‖θs,0‖
is small, then the mixing properties of u will guarantee that for some later time
t0 > s, ‖θs(t0)‖ becomes sufficiently small. This is the content of the following
lemma.

Lemma 5.1. If λN is chosen according to (2.16) and
(5.2) ‖θs,0‖21 < λN‖θs,0‖2 ,

then for t0 = 4Hλα+β
N + s, we have

(5.3) ‖θs(t0)‖2 6 exp
(
−νλN (t0 − s)

2

)
‖θs,0‖2 .

Momentarily postponing the proof of Lemma 5.1, we prove Theorem 2.9.

Proof of Theorem 2.9. Choosing c0 = λN and repeatedly applying the inequal-
ity (5.1) and Lemma 5.1, we obtain an increasing sequence of times (t′k), such
that

‖θs(t′k)‖2 6 exp
(
− νλN (t′k − s)

2

)
‖θs,0‖2 , and t′k+1 − t′k 6 t0 .

This immediately implies

τd 6
4

νλN
+ (t0 − s) .(5.4)

By choice of λN and t0, we know that t0 − s 6 1/(νλN ) for ν sufficiently small.
This implies (2.17) as desired. �

It remains to prove Lemma 5.1. For this we will need a standard result estimating
the difference between θ and solutions to the inviscid transport equation.

Lemma 5.2. Let φs, defined by
φs = θs,0 ◦ ϕs,t ,

be the evolution of θs,0 under the dynamical system generated by ϕs,t. If θs,0 ∈
Ḣ1(M), then for all t > s, we have

‖θs(t)− φs(t)‖2 6
ν

2‖∇u‖L∞
exp
(
2‖∇u‖L∞(t− s)

)
‖θs,0‖21 .(5.5)

Proof. Let w(t) = θs(t)− φs(t). Note w(s) = 0, and for t > s we have
∂tw + u · ∇w − ν∆w = ν∆φs .

Multiplying both sides by w and integrating over M gives
1
2∂t‖w‖

2 + ν‖w‖21 = ν

∫
M

w∆φs dx 6
ν

2‖w‖
2
1 + ν

2‖φs‖
2
1 ,

and hence
∂t‖w‖2 6 ν‖φs‖21 .(5.6)

Since φs(t) = θs,0 ◦ ϕs,t we know
‖φs(t)‖1 6 exp

(
‖∇u‖L∞(t− s)

)
‖θs,0‖1 .

Substituting this into (5.6) and integrating in time yields (5.5) as claimed. �
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We can now prove Lemma 5.1.

Proof of Lemma 5.1. Integrating the energy equality (2.12) gives

‖θs(t0)‖2 = ‖θs,0‖2 − 2ν
∫ t0

s

‖θs(r)‖21 dr .(5.7)

We claim that our choice of λN and t0 will guarantee∫ t0

s

‖θs(r)‖21 dr >
λN (t0 − s)‖θs,0‖2

4 .(5.8)

This immediately yields (5.3), and so to finish the proof we only have to prove (5.8).
Note first∫ t0

s

‖θs(r)‖21 dr > λN
∫ t0

s

‖(I − PN )θs(r)‖2 dr

>
λN
2

∫ t0

s

‖(I − PN )φs(r)‖2 dr

− λN
∫ t0

s

‖(I − PN )
(
θs(r)− φs(r)

)
‖2 dr

>
λN (t0 − s)

2 ‖θs,0‖2 −
λN
2

∫ t0

s

‖PNφs(r)‖2 dr(5.9)

− λN
∫ t0

s

‖θs(r)− φs(r)‖2 dr .

We will now bound the last two terms in (5.9). For the second term, note the strong
mixing assumption (2.14) gives∫ t0

s

‖PNφs(r)‖2 dr 6 λβN
∫ t0

s

‖φs(r)‖2−β dr 6 λ
β
N

∫ t0

s

h(r − s)2‖θs,0‖2α dr

6 HλβN‖θs,0‖
2
α 6 Hλ

β
N‖θs,0‖

2−2α‖θs,0‖2α1 .(5.10)

Using the assumption (5.2), we obtain∫ t0

s

‖PNφs(r)‖2 dr 6 Hλβ+α
N ‖θs,0‖2 .(5.11)

Now we bound the last term in (5.9). Using Lemma 5.2 we obtain∫ t0

s

‖θs(r)− φs(r)‖2 dr 6
ν

4‖∇u‖2L∞
e2‖∇u‖L∞ (t0−s)‖θs,0‖21

6
νλN

4‖∇u‖2L∞
e2‖∇u‖L∞ (t0−s)‖θs,0‖2 .(5.12)

Substituting (5.11) and (5.12) into (5.9) gives∫ t0

s

‖θs(r)‖21 dr > λN (t0 − s)‖θs,0‖2
(1

2 −
Hλα+β

N

2(t0 − s)
− νλNe

2‖∇u‖L∞ (t0−s)

4‖∇u‖2L∞(t0 − s)

)
By our choice of λN in (2.16) and t0, equation (5.8) follows. This finishes the proof
of Lemma 5.1. �
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5.2. The Weakly Mixing Case. We now turn our attention to Theorem 2.10.
The proof is similar to the proof of Theorem 2.9. The main difference is that the
analogue of Lemma 5.1 is weaker.

Lemma 5.3. If λN is chosen according to (2.18) and

‖θs,0‖21 < λN‖θs,0‖2 ,(5.13)

then for t0 = h−1( 1
2λ
−α+β

2
N

)
, we have

‖θs(t0)‖2 6 exp
(
−νλN (t0 − s)

2

)
‖θs,0‖2 .(5.14)

Proof of Theorem 2.10. Given Lemma 5.3, the proof of Theorem 2.10 is identical
to that of Theorem 2.9. �

Proof of Lemma 5.3. Following the proof of Lemma 5.1, we claim that (5.8) still
holds in our case, provided λN and t0 are chosen correctly. Indeed, note that (5.9)
and (5.12) still hold, and the only difference here is that we need to bound the
second term in (5.9) using the weak mixing assumption. Explicitly, (2.15) gives∫ t0

s

‖PNφs(r)‖2 dr 6 λβN
∫ t0

s

‖φs(r)‖2−β dr 6 (t0 − s)λβNh(t0 − s)2‖θs,0‖2α

6 (t0 − s)λβNh(t0 − s)2‖θs,0‖2α−2‖θs,0‖2α1
6 (t0 − s)λβ+α

N h(t0 − s)2‖θs,0‖2 .(5.15)

Substituting (5.12) and (5.15) into (5.9), we obtain∫ t0

s

‖θs(r)‖21 dr > λN (t0 − s)‖θs,0‖2
(1

2 −
λβ+α
N h(t0 − s)2

2 − νλNe
2‖∇u‖L∞ (t0−s)

4‖∇u‖2L∞(t0 − s)

)
.

By our choice of λN (in (2.18)) and t0, equation (5.8) follows. �

5.3. The Principal Eigenvalue with Dirichlet Boundary Conditions. We
now prove Proposition 2.13 estimating the principal eigenvalue of −ν∆ + (u · ∇) in
a bounded domain with Dirichlet boundary conditions.

Proof of Proposition 2.13. For notational convenience we will write µ0 to denote
µ0(ν, u). Let φ0 = φ0(ν, u) be the principal eigenfunction of the operator −ν∆ +
(u · ∇). Then we know

ψ(x, t) def= φ0(x)e−µ0t

satisfies the advection diffusion equation

∂tψ + u · ∇ψ − ν∆ψ = 0 ,

with initial data φ0. Consequently ‖ψ(t)‖ = e−µ0t‖ψ(0)‖. This forces τd > 1/µ0
proving (2.25).

Now we note the proof of Theorem 2.9 only uses the spectral decomposition of
the Laplacian, and is unaffected by the presence of boundaries. Thus Theorem 2.9
still applies in this context. The eigenvalue bound now follows immediately from
Theorem 2.9 and (2.25). �
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Appendix A. Weak and Strong Mixing Rates
In this appendix we provide a brief introduction to mixing and, in particular,

analyze the notions of weak and strong weak mixing rates as in Definition 2.2. Recall
that M is a d-dimensional Riemannian manifold with volume form normalized so
that the total volume of M is 1. A volume preserving diffeomorphism ϕ : M →M
is said to be mixing (or strongly mixing) if for every pair of Borel sets A,B ⊆M ,
we have
(A.1) lim

n→∞
vol(ϕ−n(A) ∩B) = vol(A) vol(B) .

Roughly speaking, this says that for every Borel set A, successive iterations of the
map ϕ will stretch and fold it over M so that it eventually the fraction of every fixed
region B ⊆M occupied by A will approach vol(A). For a comprehensive review of
mixing we refer the reader to [KH95,SOW06].

Approximating by simple functions we see that (A.1) immediately implies that
for any f, g ∈ L2

0, we have2

lim
n→∞

〈Unf, g〉 = 0 .

Thus, one can quantify the mixing rate by requiring the correlations 〈Unf, g〉 to
decay at a particular rate. Since these are linear in f, g, a natural first attempt is
to require
(A.2)

∣∣〈Unf, g〉∣∣ 6 h(n)‖f‖ ‖g‖ ,
for some decreasing sequence h(n) that vanishes at infinity. This, however, is
impossible. Indeed using duality, equation (A.2) immediately implies

(A.3) ‖Unf‖ 6 h(n) n→∞−−−−→ 0 .
Of course, U is a unitary operator and hence we must also have ‖Unf‖ = ‖f‖,
which is in direct contradiction to (A.3).

To circumvent this difficulty, one uses stronger norms of f and g on the right
of (A.2) as in the series of papers by Fannjiang et. al. [FW03,FNW04,FNW06]. This
is the content of the first part of Definition 2.2, and is repeated here for convenience.

Definition A.1. Let h : N → (0,∞) be a decreasing function that vanishes at
infinity, and α, β > 0. We say that ϕ is strongly α, β mixing with rate function h if
for all f ∈ Ḣα, g ∈ Ḣβ the associated Koopman operator U satisfies
(A.4)

∣∣〈Unf, g〉∣∣ 6 h(n)‖f‖α‖g‖β .

If U is simply a unitary operator, then the rate function h can decay arbitrarily
fast. However, when U is the Koopman operator associated with a smooth map ϕ,
the rate function can decay at most exponentially. To see this, note that for k ∈ N
we have ‖Uf‖k 6 ck‖f‖1 for some finite constant ck = ck(‖ϕ‖Ck) > 1. Iterating
this n times, choosing k = dβe, and g = Unf in (A.4) gives

‖f‖2 = ‖Unf‖2 6 h(n)‖f‖α‖f‖kcnk ,
forcing

h(n) >
‖f‖2c−nk
‖f‖α‖f‖k

.

2 Recall L2
0 is the set of all mean zero square integrable functions, and U : L2

0 → L2
0 is the

Koopman operator defined by Uf = f ◦ ϕ.
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Notice that by duality equation (A.4) implies that if ϕ is α, β mixing with rate
function h, then

(A.5) ‖Unf‖−β 6 h(n)‖f‖α .

In particular, this implies ‖Unf‖−β → 0 as n→∞, and this has been used by many
authors [MMP05,LTD11,Thi12, IKX14] to quantify (strong) mixing.

We now turn our attention to weak mixing. Recall that the dynamical system
generated by ϕ is said to be weakly mixing if for every pair of Borel sets A,B ⊆M ,
we have

(A.6) lim
n→∞

1
n

n−1∑
k=0

∣∣vol(ϕ−k(A) ∩B)− vol(A) vol(B)
∣∣ = 0 .

Clearly strongly mixing implies weakly mixing, but the converse is false (see for
instance [AK70]). Approximating by simple functions, and using the fact that U is
L2 bounded, one can show that (A.6) holds if and only if

(A.7) lim
n→∞

1
n

n−1∑
k=0

∣∣〈Unf, g〉∣∣2 = 0 ,

for all f, g ∈ L2
0 (see for instance [EFHN15, Theorem 9.19 (iv)]). We can now

quantify the weak mixing rate by by imposing a rate of convergence in (A.7). This is
the content of the second part of Definition 2.2, and is repeated here for convenience.

Definition A.2. Let h : N → (0,∞) be a decreasing function that vanishes at
infinity. Given α, β > 0, we say that ϕ is weakly α, β mixing with rate function h if
for all f ∈ Ḣα, g ∈ Ḣβ and n ∈ N the associated Koopman operator U satisfies( 1

n

n−1∑
k=0

∣∣〈Ukf, g〉∣∣2)1/2
6 h(n)‖f‖α‖g‖β .

Unlike Definition A.1, the convergence rate need not involve stronger norms of
both f and g. Indeed Proposition 4.2 shows that for toral automorphisms, either α
or β may be chosen to be 0

By choosing f = g one immediately sees that for weakly α, β mixing maps, we
must have h(n) > 1/

√
n. Moreover, if ϕ is strongly α, β mixing with rate function h,

then ϕ is also weakly α, β mixing. In this case, the weak α, β rate function, denoted
by hw, is given by

hw(n) def=
( 1
n

n−1∑
k=0

h(k)2
)1/2

.

If additionally h is square summable, then hw(n) 6
√
H/n, where H2 =

∑∞
0 h(k)2.

Appendix B. A characterization of relaxation enhancing maps on
the torus

We devote this appendix to proving Proposition 2.6 characterizing maps ϕ for
which ντd → 0. Showing that limν→0 ντd = 0 implies there is no eigenvector in
Ḣ1 is simpler and we present this part first. The proof follows along the lines
of [CKRZ08,KSZ08].
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Proof of the backward implication in Proposition 2.6. We assume ντd → 0, and will
show that U has no non-constant eigenfunction. Suppose, for sake of contradiction,
that f ∈ L2

0 − 0 is an eigenfunction, normalized so that ‖f‖ = 1, and let λ be the
corresponding eigenvalue. Choosing θ0 = f , and defining θn by (2.1) we observe

|〈θn+1, f〉 − 〈Uθn, f〉| =
∣∣∣∑
k

(1− e−νλk)(Uθn)∧(k)f̂(k)
∣∣∣

6 ν
(∑

k

1− e−νλk
ν

|(Uθn)∧(k)|2
)1/2(∑

k

1− e−νλk
ν

|f̂(k)|2
)1/2

6 ν
(∑

k

1− e−νλk
ν

|(Uθn)∧(k)|2
)1/2(∑

k

1− e−νλk
ν

|f̂(k)|2
)1/2

6 ν(Eνθn)1/2‖f‖1 6
ν

2Eνθn + ν

2‖f‖
2
1 .

Using equation (3.9), this gives

|〈θn+1, f〉 − 〈Uθn, f〉| 6
1
2(‖θn‖2 − ‖θn+1‖2) + ν

2‖f‖
2
1 ,

which implies

|〈θn+1, f〉| − |〈Uθn, f〉| > −
1
2(‖θn‖2 − ‖θn+1‖2)− ν

2‖f‖
2
1 .

Since 〈Uθn, f〉 = 〈θn, U∗f〉 = λ〈θn, f〉, and |λ| = 1, the above implies

|〈θn+1, f〉| − |〈θn, f〉| > −
1
2(‖θn‖2 − ‖θn+1‖2)− ν

2‖f‖
2
1 ,

and iterating this gives

|〈θn, f〉| − |〈f, f〉| > −
1
2(‖f‖2 − ‖θn‖2)− nν

2 ‖f‖
2
1 ,

since θ0 = f . Thus

|〈θn, f〉| >
1
2‖f‖

2 + 1
2‖θn‖

2 − nν

2 ‖f‖
2
1 >

1
2 −

nν

2 ‖f‖
2
1 .

Now choosing n to be the dissipation time τd gives
1
e
> |〈θτd , f〉| >

1
2 −

τdν

2 ‖f‖
2
1 ,

and hence
ντd >

e− 2
e‖f‖21

This contradicts the assumption limν→0 ντd = 0. �

For the other direction, we need two lemmas. The first is an application of the
discrete RAGE theorem.

Lemma B.1. Let K ⊂ S = {φ ∈ L2
0 | ‖φ‖ = 1} be a compact. Let Pc be the spectral

projection on the continuous spectral subspace in the spectral decomposition of U .
For any N, δ > 0, there exists nc(N, δ,K) such that for all n > nc and any φ ∈ K,
we have

1
n− 1

n−1∑
i=1
‖PNU iPcφ‖2 6 δ .(B.1)
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Proof. Define

f(n, φ) def= 1
n− 1

n−1∑
i=1
‖PNU iPcφ‖2 .

Recall that by the RAGE theorem [CFKS87] we have

lim
n→∞

1
n

n−1∑
i=0
‖AU iPcφ‖2 = 0 , for any compact operator A ,

and hence for all φ, f(φ, n)→ 0 as n→∞. Thus, to finish the proof, we only need
to show that this convergence is uniform on compact sets.

To prove this, it is enough to show that f is uniformly continuous in φ. The
uniform continuity of f can be proved as follows. For any φ1, φ2 ∈ S, observe
|f(n, φ1)− f(n, φ2)|

6
1

n− 1

n−1∑
i=1

∣∣‖PNU iPcφ1‖ − ‖PNU iPcφ2‖
∣∣(‖PNU iPcφ1‖+ ‖PNU iPcφ2‖

)
6

1
n− 1

n−1∑
i=1
‖φ1 − φ2‖

(
‖φ1‖+ ‖φ2‖

)
6 2‖φ1 − φ2‖ .

Thus proves uniform continuity of f , concluding the proof of Lemma B.2. �

Lemma B.2. Assume the Koopman operator U has no eigenfunctions in Ḣ1. Let
Pp be the spectral projection on its point spectral subspace. Let K be a compact
subset of S. Define the set K1 = {φ ∈ K | ‖Ppφ‖ > 1

2}. Then for any C > 0, there
exist Np(C,K) and np(C,K) such that for any N > Np(C,K), any n > np(C,K),
and any φ ∈ K1,

1
n− 1

n−1∑
i=1
‖PNU iPpφ‖21 > C .(B.2)

The proof of this is the same as Lemma 3.3 in [CKRZ08] and we do not present
it here. We can now finish the proof of Proposition 2.6.

Proof of the forward implication in Proposition 2.6. Suppose now U has no eigen-
functions in Ḣ1. We will show that for any η > 0,∥∥∥θ(⌈η

ν

⌉)∥∥∥→ 0 as ν → 0 ,(B.3)

which immediately implies limν→0 ντd = 0 as desired. To prove (B.3), we need
to show for any given η, ε, there exists ν0, such that for any ν 6 ν0, we have
‖θ(d ην e)‖

2 6 ε for any initial θ0 ∈ H with ‖θ0‖ = 1.
We choose N large enough satisfying e−λNη/80 6 ε. Denote K = {φ ∈ S | ‖φ‖2 6

λN}, and K1 = {φ ∈ K | ‖Ppφ‖ > 1
2}. Let n1 be

n1 = max
{

2, np(5λN ,K), nc
(
N,

1
20 ,K

)}
.

Lastly we choose ν0 satisfying n1 6 η/(2ν0), ν0n
2
1 6

1
λN

and n2
1νγ

n1+1

(n1−1)(γ−1) 6 1/4,
where γ > 1 satisfying ‖Uθ‖21 6 γ‖θ‖21.
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Note that if Eνθn > λN‖θn‖2 for all n ∈ [0, d ην e], then we have ‖θ(d ην e)‖
2 6

e−νλNd
η
ν e 6 e−λNη 6 ε. Otherwise, we denote n0 ∈ [0, d ην e] to be the first time

satisfying Eνθn0 < λN‖θn0‖2. Similar to (3.14) we have ‖θn0+1‖21 < λN‖θn0+1‖2.
We now claim

(B.4) ‖θn0+n1‖2 6 e−λNνn1/40‖θn0‖2 .

Let φm be defined as φm = Um−1θn0+1, then φ1/‖φ1‖ = θn0+1/‖θn0+1‖ ∈ K.
And we have Pcφm = Um−1Pcθn0+1, Ppφm = Um−1Ppθn0+1. Next we consider two
cases.

Case 1: ‖Pcθn0+1‖2 > 3
4‖θn0+1‖2, i.e., ‖Ppθn0+1‖2 6 1

4‖θn0+1‖2. In this case, we
have

n1−1∑
m=1
Eνθn0+m > 2

n1−1∑
m=1
‖θn0+1+m‖21

> 2λN
n1−1∑
m=1
‖(I − PN )θn0+1+m‖2

> λN

n1−1∑
m=1
‖(I − PN )φm+1‖2 − 2λN

n1−1∑
m=1
‖(I − PN )(θn0+1+m − φm+1)‖ .(B.5)

By direct calculation, we also have

‖(I − PN )φm+1‖2 >
1
2‖(I − PN )Pcφm+1‖2 − ‖(I − PN )Ppφm+1‖2

>
1
2‖U

mPcθn0+1‖2 −
1
2‖PNU

mPcθn0+1‖2 − ‖UmPpθn0+1‖2

= 1
2‖Pcθn0+1‖2 −

1
2‖PNU

mPcθn0+1‖2 − ‖Ppθn0+1‖2 .

By Lemmas B.1,B.2, and the choice of n1, we have

1
n1 − 1

n1−1∑
m=1
‖(I − PN )φm+1‖2 >

1
10‖θn0+1‖2 .(B.6)

Substituting (3.18) and (B.6) in (B.5) gives
n1−1∑
m=1
Eνθn0+m >

λN (n1 − 1)
20 ‖θn0+1‖2 .

Since ‖θn0+n1‖2 = ‖θn0+1‖2 − ν
∑n1−1
m=1 Eνθn0+m, we further have

‖θn0+n1‖2 6
(

1− νλN (n1 − 1)
20

)
‖θn0+1‖2

6 (1− νλNn1

40 )‖θn0‖2 6 e−
νλNn1

40 ‖θn0‖2 .

Case 2: ‖Ppθn0+1‖2 > 1
4‖θn0+1‖2, i.e., ‖Pcθn0+1‖2 6 3

4‖θn0+1‖2.
By Lemma B.2, we have

1
n1 − 1

n1−1∑
m=1
‖PNUmPpθn0+1‖21 > 5λN‖θn0+1‖2 .(B.7)
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And Lemma B.1 yields that

1
n1 − 1

n1−1∑
m=1
‖PNUmPcθn0+1‖21 6

λN
20 ‖θn0+1‖2 .(B.8)

Combining (B.7) and (B.7), we get

1
n1 − 1

n1−1∑
m=1
‖PNUmθn0+1‖21 > 2λN‖θn0+1‖2 .(B.9)

By (3.18) and (3.13), we have

1
n1 − 1

n1−1∑
m=1
‖θn0+1+m − φm+1‖2 6

n2
1ν

n1 − 1

n1−1∑
m=1
‖Uθn0+1+m‖2

6
n2

1ν

n1 − 1

n1−1∑
m=1

γm+1‖θn0+1‖2

6
n2

1νγ
n1+1

(n1 − 1)(γ − 1)‖θn0+1‖2

6
1
4‖θn0+1‖2

This implies

1
n1 − 1

n1−1∑
m=1
‖PN (θn0+1+m − φm+1)‖21 6

λN
4 ‖θn0+1‖2 .(B.10)

Equation (B.9) together with (B.10) gives
n1−1∑
m=1
‖θn0+1+m‖21 >

n1−1∑
m=1
‖PNθn0+1+m‖21 >

λN
2 (n1 − 1)‖θn0+1‖2 .(B.11)

We now use (3.13) again to get
n1−1∑
m=1
Eνθn0+m > λN (n1 − 1)‖θn0+1‖2 .

As before, we get

‖θn0+n1‖2 6 e−
νλNn1

2 ‖θn0‖2 .

This proves (B.4) as desired.
Given (B.4), we can find ñ ∈ [η/(2ν), η/ν] such that ‖θ(dη/νe)‖2 6 ‖θñ‖2 6

e−λNνñ/40 6 e−λNη/80 6 ε, proving (B.3) as desired. This finishes the proof. �
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