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Abstract. The basis of this paper is the elementary observation that the
n-step descendant distribution of any Galton-Watson process satisfies a discrete
Smoluchowski coagulation equation with multiple coalescence. Using this we
obtain necessary and sufficient criteria for the convergence of scaling limits
of Galton-Watson processes that are simpler (and equivalent) to the classical
criteria obtained by Grimvall in 1974. Our results provide a clear and natural
interpretation, and an alternate proof, of the fact that the Lévy jump measure
of certain CSBPs satisfies a generalized Smoluchowski equation. (This result
was previously proved by Bertoin and Le Gall in 2006.)

Moreover, our analysis shows that the nonlinear scaling dynamics of CSBPs
becomes linear and purely dilatational when expressed in terms of the Lévy
triple associated with the branching mechanism. We use this to prove existence
of universal critical Galton-Watson and CSBPs analogous to W. Doeblin’s
“universal laws”. Namely, these universal processes generate all possible critical
and subcritical CSBPs as subsequential scaling limits.

Our convergence results rely on a natural topology for Lévy triples and a
continuity theorem for Bernstein transforms (Laplace exponents). We develop
these in a self-contained appendix.
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1. Introduction.

In 1875, Galton and Watson [42] took up an investigation into the phenomenon
of “the decay of the families of men who occupied conspicuous positions in past
times.” The problem, posed by Galton, was summarized by the Rev. H. W. Watson
as follows.

“Suppose that at any instant all the adult males of a large nation
have different surnames, it is required to find how many of these
surnames will have disappeared in a given number of generations
upon any hypothesis, to be determined by statistical investigations,
of the law of male population.”

Their analysis led to the eventual creation of a class of time-discrete, size-discrete
branching processes now called Galton-Watson processes or Bienaymé-Galton-
Watson processes, since key aspects of the topic were discovered thirty years earlier
by I. J. Bienaymé (see [3,19]). The study of these and other branching processes has
led to numerous interesting lines of research, and we refer the reader to [2] where
the basic theory and applications are beautifully laid out.

Branching and coalescence are intrinsically connected concepts, and are in some
sense dual. Indeed, following a tree from root to leaf leads to branching, and following
it from leaf to root leads to coalescence. Mathematically, a deep connection between
branching and coalescence was exposed by Kingman [21,22] in his efforts to address
questions of ancestry in population genetics. Loosely speaking, ancestral lineages
branch as time proceeds forward, while the Kingman coalescent traces the sizes
of groups or clusters of individuals with a common living ancestor as time evolves
backwards. Kingman was particularly concerned with models that emerged from
early work of Moran and Wright that hold total population fixed. His work was
subsequently expanded to study a general class of exchangeable coalescent models,
and a natural completion—the class of Λ-coalescents—was identified and studied by
Pitman [34] and Sagitov [35]. We refer to the book [8] and the survey papers [6, 16]
for an overview of the now-extensive literature in this area. For aspects particularly
related to CSBPs, we refer to [4, 5, 9, 13,24,37].

The present work focuses on classic Galton-Watson processes and their continuum
limits—continuous state branching processes (CSBPs)—which are models in which
populations may fluctuate. Our work was originally motivated by observations of
Bertoin and Le Gall contained in a series of papers that relate certain coalescence
models to CSBPs [10–12]. In [12] the authors prove a striking result which shows
that the Lévy jump measure associated to certain CSBPs satisfies a generalized
Smoluchowski coagulation equation with multiple coalescence. One goal of our work
is to provide a simple and natural explanation for this fact.

Our starting point for such an explanation is an elementary observation showing
that the n-step descendant distribution of the Galton-Watson process satisfies a
discrete Smoluchowski coagulation equation with multiple coalescence. We use
this basic connection to study scaling limits of Galton-Watson process and the
coagulation dynamics of the Lévy jump measure of certain CSBPs.

From our scaling and limit analysis of the coagulation dynamics associated
with Galton-Watson processes follows another simple yet striking observation: The
nonlinear scaling dynamics of CSBPs becomes linear and purely dilational when
expressed in terms of the Lévy triple that represents the branching mechanism! This
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observation is parallel to results of [31] that concern the dynamic scaling analysis
of solvable Smoluchowski equations, and extends an analogy between CSBPs and
infinite divisibility which has been evident since the work of Grimvall [18] classifying
all continuum limits of Galton-Watson processes as CSBPs. Here we make use of
the dilational representation to establish the existence of certain universal critical
Galton-Watson and CSBPs which generate all critical and subcritical CSBPs as
subsequential scaling limits. These universal processes are analogous to W. Doeblin’s
“universal laws” in classical probability theory [15, XVII.9], and add a precise
explanation to a remark made by Grey [17] to the effect that a large class of “critical
and subcritical processes . . . do not seem to lend themselves to suitable scaling”
which yields a well-defined limit.

Summary of results. The two principal new results we prove in this paper are
the existence of universal Galton-Watson processes, and the existence of universal
CSBPs.

Theorem 1.1. There exists a critical Galton-Watson process X? such that any
(sub)critical CSBP that remains finite almost surely can be obtained as a subsequential
scaling limit of X?.

Theorem 1.2. There exists a critical CSBP Z? such that any (sub)critical CSBP
that remains finite almost surely can be obtained as a subsequential scaling limit of
Z?.

These results follow naturally and directly from our analysis of discrete coalescence
models in terms of the topology of Lévy triples that we introduce. Our paper also
contains a variety of other results concerning these issues. We devote the rest of
this section to summarizing the main results and organization of our paper.

Time and size discrete coalescence and branching. Part 1 (Sections 2–4) is devoted
to the study of discrete-time, discrete-size coalescence and branching. We begin by
introducing (Section 2) a time-discrete Markov process C modeling sizes of clusters
undergoing coalescence. We show (Proposition 2.3) that the backward equation of
the process C is exactly a time-discrete analog of the well known Smoluchowski co-
agulation equation [40,41], a mean-field rate-equation model of clustering. Moreover
we show (Proposition 3.1) that the one dimensional distributions of coordinates of C
have the same distribution as a Galton-Watson process. This provides a elementary
and fundamental connection between branching and coalescence, and shows that
the nth generation descendant distribution of a critical Galton-Watson process is
itself a solution of the discrete Smoluchowski equation with multiple coalescence.
This will be used extensively in the scaling analysis performed in Part 2, below.

Finally, we conclude our treatment of the discrete scenario by introducing the
branching mechanism and the Bernstein transform for Galton-Watson processes.
We show (Proposition 4.2) that the discrete coagulation dynamics gives an elegant
(discrete-time) evolution equation for the Bernstein transform in terms of the
branching mechanism. This parallels the evolution of the Bernstein transform of
the size distribution in the Smoluchowski dynamics (see [12,20] or equation (5.5),
below), and is a direct analog of the backward equation for critical CSBPs that
become extinct almost surely.
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Convergence criteria governing scaling limits of Galton-Watson processes. Part 2
(Sections 5–7) is devoted to studying scaling limits of Galton-Watson processes. We
begin with a brief introduction to CSBPs (Section 5) and discuss Bertoin and Le
Gall’s striking result from [12] showing that the Lévy jump measure of certain CSBPs
satisfies a special form of the Smoluchowski equation with multiple coalescence. One
of our goals is to explain how this naturally comes to be.

Using improvements in the theory of Bernstein functions [36] (known in probability
as Laplace exponents), we obtain simple and precise criteria for the existence of
scaling limits of Galton-Watson processes expressed directly in terms of rescaled
reproduction laws (Propositions 6.3, 6.4 and 6.6). These convergence results provide
a clear description of how the Lévy jump measure of certain CSBPs arises as the
rescaled limit of n-step descendant distributions of Galton-Watson processes, and
explains how the generalized Smoluchowski equation arises naturally in [12]. The
proofs make use of a continuity theorem for Bernstein transforms which appears
to be little known; as we expect this to be of wider utility, we develop this theory
separately1 in Appendix A.

Finally, the convergence of scaling limits of Galton-Watson processes is a classical
subject and has been studied by many authors. For completeness, we show (Propo-
sition 7.4) that the convergence criteria we develop in this paper are equivalent to
the classical ones provided by [18].

Universality in Galton-Watson processes and CSBPs. Part 3 (Sections 8–9) is
devoted to studying universality and proving Theorems 1.1 and 1.2. For Galton-
Watson processes, we use our simplified convergence results to show that there exists
a Galton-Watson process with a “universal” family size distribution (Theorem 8.1).
Namely, we show that there exists a Galton-Watson process X such that any
(sub)critical CSBP that remains finite almost surely can be obtained by appropriately
rescaling X and taking a subsequential limit.

Moreover, our analysis of the coagulation dynamics associated with Galton-
Watson processes yields a simple and striking observation regarding the scaling
dynamics of CSBPs. Namely, the scaling dynamics of CSBPs becomes linear and
purely dilatational when expressed in terms of the Lévy triple associated with the
branching mechanism (Section 9). We show that the map from Lévy triple to solution
is bicontinuous in a particular sense (Proposition 9.1), and infer the existence of
universal CSBPs whose subsequential scaling limits yield all possible critical and
subcritical CSBPs (Theorem 1.2 above, restated precisely as Theorem 9.4).

Part 1. Time and size discrete coalescence and branching.

2. Coagulation equations and processes with multiple mergers.

The Smoluchowski coagulation equation [40, 41] is a mean-field rate-equation
model of coalescence that may be used to describe a system of clusters that merge as
time evolves to form larger clusters. The type of objects that comprise the clusters

1 The well known continuity theorems guarantee that weak-? convergence of probability measures
is equivalent to pointwise convergence of their characteristic functions (or Laplace transforms).
In our context, the continuity theorem shows that convergence of Lévy triples is equivalent to
pointwise convergence of the Bernstein transforms. The proof is similar to that of the classical
continuity theorems. However, since it is not readily available in the literature we prove it in
Appendix A (Theorem A.6).
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varies widely in applications—examples include smog particles, animals, and dark
matter. Smoluchowski’s equation governs the time evolution of the cluster-size
distribution, under certain assumptions which usually include the assumption that
only binary mergers are taken into account. Our aim in this section is to describe
a natural and elementary Markov process that directly relates to a time-discrete
Smoluchowski equation generalized to account for simultaneous mergers of any
number of clusters. The coalescence processes that we describe bear a close relation
to Galton-Watson processes that will be delineated in the following section.

2.1. A discrete-time process modeling coalescence. Let π̂ be a probability
measure on N0

def= N ∪ {0}. We consider a countably infinite collection of clusters,
each with nonnegative integer size, which undergo coalescence at discrete time steps
according to the following rules.

(1) At each time step, the existing clusters are collected into disjoint groups
(which may be empty), and the clusters in each group merge to form the
new collection of clusters. Empty groups create clusters of zero size.

(2) The probability that a merger involves exactly k clusters is π̂(k). We refer
to π̂ as the merger distribution.

(3) The sizes of each of the k clusters participating in a simultaneous k-merger
are independent and identically distributed.

An essential feature of this process is that the distribution of cluster sizes after a
simultaneous k-merger is the same as the distribution of the sum of k independent
copies of the cluster sizes before the merger.

An elementary construction of a coagulation process C = (Cn)n∈N0 that has the
above features proceeds as follows. For each time n ∈ N0, Cn is to be a random
function from N to N0, whose values Cn(j) represent the size of a cluster in the
ensemble. At the initial time n = 0, the random variables C0(j), j ∈ N, may in
general be taken as independent and identically distributed; however, for the sake
of comparison with Galton-Watson processes, here we will always assume

C0(j) = 1 for all j ∈ N .

Given Cn we define Cn+1 as follows. Choose a random sequence (Mk,n)k∈N0

independent of Cm for 0 6 m 6 n, such that M0,n = 0 and the increments

Mk+1,n −Mk,n ∈ N0

are independent and identically distributed with law π̂. Define

(2.1) Cn+1(j) =
Mj,n∑

i=1+Mj−1,n

Cn(i) ,

with the convention that the sum is 0 if Mj,n = Mj−1,n (this corresponds to the
creation of a new cluster of size zero). The quantity Mj+1,n −Mj,n represents the
number of clusters that simultaneously merge and combine their sizes to form a new
cluster.

Note that C is a Markov process. Moreover, for each n > 0, the random variables
Cn(i), i ∈ N, are independent and identically distributed. Thus (2.1) guarantees
that for any j ∈ N, the random variable Cn+1(j) is the sum of N independent
and identically distributed copies of Cn(j), where N is itself a random variable
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with distribution π̂ and independent of Cn. This shows that the process C meets
conditions (1)–(3) above.

We remark, however, that while the sequence (Cn(1), Cn(2), . . . ) represents the
sizes of all clusters in the system, the individual coordinate functions n 7→ Cn(j) do
not track the time evolution of the size of a particular cluster and need not form a
Markov process.

Remark. In case π̂(0) = 0, the partial sums (
∑k
j=1 Cn(j))k∈N correspond to the

marks of a renewal process with integer increments, for each n > 0. Our coagulation
process corresponds to a discrete-time type of thinning of these processes—marks
disappear according to the rules that govern the process C. It was pointed out
by Aldous in [1] that independent thinning of renewal processes yields a classical
Smoluchowski coagulation equation in continuous time. We find the condition
π̂(0) > 0 necessary, however, in order to produce the correspondence with critical
Galton-Watson processes to appear in Section 3 below.
2.2. Evolution of the cluster-size distribution. We let νn denote the distri-
bution of cluster sizes at step n in the coagulation process above. That is, νn(j)
denotes the chance that any single cluster has size j after n time steps. Because the
variables {Cn(i)}i∈N are all identically distributed, we have
(2.2) νn(j) = P {Cn(i) = j} for all i ∈ N .

Our first observation is that the n-step size distribution νn determines νn+1 in a
manner that naturally captures (1)–(3).
Proposition 2.1. For any n > 0 and j ∈ N we have

(2.3) νn+1(j) =
∑
k>0

π̂(k)ν∗kn (j) .

Here ν∗kn denotes the kth convolution power of νn and is given by

(2.4) ν∗kn (j) =
∑

i1,...,ik>0
δj(i1 + · · ·+ ik)νn(i1) · · · νn(ik) ,

where δj denotes a Kronecker delta function:

δj(k) =
{

1, j = k ,

0, j 6= k .

By convention, we define ν∗0n (j) = δ0(j).

Proof of Proposition 2.1. The formula follows directly from (2.1), independence of
the Cn(i) (i ∈ N), and the fact that Mk+1,n −Mk,n has distribution π̂. �

Remark. In light of the assumption C0 ≡ 1, the size distribution after one time step
is exactly the merger distribution (i.e. ν1 = π̂). This follows immediately from (2.3).
Remark. If the expected number of clusters in a simultaneous merger (given by∑
kπ̂(k)) and the expected initial cluster size are both finite, then

(2.5) νn(j) = lim
N→∞

∣∣{k ∣∣ Cn(k) = j & 1 6 k 6 N}
∣∣

N
almost surely.

Indeed, the above assumptions and induction immediately guarantee ECn(i) <∞
for all i ∈ N. Since the random variables {Cn(i)}i∈N are independent and identically
distributed (and have finite first moment) the law of large numbers implies (2.5).
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2.3. The discrete Smoluchowski equation. The size distribution of the pro-
cess C naturally relates to a time-discrete Smoluchowski equation with multiple
coalescence, as we now explain. The key idea is to express the dynamics in terms of
clusters of non-zero size. For convenience, we will focus on case when the merger
distribution is critical, according to the following terminology.
Definition 2.2. We say the merger distribution π̂ is critical if

(2.6)
∑
k>0

kπ̂(k) = 1 .

This means the expected number of clusters involved in a simultaneous merger is 1.
Proposition 2.3. If the merger distribution π̂ is critical, then the size distribu-
tion νn satisfies

νn+1(j)− νn(j) =
∑
k>2

R̂k(ρn)Îk(νn, j), j > 0 ,(2.7)

where
ρn

def= P {Cn(1) > 0} =
∑
j>0

νn(j) ,(2.8)

R̂k(ρn) def=
∑
l>k

π̂(l)
(
l

k

)
ρkn(1− ρn)l−k ,(2.9)

Îk(νn, j)
def=

∑
i1,...,ik>0

[
δj
( k∑
l=1

il

)
−

k∑
l=1

δj(il)
]νn(i1)

ρn
· · · νn(ik)

ρn
.(2.10)

Remark. Equations (2.7)–(2.10) are a discrete version of the Smoluchowski equations
(see Section 5, below) and can be interpreted as follows. Observe that at time n,
the chance that any single cluster has positive size is exactly ρn. Consequently
the chance that any simultaneous merger involves exactly k clusters of non-zero
size is given by R̂k(ρn). Now in the event of a simultaneous merger of k non-zero
sized clusters, the chance that a cluster of size j is created is exactly the positive
term in (2.10). On the other hand, a cluster of size j can itself be involved in this
simultaneous merger, leading to the creation of a larger cluster and the destruction
of the cluster of size j. The chance that this happens is the negative term in (2.10).
Consequently, Îk(νn, j) is the expected change in frequency of clusters of size j,
given that a simultaneous merger of k non-zero sized clusters occurred. Assuming
independence and summing yields (2.7).
Proof of Proposition 2.3. Equation (2.7) follows when we restrict the size dynamics
to clusters of non-zero size. Indeed, νn(j)/ρn is exactly the chance that a cluster has
size j, conditioned on having non-zero size. Since R̂k is the chance that exactly k
such clusters merge, we must have

νn+1(j) =
∑
k>1

R̂k(ρn)
(νn
ρn

)∗k
(j)

=
∑
k>1

R̂k(ρn)
∑

i1,...,ik>0
δj(i1 + · · ·+ ik)νn(i1)

ρn
· · · νn(ik)

ρn
.(2.11)

Next we compute the expected number of clusters of size j > 0 involved in a
given merger. On one hand, this should be exactly the expected number of clusters
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involved in a merger, times νn(j). On the other, this can be computed by counting
the number of clusters of size j in every cluster merger involving at least one cluster
with non-zero size. This gives

(2.12)
(∑
k>0

kπ̂(k)
)
νn(j)

=
∑
k>1

R̂k(ρn)
∑

i1,...,ik>0

(
δj(i1) + · · ·+ δj(ik)

)νn(i1)
ρn

· · · νn(ik)
ρn

.

Using the criticality assumption (2.6), subtracting (2.12) from (2.11) and observing
that the k = 1 term cancels, we obtain (2.7). �

Remark. Without the criticality assumption (2.6), the above shows that (2.7) should
be replaced with

(2.13) νn+1(j)− νn(j) = (Ξ− 1)νn(j) +
∑
k>2

R̂k(ρn)Îk(νn, j) , j > 0 ,

if

(2.14) Ξ def=
∑
k>0

kπ̂(k) ,

the expected number of clusters involved in a simultaneous merger, is finite.

3. Galton-Watson processes and coagulation dynamics.

The purpose of this section is to establish a direct and elementary connection
between critical Galton-Watson processes and the coalescence processes introduced
in Section 2.

3.1. A brief introduction to Galton-Watson processes. The Galton-Watson
process was introduced to model the gradual extinction of Victorian aristocratic
family names, despite an increase in the general population. The original model
supposes that family names are passed down only through male heirs, and that each
heir reproduces independently and identically, and is replaced by his sons in the
subsequent generation.

To fix notation, let π̂ denote the family-size distribution, meaning π̂(j) is the
chance that each heir has exactly j sons, and let Xn denote the number of male
descendants of a single individual after n generations. Presuming the descendants
reproduce independently, the process X = {Xn} is a time-homogeneous Markov
process taking values in N0, with X0 = 1. Further, the n-step transition probabilities

Pn(i, j) def= P
{
Xn = j

∣∣ X0 = i
}

satisfy the convolution property

Pn(i1 + i2, j) =
j∑

k=0
Pn(i1, j − k)Pn(i2, k) .

The standard construction of a Galton-Watson process is to choose an array {ξi,j}
of independent, identically distributed random variables with distribution π̂, and
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define

(3.1) Xn+1 =
Xn∑
k=1

ξk,n+1 .

We refer the reader to [2] for a more complete introduction.

Remark. The formula (2.1) appears dual to (3.1) in a curious way: The number of
terms in the sum in (2.1) is distributed according to π̂, while it is the individual
terms in (3.1) that are so distributed. The individual terms in (2.1) are generated
by the accumulation formula, while it is the number of terms in (3.1) that is so
generated.

3.2. Discrete coagulation dynamics of the descendant distribution. Next
we establish a direct, explicit and elementary connection between the Galton-Watson
process X and the coagulation process C. Namely, we show that Xn, the number
of descendants of a single individual after n generations, has the same distribution
as the cluster sizes produced by the process C after n steps.

Proposition 3.1. Let X be a Galton-Watson process, and let

(3.2) ν̂n(j) def= P {Xn = j} = Pn(1, j) .
denote the distribution of Xn. Suppose C is a coagulation process as in Section 2.1
having merger distribution π̂ equal to the family-size distribution of X. Then for
each n > 0, Xn has the same distribution as Cn(i), i ∈ N. That is,

ν̂n = νn

for all n > 0, where νn is defined in (2.2). Consequently, if X is critical, then ν̂n
satisfies the discrete Smoluchowski equations (2.7)–(2.10).

Recall a Galton-Watson process {Xn} is said to be critical if the expected number
of descendants of a single individual is 1. Explicitly, this means that π̂ satisfies (2.6),
and it is well known that such processes become extinct almost surely.

Proof of Proposition 3.1. According to the branching formula (3.1) and the fact
that if Xn = i then the distribution of the sum is an i-fold convolution of π̂, naturally
we have

(3.3) ν̂n+1(j) =
∞∑
i=0

ν̂n(i)π̂∗i(j) =
∞∑
i=0

Pn(1, i)P1(i, j) .

However, one also has another characterization, due to the Markov property. Namely,

(3.4) ν̂n+1(j) =
∑
k>0

P1(1, k)Pn(k, j) =
∑
k>0

π̂(k)ν̂∗kn (j) ,

This equation has exactly the same form as (2.3). Because ν̂0 = ν0, we conclude the
proof using induction. �

In light of Proposition 3.1, we identify ν̂n with νn for the remainder of this
paper. While the proof of Proposition 3.1 is a simple algebraic calculation, a natural
interpretation can be obtained through the work of Kingman [21,22]. To see this,
fix N large, n 6 N and divide the population at generation N into clans that have
a common living ancestor at generation N −n. The clans here play the same role as
the coalescing clusters in Section 2. Indeed, as n increases we look further back in
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the ancestry for a common living ancestor, leading to the merger of clans. Finally,
one can directly check that for a given n the distribution of clan sizes is exactly ν̂n,
and hence (2.7)–(2.10) is expected.

4. Bernstein transform of the discrete evolution equations

The beautiful, classical theory of Galton-Watson processes is normally developed
in terms of the generating function for the family-size distribution π̂, given by

G(z) =
∞∑
j=0

π̂(j)zj .

The generating function of the nth-generation descendant distribution (νn) is then
given by the nth functional iterate of G—As is well-known and is easy to derive
from (2.3), the function

(4.1) Gn(z) =
∞∑
j=0

νn(j)zj

satisfies G0(z) = z and
(4.2) Gn+1(z) = G(Gn(z)) , n > 0 .
In order to simplify the study of continuum limits and compare with CSBPs, however,
we find it convenient to recast the formulas of the theory using a representation
more closely related to Laplace exponents.

Definition 4.1. Given a Galton-Watson process X, we define its Bernstein trans-
form by

(4.3) ϕ̂n(q) = E
(
1− e−qXn

)
=
∑
j>1

νn(j)(1− e−qj) .

Of course, this is closely related to the Laplace transform, and also may be
expressed in terms of generating functions, as
(4.4) ϕ̂n(q) = 1−Gn(e−q) .

The function ϕ̂n is a Bernstein function [36]—a nonnegative function whose
derivative is a Laplace transform. The class of Bernstein functions has a number
of convenient properties—e.g., it is closed under composition and taking pointwise
limits—and such functions have proved valuable in previous work on coagulation
dynamics (see for example [28,30,31]). The first objective of this section is to obtain
a convenient expression (equation (4.5), below) for the evolution of the Bernstein
transform of a Galton-Watson process.

Proposition 4.2. If ϕ̂ is the Bernstein transform of a Galton-Watson process X,
then

(4.5) ϕ̂n+1(q)− ϕ̂n(q) = −Ψ̂(ϕ̂n(q)) for all q > 0 ,

where

(4.6) Ψ̂(s) def=
∞∑
j=0

(1− s)j π̂(j)− 1 + s = G(1− s)− 1 + s ,

in terms of the family-size distribution π̂ and its generating function G.
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Proof. By (4.4) and (4.2) we have

�(4.7) ϕ̂n+1(q)− ϕ̂n(q) = 1−G(Gn(e−q))− ϕ̂n(q) = −Ψ̂(ϕ̂n(q)) .

Definition 4.3. We define the function Ψ̂ in equation (4.6) to be the branching
mechanism of the Galton-Watson process X.

While the generating function has proved extremely useful in many contexts, the
notion of branching mechanism as defined above is better suited for our purposes.
As will be seen, it is strongly analogous to the branching mechanism of a CSBP, it
governs convergence of the process in the continuum limit (Proposition 6.3, below),
and it also provides the discrete analog of the Poissonian structure of the rate
constants arising in [12] (see (4.9) below, also revisited later in Section 5).

We remark that the branching mechanism Ψ̂ is only guaranteed to be defined for
s ∈ [0, 2]. It is convex for s ∈ [0, 1]. In terms of expected family size, it can also be
written in the following form.

Lemma 4.4. If the expected family size Ξ =
∑
k>0 kπ̂(k) is finite, then the branching

mechanism of the Galton-Watson process X satisfies

(4.8) Ψ̂(s) =
∞∑
j=2

(
(1− s)j − 1 + js

)
π̂(j) + (1− Ξ)s .

We now compute the rate constants R̂k (defined in (2.9)) in terms of the branching
mechanism.

Lemma 4.5. Let X be a Galton-Watson process with branching mechanism Ψ̂.
Then for all k > 2 we have

(4.9) R̂k(ρn) = (−ρn)k

k! Ψ̂(k)(ρn) ,

where ρn is defined by (2.8) and R̂k is defined by (2.9).

Proof. Termwise differentiation of (4.6) gives

(4.10) (−1)k

k! Ψ̂(k)(s) =
∑
j>k

π̂(j)
(
j

k

)
(1− s)j−k , k > 2 ,

for s ∈ (0, 2). Because ρn ∈ (0, 1) for all n, we may substitute s = ρn in (4.10) and
this gives (4.9) for k > 2. �

Part 2. Convergence criteria governing scaling limits of Galton-Watson
processes.

5. CSBPs and the time continuous Smoluchowski equation.

In subsequent sections we will consider scaling limits of Galton-Watson processes.
The limiting processes obtained will be a class of CSBPs, and we use this section to
summarize relevant properties of CSBPs. We also take this opportunity to indicate
similarities between the CSBPs and the discrete notions introduced in Section 4 that
foreshadow results in Section 6. Finally, we describe Bertoin and Le Gall’s result [12]
relating CSBPs to the time-continuous Smoluchowski equation and compare it to
the discrete version introduced in Section 2.
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A CSBP consists of a two-parameter random process (x, t) 7→ Zt(x) ∈ [0,∞) for
t > 0 and x > 0. For fixed x, the process t 7→ Zt(x) is a Markov process with initial
value Z0(x) = x. For fixed t, the process x 7→ Zt(x) is an increasing process with
independent and stationary increments. The right-continuous version of this is a
Lévy process with increasing sample paths. In particular, the process enjoys the
branching property that for all t > 0, the distribution of Zt(x+ y) is the same as
the distribution of the sum of independent copies of Zt(x) and Zt(y).

The structure of the process Z has a precise characterization via the Lamperti
transform (see [14,26] or [23, Chap. 12]). That is, t 7→ Zt(x) can be expressed as a
subordinated Markov process with parent process x+ X̄t where X̄t is a Lévy process
starting from 0 with no negative jumps (i.e., X̄t is either spectrally positive or a
subordinator). More specifically, Zt(x) = x+ X̄Θ(x,t) where the process t 7→ Θ(x, t)
has non-decreasing sample paths and formally solves ∂tΘ = x+X̄Θ with Θ(x, 0) = 0.2
In this context, the Laplace exponent of X̄t, denoted Ψ, is called the branching
mechanism for Zt(x) and has Lévy-Khintchine representation

Ψ(q) = 1
2a0q

2 − aq − b+
∫

(0,∞)

(
e−qx − 1 + qx1{x<1}

)
dπ(x) ,(5.1)

where a0, b > 0, a ∈ R and π is a positive measure on (0,∞) satisfying the finiteness
condition ∫

(0,∞)
(1 ∧ x2)π(dx) <∞ .

It is well known [17,23] that a CSBP remains finite almost surely (or is conservative)
if and only if ∫

(0,1)

1
|Ψ(q)| dq =∞ .

Clearly, the branching mechanism of a conservative CSBP must have b = 0.
A CSBP is subcritical, critical or supercritical if we have Ψ′(0+) > 0, Ψ′(0+) = 0

or Ψ′(0+) < 0 respectively. Thus for a finite (sub)critical CSBP (by which we mean
a critical or subcritical CSBP that remains finite almost surely) we must have b = 0
and

(5.2) 0 6 Ψ′(0+) = −a−
∫

[1,∞)
x dπ(x) .

Consequently, branching mechanism of a finite (sub)critical CSBP takes the form

(5.3) Ψ(q) = 1
2a0q

2 + a∞q +
∫

(0,∞)
(e−qx − 1 + qx) dπ(x) ,

for some a∞ > 0, together with the finiteness condition∫
(0,∞)

(x ∧ 1)x dπ(x) <∞ .

Note a∞ = Ψ′(0+) and can be expressed in terms of a using (5.2).
We remark that (5.3) closely parallels the form of the discrete branching mech-

anism Ψ̂ in Definition 4.3. Indeed, for critical Galton-Watson processes Ψ̂ takes
the form (4.8), which is obtained from (5.3) by dropping the quadratic term 1

2a0q
2,

setting a∞ = 0 by the criticality condition, and using the approximation e−s ≈ 1−s.

2A derivation of an analog of this for Galton-Watson processes is in Remark 7.2, below.
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We will see later (Proposition 6.3) that the quadratic term (along with a linear
term) reappears in the continuum limit.

Returning to the CSBP Z, the nature of the Lamperti transform forces the
relation

(5.4) E
(
e−qZt(x)) = e−xϕt(q) ,

where the spatial Laplace exponent ϕ solves the backward equation

(5.5) ∂tϕt(q) = −Ψ(ϕt(q)) , with initial data ϕ0(q) = q .

This is exactly the continuum analog of the discrete equation (4.5), and we will
provide a natural and elementary proof of it in Proposition 6.4, below.

As the Laplace exponent of a subordinator, ϕ has the Lévy-Khintchine represen-
tation

(5.6) ϕt(q) = btq +
∫

(0,∞)
(1− e−qx) dν̄t(x) , q > 0 ,

where bt > 0 and ν̄t is a positive measure satisfying the finiteness condition∫
(0,∞)

(1 ∧ x) dν̄t(x) <∞ .

The quantities bt and ν̄t are respectively the drift coefficient and the Lévy jump
measure of the CSBP Z.

A striking result of Bertoin and Le Gall [12] shows that the Lévy jump measure
of a critical CSBP which becomes extinct almost surely satisfies a generalized type
of Smoluchowski coagulation equation. Explicitly, Proposition 3 in [12] shows that

(5.7) ∂t〈f, ν̄t〉 =
∑
k>2

RkIk(ν̄t, f) , for all f ∈ C([0,∞]) ,

where

Ik(ν̄, f) def=
∫

(0,∞)k

(
f(x1 + . . .+ xk)−

k∑
i=1

f(xi)
) k∏
i=1

dν̄(xi)
〈1, ν̄〉 ,(5.8)

Rk
def= (−ρt)kΨ(k)(ρt)

k! , ρt
def= 〈1, ν̄t〉 .(5.9)

Here
〈f, ν̄t〉

def=
∫

(0,∞)
f(x) dν̄t(x),

is the duality pairing.

Equation (5.7) has a natural interpretation as a coagulation model introduced by
Smoluchowski [40,41] generalized to account for multiple coalescence. To understand
this, we interpret {ν̄t | t > 0} as a family of positive measures on R+ = (0,∞),
representing the size distribution of clusters. Namely, ν̄t(a, b) denotes the expected
number of clusters at time t that have size in the interval (a, b).

Fix k > 2 and consider the change in the cluster size distribution due to the
simultaneous merger of k clusters. We assume that the merging clusters are i.i.d.
with distribution proportional to ν̄t. For y ∈ (0,∞), the merging of smaller clusters
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into a cluster of size y will result in an increase in the density of clusters of size y.
This will happen at a rate proportional to∫

(0,y)

dν̄t(x1)
〈1, ν̄t〉

∫
(0,y−x1)

dν̄t(x2)
〈1, ν̄t〉

· · ·
∫

(0,y−
∑k−2

i=1
xi)

dν̄t(xk−1)
〈1, ν̄t〉

· dν̄t(y − x1 − · · · − xk−1)
〈1, ν̄t〉

.

On the other hand, the clusters of size y also combine with larger clusters resulting in
a decrease in the density of clusters of size y. This will happen at a rate proportional
to

k
dν̄t(y)
〈1, ν̄t〉

.

Thus, for any test function f ∈ C([0,∞]), the rate at which the simultaneous
merger of k clusters affects the moment 〈f, ν̄t〉 is proportional to the difference of
the above two terms integrated against f . Changing variables we see that this is
exactly Ik(f, ν̄t) and hence the rate at which the simultaneous merger of k clusters
affects 〈f, ν̄t〉 is proportional to Ik(f, ν̄t). Summing over k and multiplying by
proportionality constants explains how (5.7) models coalescence.

In general the rate constants Rk appearing in (5.7) can be chosen arbitrarily. In
the context of CSBPs, the Rk’s have a special Poissonian structure given by (5.9).
One of the main motivations of our exposition is to provide a clear account of the
meaning of the measure ν̄t in this context, the precise way it arises in the continuum
limit, and how it comes to be governed by coagulation dynamics with the indicated
rates.

Precisely, we will show that for a finite (sub)critical CSBP, the Lévy jump
measures ν̄t arise as the scaling limit of the nth generation descendant distributions
of rescaled critical Galton-Watson processes νn. To briefly explain the main idea,
recall Proposition 3.1 shows that νn satisfies (2.7). This is of course simply a discrete
version of (5.7). Indeed, given a sequence {f(j)}j∈N, we multiply (2.7) by f(j) and
sum over j to obtain

(5.10)
∑
j>0

f(j)(νn+1(j)− νn(j)) =
∑
k>2

R̂k Îk(νn, f) ,

where

(5.11) Îk(νn, f) def=
∑

i1,...,ik>0

[
f
( k∑
l=1

il

)
−

k∑
l=1

f(il)
] k∏
l=1

νn(il)
ρn

.

Moreover, Lemma 4.5 shows that the rate constants are obtained from the discrete
branching mechanism Ψ̂ (Definition 4.3) in exactly the same manner as (5.9).

Thus, after rescaling the Galton-Watson processes correctly, it is only natural
to expect convergence of the rescaled branching mechanisms of the Galton-Watson
process to the branching mechanism of the CSBP, and convergence of the rescaled
descendant distributions νn to the Lévy jump measure νt. Moreover, the Lévy jump
measure νt should satisfy (5.7) if the limit is critical, and (5.7) with an additional
damping term (analogous to (2.13)) if the limit is subcritical. We prove this in
Proposition 6.3 and Corollaries 6.5 and 6.8 below.

6. Scaling limits of critical Galton-Watson processes.

In this section we study scaling limits of critical Galton-Watson processes using
the discrete coagulation dynamics developed above.
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We establish necessary and sufficient criteria for convergence of the discrete
branching mechanisms (Proposition 6.3), convergence of the Bernstein transforms
(Proposition 6.4) and of the rescaled Galton-Watson processes themselves (Proposi-
tion 6.6), in terms of a type of weak convergence of the reproduction laws alone.
Moreover, we show (Corollaries 6.5 and 6.8) that the Lévy jump measure of the
limiting CSBP satisfies a generalized (damped) Smoluchowski equation. The precise
notion of convergence is naturally associated with continuity theorems for Bernstein
transforms, which we develop in Appendix A due to their independent interest.

6.1. Rescaled time-discrete dynamics. We begin by rescaling the coagulation
model (2.8)–(2.10) (where R̂k is defined by (2.9)). Let h > 0 be a grid size, and
τ > 0 be a time step. We rescale the variables so that cluster sizes are integer
multiples of h, and the merger of clusters happens on intervals of time τ . Further, in
order to facilitate passing to the limit as h, τ → 0, we associate measures supported
on the grid hN to the rescaled size distributions. Explicitly, we define

(6.1) νhn = 1
h

∑
j>1

νn(j)δjh . πh,τ = 1
τh

∑
j>1

π̂(j)δjh .

Here δx denotes the Dirac measure centered at x.
In the context of Galton-Watson processes, the above corresponds to scaling

population by a factor of h and reproducing at times which are integer multiples
of τ . That is, the rescaled process Y is given by

Ynτ (jh) = hXn(j) .

We will, however, postpone the discussion of rescaled Galton-Watson processes to
Section 6.4, and instead study the rescaled size distributions first.

Associated with (6.1) we denote the Bernstein transform of νhn by

(6.2) ϕhn(q) =
∫
R+

(1− e−qx) dνhn(x) = 1
h
ϕ̂n(hq) .

We assume π̂ is critical, and define a rescaled branching mechanism by

(6.3) Ψh,τ (q) def=
∫
R+

(
(1− hq)x/h − 1 + qx

)
dπh,τ (x) = Ψ̂(hq)

τh
.

Note that Ψh,τ is only guaranteed to be defined on the interval [0, 2/h]. It is
increasing and convex on [0, 1/h], and for this reason we will subsequently ensure
0 6 q 6 1/h whenever we use Ψh,τ (q).

The evolution equations and their Bernstein transforms now take the following
form.

Lemma 6.1. Using the rescaled variables in (6.1), equation (5.10) becomes

(6.4)
〈f, νhn+1〉 − 〈f, νhn〉

τ
=
∑
k>2

Rh,τk (ρhn)Ik(νhn , f)

for any bounded f ∈ C(R+). Here Ik is defined by (5.8), and

(6.5) Rh,τk (ρhn) def= (−ρhn)k

k! Ψ(k)
h,τ (ρhn) ,

where ρhn = 〈1, νhn〉 represents the rescaled total number at time nτ .
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Further, the Bernstein transform of νhn satsifies

(6.6)
ϕhn+1(q)− ϕhn(q)

τ
= −Ψh,τ (ϕhn(q)) for all n > 0, q > 0 .

Proof. The proof is a direct computation using (5.10), Lemma 4.5, and (4.5). �

6.2. Convergence of critical branching mechanisms. The first step in study-
ing continuum limits of νhn is to study convergence of the branching mechanisms.
We obtain necessary and sufficient conditions for such convergence, in terms of a
criterion that is closely tied to the continuity theorems relating Bernstein transforms
and Lévy triples, which we develop in the Appendix.

For greater generality, we will study sequential limits where we also allow the
measure π̂ to vary. Let (π̂k) be a sequence of probability measures on N0 which satisfy
the criticality condition (2.6), and let (hk), (τk) be positive sequences converging
to 0. We introduce (rescaled) discrete branching mechanisms as in (4.6) and (6.3)
with π̂k replacing π̂, by defining

Ψ̂k(q) def=
∞∑
j=2

(
(1− q)j − 1 + jq

)
π̂k(j) , Ψ̆k(q) def= Ψ̂k(hkq)

τkhk
.

We next associate to each family size distribution π̂k a (Lévy) measure µ̂k on R+

given by

(6.7) dµ̂k(x) def=
∑
j>2

(j − 1)π̂k(j) dδj(x) .

This measure is rescaled according to the relation

(6.8) dµ̆k(x) def= 1
τk
dµ̂k

(
x

hk

)
= 1
τk

∑
j>2

(j − 1)π̂k(j) dδjhk
(x) .

The next definition singles out a particular sense of convergence of these measures
that will be important throughout the rest of this paper. This notion relates to
convergence of Lévy triples and is revisited in Appendix A (see Remark A.5).

Definition 6.2. Given some finite measure κ on [0,∞], we say the sequence (µ̆k)
Lévy-converges to κ provided
(6.9) (x ∧ 1) dµ̆k(x)→ dκ(x) weak-? on [0,∞].

Recall a sequence of finite measures (κk) converges to κ weak-? on [0,∞] if for
every test function g ∈ C([0,∞]) we have 〈g, κk〉 → 〈g, κ〉. We require test functions
to be continuous at ∞ in order to capture any atom at ∞.

Proposition 6.3. Given a sequence (π̂k) satisfying the criticality condition (2.6),
and positive sequences (hk), (τk) converging to zero, let (µ̆k), (Ψ̆k) be as above.

(i) Suppose that (µ̆k) Lévy-converges to some finite measure κ on [0,∞] as
k →∞. Then for each q ∈ [0,∞), as k →∞ we have

(6.10) Ψ̆k(q)→ Ψ(q) def= 1
2α0q

2 + α∞q +
∫ ∞

0

e−qx − 1 + qx

x
dµ(x) ,

where (α0, α∞, µ) is the Lévy triple associated with κ by the relation
(6.11) dκ(x) = α0 dδ0 + α∞ dδ∞ + (x ∧ 1) dµ(x) .
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Moreover, each derivative Ψ̆(m)
k converges to Ψ(m), locally uniformly in (0,∞) for

each m ∈ N.
(ii) Conversely, suppose Ψ(q) = limk→∞ Ψ̆k(q) exists for each q ∈ [0,∞). Then

(µ̆k) Lévy-converges to some finite measure κ on [0,∞], and Ψ is given by (6.10)–
(6.11).

Remark. The Lévy-convergence requirement (6.9) corresponds exactly to conver-
gence of Lévy triples in a natural topology associated to subordinators. Explicitly,
criterion (6.9) is equivalent to convergence of the Lévy triples (0, 0, µ̆k) to the Lévy
triple (α0, α∞, µ), as described in the Appendix.

Remark. Recall that the expression for Ψ in (6.10) is the general form of a branching
mechanism for a finite (sub)critical CSBP (see [23, Ch. 12] or Section 5). We
show in Section 8, below, that every such branching mechanism does arise as a
sequential limit from discrete branching mechanisms of critical Galton-Watson
processes. A heuristic explanation as to why critical branching mechanisms might
yield a subcritical branching mechanism in the limit is discussed in Remark 6.7,
below.

Proof of Proposition 6.3. We begin by proving (i).
1. Define

(6.12) dκk = (x ∧ 1) dµ̆k .
Then κk → κ weak-? on [0,∞] by (6.9). Next fix q > 0, and compute

Ψ′(q) = α0q + α∞ +
∫ ∞

0
(1− e−qx) dµ(x) = 〈f0, κ〉 ,(6.13)

Ψ̆′k(q) =
∫

(h,∞)

1− (1− hkq)(x−hk)/hk

x− hk
x dµ̆k(x) = 〈fhk

, κk〉 ,(6.14)

where

f0(x) = 1− e−qx

x

( x

x ∧ 1

)
, fh(x) = 1− (1− hq)(x−h)/h

x− h

( x

x ∧ 1

)
.

The second equality in (6.14) follows because κk is supported on [2hk,∞).
Note Ψ(0) = Ψhk

(0) = 0, and Ψ′ and Ψ′hk
are positive and increasing. Thus, the

desired conclusion in (6.10) for fixed q will follow, provided we show
(6.15) 〈fhk

, κk〉 = 〈fhk
− f0, κk〉+ 〈f0, κk〉 → 〈f0, κ〉 .

Clearly 〈f0, κk〉 → 〈f0, κ〉 because f0 ∈ C([0,∞]). We claim
(6.16) lim

h→0
sup
x>h

∣∣fh(x)− f0(x)
∣∣ = 0 .

Because 〈1, κk〉 → 〈1, κ〉, this immediately implies (6.15).
2. To finish the proof of (6.10), it only remains to prove (6.16). For this, we

claim that, provided max(h, qh) < 1
2 ,

(6.17) |fh(x)− f0(x)| 6

5e−qx + 2h
x

for x > 2 ,

2(1 ∨ x)hq2 for x > h .

Indeed, this estimate in the case x > 2 follows immediately from the bounds

0 < x

x− h
− 1 = h

x− h
<

2h
x
,
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x

x− h
(1− qh)(x−h)/h 6 2(e−qh)x/h

1− qh 6 4e−qx .

In the case x > h, observe that because z 7→ ez is contractive for z < 0, we have∣∣(1− qh)(x−h)/h − e−(x−h)q
∣∣

x− h
6

1
h
|ln(1− qh) + qh| = 1

h

∫ qh

0

z

1− z dz 6 hq
2 ,

because qh < 1
2 . Moreover, because z 7→ (1− e−z)/z =

∫ 1
0 e
−rz dr is a decreasing

contraction for z > 0,

0 < 1− e−(x−h)q

x− h
− 1− e−xq

x
6 hq2.

By adding these last two bounds and using x/(x ∧ 1) = 1 ∨ x, we infer (6.17).
Using the first estimate in (6.17) for x > h−1/2, and the second estimate in (6.17)

for x 6 h−1/2, we obtain (6.16). This finishes the proof of (6.10).
3. To prove the statement regarding local uniform convergence, let Ω be an open

set with compact closure in the right half plane {q ∈ C | Re q > 0}, and note that
|1− hq| < 1 for all q ∈ Ω, for sufficiently small h > 0. When x = mh for an integer
m > 2, the function q 7→ fh(x) is analytic and is clearly bounded on Ω uniformly
for h small and for x > 1. A uniform bound holds for x 6 1 as well due to the fact
that in this case ∂qfh(x) = (1− hq)m−2, whence |∂qfh(x)| 6 1.

Now, because of (6.14), the functions (Ψ̆′k)k>N are analytic and uniformly
bounded on Ω. By Montel’s theorem, this sequence converges uniformly on Ω,
and by Cauchy’s integral formula, all derivatives converge locally uniformly. This
finishes the proof of part (i).

For part (ii), assume Ψ(q) = limk→∞ Ψ̆k(q) exists for each q ∈ [0,∞). First,
considering some q fixed, note that for every x > h,

fh(x) > 1− e−q(x−h)

x− h
(1 ∨ x) > 1− e−qx

x
(1 ∨ x) = f0(x) .

Therefore by (6.14) we have that whenever k is so large that 2qhk < 1,

(6.18) (inf f0)〈1, κk〉 6 〈fhk
, κk〉 = Ψ̆′k(q) 6 Ψ̆k(2q)

q
.

The last inequality holds because Ψ̆k is convex and positive on (q, 2q). Because
inf f0 > 0 and (Ψ̆k(2q)) is bounded, it follows that supk〈1, κk〉 < ∞, and hence
{κk} is weak-? pre-compact.

Thus, any subsequence of (κk) has a further subsequence that converges weak-?
on [0,∞]. Let κ denote any such limit. By the proof of part (i) above, we infer that
for any q > 0, as k →∞ along the appropriate subsequence,

Ψ̆′k(q) = 〈fhk
, κk〉 → Φ(q) def= 〈f0, κ〉 .

By dominated convergence we deduce Ψ(q) = lim
∫ q

0 Ψ̆′k(r) dr =
∫ q

0 Φ(r) dr, whence
we conclude Ψ is C1 and Φ = Ψ′.

Let (α0, α∞, µ) be the Lévy triple associated with κ by (6.11). Then we see
that (6.13) holds, and Ψ′ is the Bernstein transform of this triple. Because the
Bernstein transform is bijective (see Theorem A.3 of the Appendix), it follows that
Ψ determines κ uniquely. By consequence, the whole sequence (κk) must converge,
meaning that (6.9) holds. This finishes the proof. �
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6.3. Convergence of Bernstein transforms. Next we study the convergence of
the rescaled size distributions νhn for survivors, by the simple expedient of studying
convergence of their Bernstein transforms ϕhn, regarding (6.6) as a forward Euler
difference approximation to the ODE (5.5).

Proposition 6.4. Make the same assumptions as in Proposition 6.3.
(i) Suppose that the Lévy convergence in (6.9) holds for some finite measure κ

on [0,∞]. Then, as k →∞ and whenever nτk → t, we have

(6.19) ϕhk
n (q)→ ϕ(q, t) for every q, t ∈ [0,∞) ,

where ϕ is the unique solution of

(6.20) ∂tϕ(q, t) = −Ψ(ϕ(q, t)) , ϕ(q, 0) = q ,

with Ψ given by (6.10). Moreover, ϕ(·, t) is Bernstein for each t > 0, and has the
form

(6.21) ϕ(q, t) = β0(t)q + β∞ +
∫

(0,∞)
(1− e−qx) dνt(x) ,

where β∞ = 0, β0(t) > 0 and
∫

(0,∞)(x ∧ 1) dνt(x) <∞.
(ii) Conversely, suppose (6.19) holds, and ϕ(q0, t0) > 0 for some q0, t0 > 0. Then

(6.9) holds for some finite measure κ on [0,∞].

Proof. We prove (i) by providing a rather straightforward proof that the forward
Euler difference scheme in (6.6) converges if (6.10) holds. Fix q ∈ R+ and T > 0.
From equation (6.20) we see

ϕ(q, t) = q −
∫ t

0
Ψ(ϕ(q, s)) ds.

Because s 7→ Ψ(ϕ(q, s)) is positive decreasing, ϕ(q, s) 6 q, whenever nτk 6 T we
have

ϕ(q, nτk) = q − τk
n−1∑
m=0

Ψ(ϕ(q,mτk)) +R′1 ,

where

(6.22) 0 6 R′1 6 τk
n−1∑
m=0

(
Ψ(ϕ(q,mτk))−Ψ(ϕ(q, (m+ 1)τk))

)
6 τkΨ(q) .

Let ϕk(q, nτk) def= ϕhk
n (q) and Ψk

def= Ψhk,τk
. Summing (6.6), and noting νh0 = δh/h,

we have

ϕk(q, nτk) = 1− e−qhk

hk
− τk

n−1∑
m=0

Ψk(ϕk(q,mτk))(6.23)

= q − τk
n−1∑
m=0

Ψ(ϕk(q,mτk)) +R′2 ,

where, because nτk 6 T ,

(6.24) |R′2| 6Mk
def= q2hk + T sup

[0,q]
|Ψk −Ψ| .
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Consequently, because Ψ′ is positive and increasing on [0, q],

|(ϕ− ϕk)(q, nτk)| 6 |R′1|+ |R′2|+ τk

n−1∑
m=0

∣∣Ψ(ϕ(q,mτk))−Ψ(ϕk(q,mτk))
∣∣

6 τkΨ(q) +Mk + τkΨ′(q)
n−1∑
m=0

∣∣(ϕ− ϕk)(q,mτk)
∣∣ .

Hence, by the discrete Gronwall inequality,

|(ϕ− ϕk)(q, nτk)| 6
(
τkΨ(q) +Mk

)(
1 + τkΨ′(q)

)n
6
(
τkΨ(q) +Mk

)
eΨ′(q)nτk .

Proposition 6.3 guarantees Mk → 0 as k → ∞. Because ϕ(q, t) has bounded
derivative |∂tϕ| 6 Ψ(q), we may infer that whenever nτk → t ∈ [0, T ),

|ϕk(q, nτk)− ϕ(q, t)| → 0 as k →∞ .

This finishes the proof of convergence of (ϕk). Because ϕk(·, nτk) is Bernstein, and
any pointwise limit of Bernstein functions is Bernstein [36, Cor. 3.7], the limit ϕ(·, t)
is Bernstein and has the form in (6.21) for some Lévy triple (β0, β∞, νt). We must
have β∞ = 0, however, because ϕ(q, t) 6 q for all q, t > 0.

For the proof of (ii), choose q, t > 0 such that ϕ(q, t) > 0. For k sufficiently large,
with n = bt/τkc we have nτk > t/2 and ϕk(q, nτk) > ϕ(q, t)/2, and we find from
(6.23) that

t

2Ψk

(
ϕ(q, t)

2

)
6 τk

n−1∑
m=0

Ψk(ϕk(q,mτk)) 6 1− e−qhk

hk
6 2q .

Hence {Ψk(ϕ(q, t)/2)} is bounded. Following the proof of Proposition 6.3 (specif-
ically, using (6.18)) we see that the set of measures {κk} is weak-? pre-compact.
(Here κk is defined by (6.12).)

Thus, any subsequence of (κk) has a further subsequence that converges weak-?
on [0,∞]. Let κ denote any such limit. Then, by part (i) above, we know (6.20)
holds with Ψ given by taking the limit in (6.10) along the appropriate subsequence,
as in the proof of part (ii) of Proposition 6.3. Then ϕ is C1, and Ψ is determined
by ϕ by evaluating (6.20) at t = 0. As in the proof of Proposition 6.3, it follows
κ is determined by ϕ, hence the whole sequence (κk) converges. This means (6.9)
holds, finishing the proof. �

Because convergence of the Bernstein transforms is equivalent to convergence of
corresponding Lévy triples and weak-? convergence of corresponding measures on
[0,∞] by the continuity theorem A.6, we obtain the following corollary.

Corollary 6.5. Under the same assumptions as Proposition 6.4 part (i), we have
that for every t > 0, as k →∞ and whenever nhk → t,
(6.25) (x ∧ 1) dνhk

n (x)→ β0(t) dδ0(x) + (x ∧ 1)dνt(x) weak-? on [0,∞].
Conversely, if this convergence holds, then (6.9) holds for some finite measure κ on
[0,∞].

Further, we have β0(t) = 0 for all t > 0 if and only if in (6.10) we have
Ψ′(∞) =∞, or equivalently

(6.26) a0 > 0 or
∫

(0,∞)
dµ(x) =∞ .
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In case Ψ′(∞) <∞ then β0(t) = exp(−Ψ′(∞)t).
Moreover, we have ϕ(∞, t) = 〈1, νt〉 <∞ if and only if Grey’s condition holds:

(6.27)
∫

[1,∞)

du

Ψ(u) <∞ .

In this case, the limiting family of finite measures (νt)t>0 is a weak solution of the
generalized damped Smoluchowski equation

(6.28) ∂t〈f, ν̄t〉 = −Ψ′(0+)〈f, ν̄t〉+
∑
k>2

RkIk(ν̄t, f) ,

for all test functions f ∈ C([0,∞]). Here Rk and Ik are as in (5.8) and (5.9)
respectively.

Remark. In the critical case Ψ′(0+) = 0 and (6.28) is precisely the generalized
Smoluchowski equation (5.7) encountered before.

Remark. The convergence property (6.25) explains precisely how the Lévy jump
measure of a (sub)critical CSBP X arises as a limit of scaled n-th generation
descendant distributions. This was one of our main motivations for developing this
treatment of continuum limits of Galton-Watson processes.

Remark. For the case when Grey’s condition (6.27) does not hold, Bertoin and Le
Gall have proposed an interesting generalization of Smoluchowski’s equation in terms
of the sum of locations of atoms of Poisson random measures; see [12, Eq. (26)].

Proof. 1. The weak convergence in (6.25) and the converse follow immediately from
Proposition 6.3 and the continuity theorem for Bernstein transforms (Theorem A.6).

2. Next, note that by (6.21) and because (1−e−qx)/1 6 x∧ (1/q)→ 0 as q →∞,

(6.29) β0(t) = lim
q→∞

ϕ(q, t)
q

.

We now claim β0(t) = 0 for all t > 0 if and only if limq→∞Ψ′(q) =∞. Indeed, if
β0(t) > ε > 0 for some t > 0, then because ϕ(q, t) is concave in q and decreasing in
t, necessarily ϕ(q, t) > εq and

q >
∫ t

0
Ψ(ϕ(q, s)) ds > tΨ(εq)

for all q > 0. Because Ψ is convex it follows Ψ′(q) 6 1/(εt) for all q. Conversely, if
Ψ′(q) 6M for all q then Ψ(q) 6Mq and ϕ(q, t) > qe−Mt by (6.20).

Now, the condition limq→∞Ψ′(q) =∞ is easily seen to be equivalent to (6.26).
This establishes both as necessary and sufficient to have β0(t) ≡ 0. In the case
Ψ′(∞) <∞, then due to (6.20) and (6.29) we find

β0(t)− β0(s) = − lim
q→∞

1
q

∫ t

s

Ψ(ϕ(q, r)) dr = −
∫ t

s

Ψ′(∞)β0(r) dr ,

whence β(t) = exp(−Ψ′(∞)t) since β0(0) = 1.
3. That Grey’s condition is necessary and sufficient for 〈1, νt〉 <∞ is well-known

(see for example [23, proof of Theorem 12.5]) and is easily deduced by separating
variables in (6.20) and integrating.

4. Finally, we show that (νt) satisfies (6.28). In the case that Ψ is critical (i.e.
Ψ′(0+) = 0) a proof can be found in [12, Proposition 3] or [20, Theorem 3.2]. In the
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general case the proof closely resembles [20, Theorem 3.2] and we sketch the details
here.

The main idea is to establish (6.28) for test functions of the form fq(x) def= 1−e−qx.
Indeed, observe

ρkt Ik(ν̄, fq) =
∫

(0,∞)k

[
fq

( k∑
i=1

xi

)
−

k∑
i=1

fq(xi)
]
dν̄kt

=
∫

(0,∞)k

[
1−

k∏
i=1

e−qxi −
k∑
i=1

(
1− e−qxi

)]
dν̄kt

= ρkt − (ρt − ϕ(q, t))k − kρk−1
t ϕ(q, t) .

Consequently∑
k>2

RkIk(ν̄, fq) =
∑
k>2

(−1)kΨ(k)(ρt)
k!

[
ρkt − (ρt − ϕ(q, t))k − kρk−1

t ϕ(q, t)
]

=
∑
k>0

(−1)kΨ(k)(ρt)
k!

[
ρkt − (ρt − ϕ(q, t))k − kρk−1

t ϕ(q, t)
]

= Ψ(0)−Ψ(ϕ(q, t)) + ϕ(q, t)Ψ′(0) = ϕ(q, t)Ψ′(0) + ∂t〈ν̄, fq〉 ,
where second equality is true because the terms for k = 0, 1 are 0, the third equality
follows from the Taylor expansion of Ψ about ρt, and the last equality follows
from (6.20) and the fact that Ψ(0) = 0.

This proves (6.28) is satisfied for test functions of the form fq above. The general
case follows from an approximation argument the details of which are the same as
in the proof of Theorem 3.2 in [20]. �

6.4. Convergence of Galton-Watson processes. Finally, we conclude this sec-
tion with convergence results for the rescaled Galton-Watson processes. We rescale
the population by a factor of hk and the reproduction time by a factor of τk.
Explicitly, the rescaled Galton-Watson process Y (k) is defined by

(6.30) Y
(k)
t (x) = hkXbt/τkc,k

(⌊ x
hk

⌋)
.

We recall that the argument of the processes refers to the initial population and is
usually suppressed.

Proposition 6.6. Make the same assumptions as in Proposition 6.3.
(i) Suppose there exists a finite measure κ on [0,∞] such that (µ̆k) Lévy-converges

(as in Definition 6.2) to κ. Then the finite-dimensional distributions of the rescaled
Galton-Watson processes Y (k) converge to those of a finite (sub)critical CSBP Z.
Further, the Bernstein transforms of Y (k)’s converge pointwise to the Laplace expo-
nent of Z. That is, if

ϕk(q, t) def= 1
hk

E
[
1− exp

(
−qY (k)

t (hk)
)]
,

and ϕ(q, t) def= − ln E[exp(−qZt(1))]
then

lim
k→∞

ϕk(q, t) = ϕ(q, t) ,

for every q ∈ R+ and t > 0.
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(ii) Conversely, if the one-dimensional distributions of Y (k) converge to those
of a non-negative process Z such that P {Zt0(x0) > 0} > 0 for some x0, t0 > 0,
then there exists a finite measure κ on [0,∞] such that (µ̆k) Lévy-converges to κ.
Consequently, Z may be chosen to be a finite (sub)critical CSBP.

Remark 6.7. Before presenting the proof, we momentarily pause to remark on
criticality. Each process Y (k) is a critical Galton-Watson process, however, the limit
need not be critical. Indeed, the branching mechanism of the limit is given by (6.10)
with α∞ > 0. This means that the limiting process Z can either be critical or
subcritical. The subcritical situation (α∞ > 0) arises precisely when the rescaled
measures µ̆k Lévy-converge to a measure that has an atom at ∞. Physically this
corresponds to the situation when the rescaled descendant distributions µ̆k have
a negligible fraction of large families that contain a non-negligible fraction of the
population. In the continuum limit, this fraction of the population ends up in
families of ‘infinite’ size, and the total population observed in families of finite size
decays in time at exponential rate a∞.

Proof. First assume (6.9) holds. By Proposition 6.4 we know that ϕk converges to a
function ϕ which satisfies (6.20). We know from [20] (see also [12]) that the solution
of (6.20) is the Laplace exponent of a (sub)critical CSBP Z. To finish the proof we
only need to show that the finite-dimensional distributions of Y (k) converge to that
of Z. Let x > 0 be the initial population and fix t > 0. Define Nk = bx/hkc and
observe

E
(

exp
(
−qY (k)

t (x)
))

= E
(

exp
(
−qY (k)

t (Nkhk)
))

=
[
E
(

exp
(
−qY (k)

t (hk)
))]Nk

=
[
1− hkϕk(q, t)

]Nk

k→∞−−−−→ e−ϕ(q,t)x = E
(

exp
(
−qZt(x)

))
This shows that the Laplace transforms of Y (k)

t converge to the Laplace transform
of Z, proving convergence of one-dimensional distributions. The convergence of
higher dimensional distributions can now be obtained as in [27, page 280].

For the converse, assume that the one-dimensional distributions of Y (k) converge
to that of a process Z with P {Zt0 > 0} > 0. Let x > 0, and Nk = bx/hkc, and
observe convergence of one-dimensional distributions implies

E
(

exp
(
−qY (k)

t0 (x)
)) k→∞−−−−→ e−ϕ(q,t0)x = E

(
exp
(
−qZt0(x)

))
.

Thus
lim
k→∞

[
1− hkϕk(q, t0)

]Nk

exists and equals e−ϕ(q,t0)x ,

for some function ϕ. Clearly ϕ(q, t0)x must be the Laplace exponent of Zt0(x), and
further

lim
k→∞

ϕk(q, t0) = lim
k→∞

1− e−ϕ(q,t0)x/Nk

hk
= ϕ(q, t0).

By our assumption on Z, we know ϕ(q, t0) > 0 and we can apply Proposition 6.4.
This will guarantee (6.9) holds. By using part (i), we infer there is a finite (sub)critical
CSBP with the same one-dimensional distributions as Z. This completes the
proof. �
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As an immediate corollary, we prove a special case of a result in [12] showing
that the Lévy jump measure of certain CSBPs satisfy the Smoluchowski equation.

Corollary 6.8. Let Z be a finite (sub)critical CSBP whose branching mechanism
satisfies Grey’s condition (6.27), and νt be the Lévy jump measure associated with
Zt. Then ν is a weak solution of the damped Smoluchowski equations (6.28).

Proof. We note first that there exists a sequence of processes Y (k) of the form (6.30)
such that the finite-dimensional distributions of Y (k) converge to Z. While the
existence of such a sequence is well known [18, 29] we will prove a much stronger
result in Theorem 8.1, below. By Proposition 6.6 we know that the Bernstein
transforms of Y (k) converge pointwise to the Laplace exponent of Z. Consequently,
by Corollary 6.5 the convergence (6.25) holds, where νt is the Lévy jump measure
of Zt, and further ν satisfies (6.28) as desired. �

7. Grimvall’s convergence criterion, simplified and compared.

Grimvall [18] established a criterion that is necessary and sufficient for convergence
of rescaled Galton-Watson processes in general, in terms of convolution powers of
family-size distributions, shifted and scaled. Here, using the classical theory of infinite
divisibility from [15], we describe how Grimvall’s criterion can be expressed more
simply in terms of weak convergence of canonical measures. Then we show that for
critical Galton-Watson processes, Grimvall’s result is equivalent to Proposition 6.6.

7.1. A simplification of Grimvall’s result. We begin by stating Grimvall’s result
using notation consistent with ours.

Theorem 7.1 (Grimvall [18], Theorems 3.1 and 3.3). Let (hk), (τk) be positive
sequences converging to 0, such that 1/(hkτk) ∈ N for all k. Let (ηk) be a sequence
of probability measures of the form

ηk =
∑
j>−1

π̂k(j + 1)δjhk
.

(1) If η∗1/(hkτk)
k converges weakly to a probability measure η, then the finite-

dimensional distributions of the scaled processes Y (k) defined in (6.30) con-
verge to those of a (possibly infinite) CSBP with an absorbing state +∞.

(2) Conversely, if for every t ∈ [0, 1] the random variables Y (k)
t converge weakly

to a random variable Yt, with P {Y1 > 0} > 0, then η
∗1/(hkτk)
k converges

weakly to a probability measure η.

Remark 7.2. The reason the shifted measures ηn are natural in this context is
because they determine the law of the parent process of the Lamperti transform.
At the discrete level before scaling, this can be described as follows. Let ξ be a
random variable with distribution π̂, representing the number of descendants of a
single individual. Define the parent process, X̄, to be a random walk obtained by
summing i.i.d. copies of ξ − 1, and a time change Θ defined recursively by

Θ0 = 0 , Θn+1
def= Θn + x+ X̄Θn

.

The Lamperti transformation defines a process X by

Xn
def= x+ X̄Θn

.
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Observe
Xn+1 −Xn = X̄Θn+1 − X̄Θn

,

and hence the increment Xn+1 −Xn has the same distribution as the sum of Xn

independent copies of ξ − 1 that are each independent of Xn. Equivalently, Xn+1
has the same law as the sum of Xn i.i.d. copies of ξ, that are each independent
of Xn. This implies Xn is a Galton-Watson process with initial population x and
descendant distribution π̂. (This is the discrete analog of the Lamperti transform
described in Section 5.)

Grimvall’s convergence criterion stated above implies that the sequence of the
parent processes X̄(k) generated by π̂k converge weakly, after scaling, to a Lévy
process. The limiting parent process will be the parent process of the CSBP as
given by the Lamperti transform.

Our aim in this subsection is to show that Grimvall’s criterion can be expressed in
terms of simple weak convergence criteria on [0,∞) that do not involve convolution
powers of ηk. Toward this end, we introduce the (overloaded) notation

(7.1) dπ̂k(x) =
∑
j>0

π̂k(j) dδj(x)

to denote the probability measures on R determined by the distributions π̂k on
N0. Then dηk(x) = dπ̂k((x+ hk)/hk). We recall that a sequence of finite measures
(λk) on an interval I ⊂ R converges narrowly to λ on I if 〈f, λk〉 → 〈f, λ〉 for every
f ∈ Cb(I), the space of bounded continuous functions on I.

Proposition 7.3. The sequence (η∗1/(hkτk)
k ) converges weakly to a probability mea-

sure η on R if and only if, as k →∞,

(7.2) bk
def=
∫

[0,∞)
sin(x− hk) dπ̂k (x/hk)

τkhk
→ b ,

and

(7.3) ((x− hk)2 ∧ 1) dπ̂k (x/hk)
τkhk

→ K

narrowly on [0,∞), where b ∈ R and K is a finite measure supported on [0,∞),
such that

(7.4)
∫
R
eizxdη(x) = exp

(
ibz +

∫
R

eizx − 1− iz sin x
x2 ∧ 1 dK(x)

)
is the Lévy-Khintchine representation of the infinitely divisible distribution η.

Remark. We emphasize that neither Theorem 7.1 nor Proposition 7.3 require the
criticality assumption (2.6). While (2.6) is implicitly assumed throughout the rest
of this paper, it is not required in the following proof.

Proof. We know [15, §XVII.1, Thm 1] that (η∗1/(hkτk)
k ) converges weakly to a

probability measure η if and only if

lim
k→∞

1
hkτk

∫
R

(eixξ − 1) dηk(x)

exists for all ξ ∈ R and is continuous in ξ. This is equivalent (see [15, §XVII.2,
Lemma 1 and Thm. 2]) to the existence of b ∈ R and a canonical measure M such
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that, as k →∞, ∫
R

sin x dηk(x)
hkτk

→ b ,(7.5)

(x2 ∧ 1) dηk(x)
hkτk

→
(

1 ∧ 1
x2

)
dM(x) ,(7.6)

narrowly on R. We recall that a canonical measure M is a positive measure on R
for which the measure K defined by dK(x) = (1 ∧ x−2) dM(x) is finite, and note
that Feller’s definition of convergence of canonical measures Mn →M is equivalent
to the convergence (1 ∧ x−2)Mn(dx)→ K narrowly on R.

Now, clearly∫
R

sin x dηk(x)
hkτk

=
∫

[0,∞)
sin(x− hk) dπ̂k (x/hk)

τkhk
= bk ,

so (7.5) is equivalent to (7.2). Next, suppose (7.5) and (7.6) hold. Let f ∈ Cb(R)
be a bounded continuous test function and observe

(7.7)
∫
R
f(x)(x2 ∧ 1) dηk(x)

hkτk
=
∫

[0,∞)
f(x− hk)((x− hk)2 ∧ 1) dπ̂k (x/hk)

τkhk
.

We need to show that translating f by hk does not affect the limit of the right
hand side. Choose ε > 0 arbitrary and find R > 2 so that K(R,∞) < ε. Without
loss of generality we may assume R is a point of continuity for the measure K.
Since f is uniformly continuous on [0, R], for k large enough we can arrange
|f(x)− f(x− hk)| < ε for all x ∈ [0, R].

Writing
dλk(x) = ((x− hk)2 ∧ 1) dπ̂k(x/hk)/(τkhk) ,

we have∫
[0,∞)

|f(x)− f(x− hk)| dλk(x) 6
∫

[0,R]
ε dλk(x) + 2‖f‖L∞

∫
(R,∞)

dλk(x)

k→∞−−−−→ εK[0, R] + 2‖f‖L∞K(R,∞) < Cε .

Thus, on the right hand side of (7.7), the test function f can be translated by hk,
which immediately implies (7.3).

The converse follows using a similar argument. �

Remark. In our proof we showed that test functions can be translated by hk when
tested against the measure dλk(x). The weight (x− hk)2 ∧ 1 however can not be
translated similarly!

7.2. Equivalence in the critical case. The main result of this section shows that
under the criticality assumption (2.6), the conditions (7.2) and (7.3) are equivalent to
the Lévy-convergence (Definition 6.2) of the rescaled Lévy measures µ̆k determined
from family size distributions π̂k as in (6.8). What makes this a curious point is
that Lévy-convergence occurs only on the compactified positive half-line [0,∞], but
the convolution powers of the measures ηk in Theorem 7.1 have support on the
negative half-line also. This complicated Grimvall’s analysis of their convergence.

Proposition 7.4. Let (π̂k), be a sequence of measures satisfying the criticality
assumption (2.6), (hk), (τk) be two positive sequences that converge to 0, and let µ̆k
be defined by (6.8). Then (7.2) and (7.3) are equivalent to the existence of a finite
measure κ on [0,∞] such that (µ̆k) Lévy-converges to κ.
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Proof. 1. Suppose first (7.2) and (7.3) hold, and define µ̆k so that

(7.8) dµ̆k(x) = 1
τkhk

∑
j>2

(jhk − hk)π̂k(j) dδjhk
= (x− hk) dπ̆k + π̂k(0)

τk
dδ0 ,

where for brevity we define

(7.9) dπ̆k
def= dπ̂k (x/hk)

τkhk
.

Our first step is to show that the measures (x ∧ 1) dµ̆k are uniformly bounded. We
start by proving the tail bound

(7.10) sup
k

∫
(1,∞)

dµ̆k(x) <∞.

To see this we use criticality (2.6) to infer
∫

[0,∞)(x− hk) dπ̆k = 0 and hence∫
(1,∞)

dµ̆k(x) =
∫

(1,∞)
(x− hk) dπ̆k(x) = −

∫
[0,1]

(x− hk) dπ̆k(x) .

Because |x− sin x| 6 x2 for |x| 6 1 and | sin x| 6 1, we then have∣∣∣∫
(1,∞)

dµ̆k(x)− bk
∣∣∣ 6 ∫

[0,∞)
((x− h)2 ∧ 1) dπ̆k(x) ,

whence (7.10) holds, by (7.2) and (7.3).
Next we claim

(7.11) sup
k

∫
[0,1]

x dµ̆k(x) = sup
k

∫
[0,1]

x(x− hk) dπ̆k(x) <∞.

Indeed, choosing the test function f(x) = 1, equation (7.3) and criticality give

K[0,∞) = lim
k→∞

∫
[0,∞)

(
(x− hk)2 ∧ 1 + hk(x− hk)

)
dπ̆k(x)

= lim
k→∞

(∫
[0,1+hk]

x dµ̆k(x) +
∫

(1+hk,∞)
(1 + hk(x− hk)) dπ̆k(x)

)
.

Combined with (7.10) this gives (7.11) as claimed.
2. The bounds (7.10) and (7.11) show that {(x∧ 1) dµ̆k} is weak-? precompact in

the set of finite measures on [0,∞]. Now choose any subsequence (which we again
index by k for convenience) along which

(x ∧ 1) dµ̆k(x)→ κ = a0 dδ0 + a∞ dδ∞ + (x ∧ 1) dµ(x)

weak-? on [0,∞]. We claim a0, a∞ and µ can directly be determined from K and b
via the identities

(x ∧ 1) dµ(x) = (1 ∨ x) dK(x) on R+,(7.12)
a0 = K{0},(7.13)

a∞ +
∫

(0,∞)

(
1− sin x

x

)
dµ(x) = −b .(7.14)

This will show that subsequential limits are unique, proving (6.9). Thus, to complete
the proof, it remains to establish (7.12)–(7.14).
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i. To prove (7.12), let ε > 0 and let f be a continuous function supported in
[ε, 1/ε]. Observe that due to (7.3) and the uniform continuity of x/(x2 ∧ 1) on
[ε/2, 2/ε],∫

(0,∞)
f(x) dκ(x) = lim

k→∞

∫
R+
f(x)(x ∧ 1) dµ̆k(x)

= lim
k→∞

∫
R+
f(x)(x ∧ 1) (x− hk)

(x− hk)2 ∧ 1
(
(x− hk)2 ∧ 1

)
dπ̆k(x)

= lim
k→∞

∫
R+
f(x)(x ∧ 1) x

x2 ∧ 1
(
(x− hk)2 ∧ 1

)
dπ̆k(x)

=
∫
R+
f(x)(1 ∨ x) dK(x) .

This proves (7.12). Moreover, incidentally it follows
∫

(1,∞) x dK(x) <∞.
ii. To prove (7.13), choose f(x) = (1 ∨ x)−1 = 1 ∧ (1/x) and observe that,

because (7.10) ensures

lim
k→∞

hk

∫
(1,∞)

(x− hk) dπ̆k(x) = 0 = lim
k→∞

hk

∫
(1,∞)

x−1 dπ̆k(x) ,

and furthermore |1− (x− h)2| 6 2h for x ∈ [1, 1 + h], we have

a0 +K(R+) = 〈f, κ〉 = lim
k→∞

∫
R+
f(x)(x ∧ 1) (x− hk) dπ̆k(x)

= lim
k→∞

(∫
(0,1]

x(x− hk) dπ̆k(x) +
∫

(1,∞)

(x− hk
x

)
dπ̆k(x)

)
= lim
k→∞

∫
R+

(
(x− hk)2 ∧ 1

)
dπ̆k(x) = K[0,∞) .

iii. Finally, to prove (7.14) define

f(x) = 1
x ∧ 1

(
1− sin x

x

)
, f(0) = 0 , f(∞) = 1 ,

and observe

a∞ +
∫
R+

(
1− sin x

x

)
dµ(x) = lim

k→∞

∫
R+
f(x)(x ∧ 1) dµ̆k(x)

= lim
k→∞

∫
[0,∞)

(
1− sin x

x

)
(x− hk) dπ̆k(x)

= −b+ lim
k→∞

∫
[0,∞)

( sin(x− hk)
x− hk

− sin x
x

)
(x− hk) dπ̆k(x) ,(7.15)

where we use criticality and (7.2) for the last equality. Due to (7.10), we have

lim
k→∞

∫
(1,∞)

( sin(x− hk)
x− hk

− sin x
x

)
(x− hk) dπ̆k(x) = 0 .

Now, because |(d/dx)(sin x/x)| 6 |x|, whenever hk 6 |x − hk| 6 1 we have |x| 6
2|x− hk| and ∣∣∣∣ sin(x− hk)

x− hk
− sin x

x

∣∣∣∣ 6 2hk|x− hk| .
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Because indeed hk 6 |x− hk| on the support of (x− hk) dπ̆k, then, due to (7.3) the
second term on the right of (7.15) converges to 0. This proves (7.14), and completes
the proof of the forward implication.

3. Conversely, assume (6.9). Using criticality and the fact that hk 6 x − hk
on the support of µ̆k, we immediately see by integrating (7.8) that h2

kπ̂k(0)/(τkhk)
is bounded, and we deduce that ((x − hk)2 ∧ 1) dπ̆k and bk, the left hand sides
of (7.2) and (7.3), are bounded, as in step 1 above. Now an argument similar to the
above shows that for any subsequential limits K and b, the identities (7.12)–(7.14)
hold. This shows uniqueness of subsequential limits and implies (7.2) and (7.3),
concluding the proof. �

Part 3. Universality in Galton-Watson process and CSBPs.

8. Universal Galton-Watson family size distributions

The following result is motivated by the existence of universal eternal solutions
of Smoluchowski’s coagulation equations [31], which in turn was inspired by Feller’s
account of Doeblin’s universal laws in classical probability theory [15, Section XVII.9].

Theorem 8.1. There exists a Galton-Watson process X with family-size distribution
π̂ : N→ [0,∞) and sequences (hn), (τn)→ 0, with the following property: For any
(sub)critical branching mechanism Ψ taking the form in (6.10), there is a subsequence
along which the rescaled process Y (k) (defined by rescaling X in equation (6.30))
converge to a CSBP with branching mechanism Ψ.

Moreover, the set of such family-size distributions π̂ is dense in the set of all
probability measures on N0 with the weak-? topology.

Much of the technical basis that we need to prove this result can be inferred
directly from Section 7 in [31]. The terminology used in [31], however, is substantially
different from our terminology which is based on [36] and Appendix A, below.3
Thus for the readers convenience we provide a self-contained treatment here.

We begin by constructing a “universal” Lévy triple, in the sense that any other
Lévy triple can be obtained as a suitable scaling limit. In order to make this precise,
we need to define the right notions of convergence and scaling of Lévy triples.

The right notion of convergence of Lévy triples is a generalization of Lévy-
convergence as introduced earlier in Definition 6.2. Namely, to each Lévy triple
λ

def= (α0, α∞, µ) we associate κ, a finite measure on [0,∞], by

(8.1) dκ(x) = a0 dδ0(x) + a∞ dδ∞(x) + (x ∧ 1) dµ(x) .

Now convergence of Lévy triples is defined using weak-? convergence of the associated
κ-measures.

Definition 8.2. Let (λk) be a sequence of Lévy triples, and κk the associated
measures defined as in (8.1) above. We say (λk) converges if the sequence (κk)
converges weak-? in the spaces of finite measures on [0,∞].

A more detailed account of this appears in Appendix A below. This appendix
also contains variants of certain classical continuity theorems for Laplace transforms
that are used throughout this section but are not widely known.

3The correspondence in terminology is described in Remark A.8, below
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Next we define the scaling of Lévy triples, as follows. Given a Lévy triple
λ = (α0, α∞, µ) and b, c > 0, define the rescaled Lévy triple λb,c by

λb,c
def= (αb,c0 , αb,c∞ , µ

b,c) ,
where
(8.2) αb,c0 = cb−1 α0, αb,c∞ = c α∞, and dµb,c(x) = c dµ(bx) .
We will see in Section 9, below, that this naturally corresponds to a dilational scaling
of CSBPs. With this, we can define the aforementioned notion of universality.

Definition 8.3. Let λ? be a Lévy triple and (bk), (ck) be two sequences that
converge to infinity. We say λ? is a universal Lévy triple with sequences (bk), (ck) if
for any Lévy triple λ we have
(8.3) λbk,ck

? → λ as k →∞ along some subsequence.

Our next lemma shows that this notion of universality is completely determined
by the tail of λ?.

Lemma 8.4. Let λ? = (0, 0, µ?), be a universal Lévy triple with sequences (bk) and
(ck). Let α0 > 0, R > 0, µ be any Lévy measure and define the Lévy measure ν? by

ν?(A) = µ(A ∩ (0, R]) + µ?(A ∩ (R,∞)) .
Then the Lévy triple (α0, 0, ν?) is also universal with the sequences (bk), (ck).

Remark. Lemma 8.4 is still true if finitely many terms of the sequences (bk), (ck)
are arbitrarily changed.

To prove Lemma 8.4 it helps to introduce left and right distribution functions as
follows.

Definition 8.5. Given a Lévy triple λ, we define the pair of left and right distribution
functions associated with λ to be (κL, κR) defined by

κL(x) def= α0 +
∫

(0,x]
z dµ(z) , κR(x) def= α∞ +

∫
(x,∞)

dµ .

The reason we introduce these functions is because of a variant of a classical
continuity theorem: pointwise convergence (almost everywhere, or at points of
continuity) of the pair of left and right distribution functions is equivalent to
convergence of the associated Lévy triples. Since the proof in this form is not readily
available in the literature, we provide a proof in the appendix (Theorem A.7). We
can now prove Lemma 8.4.

Proof of Lemma 8.4. Let λ be any Lévy triple and choose a subsequence for which
the convergence in (8.3) holds. We claim that along this subsequence we must have
(ck/bk)→ 0. Once this is established, the lemma immediately follows from the fact
that (

ckb
−1
k α0, 0,

∣∣µbk,ck
? − νbk,ck

?

∣∣)→ 0
in the topology of Lévy triples.

To show (bk/ck) → 0 let (κ?L, κ?R) be the pair of left and right distribution
functions associated with λ?. Under scaling note

(8.4) κbk,ck

?L (x) = ck
bk
κ?L(bkx) , and κbk,ck

?R (x) = ck κ?R(bkx) ,
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Now by monotonicity of κ?L and universality of λ? it follows that κ?L(y)→∞ as
y → ∞. Moreover, (8.3) and the continuity theorem (Theorem A.7) imply that
κbk,ck

?L (x) converges (along the chosen subsequence) to a finite limit for some x. This
forces (ck/bk)→ 0 along the chosen subsequence, finishing the proof. �

The main idea behind the proof of Theorem 8.1 is the existence of many universal
Lévy triples. This is our next result.

Proposition 8.6. There exist sequences (bk), (ck) such that the set of Lévy triples
of the form (0, 0, µ?) which are universal with respect to (bk), (ck) is dense in the
space of all Lévy triples.

We postpone the proof of Proposition 8.6 until the proof of Theorem 8.1 is
complete.

Proof of Theorem 8.1. Using Proposition 8.6 we choose a Lévy triple λ? = (0, 0, µ?)
that is universal with sequences (bk), (ck). Using Lemma 8.4 we can, without loss
of generality, assume ∫

(0,∞)
dµ?(x) < 1 .

Let

(8.5) τk = c−1
k , hk = b−1

k ,

and define a family size distribution π̂(j), j > 0, by

π̂(0) = 1−
∫
R+

dµ?(x) ,(8.6)

π̂(j) = 1
j − 1

∫
(j−2,j−1]

dµ?(x) , j > 2 ,(8.7)

and set π̂(1) so that
∑
j>0 π̂(j) = 1. Define the coarse-grained Lévy measure µ̂ by

(8.8) dµ̂(x) =
∑
j>2

(j − 1)π̂(j) dδj(x) =
∑
j>2

(∫
(j−2,j−1]

dµ?(x)
)
dδj(x) .

We claim that the Lévy triple λ̂ def= (0, 0, µ̂) is also universal. Once universality
of λ̂ is established, subsequential convergence of Y (k) follows immediately from
Proposition 6.6.

To prove universality of λ̂, let λ = (α0, α∞, µ) be an arbitrary Lévy triple. By
universality of λ? we have

λbk,ck
? → λ as k →∞ along some subsequence.

For brevity, we use k to index the above subsequence.
Let (κL, κR), (κ?L, κ?R) and (κ?L,k, κ?R,k) be the pairs of left and right distribu-

tion functions associated to the Lévy triples λ, λ? and λbk,ck
? respectively. Since,

λbk,ck
? → λ by choice of our subsequence, we must have

(8.9) hk
τk
κ?L

(
x

hk

)
→ κL(x) , 1

τk
κ?R

(
x

hk

)
→ κR(x) ,
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at all points of continuity along the same subsequence. We claim that, along the
same subsequence and at the same points, we must have

(8.10) hk
τk
κ̂L

(
x

hk

)
→ κL(x) , 1

τk
κ̂R

(
x

hk

)
→ κR(x) ,

where (κ̂L, κ̂R) are the pair of left and right distribution functions associated to λ̂.
To see this, observe that for any z ∈ (2,∞),∫

(z,∞)
dµ?(x) 6

∑
j>z

∫
(j−2,j−1]

dµ?(x) 6
∫

(z−2,∞)
dµ?(x) ,

which means
κ?R(z) 6 κ̂R(z) 6 κ?R(z − 2) .

Then for any two points of continuity 0 < x− < x for κR, whenever hk is small
enough we have h−1

k x− < h−1
k x− 2 < h−1

k x, whence

(8.11) κR(x) 6 lim inf 1
τk
κ̂R

(
x

hk

)
6 lim sup 1

τk
κ̂R

(
x

hk

)
6 κR(x−) .

Thus the second limit in (8.10) follows.
To establish the first limit, observe that for any z > 2,∫

(0,z−1]
x dµ?(x) 6

∑
26j6z

j

∫
(j−2,j−1]

dµ?(x) 6
∫

(0,z]
(x+ 2)dµ?(x) ,

and this entails
κ?L(z − 1) 6 κ̂L(z) 6 κ?L(z) + 2 .

Using the argument in Lemma 8.4 we see bk/ck = hk/τk → 0. Consequently, for
any two points of continuity x− < x for κL, as above we infer

(8.12) κL(x−) 6 lim inf hk
τk
κ̂L

(
x

hk

)
6 lim sup hk

τk

(
κ̂L

(
x

hk

)
+ 2
)
6 κL(x) .

The second limit in (8.10) follows, and this proves universality of the coarse grained
measure µ?. This finishes the existence part of Theorem 8.1.

To prove density, we use Lemma 8.4 to note that any probability measure on
N0 with the same tail at π̂ is also universal. Since all such probability measures
are dense in the space of all probability measures on N0, we obtain density. This
finishes the proof of Theorem 8.1. �

It remains to prove Proposition 8.6. Fix a sequence ck →∞ that satisfies

(8.13)
∞∑
j=1

j

cj
< 1 , ck

∑
j>k

j

cj
→ 0 as k →∞ .

For example, ck = cek2 works for small enough c > 0. The main tool used in the
proof of Proposition 8.6 is the following “packing lemma”, which is the analog of
Lemma 7.2 in [31].

Lemma 8.7 (Packing lemma). Let λk = (0, 0, µk) be a sequence of Lévy triples, let
Φk be the corresponding Bernstein transforms given by

Φk(q) =
∫
R+

1− e−qx

x
dµk(x) ,
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and assume that

(8.14)
∫
R+
dµk(x) 6 k , for all k ∈ N .

Then there exists a sequence bk →∞ such that the series

(8.15) Φ?(q)
def=
∞∑
j=1

c−1
j Φj(bjq)

converges for each q > 0 to a Bernstein function with the following property:
(8.16) ckΦ?(b−1

k q)− Φk(q)→ 0 as k →∞, for all q > 0 .
The function Φ? is the Bernstein transform of a Lévy triple of the form λ? = (0, 0, µ?),
where µ? is a finite measure on (0,∞), with

∫
R+ dµ?(x) < 1.

Proof. As Φj(bjq) 6 Φj(∞) 6 j for all q > 0, the series (8.15) is uniformly bounded
and converges for each q. We estimate the quantity in (8.16) in two parts, to show
how bk can be chosen. Note∣∣∣∣Φk(q)− ck

∞∑
j=k+1

c−1
j Φj(b−1

k bjq)
∣∣∣∣ 6 ck ∞∑

j=k+1
jc−1
j → 0

as k →∞, regardless of what bk is. Then because Φj(q)→ 0 as q → 0 for each j,
we may choose bk (inductively) so large that

ck

k−1∑
j=1

c−1
j Φj(b−1

k bjq) <
1
k
.

Then (8.16) follows.
The limit function Φ? is the Bernstein transform of some Lévy triple λ? =

(a0, a∞, µ?) by Theorem A.6. Because Φj(0+) = 0, we infer

Φ?(0+) 6
∞∑

j=k+1
jc−1
j

for all k, hence a∞ = Φ?(0+) = 0. Furthermore,

Φ?(∞) 6
∑
j>1

jc−1
j < 1 ,

whence a0 = 0 and
∫
R+ dµ?(x) < 1. �

Next we show that Lévy triples of the form (0, 0, µ) are dense in the space of all
Lévy triples. This is analogous to Lemma 7.3 in [31].

Lemma 8.8. Let λ = (a0, a∞, µ) be a Lévy triple. Then there is a sequence of
measures µk that satisfy (8.14), such that the triples

λk = (0, 0, µk)→ λ as k →∞ .

Proof. For the proof it suffices to consider λ of the form λ = (0, 0, µ), because
these are dense in the space of Lévy triples. But then there exist εk → 0 such
that µk

def= 1{x>εk}µ satisfies
∫
R+ dµk 6 k

3 . Evidently, λk = (0, 0, µk) → λ due to
Definition 8.2. �

With this we can prove Proposition 8.6.
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Proof of Proposition 8.6. Because the space of finite measures on [0,∞] with the
weak-? topology is separable, the same is true for the space of Lévy triples. Thus we
can choose a sequence of Lévy triples (λ̄n) so that every Lévy triple λ whatsoever is
a limit of (λk) along some subsequence.

Partition the integers into infinitely many subsequences and, using Lemma 8.8,
select measures µk satisfying (8.14) such that λk = (0, 0, µk) → λ̄n along the nth

subsequence. Construct a sequence bk, a Bernstein function Φ? and its associated
Lévy triple λ? using Lemma 8.7. We claim λ? is universal with sequences (bk), (ck).

To see this, let Φbk,ck
? be the Bernstein transform of the rescaled Lévy triple

λbk,ck
? . Observe

(8.17) Φbk,ck
? (q) = ckΦ?

( q
bk

)
.

Now given any Lévy triple λ, choose a subsequence (indexed by k) along which
(λ̄k)→ λ. If Φ̄k is the Bernstein transform of λ̄k, then the continuity theorem for
Bernstein transforms (Theorem A.6) guarantees (Φ̄k)→ Φ pointwise. By (8.16) this
implies (Φbk,ck

? ) → Φ, and by the continuity theorem again we have (λbk,ck
? ) → λ

along this subsequence. This finishes the proof. �

9. Linearization and universality for critical CSBP

The dilational form of the scaling relations (8.2), (8.4) and (8.17) hint at exact
scaling relations that hold for the limiting CSBPs, which we develop in this section.
These relations establish that the nonlinear dynamics of CSBPs becomes linear and
purely dilational when expressed in terms of the Lévy triple that represents the
branching mechanism. The map from Lévy triples to finite (sub)critical CSBPs
is bicontinuous due to Theorem 9.3 below, and this reduces the study of scaling
dynamics for these CSBPs to the study of scaling limits of dilation maps. We use
this correspondence here to prove the existence of universal critical CSBPs whose
subsequential scaling limits include all possible finite (sub)critical CSBPs.

Our results on linearization here are strongly analogous to the results of [31] that
showed that scaling dynamics on the scaling attractor for solvable Smoluchowski
equations becomes linear and dilational in terms of a Lévy-Khintchine representation.
The definition of the scaling attractor in [31] as the collection of all limits of rescaled
solutions was motivated by analogy to the notion of infinite divisibility in probability.
The analogy between infinite divisibility and CSBPs in branching processes has
long been evident, at least since the work of Grimvall. But this classical analogy
does not appear to explain why the nonlinear dynamics of CSBPs (or the scaling
attractor of Smoluchowski equations) becomes linear in terms of Lévy-Khintchine
representations.

9.1. Linearization of renormalized CSBP dynamics. For finite (sub)critical
CSBPs, the linearization property we are talking about is stated in the following
result. It is actually a simple consequence of the known dynamics of the Laplace ex-
ponent in terms of the Lévy-Khintchine representation of the branching mechanism.

Proposition 9.1. Let Z(x, t) be a CSBP with Laplace exponent ϕ(q, t) and branch-
ing mechanism Ψ. Let b, c > 0. Then the rescaled CSBP given by

Z̃(x, t) = b−1Z(bx, ct)
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satisfies Z̃(x, 0) = x and has Laplace exponent ϕ̃ and branching mechansim Ψ̃ with
(9.1) ϕ̃(q, t) = b ϕ(b−1q, ct) , Ψ̃(q) = cbΨ(b−1q) .
If the branching mechanism Ψ is (sub)critical, and given by (6.10) in terms of Lévy
triple (α0, α∞, µ), then the branching mechanism Ψ̃ is determined similarly by the
Lévy triple (α̃0, α̃∞, µ̃) where
(9.2) α̃0 = cb−1 α0 , α̃∞ = c α∞ , dµ̃(x) = c dµ(bx) ,
and this corresponds to left and right distribution functions given by the scaling
relations
(9.3) κ̃L(x) = cb−1 κL(bx) , κ̃R(x) = c κR(bx) .

Remark 9.2. The scaling (9.2) and (9.3) above are exactly the same as the scaling
relations (8.2) and (8.4) in Section 8.

Proof. The first relation in (9.1) follows from the computation

e−xϕ̃(q,t) = E(e−qZ̃(x,t)) = E(e−qb
−1Z(bx,ct)) = e−xbϕ(b−1q,ct) ,

and the second relation follows by considering the ODE (5.5) satisfied by ϕ and the
corresponding one satisfied by ϕ̃ at t = 0, recalling that ϕ(q, 0) = q = ϕ̃(q, 0). The
relations involving Lévy triples and associated left and right distribution functions
follow by comparing the respective representations for Ψ and Ψ̃ from (6.10), and
using the definitions in (A.7). �

For the study of long-time scaling limits of CSBPs, we should take b, c as functions
of t with c(t) → ∞ or as sequences (bk), (ck) with ck → ∞. This study can be
reduced to the study of scaling limits of the purely dilational relations in (9.3) due
to the following continuity theorem. The proof of this theorem is essentially similar
to (but simpler than) the proof of Propositions 6.4 and 6.6 for scaling limits of
Galton-Watson processes.

For brevity in expressing our result, let us say that the Lévy triple λ = (α0, α∞, µ)
in (6.10) generates the branching mechanism Ψ and the corresponding (finite,
subcritical) CSBP Z.

Theorem 9.3 (Continuity theorem for finite (sub)critical CSBPs). Let (Zk) be a
sequence of finite (sub)critical CSBPs generated by Lévy triples λk = (ak0 , ak∞, µk).

(i) Suppose that (λk) converges to some Lévy triple λ in the sense of Defini-
tion 8.2. Then the finite-dimensional distributions of Zk converge to those of the
finite (sub)critical CSBP Z generated by λ.

(ii) Conversely, suppose the one-dimensional distributions of Zk converge to those
of some finite process Z such that P {Zt0(x0) > 0} > 0 for some x0, t0 > 0. Then
the sequence λk converges to some Lévy triple λ, and Z may be taken as the finite
(sub)critical CSBP generated by λ.

Proof. To prove (i), suppose λk converges to λ. Then, due to the second continuity
theorem A.7, the branching mechanisms Ψk generated by λk converge pointwise
to the branching mechanism Ψ generated by λ. Due to the representation for-
mula (A.6) and an argument using Montel’s theorem analogously to the proof of
Proposition 6.3, the convergence occurs locally uniformly for every derivative. Then
it is straightforward to show that because the Laplace exponents ϕk of Zk satisfy
(9.4) ∂tϕk(q, t) = −Ψk(ϕk(q, t)) , ϕk(q, 0) = q ,
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one has ϕk(q, t) → ϕ(q, t) as k → ∞ for each q > 0, t > 0, where ϕ satisfies
(6.20). In particular, ϕ is the Laplace exponent of the CSBP Z generated by λ.
This implies that for each x, t > 0, the Laplace tranform of Zk(x, t) converges to
that of Z(x, t). This proves the convergence of one-dimensional distributions. The
convergence of finite-dimensional distributions follows using arguments similar to
Lamperti [27, page 280].

To prove (ii), assume the one-dimensional distributions of Zk converge to those
of some finite process Z such that P {Z(x0, t0) > 0} > 0 for some x0, t0 > 0. Then
because the Laplace transforms converge, i.e., because

e−xϕk(q,t) = E(e−qZk(x,t))→ E(e−qZ(x,t))

for each x, t > 0, we have that

ϕ(q, t) def= lim
k→∞

ϕk(q, t)

exists for each q, t > 0. Taking t = t0 we find that ϕ(q, t0) > 0 for all q > 0. For
small enough q > 0, then, 2q < ϕ(q̂, t0) for some q̂, and because Ψk is increasing
and convex, for large enough k we find 2q < ϕk(q̂, t0), hence by integrating (9.4) we
find

Ψk(2q) 6 1
t0

∫ t0

0
Ψk(ϕk(q̂, t)) dt 6 q̂

t0
.

Hence with κk determined from λk by (A.4) and gq(x) defined by (A.5), we find

〈gq, κk〉 = Ψ′k(q) 6 qΨk(2q) 6 qq̂

t0
.

As in the proof of the continuity theorem A.6 (converse part), this implies that
〈1, κk〉 is bounded. Hence the sequence of Lévy measures (λk) is precompact. Along
any subsequence that converges to some Lévy triple λ, we may invoke part (i) to
assert that the finite-dimensional distributions of Zk converge to those of the finite
(sub)critical CSBP generated by λ. The one-dimensional distributions of this CSBP
are then the same as those of Z, independent of the subsequence. It follows λ is
unique, and the whole sequence (λk) converges. �

9.2. Existence of universal critical CSBPs. The continuity theorem 9.3 could
serve as the basis for a comprehensive theory of long-time scaling limits of critical
CSBP, but such a study is beyond the scope of the present paper. A large number
of results exist in the classical literature that cover supercritical and subcritical
cases; see [2, 17,23,25,38,39], e.g., for further details. For relatively recent results
on critical cases we refer to [20, 32, 33]. Our paper [20] provides necessary and
sufficient criteria for approach to self-similar form for critical CSBP that become
extinct almost surely (having branching mechanism satisfying Grey’s condition),
under a quite general assumption on the scaling that is taken, but assuming there
is a unique limit as t→∞.

What we will point out here, however, is that the existence of certain universal
critical CSBPs is now a simple consequence of our study of universal Lévy triples
and Galton-Watson family size distributions in Section 8. This observation gives
a precise meaning to a remark made by Grey [17] to the effect that a large class
of “critical and subcritical processes . . . do not seem to lend themselves to suitable
scaling” which yields a well-defined limit.
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Theorem 9.4. There exists a finite critical CSBP Z? that is universal in the
following sense: There exist sequences (bk), (ck) → ∞ such that for any finite
(sub)critical branching process Z̃ there exists a subsequence along which the finite
dimensional distributions of Zbk,ck

? converge to those of Z̃. Here Zbk,ck
? is the rescaled

process defined by
Zbk,ck
? (x, t) def= b−1

k Z?(bkx, ckt) .

Proof of Theorem 9.4. Using Proposition 8.6 choose λ? = (0, 0, µ?) to be a universal
Lévy triple with sequences bk, ck →∞. Let Z? be the critical CSBP generated by λ?.
The theorem now follows immediately from the continuity theorem (Theorem 9.3).

�

Remark. Let ϕ? and ϕ̃ be the Laplace exponents of Z? and Z̃ respectively. Then,
along the subsequence for which the above convergence holds we have

bk ϕ?(b−1
k q, ckt)→ ϕ̃(q, t) for all q, t ∈ [0,∞).

For each t > 0, the functions ϕ?(·, t) and ϕ̃(·, t) are the Bernstein transforms of
respective Lévy triples of the form (β?0(t), 0, ν?,t) and (β̃0(t), 0, ν̃t), with

ϕ?(q, t) = β?0(t)q +
∫ ∞

0
(1− e−qx)dν?,t(x)

and a similar expression for ϕ̃, cf. (6.21). We may note that

β?0(t) = exp(−Ψ′?(∞)t) , Ψ′?(∞) =
∫ ∞

0
dµ?(x) <∞ ,

and that β?0(ckt)→ 0 as k →∞. Due to the continuity theorem A.6, the convergence
above corresponds to a Lévy convergence property: for each t > 0, as k →∞,

(x ∧ 1)bkdν?,ckt(bkx)→ β0(t)δ0 + (x ∧ 1)dν̃t(x) weak-? on [0,∞].

Appendix A. Continuity theorems for Bernstein transforms of Lévy
triples.

The Lévy-convergence requirement (Definition 6.2) that is used in all our results
relates to a natural topology of Lévy triples associated with subordinators. The
purpose of this appendix is to expand on this and prove a couple of continuity
theorems relating convergence of Lévy triples to pointwise convergence of the
associated Bernstein functions. These theorems are variants of the classical continuity
theorem for Laplace transforms, but do not appear to be widely known.

Definition A.1. We say (a0, a∞, µ) is a Lévy triple if µ is a (nonnegative) measure
on R+ = (0,∞) and we have

(A.1) a0 > 0 , a∞ > 0 , and
∫
R+

(x ∧ 1) dµ(x) <∞ .

A measure µ satisfying the above is called a Lévy measure.

For the next definition, recall that a smooth function g : R+ → R is said to be
completely monotone if (−1)ng(n) > 0 for all integer n > 0.

Definition A.2. A function f : R+ → R is Bernstein if it is smooth, nonnegative,
and its derivative f ′ is completely monotone.
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The recent book of Schilling et al. [36] develops the theory of Bernstein functions
extensively. The main representation theorem regarding these functions (see Theo-
rem 3.2 of [36]) is the following variant of Bernstein’s theorem (which states that g
is completely monotone if and only if it is the Laplace transform of some Radon
measure on [0,∞)).

Theorem A.3. A function f : R+ → R is Bernstein if and only if it has the
representation

(A.2) f(q) = a0q + a∞ +
∫
R+

(
1− e−qx

)
dµ(x) ,

for some Lévy triple (a0, a∞, µ). In particular, the triple (a0, a∞, µ) determines f
uniquely and vice versa.

For convenience, we call the function f in (A.2) the Bernstein transform of the
Lévy triple (a0, a∞, µ). If a0 = a∞ = 0, we call f the Bernstein transform of µ.

Lévy triples of the form above arise naturally in the study of subordinators—right
continuous, increasing (possibly infinite) processes that have independent, time-
homogeneous increments. We know (see for instance [7]) that the Laplace exponent
of a subordinator can be uniquely expressed in the form (A.2), as the Bernstein
transform of some Lévy triple. In terms of the subordinator, a0 represents the drift,
a∞ the killing, and µ the jumps.

We obtain a natural topology on Lévy triples by associating to each Lévy triple
a finite measure on the compactified half-line [0,∞], including atoms at 0 and ∞.
Explicitly, to any Lévy triple (a0, a∞, µ) we associate the finite measure κ on [0,∞]
defined by
(A.3) dκ(x) = a0 dδ0(x) + a∞ dδ∞(x) + (x ∧ 1) dµ(x) .
We note that this association of finite measures with Lévy triples is bijective. Now
we use the weak-? topology of finite measures on [0,∞] to induce a topology on the
set of Lévy triples. Note that for any g ∈ C([0,∞]), we have

〈g, κ〉 = g(0)a0 + g(∞)a∞ +
∫
R+
g(x)(x ∧ 1) dµ(x) .

Definition A.4. We say a sequence of Lévy triples (a(k)
0 , a

(k)
∞ , µk) converges to the

Lévy triple (a0, a∞, µ) if the corresponding sequence of measures κk converges to κ
weak-? on [0,∞]. That is, for every g ∈ C([0,∞]) we have

〈g, κk〉 → 〈g, κ〉 as k →∞ .

Remark A.5. This is exactly the same as Definition 8.2, restated here for convenience.
Moreover, this generalizes the notion of Lévy-convergence introduced Definition 6.2.
Indeed, Lévy-convergence of (µ̆k) to a measure κ is exactly convergence of the Lévy
triples (0, 0, µ̆k) to the associated Lévy triple (κ(0), κ(∞), κ|(0,∞)).

The following provides a continuity theorem for the Bernstein transform that
is not present in [36]. It may be inferred from the proof of Theorem 3.1 in [31],
but [31] employs a different and rather cumbersome terminology, and the proof
below is much simpler.

Theorem A.6. Let (a(k)
0 , a

(k)
∞ , µk) be a sequence of Lévy triples with Bernstein

transforms fk corresponding via (A.2) and measures κk corresponding via (A.3).
Then the following are equivalent.
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(i) f(q) def= limk→∞ fk(q) exists for each q ∈ (0,∞).
(ii) κk converges to some finite measure κ weak-? on [0,∞]. That is, as k →∞,

〈g, κk〉 → 〈g, κ〉 for every g ∈ C([0,∞]) .
If either condition holds, then the limits f , κ correspond to a unique Lévy triple via
(A.2) and (A.3) respectively.

By this result, the sequence (fk) converges pointwise on R+ if and only if the
sequence of Lévy triples (a(k)

0 , a
(k)
∞ , µk) converges in the sense of Definition A.4.

Proof. Let (κk) be the sequence of measures given by

(A.4) dκk(x) = a
(k)
0 dδ0(x) + a(k)

∞ dδ∞(x) + (x ∧ 1) dµk(x) .
Suppose first that κk → κ weak-? on [0,∞]. For q ∈ R+, consider the test function
gq : R+ → R defined by

(A.5) gq(x) = 1− e−qx

x ∧ 1 .

By defining gq(0) = q and gq(∞) = 1 we can extend gq to a continuous function on
[0,∞]. Consequently,

〈gq, κ〉 = lim
k→∞

〈gq, κk〉 = lim
k→∞

a
(k)
0 q + a

(k)
∞ +

∫
R+

(
1− e−qx

)
dµ(x) = lim

k→∞
fk(q) ,

establishing pointwise convergence of (fk) on R+ as desired.
For the converse, suppose (fk)→ f pointwise on R+. Note that for q ∈ R+, we

have
cq

def= inf
x∈R+

gq(x) > 0 .

Consequently,

sup
k
〈1, κk〉 6 sup

k

1
cq
〈gq, κk〉 = 1

cq
sup
k
fk(q) <∞ .

Thus, by the Banach-Alaoglu theorem, any subsequence of (κk) has a further
subsequence that is weak-? convergent on [0,∞]. Let κ denote any such subsequential
limit. By taking limits as above but along subsequences, we infer that for every
q ∈ R+,

〈gq, κ〉 = f(q) .
This shows that f is the Bernstein transform of the Lévy triple associated to κ by
(A.3). Because both this association and the Bernstein transform are bijective, κ is
uniquely determined by f . It follows that the entire sequence (κk) converges weak-?
to the same limit κ. �

We finish by developing two further variations of the convergence conditions in
the continuity theorem above. To each Lévy triple (a0, a∞, µ), we associate two
further quantities: (a) The Bernstein primitive (or branching mechanism)

(A.6) ψ(q) = 1
2a0q

2 + a∞q +
∫
R+

e−qx − 1 + qx

x
dµ(x) ,

and (b) the pair of left and right distribution functions (κL, κR) given by

(A.7) κL(x) = a0 +
∫

(0,x]
z dµ(z) , κR(x) = a∞ +

∫
(x,∞)

dµ(z) .
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These distribution functions are associated to Radon measures, also denoted by κL
on [0,∞) and κR on (0,∞], in a standard way.

Theorem A.7. Make the same assumptions as in Theorem A.6, and for each k
associate ψk and (κL,k, κR,k) via (A.6) and (A.7) respectively. Then the following
conditions are also equivalent to (i) and (ii).

(iii) ψ(q) def= limk→∞ ψk(q) exists for each q ∈ (0,∞).
(iv) For almost every x ∈ (0,∞), both of the following limits exist:

(A.8) κL(x) = lim
k→∞

κL,k(x) , κR(x) = lim
k→∞

κR,k(x) .

Remark. The condition in (iv) is equivalent to weak-? convergence of the measures
κL,k and κR,k on the intervals [0,∞) and (0,∞] respectively.

Proof. By Theorem A.6, it suffices to show (i) is equivalent to (iii), and (ii) is
equivalent to (iv).

Suppose (i) holds. Note that fk is increasing and concave for all k, hence for each
q ∈ R+, by dominated convergence we have

ψk(q) =
∫ q

0
fk(r) dr →

∫ q

0
f(r) dr def= ψ(q) .

Hence (iii) holds. Conversely, suppose (iii) holds. Note that ψk(2q) > qfk(q) for all
q > 0. For each q > 0, it follows (fk(q)) is precompact. Because fk is increasing
and concave, each subsequence has a further subsequence that converges pointwise
to some (increasing and concave) function f . Necessarily,∫ q

0
f(r) dr = ψ(q) for each q > 0 ,

therefore ψ is C1 and ψ′ = f . Thus f is determined by ψ, and it follows that the
whole sequence (fk) converges, proving (i).

Next we prove (ii) implies (iv). Given κ as in (ii) we may define κL, κR so that

(A.9) dκL(x) = x dκ(x)
x ∧ 1 , dκR(x) = dκ(x)

x ∧ 1 ,

on the intervals [0,∞), (0,∞] respectively. For any g0 ∈ Cc([0,∞)) and g∞ ∈
Cc((0,∞]), let

(A.10) gL(x) = x g0(x)
x ∧ 1 , gR(x) = g∞(x)

x ∧ 1 .

Then as k →∞ we have

〈g0, κL,k〉 = 〈gL, κk〉 → 〈gL, κ〉
def= 〈g0, κL〉 ,(A.11)

〈g∞, κR,k〉 = 〈gR, κk〉 → 〈gR, κ〉
def= 〈g∞, κR〉 .(A.12)

This establishes weak-? convergence of the measures κL,k to κL and κR,k to κR,
hence (iv) holds.

Conversely, assume (iv). Fix smooth cutoff functions vL, vR : [0,∞]→ [0, 1] such
that vL + vR = 1, vL = 1 on [0, 1] and vR = 1 on [2,∞]. Given any g ∈ C([0,∞])
we write g = gL + gR where gL = gvL, gR = gvR, and determine g0, g∞ by (A.10).
Then

(A.13) 〈gL + gR, κk〉 = 〈g0, κL,k〉+ 〈g∞, κR,k〉 → 〈g0, κL〉+ 〈g∞, κR〉
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as k → ∞. Because limk→∞〈g, κk〉 exists for each g, there exists a measure κ on
[0,∞] with κk → κ weak-? on [0,∞]. Thus (ii) holds. �

Remark A.8. As mentioned earlier the terminology used in this Appendix differs from
that used in [31]. For convenience, we describe the correspondence in terminology
as follows.

Let (a0, a∞, µ) be a Lévy triple, associated as in the present paper with the
measure κ on [0,∞] defined by (A.3) and left distribution function κL given by
(A.7). Such a triple corresponds to what is called a ḡ-measure (G, g∞) in [31],
according to the relations

G(x) = κL(x) = a0 +
∫

(0,x]
z dµ(z) , g∞ = a∞ .

In [31], what is called a g-measure G on [0,∞) corresponds here to a Lévy triple in
the same way, but with a∞ = g∞ = 0. A g-measure G is divergent according to [31]
if and only if

(A.14) G(0+) = a0 > 0 or
∫

(0,∞)
x−1 dG(x) =

∫
(0,∞)

dµ(x) =∞ ,

according to this correspondence. Convergence of a sequence of g-measures or
ḡ-measures in [31] corresponds precisely to convergence of the corresponding Lévy
triples in the present paper (see Section 3 in [31]).
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