GEOMETRIC CORRECTION IN DIFFUSIVE LIMIT OF NEUTRON TRANSPORT

EQUATION IN 2D CONVEX DOMAINS

YAN GUO AND LEI WU

ABSTRACT. Consider the steady neutron transport equation with diffusive boundary condition. In [17]
and [18], it was discovered that geometric correction is necessary for the Milne problem of Knudsen-layer
construction in a disk or annulus. In this paper, we establish diffusive limit for a 2D convex domain. Our
contribution relies on novel weighted 1> estimates for the Milne problem with geometric correction in the
presence of a convex domain, as well as an L2™ — L framework which yields stronger remainder estimates.
Keywords: Geometric correction; W1 estimates; L2™ — L™ framework.
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1. INTRODUCTION

1.1. Problem Formulation. We consider the steady neutron transport equation in a two-dimensional
bounded convex domain with diffusive boundary. In the spacial domain ¥ = (21, 22) €  where 9Q € C3
and the velocity domain @ = (wy,ws) € S*, the neutron density u®(Z, w) satisfies

ew-Vyut+ut—u® = 0 in Q, (L.1)
u(Zo, W) = Plu)(Zo) + eg(To, W) for W -7 <0 and Ty € 99, ’
where
e 1 IR
ut (%) = —/ u (&, w)dud, (1.2)
2w S1
" 1 R
Plu)(Zo) = f/ u(Zo, W) (W - ¥)dd, (1.3)
2 Jg.7>0

7 is the outward unit normal vector, with the Knudsen number 0 < € << 1. Also, u€ satisfies the normal-
ization condition

/Q < ué(Z, w)dwdZ = 0, (1.4)
xS1

and g satisfies the compatibility condition

/ / 9(&o, W) (@ - #)dwdzy = 0. (1.5)
(o9} "17<0

We intend to study the behavior of u¢ as e — 0.
Based on the flow direction, we can divide the boundary I' = {(Z, @) : ¥ € 09} into the in-flow boundary
I'~, the out-flow boundary I' and the grazing set I'° as

= {(# W) T €W 7 <0} (1.6)
F+—{(:E' W) &€ ONW- 7> 0} (1.7)
I = {(#,%) : & € 00, - 7 = 0} (1.8)

It is easy to see ' = ' UT'~ UTY. Hence, the boundary condition is only given for I'".

1.2. Main Result.

Theorem 1.1. Assume g(Zo, W) € C*(I'") satisfying (1.5). Then for the steady neutron transport equation
(1.1), there exists a unique solution u®(Z,w) € L>(Q x S) satisfying (1.4). Moreover, for any 0 < § << 1,
the solution obeys the estimate

lu(Z, ) — Uo (@) v sy < C(6, )€, (1.9)
where Uy(Z) satisfies
AmUQ = 0 in Q,

oU 1
T _ ,/ 9(&, @) [ - 7| dw on 0L, (1.10)
w-U<0

™

ov
/ Up(@)dZ = 0,
Q

in which C(6,€2) > 0 denotes a constant that depends on 6 and €.
2
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1.3. Background and Methods. Diffusive limit, or more general hydrodynamic limit, plays a key role
in connecting kinetic theory and fluid mechanics. Since 1960s, this type of problems have been extensively
studied in many different settings: steady or unsteady, linear or nonlinear, strong solution or weak solution,
etc. We refer to the references [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] for more details. Among
all these variations, one of the simplest but most important models - steady neutron transport equation with
one-speed velocity in bounded domains, where the boundary layer effect shows up, has long been believed
to be satisfactorily solved since Bensoussan, Lions and Papanicolaou published their remarkable paper [1] in
1979.

Unfortunately, their results are shown to be false due to lack of regularity for the classical Milne problem
in [17] and [18]. A new approach with geometric correction to the Milne problem has been developed to
ensure regularity in the cases of disk and annulus in [17] and [18]. However, this new method fails to treat
more general domains.

Consider the boundary layer expansion with geometric correction

%6(77’73 ¢) = %06(7777-7 ¢) +€%1€(7777-7 ¢)a (111)

where 1 denotes the rescaled normal variable, 7 the tangential variable and ¢ the velocity variable defined
in (2.41), (2.46), (2.51), and (2.56). Thanks to the diffusive boundary condition, we always have % = 0.
As [17] stated, the boundary layer must formally satisfy

. O0Uf € O . -
sin ¢ 8771 + o cos ¢ 8¢1 + U — U =0, (1.12)
where R, is the radius of curvature at boundary.
In the absence of the geometric correction 7 cos ¢ 3 ¢1 as in [1], the key tangential derivative 3 !
-

. —
is not bounded for such a classical Milne problem. Therefore, the expansion breaks down. In the case
€

L is smooth, since the tangential derivative commutes with the

when R, is constant, as in [17] and [18],

%16 %16

. . . ... 0
equation. On the other hand, when R, is a function of 7, then relates to the normal derivative o
T n

whose boundedness had remained open.
U
. . . . 1
Our main contribution is to show

is bounded when R, is not a constant for a general convex domain.

Our proof is intricate and lies on the wei%hted L estimates for the normal derivative. We use careful analysis
along the characteristic curves in the presence of non-local averaging % over ¢. The convexity and invariant
kinetic distance ((n, 7, ®) defined in (3.30), plays the crucial role. Our paper marks an important first step
towards the study of diffusive expansions of neutron transport equations and other kinetic equations with
boundary layer correction.

Moreover, we have to improve the remainder estimate to avoid higher-order expansion. This is done by
a new L>™-L>™ framework. The main idea is to introduce a special test function in the weak formulation
to treat kernel and non-kernel parts separately, and further improve the L°° estimate by a modified double
Duhamel’s principle. The proof relies on a delicate analysis using interpolation and Young’s inequality.

Applying these two new techniques, we successfully obtain the diffusive limit of neutron transport equation
in a convex domain with diffusive boundary.

1.4. Notation and Structure. Throughout this paper, unless specified, C' > 0 denotes a universal constant
which does not depend on the data and can change from one inequality to another. When we write C(z), it
means a certain positive constant depending on the quantity z.

Our paper is organized as follows: in Section 2, we present the asymptotic analysis of the equation (1.1); in
Section 3, we prove the weighted L>° estimates of derivatives in e-Milne problem with geometric correction;
in Section 4, we prove the improved L estimate of remainder equation; finally, in Section 5, we prove the
diffusive limit, i.e. Theorem 1.1.

2. ASYMPTOTIC ANALYSIS

2.1. Interior Expansion. We define the interior expansion as follows:

U(fv Uj) ~ UO(f7 117) + eUl('fa 117) + €2U2(f7 ’LF}), (21)



4 YAN GUO AND LEI WU

where Uy, can be determined by comparing the order of € by plugging (2.1) into the equation (1.1). Thus we
have

Uy—Uy=0, (2.2)
Uy —Uy = —d- VU, .
Uy —Uy= —W-V,U. (2.4)
Plugging (2.2) into (2.3), we obtain
Uy =U, — - V,U. (2.5)
Plugging (2.5) into (2.4), we get
Uy — Uy = —15- Vo (U — @ - V,Up) = =0 - V,Uy + 02 A,Up + 2w1w20,, 2, Uo- (2.6)

Integrating (2.6) over 1 € S!, we achieve the final form
AUy = 0. (2.7)
which further implies Uy(Z, @) satisfies the equation

Uy = U,
_ 2.8
{ AUy 0. ( )

In a similar fashion, for k = 1,2, U}, satisfies
U = Up— @ VU1,

_ 2.9
AU, = —/ W+ Vo Up_1dw. (29)
81
It is easy to see U}, satisfies an elliptic equation. However, the boundary condition of Uy, is unknown at this
stage, since generally Uy does not necessarily satisfy the diffusive boundary condition of (1.1). Therefore,
we have to resort to boundary layer.

2.2. Local Coordinate System. Basically, we use two types of coordinate systems: Cartesian coordinate
system for interior solution, which is stated above, and local coordinate system in a neighborhood of the
boundary for boundary layer.

Assume the Cartesian coordinate system is & = (z1,22). Using polar coordinates system (r, 6) € [0, 00) X
[—7,7) and choosing pole in €, we assume Z € S is
{ x10 = r(0) C.OS 0, (2.10)

xop = 7r(0)sind,

where () > 0 is a given function. Our local coordinate system is similar to polar coordinate system, but
varies to satisfy the specific requirement.

In the domain near the boundary, for each 6, we have the outward unit normal vector

5o r(6) cosO + r'(0) sin® r(0)sinf — r'(0) cos b
GO O OO,

We can determine each point & €  as Z = &y — p/ where p is the distance to boundary point Zy. In detail,
this means

(2.11)

r(0) cos 8 — r'(0) sin 0

1 = 7(0)cosb ’
() cos b+ p— U= »
vy = r(0)sind+p —r(0)sind +r (9) cos .

r(6)% +1(0)?

d
where 1'(6) = d—g It is easy to see that u = 0 denotes the boundary 92 and p > 0 denotes the interior of
0. (u,0) is the desired local coordinate system.
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By chain rule, for any u = u(x1,x2) we have

Ou  Ou 00  Ou Ou

AL 2.1
Dz, 000w, | op oz’ (2.13)
Ou _Oudf  Oudp (2.14)
Ors 00 0xy  Opdxs ’
. o . 00 ou 06
Hence, in order to perform the substitution (z1,z2) — (u,0), the key step is to calculate —, —/—, —
P (9$1 (9561 6],‘2
and 7“ in terms of p and 6. For simplicity, we may denote the transform (2.12) as follows.
2
= 0) + nA(H),
= al0)+pA0) o15)
xo = b(0)+ puB(H),
where
—rcosf —r'siné
a=rcosf, A= CRCIDEER (2.16)
. —rsinf + 1’ cosf
b=rsing, B= CENIDLE (2.17)
Taking x; and xo derivative in (2.15) reveals that
ol ou
! AV=—+ A1 =1 2.1
00 ou
bV +uB)s—+B— =0 2.19
O + uB) o + B =0, (219)
00 ou
! AV— + A" =0 2.20
(a"+p )3z2+ Oz ’ (2.20)
ol ou
b BY=—+4+ B =1 2.21
O+ uB) 5+ Byt =1, (221)

where the superscript / denotes the derivative with respect to §. The detailed expression is as follows:

a =1'cosf —rsiné,

b =7"sinf + rcos b,

r3sin® — 2(r")3 cos @ — r"r?sin @ + 2r(r')? sin @ — r'r2 cos 6 + rr'r" cos 6
CRIRE |

—r3cos® — 2(1")2sin @ — 2r(r")? cos 0 — r2r’ sin 6 + r21" cos O + rr'r" sin @
CRArRIE |

Then we can solve the linear system (2.18) to (2.21) by Cramer’s rule as

A=

B =

(2.26)

(2.27)

1 A a4+ pA 1
00 ‘ 0 B ' B ou o +uB 0 ‘ b+ puB’
oz a +pA A ek w1 a +pA A o
b +uB B ‘ b +uB" B ’
0 A a+pA 0
o0 ' 1 B ’ A ou b +uB 1 ‘ a + pA’
dxs | U +uB A| C  Oza |dtpAd A| C
’b’—l—,uB’ B' b + uB’ B’
where C' denotes the determinant of the system, which is also the Jacobian of the transform (z1,x2) — (u, 6)
as
(2.28) | tnd A ’
b +uB B
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Then a direct calculation reveals that

CETONS
and
ﬁ _ (—rsin @ + 7/ cos ) (r? + r'?)1/? (2.20)
Oxy  (r2+1r2)32 + u(re” —r2 — 2172)’ '
00 (rcos® + 7' sin ) (r? + r/2)/2 (2.30)
Oro  (r2+12)3/2 4 pu(re” —r2 — 2972)’ '
o —(rcos@ + 1" sin0)(r? + 1) (231)
Ory  (r2+172)3/2 4 u(re” —r2 — 2172) ’
—r3cosf — 2r'3sinf — 2rr'? cos§ — 21" sin @ + r2r" cos O + rr'r" sin 6
B (r2 + 722 + p(rr” —r2 — 2r2)(r2 + r/2)1/2 ’
o (—rsin® + 1’ cos 0)(r? + 1) (2.32)
Oro  (r2+12)3/2 4 pu(rr” — r2 — 2172) '
N ur?’ sin@ — 2r"3 cos§ — "'r?sin @ + 2rr'?sin @ — r'r2 cos @ + rr'r" cos 6
(r2 +72)2 + p(rr” —r2 — 2r2)(r2 + r/2)1/2 '
A further simplification shows that, we may denote above relation as follows:
o mp_ o N s
Or1 P34+ Qu’  On P’
9% __NP_ - op M (2.34)
Oxs P34+ Qu’ Ozy P’

where

P = (2 4122, (
Q=rr"—r>—2r"?, (
M = —rsinf + 1’ cosb, (2.37
N =rcosf +r'sinf. (

Therefore, by (2.13) and (2.14), noting the fact that for C? convex domain, the curvature

r2 4202 —pp!

K(0) = (2.39)

and radius of curvature

1 - (1"2+T'2)3/2

- k(0) 124202 — oy’ (2.40)

we define substitutions as follows:

Substitution 1:
Let uf (21, xo, w1, wa) — u¢(u, 0, w1, ws) with (1,0, w1, ws) € [0, Rimin) X [-7,7) x St for Ry = ming R, as

—r(f) cosf —r'(0) sin b

1y = r(0)cosb ’
() +u TOEETHGE "
= e@ng s OBt .

r(0)? +1'(6)?
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and then the equation (1.1) is transformed into

—rcosf —r'sin@ —rsinf + 7’ cos 0 \ Ou®
wy (r2 + 172)1/2 + w2 (r2 + 172)1/2 o
e / /o
+e< rsinf + r’ cosd rcosf + r’ sin6 >8u (2.42)

—ut=0
R T I (e Ty A A

u(0,0, %) = P[u](0,0) + eg(0, W) for -7 <O,
where

—rcos@—r'sin9+ —rsin® + 1’ cos 0
(r2 + r2)1/2 w2 (r2 +r2)1/2

(2.43)
and
Plu](0,0) = %/ u®(0, 6, ) (W - ¥)dw, (2.44)

in a neighborhood of the boundary.
Noting the fact that

% 2+ E 2: —rcosf —r’sinf 2+ —rsinf 4+ 1’ cosf 2:1’ (2.45)
P P (r2 + r2)1/2 (r2 + r2)1/2

we can further simplify (2.42).

Substitution 2:
Let uf(u, 0, w1, ws) — u(u, 7, w1, we) with (u, 7, w1, ws) € [0, Rypin) X [—m,7) x S as

rsin® — r’ cos @

sint = —s———7—
24212 0
( ) . (2.46)
_ rcosf+1'sind
cosT = NEETD
which implies
dr 2 12\1/2
— =k(r°+1%)"° >0, (2.47)
de
and then the equation (1.1) is transformed into
. u€ € . u€ B
—e (w1 cosST + wa sinT) - (wysin T — wq cOST) +ut—at =0,
O Re—p or (2.48)
u(0, 7, W) = Pu)(0,7) + eg(r,w) for w-7 <0,
where
WU =wycosT + wysin T, (2.49)
and
1 .
Plu =3 / W) (W - 7)dd, (2.50)

in a neighborhood of the boundary. Note that here since 7 denotes the angle of normal vector, the domain
of 7 is the same as 6, i.e. [—m, 7).
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2.3. Boundary Layer Expansion with Geometric Correction. In order to define boundary layer, we
need several more substitutions:

Substitution 3:
We further make the scaling transform for w€(u, 7, w1, wa) — u(n, 7, w1, we) with (9, 7, w1, wa) € [0, Rmin/€) X
[-7,7) x St as

no= ple
T (2.51)
wp = wi,
w3 = w2,
which implies
du _ 10u (2.52)
o € 0n’ '
Then the equation (1.1) is transformed into
( T e G
— | w1 cosT + wosSinT — w1 SINT — Wo COST +u®—u =0,
dn R, —en or (2.53)
u¢(0, 7, W) = Pu](0,7) 4+ eg(r, @) for w-v <O,
where
W+ U= w1 coST + wy sin T, (2.54)
and
1
Plu](0,7) = 5/ u®(0, 7, W) (W - ¥)dd. (2.55)
@-7>0

Substitution 4:
Define the velocity substitution for u®(n, 7, w1, we) — u¢(n, 7,§) with (1, 7,£) € [0, Ruyin/€) X [—m, 7) X [-7, 7)
as

no =1
=T (2.56)
w; = —siné
wy = —cosé
We have the succinct form of the equation (1.1) as
Ous € Ous
sin(7 + & — cos(T+ & +u® —u =0,
( ) on R, —¢€€ ( ) or (2.57)
u(0,7,&) = Plu)(0,7) + eg(7,§) for sin(r+&) >0,
where
1
PO =5 [ w0 sin(r+ e (258)
2 sin(74+£)<0

Substitution 5:
Finally, we make the key rotational substitution for u®(n,7,£) — u(n,7,¢) with (1,7, ¢) € [0, Rmin/€) X
[-7,7) X [-7,7) as

\]
|
\]

(2.59)
6 = THE
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and achieve the form

. Ouf € ((‘3uE 8u5> B
sin ¢ — cos ¢ + +ut—u =0
on  R.—en 0¢ or (2.60)
u¢(0,7,¢) = Plut](0,7) + eg(r,¢) for sing >0
where
Plus)(0,7) = — - / we(0, 7, ) sin ¢dgs (2.61)
2 sin <0

This step is trying to compensate the variants of normal vector v along the boundary. A bi-product of such
substitution is that we decompose the tangential derivative and introduce the velocity derivative.
We define the boundary layer expansion as follows:

62/6(777 T, ¢) ~ %06(777 T, (b) + 6%16(777 T, (b)a (262)

where % can be determined by comparing the order of € via plugging (2.62) into the equation (2.60). Thus,
in a neighborhood of the boundary, we have

3 a62/06 € 8%06 € e _
sin ¢ an + R —en cos ¢ 96 + U — Uy =0, (2.63)
. OUf € OU — OUs
< . € _ € _ 3 92 64
sin ¢ o +RH—6nCOb¢ 96 + U — U Rﬁ_encosqi) 5 (2.64)
where
_ 1 (7
T =5 [ o). (2.65)

2.4. Matching of Interior Solution and Boundary Layer. The bridge between interior solution and
boundary layer is the boundary condition of (1.1), so we first consider the boundary expansion:

(Uo + %) = PlUo + %], (2.66)
(U + %) = PlUL + %] + g. (2.67)

Noting the fact that Uy = P[Uy], we can simplify above conditions as follows:

U = PlU|+ (0 - Uy — Pl - Upl) + g. (2.69)
The construction of Uy and %S is as follows:

Step 0: Preliminaries.
Assume the cut-off functions g € C*°[0, 00) is defined as

1

1 0<y<g,
Yoly) = 3 2 (2.70)

0 - <y<oo.
4
Also, define the force as
€

Flen7) — — 2.71
7= ~Fm e (2.71)

and the length for e-Milne problem as L = e~'/2. For ¢ € [—, 7], denote Rp = —¢.

Step 1: Construction of % .



10 YAN GUO AND LEI WU

Define the zeroth order boundary layer as

Us(nrd) — wdéﬂm(ﬁwm¢>ﬁiv0,
ofe ofe _
sin ¢ 8{70 + F(en, 7)cos ¢ aj;(; +fi—-f = 0 (2.72)
f6(0,7,6) = PIfs](0,7) for sing >0,
fOE(L7T7¢) = fS(LaTaR¢)7
with
Plfsl(0,7) =0, (2.73)

and fg 1, is defined as in Theorem 3.6. Thus, we have % is well-defined. It is obvious to see f§ = f5, =0
is the only solution, which means % = 0.

Step 2: Construction of %, and Uj.
Define the first order boundary layer as

%) = v n)(fin o)~ £1,00).
sin rj)%{f + F(e;n, 7) cos ¢88—J;16 +fi-ff = . 1_ o cos¢8gf)€, (2.74)
fi(0,7,0) = PO, 7) +g1(7,¢) for sing >0,
fill,m,.0) = fi(L,7,Re),
with
Plfil(0,7) =0, (2.75)
and ff ; is defined as in Theorem 3.6, where
91(Zo, W) = W - V,Up(Zo) — Pl - V,Uo(Zo)] + 9(Zo, W), (2.76)
with #y and (0, 7) denoting the same boundary point, and
(2.77)

W = (=sin(¢ — 1), —cos(¢ — 7)),

(cosT,sinT). 2.78)

To solve (2.74), the data must satisfy the compatibility condition (3.307) as

(2.79)
Lopm , o1 OUS
/ (g + @ -V, Uy(%y) — P[w - Von(fO)]> sin ¢d¢ + / / e V)~ cos¢ (s, 7, ¢)dods
sin ¢>0 0 J—=x 1—es or
= 0)
ov
where o = —F and V(0) = 0. Note the fact
/ <u7~ V. Uo(Zo) — Pl - Von(fo)]) sin ¢pd¢ (2.80)
sin ¢>0

— [ (@ V.Uio(@))sinds — 2P( - V. U()
sin >0

:/ (w-VwUO(fo))sinqbdq§+/ (4 - Vo Us (7)) sin ¢dg
sin ¢>0

sin <0
= / (W - VU (Zo)) sin ¢pdp

Uy (o)
ov

V=7

= — vaﬁo(i‘b)
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We can simplify the compatibility condition as follows:

[ gt@rsinods - »2old) / / L cosg 28
sin >0 1 — €8 or

Then we have

9Uo(Fo) _ l/ 9(7, @) sin odo + l/ / o
ov T Jsin ¢>0 R

. / s

(s,7,¢)dopds = 0. (2.81)

Us
5 O (s,7,¢)d¢ds (2.82)

cos 10}

™

Hence, we define the zeroth order interior solution Uy (&, W) as

Up = Uo,
AUy = 0 in Q,
g 1
Wo _ 1 [ aneysinods on o0 (2.83)
ov T Jsin >0
/ Up(@)dF = O.
Q

Step 3: Construction of U;.
We do not expand the boundary layer to % and just terminate at %,°. Then we define the first order
interior solution U; (%) as

Uy = U, —1@-V,U,
AUy = / @ - VoUp)dw in Q,

o 3 (2.84)
= = —// (10 - V,Up)dwdZ on 99, '
ov St

/Ul(a?)df = // w - VU — )dwd.
Q QJst

Note that here we only require the trivial boundary condition since we cannot resort to the compatibility
condition in e-Milne problem with geometric correction. Based on [17], this might lead to O(€?) error to the
boundary approximation. Thanks to the improved remainder estimate, this error is acceptable.

Step 4: Construction of Us.
By a similar fashion, we define the second order interior solution as

U2 = [72_117'va17

AwUQ = —/ (wVIUl)d’LU in Q,
_ St
2.85
o _ —// (@ - V,Uy)dwdz on 09, (285)
ov QJst

/Ug(f)df - // - VU dddz,
Q QJSt

As the case of Uy, we might have O(e?) error in this step due to the trivial boundary data. However, it will
not affect the diffusive limit.

3. REGULARITY OF e-MILNE PROBLEM WITH GEOMETRIC CORRECTION

We consider the e-Milne problem with geometric correction for f€(n, 7, ¢) in the domain (n, 7, ¢) € [0, L] x
[~7,7) x [-7,7) where L = ¢™1/2 as

sin

%fe - = SMm79)
10, 7,¢) = PIf)O,7)+ h(r,¢) for sing >0, (3.1)

f(L,m9) = fo(L,7 Re),

(e;m,7) cos
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where Rp = —¢,
PIFN0,7) = / SO gsingds (3.2)
and )

In this section, for convenience, we temporarily ignore the superscript on €. We define the norms in the

space (n,¢) € [0, L] x [—m, ) as follows:
L /7 1/2
5Ol = ([ [ 1m0 asan) 3.4

(P oo e = sup |f(n, 7, 0)l, (3.5)

(771¢)€[0:L] X [77‘—’7‘-)

Similarly, we can define the norm at in-flow boundary as

1/2
0ol = ([ orefas) (36)
sin ¢>0
||f(07 T)HLOC = Ssup |f(0’7_7 ¢)| ) (3'7)
sin >0
Also define
(£, 906, 7)= [ f(n,7,0)9(n, 7, ¢)do (3.8)

as the L? inner product in ¢. We further assume

oh
%(7)

oh

E(T)

I,

1A(T) | oo +

‘ <, (3.9)
LOC

and

oS
ST oo oo + H(T) < Ce KM, (3.10)
on J,00 o0
for C > 0 and K > 0 uniform in € and 7.
As in [17, Section 6], in order to study problem with diffusive boundary, we first need to study the e-Milne

problem with in-flow boundary for f(n, 7, ¢) in the domain (n,7,¢) € [0, L] x [-7,7) X [-7,7) as

el .+l

Sinéi’% +F(n,7) cosqé% +f=f = So79),
f(0,7,¢) = h(r,$) for sing >0, (3.11)
f(LaTa d)) = f(L,T, R¢)

ov
Define a potential function V(e;n, 7) satisfying V(e;0,7) = 0 and a—n =—F(e&n, 7).

Lemma 3.1. We have e~V (97 =1 gnd

Ve l/2
e T =1 — 3.12
€ R,.;(T) ( )
Proof. We directly compute
Ry (7)
Vie; =In{———"— 3.13
) =t (752 ) (313)
and
e~ Vien) _ Re(T) —en (3.14)

Hence, our result naturally follows. ]
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In the following, we will temporarily ignore ¢ dependence. Note that all the estimates are uniform in e,
which further means uniform in L. From now on, let C' denote a finite universal constant that is independent
of € and 7.

3.1. Well-Posedness and Decay. Since most of the results can be obtained via obvious modifications of
[17, Section 4], we will only state the main theorems without proofs.

3.1.1. L? Estimates. We may decompose the solution

f(naTa ¢) = Q(naT) +T(77’T’ ¢)7 (315)

where the hydrodynamical part ¢ is in the null space of the operator f — f, and the microscopic part r is
the orthogonal complement, i.e.

q(n,7)=% 3 fm,m,0)do r(n,7,¢) = f(n,7,6) —aqn,7). (3.16)

Lemma 3.2. Assume (3.9) and (3.10) hold. Then there exists a unique solution f(n,T,¢) to the e-Milne
problem (3.11), satisfying

7 () 2p2 < C, (3.17)
(sing,r)g(n,7) = — /WL VM=V Sy 1)dy. (3.18)

Also for
fu(r) = aul) = <Si“|2| 8 fhgllor), (3.19)

we have
lqr ()] < C, (3.20)
la(m, ™) —aqr(T)lL- < C( [l7(m, 7l 2 + /nL [F(y, ) Ir(y, )l 2 dy + /WL 15(y, Tl dy), (3.21)
la(7) = ar(T)llp2p2 < C (3.22)

Theorem 3.3. Assume (3.9) and (3.10) hold. For the e-Milne problem (3.11), there exists a unique solution
fn,1,0) satisfying the estimates

1f(n,7,0) = fr(T)llpep. <C (3.23)
for some real number fr(7) satisfying
[f(n)] < C. (3.24)
3.1.2. L* Estimates.
Lemma 3.4. Assume (3.9) and (5.10) hold. The unique solution f(n,T,¢) to the e-Milne problem (3.11)

satisfies

170.7:0) = FuDmgm < €14 11007.0) = )] ). (3.)
Theorem 3.5. Assume (3.9) and (3.10) hold. The unique solution f(n,T,¢) to the e-Milne problem (3.11)
satisfies
1f (. 7.8) = fL(T)llpec e < C. (3.26)
3.1.3. Exponential Decay.

Theorem 3.6. Assume (3.9) and (3.10) hold. There exists Ko > 0 such that the unique solution f(n,T, )
to the e-Milne problem (3.11) satisfies

eKon (f(7777—7 }) — fL(q—)> <C. (3.27)

Lo Loe
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3.2. Preliminaries. It is easy to see ¥'(n,7,¢) = f(n,7,¢) — f1.(7) satisfies the equation

oV -
7—’_7_7 = S(TI’T)¢)7

o)
Y(0,7,¢) = p(r,¢) for sing >0, (3.28)
Y (L,7,6) = V(L,7,Rp).

oYV
sin gp— + F'(n, 7) cos
¢8n (n,7)cos ¢

where

p(7,¢) = h(7,¢) = fL(T). (3.29)

We intend to estimate the normal, tangential and velocity derivative. This idea is motivated by [4]. From
now on, without specification, we temporarily ignore the dependence on 7 and all the estimates are uniform
in 7. Define a distance function ((n, ¢) as

(0, ¢) = <1 - <ev<”) cos ¢> 2) 1/2. (3.30)

Note that the closer (7, ¢) is to the grazing set which satisfies n = 0 and sin¢ = 0, the smaller ¢ is. In
particular, at grazing set, ( = 0. Also, we have 0 < ¢ < 1.

Lemma 3.7. We have

sin ¢%C7 + F(n)cos ¢

U

56 =" (3.31)

Proof. We may directly compute

2\ ~1/2 -2V (n)
% o ]-(1 o <eV("7) cos ¢> > < 2672‘/(77) C082 ¢> F(’T]) _ 76 2V(n F(T]) C082 (b’ (332)

on 2 ¢
¢ _ 1 1 -V(n) A 9e—2V (1) : _ e VM cosgsing 3.33
9 2 —(e cosqb) (— e cos¢>(—sm¢)— R . (3.33)

Hence, we know

¢ ¢ sin ¢ <e_2v(7’)F(77) cos? q[)) + F(n)cos ¢ (e_QV(") cos ¢ sin qb)

d 13
o + F(n) cos ¢8—¢ = R =0. (3.34)

sin ¢
O

3.3. Direct Estimates along Characteristics. In this subsection, we will prove some preliminary es-
timates that are based on the characteristics of ¥ itself instead of the derivative. Here, we have two
formulations of the equation (3.28) along the characteristics:

e Formulation I: n is the principal variable, ¢ = ¢(n), and the equation can be rewritten as
dy -
singp—+ 7 =S+ 7. (3.35)
dn
e Formulation II: ¢ is the principal variable, n = 7(¢) and the equation can be rewritten as
dv -
F(n) cos gb@ +7V=5+7. (3.36)

These two formulations are equivalent and can be applied to different regions of the domain. Define the
energy as follows:

E(n,¢) =e V™ cos . (3.37)

Along the characteristics, this energy is conserved. In the following, let 0 < dg << 1 be a small quantity.
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< C. Forsing > &g, we have
3(;5 Lo [,00

. oY 1
sm(ﬁa—n(n ¢)‘<C’< 53>
Proof. Based on the e-Milne problem (3.28), we only need to show

1
5o <01+ 5p)
We use Formulation I to rewrite the equation along the characteristics as

TS+, ()
sin ¢/ (17')

Lemma 3.8. Assume ||S|| oo + H

F(n) cos (b

Y (n,¢) = exp (=Gno) (p(¢’(0)) +/0

exp (Gy0) dﬁ') :

15

(3.38)

(3.39)

(3.40)

where ¢'(n') = ¢'(1';n, ¢) satisfying (0, ¢’) and (1, ) are on the same characteristic with sin ¢’ > 0, and

o
Gis = —d&.
w= | e
for any s,t > 0. Note that

oG, [0/ 1 [t eosdl(©) 00/()
96 ‘/S a¢<sin¢'<§>>d5‘ / g2 09

Taking ¢ derivative on both sides of (3.40), we have
oV
6

=J=J1+Jo+ J3+ Jy,

where
B 7 cos¢/(€) 96/(€) ,
Ji = exp (=Gypo) </o sin¢2(6) 0 df) (p(¢ (0))
TS+ )W ()
- /0 sin ¢/ (n')

exp (G 0) dn') ,

9p(¢'(0))
o

Jz = exp (=Gyp0) (/0"(S+ V', ¢' () exp (G 0)

JQ = exp (_G'r],O)

1 " cosg'(€) Y (E) ., cosg (1) w(n/)> /
_ d¢ — d
(- gy e 56~ smizor) 56 ”)’
n 1 as /, 10 ,
J4 = exp (7GU»O)A sin ¢/(?’]/) (naz (77 )) exp (GU'»O) d77 .

Then we divide the proof into several steps:

Step 1: Estimate of J;.
We can directly compute

n=r ([ it )

Since
E(n,¢) = eV cosp =™V cos ¢'(€),
when taking ¢ derivative on both sides of (3.49), we obtain

0¢'(€) _ sind  vi-vam
o sin ¢/ (&)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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Hence, we have

/’7 cos /() DY'(E) . _ /’7 s (8) SIS v(e)—vin) g
0 0

sin¢?(§) 99 sin ¢'3(¢)
Since sin ¢’ > sin ¢ > dy, we naturally have

T cos¢"(E)sind vie)_vn) Cn
/0 sin ¢’3(€) ¢ rdg) < (58"

Since ¥ decays exponentially, we obtain
Cn C
|J1]| < e KoL <
&% ~ &%
Step 2: Estimate of Js.
For J,, we can estimate

| Jo| = |exp (=G,0)

)

9p(¢'(0)) ‘ < ’3p(¢'(0))
) - 0¢

since for any £ € [0, 7],

1
@~
We may directly compute
e VM cosp = V(O cos ¢ (0) = cos ¢/ (0).
Taking ¢ derivative on both sides, we get
0¢'(0) sing

96 sng/(0)°

which implies

9p(¢'(0))

00’ (0
&ﬁ‘ < Ipllyy1,00 ¢ ()

99

] < (C+ )

9¢'(0)
d¢

Hence, we have shown

|Jo| < C.

Step 3: Estimate of Js.
Similar to the estimate of J;, we have

K Cy +1 Cn*+1
|J3‘ <C / exp (_Gn/,n) <(1763)>d77/ < (7753 )
0 0 0
Considering F(n) < e and n < L = ¢~ /2 we have
1 |C
S| < |l=—| =-
1< |
Step 4: Estimate of Jy.
Similar to the estimate of J;, we have
cl [
|Ja| < = / exp (=G ) dn'| < C.
6() 0

Step 5: Synthesis.
In summary, we have

<Ce VD < (.

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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o) ¢‘ c(1+5): (3.60)

which implies

and further

Sln¢’ < C(l + 53> (3.65)
O
aS . . 7V L . - .
Lemma 3.9. Assume ||S|| 0 + %% < C. Forsing < 0 with |E(n,$)| < e~V ) if it satisfies
Lo Lo
ming sin @’ > §g where (1, ¢') are on the same characteristics as (1, ¢) with sing’ > 0, then we have
. oY 1
sin qﬁa—n(n, gb)‘ < C’(l + 58) (3.66)
Proof. We use Formulation I to rewrite the equation along the characteristics as
¥ (n,¢) = p(¢'(0)) exp(=Gr,o — GLy) (3.67)
L
S+, ¢' (')
/0 sin(¢’(1')) SP(=CLy = Grn)dn

LS+ ), Re' () /
—I—/n S0 (& (7)) exp(—Gyy n)dn'.

Then taking 7 derivative on both sides of (3.67) yields

%:JJ:JJ1—|—JJ2+JJ3—|—JJ4+JJ5+JJ6—|—JJ7, (3.68)
where
__(S+7),9)
/y / /
Jn= [ B +Sm qj] ?( 1) exp(=Goy) (3.70)
cos ¢’ (n ’) " cos ¢/ (€) 9 (€) /
sin ¢/ (n B /77 sin2(£) On dé) dir’,
L as(n 1
1n= | g PG (3.71)
n
JJy = p(zn(o)) exp(—Gro — Gpn), (3.72)
, Lcos /(¢ ¢'(§ §
I3 =00 O exp(-Gro - Gr)( — [ ST ;ff(b,g Pxac), (a3
L S 4/7 I (0]
cos¢'(n') 0¢'(n) cos ¢'(§ a¢' cos ¢'(§ (f ) /
<sin G0 /7, sin 02 (€) e - / sin ¢'2 dg) 4
_[FosS. () 1 /
JJ7 = /0 877 sin ¢/(77/) eXp(*GLm/ — GL,n)dT] . (3.75)

We divide the proof into several steps:
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Step 1: Estimate of JJ;. -
This is obvious, since S and ¥ are bounded. We have

c
< —
|JJ1| < 5

Step 2: Estimate of JJs.
We may directly compute

9¢'(n') _ F(n)cos¢'(n)

on sin ¢/ (1)

Hence, we have

cos¢'(n') 0¢'(n') _ _ F(n)cos® ¢/ (')

sin? ¢/(n')  In sin® ¢/ (1)

Since sin ¢'(n’) > 0o, we know

cos ¢'(n') 0¢'(n')

sin® /(') On |~ 0f
Thus, we obtain
7" cos ¢/ (€ (5) €' —n)
| / sin (;5’2 de| < &

Also, it is easy to see

exp(—Gyy ) < exp (— (n' — 77))-

Since
sin ¢ > sin ¢’ (£) > do,

we directly obtain

Ce
<
‘JJ2| = 58

Step 3: Estimate of JJ3.
We compute

O &) _ 5 GO GN) _ ) Fln)cos ()

= 0> =

n

as<n',¢'<n'>>’ e

(97] - 60 '

Thus, we have
€

JJ3| < —.

| J5| < 5
Step 4: Estimate of JJy.
Since

e VO cos ¢ (0) = eV cos ¢,

we have

9¢'(0) _ cos¢'(0)F(n)

on sin ¢/(0)

Thus, we know

ap(¢' (0
2L < ol

9¢'(0) ‘
on

an 27 sing' ()

where 05 denotes derivative with respect to the second argument in S(n, ¢). Hence, this implies

Ce
5o

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)
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Hence, we have

| < ﬁ (3.90)
O

Step 5: Estimate of JJ5, JJg and JJ7.
This is basically identical to the estimate of JJ;. We have

C
|JJs| + [T Jo| + | T Jo| < =5 (3.91)

Step 6: Synthesis.
Summarizing all above, we have

sinqﬁ%(n, ¢)‘ < C<1 + 6). (3.92)
O

Lemma 3.10. Assume [|S|| ;o0 + Ha < C and ‘%7/' < C(1+ |In(e)] + In(n)]). For sing <0
n

oo [0
and |E(n, ¢)| > V), we have

oY
s o5 o ¢>\ < €1+ (o). (3.93)
Proof. We use Formulation II to rewrite the equation as

(S +7)(.(0),6.)
F(1.(01) cos 0.

¢
”f/(n,qb)=p(¢*(0))exp(—H¢,¢*(o>)+/¢ o xp(—Hoy, . )dgx (3.94)

where
1

]
Hy, — / - iw. 3.95
¢@ 6. F(n«(w)) cosw ( )

with (1.(¢x), ), (0,0.(0)) and (n,¢) are on the same characteristics. Then taking n derivative on both
sides of (3.94) to obtain

oY

%(n,¢):JJJ:JJJ1+JJJ2+JJJ3+JJJ4+JJJ5, (3.96)
where
JJJ1 = 8]?(2:7(())) exp(—H¢7¢*(0)) (397)
_ . L) 1 Paw) o),
TR = pe O et a0 (= 25 Fare ~ o P o439
JJJ3 = — (SF—'(_ q;/c)(gb(b*(é))) exp(— H¢,¢*(O))a¢57§0) (3.99)
P (S D) 00),6)
JJJ4— A o (77*((15*))005@17* Xp( H¢$¢*) (3.100)
L F'e(8e)  On(de) [P F(@)  Onu(w)
( F2(.(6.)) cosd. On /¢ P (@) cosw Oy )‘”}*’
P 0(S ) (a(0). 6) | B
wi= | o1 Fn(82)) con g “ (oo )40 (3100

Then we divide the proof into several steps:
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Step 1: Estimate of JJJ;.
Since we know

e VO cos ¢, (0) = eV cos ¢,
taking 1 derivative on both sides of (3.102) implies
99.(0) VOV E() cos ¢

o sing.(0)
which further yields
’8@(0)’ < VOV p(y cos¢‘
on |~ sin ¢
due to
jsin . (0)] > [sin ¢ .
Hence, we have
Op(¢«(0 0¢.(0 Ce
‘p(gn())'gllpllwm %75 )’ < lsmal

1
Also, for sin ¢ < 3 and 7 € [0, L], we always have

¢ 1
—H __ . dw<o,
¢, (0) /¢>*(O) F(?’]* (w)) cos w =~

which further yields

exp(—Hy4.(0) <1
Then combining (3.106) and (3.108), we have

Ce
JJJi| < .
<[ £5
Step 2: Estimate of JJJs.
Based on the results in Step 1, we can easily verify
0) <C,
Jexp( H¢¢ o) =1,
‘ 00 (0 ‘ < Ce .
~ |sing

Then since
e~ V() ¢og o e~V cos o,

taking n derivative on both sides implies

One(dx) _  F)eosé  voy-vy - F)
on F(n.(¢x)) cos ¢ F(n.(64))
Considering 0 < n* < L, we may directly obtain
F(n) ‘
| <C,
which further leads to
O (@)
‘ on |~ ¢

On the other hand, for sin ¢ < 0 with |E(n, ¢)| > e~V ), we know

0~V 0(82)) cos du‘ — ‘e—vm) Cow‘ > e V(D)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)
(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)
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which implies

|cos ¢, | > eV (= (@D=VIL) > (VO=VIL) > ¢y > 0. (3.118)
In total, we have shown
|cos .| > Cy > 0, (3.119)
which naturally yields
'm‘ < g (3.120)
Also, we have
/
Fl= o
Hence, we have
|JJJ| < ’C‘ (3.122)
sin ¢

Step 3: Estimate of JJJs.
We may directly estimate

(S +7)(0, $.(0)) 0¢.(0)| _C Ce C
5| < |— —-H <=1 — A2
T I8l <\ =50y cos 62 (0) [exp(=Hoo.)] an |~ e sng| S |smgr G128
based on the estimates from Step 1. Therefore, we have proved
< |—. 124
] < |5 (3.124)

Step 4: Estimate of JJJy.
Using estimates in Step 1 and Step 2, we have

_ Fled) (o) [P F'(n(®)  On(w)
| F2(n.(¢s)) cos s On /zb* F2(n.(w)) cosw o d | (3.125)

1 On.(gs ¢ 1 .
AT S Pl
cosp.  On 6. COSTT  On
Then we know
¢ 1
JIJ4| < C / —————————exp(—Hy ¢, )do.| = |exp(—Hp 4. 0)) — 1| < C. 3.126
I 6.(0) F'(10:(0+)) cos ¢. (Hys.) [exp(—Ho.p.0) =1 (3.126)
Step 5: Estimate of JJJ5.
We decompose JJJ5 as
0801 (d), 6) 1
JJJ :/ L exp(—Hg, ¢, )dos 3.127
o o Foneose, P e (8:127)

+/ (1:(9)) ! exp(—Hy ¢, )do.
¢

L (0) on F(1.(¢x)) cos ¢
=JJJs1+ JJJ59.

We may direct estimate

¢ 1
JJJs, §C’/ ———————exp(—Hy ¢, )do.| = C lexp(—Hy o, -1 <cC. 3.128
| 5 1| 6.(0) F(n*(¢*))COS¢* ( b, ) | ( b, (0)) } ( )
. . OV (i(94)) . L 5.
Note that we cannot estimate JJJ52 as above since a0 involves derivative of ¥ in the normal
n

direction, which might contain singularity when approaching the boundary. Fortunately, this term lies in the
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integral along the characteristics, so we may substitute the principle variable ¢, — 7. back into formulation
T as (7«, ¢« (nx))). This implies the substitution for derivative

9 9 _dom 9 9 F)

on ~On  On. On  On  On. F(n.) ( )
Hence, for n™ denoting the intersection of characteristics with sin ¢ = 0, we know
"0V () | 9P (n) Fln) L 09
JJJs, :/ ( =t - ) exp(—Hy g, ) ——dn. 3.130
2= )y \Tan T on ) ) eostan ) O e Vg A (3450
(9T 97 () F(n) 1 99,
n n exp(—Hy 4.) 22 dn,
[, < o . F(m>> Ty cos(@n(n) DL oo gy 41
"9 (n.) Fln) 1 99
_ * —Hyp.)——dn.
/o B, Fln.) F(ne) cos(@. () DL ooy 41
"7 (n.) F(n) 1 99
+/ * exp(—Hy 4., —dn,
) on B Flnyeos(onn)) 0 e gy 4
"9V (1) F(n)
= * —H dn.,
L Pyt S0 Hoo
oY () Fy) 1
- exp(—Hyp ¢, )dn.,
[ o Py ity P Hoo
where
0. F(n,) cos(¢x(n+))
= : . 3.131
o, = sin(6.(n.) (3131
Since
‘ < C(1+ |In(e)| + [In(n)]), (3.132)
and sin ¢, ~ /e(n. —nT), we know above integral is finite, i.e.
|JJJ52| < C(1+ |In(e)]). (3.133)
Therefore, we know
|[JJJ5| < C(1+ |In(e)]). (3.134)
Step 6: Synthesis.
In summary, we have shown
C
< . .
|JJJ| < C(14 In(e)|) + singb’ (3.135)
which implies
oY
smd) (77, d))‘ < C(1+ |In(e))). (3.136)
O

Remark 3.11. Estimates in Lemma 3.8, Lemma 3.9 and Lemma 3.10 can provide pointwise bounds of
derivatives. However, they are not uniform estimates due to presence of 69 and In(e). We need weighted L>

8—7/ < C(1+|In(e)| + [In(n)|) are not known
n

estimates of derivatives to close the proof. Also, the estimate

a priori, so we need an iteration argument.
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3.4. Mild Formulation of Normal Derivative. In this and next subsection, we will prove stronger a

priori estimates of derivatives. Consider the e-transport problem for o/ = ( B as
Ui

sind)% +F(n)cos¢aa—£{ +o = o+ 8,
(0,0) = pw(¢) for sing >0, (3.137)
(L, ¢) = (L, Re),
where p.s and S, will be specified later with

7 1 T C(ﬂ (b) (

A (n,¢) = — «)do,. 3.138
(1, 9) o) s ¢« )dg ( )
Lemma 3.12. We have
[ || oo e < C<Ilpdlle + Sﬂlmm) (3.139)
I P e = W | N
(@F (e + |50 +I50ere+| 55| (50

The rest of this subsection will be devoted to the proof of this lemma. We first introduce some notation.
Define the energy as before

E(n,¢) =e V" cos ¢ (3.140)

Along the characteristics, where this energy is conserved and ( is a constant, the equation can be simplified
as follows:

do/ -
Sin¢d—+f@7:d+3d. (3.141)
n
An implicit function " (n, ¢) can be determined through

|E(n,¢)] =™V, (3.142)

which means (nT,¢g) with singg = 0 is on the same characteristics as (1, ¢). Define the quantities for
0 <7 <nT as follows:

' (¢,m,m') = cos™ ("M V(M cos g), (3.143)
R¢'(¢,n,1') = — cos™ (7Y cos ) = —¢'(,1,17), (3.144)

where the inverse trigonometric function can be defined single-valued in the domain [0, 7) and the quantities
are always well-defined due to the monotonicity of V. Note that sin ¢’ > 0, even if sin ¢ < 0. Finally we put

K 1
Gy (¢) = / —d&. 3.145
" ( ) n’ Sln(¢/(¢7 7, 5)) ( )
Similar to e-Milne problem, we can define the solution along the characteristics as follows:
o (n,0) = K[pos] + T + Ser], (3.146)
where
Region I:
For sin¢ > 0,
Klper] = por (¢'(0)) exp(—Gi0) (3.147)
; (A + Se) (', ¢ () /
o = —Gy)dn. 14
T + S /O B T (G (3.148)

Region II:
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For sin¢ < 0 and |E(n, ¢)| < e V()
Klper] = per(¢'(0)) exp(=Gro — Grp) (3.149)

- L sz S /’ i /
T + S.y] = /0 ( s 8;%;’7 ) exp(—Gry — Gry)dn (3.150)
L
(o +8)(n', Re' () /
+ Ry G
Region III:
For sin¢ < 0 and |E(n, ¢)| > e~V (L),
Klper| = per(¢'(6,1,0)) exp(=Gp+ o — Gt ) (3.151)
; _ [T (I8 () ,
T + Su] = /0 oy PGy = G ) (3.152)
" (o + S, RO () ,
+/77 sin(¢/ (1)) exp(—Gyy n)dn'.

Then we need to estimate K[p.] and T[</ + S,z in each region. We assume 0 < § << 1 and 0 < §p << 1
are small quantities which will be determined later.

3.4.1. Region I: sin¢ > 0. Based on [17, Lemma 4.7, Lemma 4.8], we can directly obtain

IKlper]l < |lparl oo » (3.153)
|T[SWH < HSdHLeoLoo- (3.154)

Hence, we only need to estimate I = T[<7]. We divide it into several steps:

Step 0: Preliminaries.
We have
R, —en

T cos ¢ (3.155)

E(,¢') =

We can directly obtain

2
(', ¢') = é\/Ri - ((R,i —en) cosqi)’) = Ri\/Ri — (R, —en)2 + (R, — en/)2sin? ¢/, (3.156)

< VR = (B —a)? + /(B — e sin ¢ < C<\/677’ ' sin¢’)7

and
1
(') 2 VB2 = (R — ) > C/en’. (3.157)
Also, we know for 0 <7’ <n,
. / RK - ET] ?
sing’ = /1 —cos2¢ = /1 — yrR—— cos? ¢ (3.158)
\/(R,€ —en')? sin® ¢ + (2R, —en —en')(en — en’) cos? ¢
- o . (3.159)
Since
0< (2R, —en —en')(en — en’) cos® ¢ < 2R.e(n — 1), (3.160)
we have

sing < sin¢’ < 24/sin? ¢ + e(n —7'), (3.161)
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which means
1 1 1

< .
S = < =
sin® ¢ + e(n — 1) sin ¢ sin ¢

n 1 n 1
—/ ——dy < —/ dy
oy Sing’(y) 7 9 Jsin?

sin ¢ + e(n — y)

Therefore,

1
= (sin¢— sin2¢+e(n—r]’)>
€
B n—1
sing + y/sin ¢ + €(n — 1)
n—n
2\/sin” 6 + e — 1)

S_

Define a cut-off function y € C*>°[—m, 7] satisfying

1 for |sing| <4,
x(¢) = :
0 for |[sin¢| > 24,

25

(3.162)

(3.163)

(3.164)

In the following, we will divide the estimate of I into several cases based on the value of sin ¢, sin ¢', ery/ and

e(n —n’). Let 1 denote the indicator function. We write

n n n
I:/O l{sin¢2§0}+/0 1{0§sin¢§60}1{x(¢>*)<1}+/0 L{o<sin¢<bo} Lix(én)=1} L{yar>sin gy (3.165)

n
+ /o Lio<sin ¢§50}1{X(¢*):1}1{M§sin ¢>'}1{sin2 $<e(n—n")}

n
+/0 1{0§Sin¢§50}1{X(¢*):1}1{M§sin¢’}1{sin2q&Ze(nfn’)}
=L+ + I3+ 1, + I5.

Step 1: Estimate of I; for sin ¢ > ;.
Based on Lemma 3.8, we know

1
sm¢’ < C(l—i— 53> (||7/||LOCLQO H3¢

Lo H@qb Loe [0 Han

Hence, we have
oY
5l ]2, +1%]..)
i ‘ ' o (AT R 1 I 7 .
Step 2: Estimate of I5 for 0 < sin¢ < dp and x(¢«) < 1
We have
’ 1 _ /
(/ C = x(¢+)) (n a¢*)d¢*) sin ¢/ exp(—Gy,, )dn

g; (] et - xio P8 as )

Based on the e-Milne problem of ¥ as

(1; @) +F(n’)cos¢*87/g(]l;;¢*) +v

1
sin @’

1(;5*

L°°L°O>

exp(—Gy,y)dn’.

—~

3.166)

—

3.167)

(3.168)

(3.169)
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we have
V(' ¢s) 1

on’ sin ¢,

0.

Hence, we have

o = /_cw x(6.) 7/(877(“(1@

- [ cor 000 - x00) (W, 6.) — () - SGf. cb*))dczb*

870’//7 ¢*)
0.

sin d)*

- [ e -xen5

in o, F(n') cos s

do.

= o + .
We may directly obtain
- u 1
[ < [ ¢t e —xie.)

o Sin @,

B[ (o0 =70 - str.00) e,

(70,00 = 701) = 500.0.) o,

<

—T

< cw) (WHW n ||S|W)~

On the other hand, an integration by parts yields

- 0 1
di= [ (et - xo 5

F)eos 6. ) (0. 6.)d0.
which further implies

] < SNl < CON e

Since we can use substitution to show
T 1
——exp(—=G, . )dn’ <1,
/0 sin ¢/ p( nn ) n =

we have

o1
12 < CO(1F g + 181 ) [ iy ex0l=G )
< CO (I msm + 18l )

Step 3: Estimate of I3 for 0 < sin¢ < dg, x(¢«) = 1 and /en/ > sin¢'.
Based on (3.156), this implies
N < Cyen'.

Then combining this with (3.157), we can directly obtain
BSURT.D)
—r S5 &)

)
() (1, 6:)dg. < C [ (1. 6.)d6. < OB g

Hence, we have

o1
] < O3l g [ s XD~ ) < OB

Step 4: Estimate of I for 0 < sin ¢ < &y, x(¢«) = 1, Ve < sin¢’ and sin? ¢ < ¢(n —1').
Based on (3.156), this implies

C(n',¢') < Csing'.

V') — T () — S0 @))

(3.170)

(3.171)

(3.172)

(3.173)

(3.174)

(3.175)

(3.176)

(3.177)

(3.178)

(3.179)
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Based on (3.163), we have

11 n—n n—n
G ,:_/ , dy < — <_C . 3.180
" n' sin ¢’ (y) Y 2/e(n—1n') € ( )
Hence, we know
K ' ¢') / 1 /
< — / .
e [M( [ S 0,606, ) G expl-Go ) (3181)
¢’ ¢")
< ' b, R pAELa - , /
C/ (/5(77 ¢*)ﬂf(n , )d¢> 0o exp(=Gp,y)dn
o1
< OO | Mexpee*n,n/)dn/
< CH||A || 1 oc/ exp 0”77—7]' dn’
= Lo L Var c
/
Define z = 77—, which implies dnf’ = edz. Substituting this into above integral, we have
€
A% el 1
< — —Cy /2= .
|I4] < C6 ||LOOLOQ/O \/Eexp< c . z)dz (3.182)

b1 n e n
= C0|| || oo o ; ﬁexp -C P dz + ' %exp -C s dz |.

We can estimate these two terms separately.

1 ( In > 1
—exp| —C4/——2z|dz < / —dz = 2. 3.183
/0 \/E € 0 \/E ( )
n/e 1 n n/e n t?=1— oo
exp( C,/—z)dz< / exp<—C,/—z)dz < 2/ te=“tdt < co. (3.184)
1 \f € 1 € 0

Hence, we know

4| < OOl || oo poc - (3.185)
Step 5: Estimate of I5 for 0 < sin¢ < 8y, x(¢«) = 1, Ve < sin¢’ and sin? ¢ > e(n —1').
Based on (3.156), this implies

¢, ¢') < Csing'.

Based on (3.163), we have

o
—GW:—/ W - Cln =) (3.186)

Hence, we have

n g 1 C(n—n'
15| < CW”L‘””/O </_5 Mdd)*) exp (—M) dy (3.187)
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Here, we use a different way to estimate the inner integral. We use substitution to find

| J 1
———do, = / do.
/4 C(n', b+) 5, . ) 17340
Rm - (RN - 677/) Cos (b*
sin ¢, small g cos d)*
o C[é 1/2 do.
(82— (e — ey cos 2
s
_ C/ COS ¢* 1/2d¢*
(R~ (a4 (R sing?
5
y=sin ¢, 1
V= 0/5 dy.

1/2
(R,% (Ru—en )+ (R 677’)22/2)
Define

p=VERE —(Re —erf)? = V2Reen — 1% < C\/erf,

qg=Rs—enf >C,
_P < Cyen'.
q
Then we have
5 1 5 1
IRy I T,
/_5 C(n's p) _s (P + ¢?y?)1/?
2 1 2 1
<< [ wrammn=C | e mm®
2
1
C/o (2 +y2)1/2dy = (ln(y+ Ve +y?) - 1n(r))

(ln2+\/7T lnr) (1+ln( ))
<01+ ] + o) )

IN

Hence, we know

n Cln—
[s| < Cll | oo oo /0 <1 + |In(e)| + 1n(77’)|> exp <_(:1n¢n)) dn/

We may directly compute
K Cn—n') ’
141 -
/0 ( +] n(e)) exp ( o dn

Hence, we only need to estimate
‘/ [In(n’ eXp< Cln = n))dn
sin ¢

If n < 2, using Cauchy’s inequality, we have

[ e (-S40 a

< Csing(1 4+ [In(e))).

IN

SlIl

(3.188)

(3.189)
(3.190)

(3.191)

(3.192)

(3.193)

(3.194)

(3.195)

< ([ o) ([ (2= o)
(o) ([ S5
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If n > 2, we decompose and apply Cauchy’s inequality to obtain

n C /
\ln( )Iexp( (ansn)> dn/ (3.197)
Cln—n') /" / Cl—=n)\ .,
< [ S A
< exp( S0 dn'| + , In(n’) exp 0o dn
1/2 2 / 1/2 ’
200 —=n")\ 4. /” Cin—n)\ .,
< AV i/ ) In(2 _An=T)
< ([ ) ([ oo (22252 ar) " st (-2
< C(Vsinqﬁ—i—sinqﬁ) < C/sin ¢.
Hence, we have
[I5| < C(1+ [n(e)|) /G0 || oo oo - (3.198)
Step 6: Synthesis.
Collecting all the terms in previous steps, we have proved
1] < OO+ )Vl | o + OO g (3.199)
C
Y| ;oo 100 NN 700r00 + 1Sl 700700 |-
T (P - W = I = I R (P E T
Therefore, we know
||, < parllpee + ||SQ¢||LOOLOC + C(1+ n(€)) Vo ||| oo poo + OO || e o (3.200)
S T P
= (AP | I - B = N ROl (F PR T
3.4.2. Region II: sing < 0 and |E(n, ¢)| < e”V(E).
Klper] = per(¢'(0)) exp(~=Gro — Gry) (3.201)
L s
; (o +8)(',¢'(n')) /
_ —a; ., 202
T + Sur] /0 (&' (7)) exp(—Gry — Gpn)dn (3.202)
L 7 / (!
(o +8)(n', R’ (1)) /
-Gy p)dn'.
e a2
Based on [17, Lemma 4.7, Lemma 4.8], we can directly obtain
IKlpar]l < |lparll oo » (3.203)
T[Sl < NSerll oo poe- (3.204)

Hence, we only need to estimate 1] = ’T[sz ]. In particular, we can decompose

R URCATD)) B 3 ;[P R () o ,
T[d]—/o 7sm(¢>’( ) exp(—Gry — Gr,y)dn —&—/n —sin(¢’(n’)) exp(—Gyy n)dn (3.205)

)
= [ LD i~ g
0

Sin(@' (1))
TSN gy [FICRIG)
+/n ), PO~ Gron + [ LRI exp(- G

n
n L
The integral / .-+ can be estimated as in Region I, so we only need to estimate the integral / -+, Also,

0 7
noting that fact that

exp(=Gr.y — GLy) < exp(=Gy p), (3.206)
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we only need to estimate

/L (', R¢' (1))

(@) P

Here the proof is almost identical to that in Region I, so we only point out the key differences.

Step 0: Preliminaries.
We need to update one key result. For 0 <n <7/,

2
sing’ = /1 —cos? ¢/ = \/1 - <I§K—6n/) cos? ¢
k — €7]

\/(R,i —en')? sin’ ¢ + (2R, — en — en')(en’ — €n) cos? ¢
R, —en/

< [sing].

Then we have

’

o1 n—n
- ——~dy < — —.
/7, sin ¢/ (y) |sin ¢|

(3.207)

(3.208)

(3.209)

(3.210)

In the following, we will divide the estimate of IT into several cases based on the value of sin ¢, sin ¢’ and

en’. We write

L L
IT = / L{sin g<—50} +/ 1{—so<sin <0} Lix(p.)<1}
n n

L

L
+/ 1{—5o§sin¢S0}1{x(¢*):1}1{\/WZSin¢/}+/ L{—so<sin p<0} L{x(p.)=1} L { e <sin ¢/}
n n

=IL+I1L+1I5+114.

Step 1: Estimate of 113 for sin¢ < —dg.
We first estimate sin ¢’. Along the characteristics, we know

e V) cosd/ = eV cos g,
which implies
cosg’ ="V co5p < VB 7VI0) co5 g = VL=V, /1 52,

Based on Lemma 3.1, we can further deduce that

1/2\ —1
cos¢’§(1—€R) \/1-483.

K

1/2\ ~ 5
. /> _ _6 1— 2 > _ £
sin ¢ _\/1 (1 Rn) (1—82)>60—e/* > 5

when e is sufficiently small. Based on Lemma 3.9, we know

Then we have

a8 oS
sm—<C 1+ )(7/ ww—l—” —|—‘ )
(b ‘ < 53 H HL L a¢ oo oo 8’17 oo oo

L°°L°°>

Hence, we have

a8

s

Lo Loe

(3.211)

(3.212)

(3.213)

(3.214)

(3.215)

(3.216)

(3.217)
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Step 2: Estimate of I5 for —dp < sin¢ < 0 and x(¢) < 1.
This is similar to the estimate of Is based on the integral

L
1
/?7 g exp(—G,y )dn’ < 1. (3.218)
Then we have
(1] < 0(5)<II7/||LooLoo + ||S|L°°L°°)' (3.219)

Step 3: Estimate of I3 for —dp < sin¢ < 0, x(¢«) =1 and /e > sin¢’.
This is identical to the estimate of I, we have

(113 < C8||.|| oo oo (3.220)

Step 4: Estimate of I for —dp <sin¢ < 0, x(¢«) =1 and /en/ <sin¢’'.
This step is different. We do not need to further decompose the cases. Based on (3.210), we have,

n—n
—Gppy < — . 3.221
mn — |sinq5\ ( )

Then following the same argument in estimating I5, we obtain

L —
0] = 1l [ (1 @]+ )] ) exo (=) ay (3:229)
n

If n > 2, we directly obtain

L ’ L ’
In(n)| ex (—n__n)d’ < / In(n’) ex (—n._n)d’ 3.223
/77 |In(n")| exp sinal ) ; (n') exp snal ) (3.223)
L
n-n
< In(2 ex
@ oo (i) o
< C4/|sin¢).
If n < 2, we decompose as
L /
/ Iln(n’)leXp< )dn’ (3.224)
n |sin ¢|

_|_

2 ) - L , n—n ’
/n|1n(n)|eXp( o |)dn / |1n<n>|exp(—|sm¢)d” '

The second term is identical to the estimate in n > 2. We apply Cauchy’s inequality to the first term

/n " ln(o) exp (T’S - qj") ar| < ( /n 2 1n2<n'>dn')l/2< /n exp (W) dn/) " o
< ([ weeson) ([ o () o)

< C4/|sin ¢).

Hence, we have

[114] < C(1 + [In(e)) /00| | oo oo - (3.226)

Step 5: Synthesis.
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Collecting all the terms in previous steps, we have proved

1] < €+ IOD VIl |+ CT (3.227)
lern s )0 (s +1511ms2),
r (et |52 5 |5 ) O (1 81
Therefore, we know
9 2 Sl Il $ O DV + OO s (3.229)
O
S (AP | IR - I < I ROl (E AR/

3.4.3. Region III: sin¢g < 0 and |E(n, ¢)| > e~V). Based on [17, Lemma 4.7, Lemma 4.8], we still have

IK[per]l < |lparll o » (3.229)
I TISell < 1Serll oo poo- (3.230)

Hence, we only need to estimate II1 = T[</]. Note that |E(n, ¢)| > e~V () implies
eV cosp > e VE), (3.231)

Hence, based on Lemma 3.1, we can further deduce that

1/2
cos ¢ > eV(N=VI(L) > gV(0)=Voo > <1 < > (3.232)
Hence, we know
172\ 2
Isin ¢| < \/1 - (1 - GR ) < /4, (3.233)

Hence, when ¢ is sufficiently small, we always have
|sin | < €/* < §p. (3.234)

This means we do not need to bother with the estimate of sin¢ < —Jy as Step 1 in estimating I and I1.
Since we can decompose

A LU R0 D
T['Q{} _/0 sin(¢’( /)) p( GTI+777 GW 777)d77 (3'235)

TAW S0 oo g [ SN0 BI@)
</77 sin(¢’ (1)) b GTIJVW G77 m)d?] +/n sin(¢' (1)) p( Gy ,n)dn).

,,7+

n
Then the integral / (+-+) is similar to the argument in Region I, and the integral / (--+) is similar to the
0

n
argument in Region II. Hence, combining the methods in Region I and Region II, we can show the desired
result, i.e.

‘@4111 > ”pd”LN + ||SdHLooLoc + C(1 + [In(e) \/%”'Q{HLWLW + 05||=97HLWL°C (3.236)

o) <%W " ||S||W)-

3.4.4. Estimate of Normal Derivative. Combining the analysis in these three regions, we have

|| < [Iparll g + ”SMHLOOLOO + C(L+ [m(e)) v/ Gol| | o o + O || e (3.237)

+ 2 (s + |3 )+ 06 (17w + 150 )
0 LoeLoe

3(;5 Lo H5¢ Leo Lo Han
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Taking supremum over all (7, ¢), we have

||J27||L<>0Loo = Hpﬂf”Lm + ||S!27||L°°L°° + C 1+ |1n \/%HJZ{”LWL‘X’ + O5HJZ{||L<X>L°° (3-238)

C
(lmw " )
Lo oo

3 e
+ 0O (17 g + 15l )

Then we choose these constants to perform absorbing argument. First we choose 0 < § << 1 sufficiently

small such that

L Lo H on

Cs < (3.239)

W~ =

Then we take dy = 6 [In(e)] " such that

C(1 + [In(e)|)\/do < 2C6 < - (3.240)

for € sufficiently small. Note that this mild decay of §y with respect to € also justifies the assumption in Case
IIT and the proof of Lemma 3.9 that

8
e/t < 30 (3.241)

for e sufficiently small. Here since § and C' are independent of €, there is no circulant argument. Hence, we
can absorb all the term related to ||.%7|| ; « ;« on the right-hand side of (3.238) to the left-hand side to obtain

7l e < 0( el + Swlmm) (3.242)

L°°L°°>

3.5. Mild Formulation of Velocity Derivative. Consider the general e-Milne problem for & = ( —¢ as

op
+ M@ (17 + | 35
Lo

1S g + H

0 || oo 0 H on

sin(b% + F(n) COS(b% +PB = Sz,
#0,0) = paz(p) for sing>0, (3.243)
B(L,¢p) = SB(L,R9),

where pg and Sg will be specified later. This is much simpler than normal derivative, since we do not have
. Then by a direct argument that

IKlpz]l < llpallpe (3.244)
TSl < [1Sll g oo (3.245)
we can get the desired result.
Lemma 3.13. We have
B e oo < P8l oo + (1Sl oo oo - (3.246)

3.6. A Priori Estimate of Derivatives. In this subsection, we combine above a priori estimates of normal
and velocity derivatives.

Theorem 3.14. We have

Hg < Cln(e)[?. (3.247)

|z

0N || oo o0 N || oo .00
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Proof. Collecting the estimates for &7 and % in Lemma 3.12 and Lemma 3.13, we have

015 < O Il + 1Sl ) (3249
I (s - TS = S - !
L>e L ad) L Lo ad) oo oo 877 oo oo
18| oo oo < NPl oo + (1Sl oo oo (3.249)
Taking derivatives on both sides of (3.28) and multiplying , based on Lemma 3.7, we have
dp .
Doy = €COS ¢—¢ +p—7(0), (3.250)
Op
pm = sm¢ 96’ (3.251)
Sy = %%’cosqﬂr(@, (3.252)
Sz = dcos¢+F%sm¢+(—¢ (3.253)
i oF . . . .

Since |F(n)| + o < ¢, by absorbing & and £ on the right-hand side of (3.248) and (3.249), we derive
o < C|n(e)|®, (3.254)
P < C|ln(e)|®. (3.255)
([l

Theorem 3.15. For Ky > 0 sufficiently small, we have

841/ + eKOUC%
an on
Proof. This proof is almost identical to Theorem 3.14. The only difference is that S, is added by Ko sin ¢

and S added by Ko#sin ¢. When K| is sufficiently small, we can also absorb them into the left-hand side.
Hence, this is obvious. O

< C[in(e)[®. (3.256)
LOOLOO

H Koﬁc

Lo Loe

3.7. Continuity and Regularity. So far, all the estimates are a priori. Hence, we first need to confirm
the derivatives are well-defined by an iteration argument. We start from the continuity of solution. Consider
the e-transport equation for ¥ as
oY oY
sing— + F(n)cos¢—+¥ = H,
an 0¢
Y(0,¢6) = p(¢) for sing >0, (3.257)
f(L,¢) = [f(L,Ro).
Lemma 3.16. Assume H is continuous in [0, L] X [—m, 7). Then we have ¥ is continuous in [0, L] X [—m, ).

Proof. As before, we can define the solution along the characteristics as follows:

¥ (n,¢) = Klp| + T[H], (3.258)
where
Region I:
For sin¢ > 0,
Klp] = p(¢'(0)) exp(—=Gi.0), (3.259)
Tl = [ expl-Goy (3.260)
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Region II:
For sin ¢ < 0 and |E(n, ¢)| < e~V (&),

Klp] = p(¢'(0)) exp(~=Gro = GL.y)

T[H} = < OL MQXP(_GLW — GL,'r])dn/ i /L M

sin(¢’ (') . sin(¢/(1)) eXp(G"»n’)d”)-

Region III:
For sing < 0 and |E(n, )| > =¥ (3,

ICLP] = p((b/(())) exp(_G7ﬁ,O - Gn*,n)
A (URAUR) " HQ RS ()
TH:( - exp(—Gp+ o — G d/—l-/ —
[H] o sin(¢'(n')) (=G )0 n sin(¢' (1))
When (7, ¢) does not touch the boundary of each cases, we can directly use above mild formulation to see

the continuity. Hence, we concentrate on the separatrix between these regions. We divide the proof into
several steps:

exp(Gmnf)dn') )

Step 1: Separatrix between Region I and Case II.
In our formulation, there is no intersection between these two regions, so we do not need to worry about it.

Step 2: Separatrix between Region IT and Region III.

The separatrix is the curve satisfying |E(, )| = e~V ). We have in Region II:

Klp] = p(¢'(0)) exp(=Gr,0 — GL.z)

L "' (n L / ™
T[H}< ; MGXP(*GLW—GLW)dn’JF/ H(', Re'(n'))

(') L sm(@ () eXp(G"’"’)d”/) |

and in Region III:

Klp] = p(¢'(0)) exp(—=Gyyr o — G )
" +
TIH] = ( T HW, S (0) ™ B, R/ (7))
0 sin(¢’(77’)) Sin(gb’(r]’))
Since we know 5t = L on this curve, above two formulations give exactly the same formula. Hence, it is
continuous.

exp(—Gyt yy — Gt p)dn’ + exp(Gn,n/)dn’)
"

Step 3: Separatrix between Region I and Region III.
This is actually the segment of line (,0) for 0 < n < L.

Direction 1: Approaching from Region I.
Consider (7., ¢«) — (1,0). Assume (1., ¢.) and (7', ¢’) are on the same characteristics. Then we have

Klp] = p(¢'(0)) exp(=Gi. 0) (3.261)
B UE H(ﬂ/,¢/(77/)) ,
TH] = ; WQXP(*GW*WMU : (3.262)
We can directly take limit (7., ¢.) — (1,0) and obtain

Klpl = p(¢'(n,0;0)) exp < - /On 1(y>dy>, (3.263)

sin @’

TH] — /0" Wexp (_ /n" Sin;/(y)dy)dn’. (3.264)
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Here, we cannot further simplify these quantities.

Direction 2: Approaching from Region III.

Consider (7., ¢x) — (1,0). Assume (7., ¢.) and (1, ¢’) are on the same characteristics. Then we have

K:[p] = p(¢/(0)) exp(—Gn+70 - Gn*,n*)
H(n',¢'(n'))
o sing/(n)

" H(n', R¢/ (1)) ,
+/n W exp(—Gy . )dn'.

TH] = exp(—=Gt  — Gnﬂn*)dn/

In this region, we always have n™ < L and

e V) — o= V() cog ..

Also, it is easy to see

Hence, considering

we have
TIJr 1 77Jr 1
_ —— dy= — d
/m sin ¢/ (y) 4 /* V1= e2V—-2V(n) Y
_ 't R, — ey
- \/ R, —ey)? — (R, — ent)?
t R, — ey
n. Vet —y) 2R, — ey —en')
TIJr 1
> ¢ / d
. Vet —y)
_ 9o nt—n

Therefore, we know

G T d 204/ A
p(~Cr.p.) = exp ( /77 sin ¢/ (y) y) =P ( € )

When ¢, — 0, since
e~V — o=V oo s,
we have 7 — n,, which further implies
exp(—Gyt ) — e’ = 1.
Then we apply such result to XC[p] to obtain when (., ¢.) — (1,0)
Klp] = p(¢'(0)) exp(=Gyy+ 0 — Gyt 5.) = p(¢'(0)) exp(—Giyo).
On the other hand, we consider 7[H]. We directly obtain

T H(n, ¢ ()
o smé/(1)

sin ¢’

exp(—Gyt y — G . )dn —>/ 77 / exp(—Gn_,n/)dn’.

(3.265)

(3.266)

(3.267)

(3.268)

(3.269)

(3.270)

(3.271)

(3.272)

(3.273)

(3.274)

(3.275)
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Also, we know

nt H( " R (0 nt
n', R¢' (1)) ’ / 1 ’
_— =G )AN' | < ||H|| ;00 700 _— -Gy )d 2
o) exp(=Gy . )dn'| <[ Hl oo ST exp(—Gyy . )dn (3.276)
,,7+
< Hllpoo poo |exP(=Gyon.)
N
= ||H|| poo oo |exp(—Gn+m*) — 80’ — 0.
Therefore, we have
—>/ 51n¢’ 0 exp(—Gm,n/)dn’. (3.277)
Synthesis:
Summarizing above two cases, we always have
Klp] = p(¢'(0)) exp(—Gi.0), (3.278)
TH(n',¢'(n')) /
H —_— — Hdn'. 2
7] [P exp(=G ) (3.279)

Hence, the solution is continuous.

Step 4: Triple Point (L, 0).

This is the only point that three cases can be applied simultaneously. However, based on previous analysis,
we know at this point, Case II and Case III provides exactly the same formula. Also, Case I and Case III is
equivalent when taking limit (7., ¢.) — (1,0). Then this point is also continuous. |

Theorem 3.17. The normal and velocity derivatives of ¥ are well-defined a.e. and satisfy
oY
an

Proof. Based on the a priori estimate, it suffices to show the derivatives are well-defined. Consider the
iteration of penalized e-Milne problem for {#{"}2°_, with #}" = 0 and for m > 1

eRone=— < C[in(e)[®. (3.280)

Lo [oe

+
L Le°

‘eKoﬂca

sin ¢ 57” + F(n )cos¢8;:’z\;n F (LN - T = S, ),
77(0,¢) = p(¢) for sing >0, (3.281)
KML.g) = VL, Re).

Here we require A > 0. We divide the proof into several steps:

Step 1: m — oo convergence.

Tracking along the characteristics, as we have shown in e-Milne problem of [17, Section 4], we have ;" €

L>([0, L] x [~,7)). Hence, it is easy to see each #{™ is uniquely determined. Define 2™ = ¥jm — ¥~

for m > 1. Then Z™ satisfies the equation

m agm _
sin ¢ an —i—F(n)cosqﬁqu—l—(l—i—)\)fm—me_l 0,

Z™(0,¢) 0 for sin¢g >0, (3.282)
27(L.6) = Z™(L.Ro)

Based on [17, Section 4], we know

m 1 _ 1 m—1
127 i < 132" e < (135) 12 i (3289

Since 7 = 0, we have 2! = ¥{. Applying Lemma 3.16 for H = 0, we know 2! is continuous. Using the
proofs of Lemma 3.8, Lemma 3. 9 and Lemma 3.10 with

V=7 V=0 p=0, (3.284)
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1 and ozt
an o

enough to show the convergence of this iteration. Then we can use estimates of e-Milne problem and the
proofs of Lemma 3.12 and Lemma 3.13 with

we get are a.e. well-defined. However, the estimates from these lemmas are not strong

SN 5 08
=5 A o =0, pd—cosd)?—l—%\( . ®), Sﬂ:ga—n, (3.285)
B 8”//)\1 __Op 0S8
to see
ozt ozt
Hg Hc ot (B - (3.287)
Lo oo
< (18l o + I m+H 0 s I !
(G e e - e
and further by direct integration over ¢,
ozt 8
an | < Clin(e)[” (1 + [In(e)| + [n(m)]). (3.288)

Note that here the extra A will not affect the result. Similarly, for each m > 1, Z™=1 can be regarded
as known. Applying Lemma 3.16 for H = 2™, we know 2™ is continuous. Then we use the proofs of
Lemma 3.8, Lemma 3.9 and Lemma 3.10 with

V=" S+¥=%"1 p=0, (3.289)
o zm ozm -
to confirm the derivatives 5 and 99 are a.e. well-defined. Then we utilize the proofs of Lemma 3.12
n
and Lemma 3.13 with
(3.290)
agm 7 1 T C(Th ¢) 3me71(n’ ¢*) wom—1
o = Ci o = — dos, pog=2"0,0)— 2™, Sy =0,
In 21 )y C(0, 1) on 7 ©.9) “
Qfm
B=(—— 56 ps =0, Sz=0, (3.291)
to show
(3.292)
oxm o.xm grm— 1 grm— 1 "
e TS s e o )+ CIEN 127 s
M lpeeroe LoeoLo Lo Lo Loo Lo
for 0 < § << 1 and
83‘”m
——— | < Clln(e )| (1+ |ln(e)| + [In(n)]). (3.293)

1
Therefore, combining (3.283) and (3.292), for fixed § < T e have

”Cag Hcag (3.294)
Loe Lo [0 [,00
affl ac@pl 5 1 m—1
& eS| ) rommrf () 12 e
1 m—1 agpl 83{1
< Cm (o) () (12 s+ % %] )
T 127 ] e e .
For fixed € and A > 0, when m — oo, we know
o™ oF™
127 e e + Hca Hc o, (3.205)
n Lo [, oo oo
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and further for any N > 1,

m—+N

- oz
Z (|QP oo + HCan

k=m

affn

|3

) 0. (3.296)

Hence, #{" is a Cauchy sequence. Thus we have 7™ — ¥} strongly which satisfies

o Uy

I7All oo poe + HC HC (3.297)
- o™ o™
& e, )
;(n lims T =S .
C
< S (@ 2],
C
< S (itmse + -+ [0 [351,, L)
o (n e - T - I = I
Hence, we know % d —= are a.e. well-defined.
on 3¢
Step 2: A — 0 convergence.
We know ¥, satisfies the equation
., 07 _
sin g% + F(n) co ¢>a¢ (1+NH =K = Sm.9),
$(0,8) = p(¢) for sing >0, (3.298)
Since its derivatives are a.e. well-defined, we can use the proof of Lemma 3.12 and Lemma 3.13 to show
oY) oY)
II”f/AILoch+H6 - HC 2 (3.299)
LoeLo° LeoLoe
<ot (St it J2Z] oj] ]2 )
P e 3= TR 13> TR 1 I

which is uniform in A\. Then we can define weak-* limit ¥y, — ¥ in weighted W', up to extracting a
subsequence as A — 0. Also, the analysis of e-Milne problem in [17, Section 4] reveals that ¥\ — ¥ weakly

oYV oYV
in L2L? as A — 0. Hence, o and 6—¢ are a.e. well-defined. Therefore, we can apply the a priori estimates
Ui
in Theorem 3.14 and Theorem 3.15 to obtain the desired result. O

Corollary 3.18. We have

< C'|in(e)[®. (3.300)
L[>

e sing (1. 0)

Proof. This is a natural result of Theorem 3.17 since {(7, ¢) > [sin ¢|. O

Now we pull 7 dependence back and study the tangential derivative.

Theorem 3.19. We have

< CIn(e)]?. (3.301)
Loe Lo

oY
K077
5, (1:7,9)

Proof. Following a similar fashion in proof of Lemma 3.17, using iteration and characteristics, we can show

. T oY . L
—— is a.e. well-defined, so here we focus on the a priori estimate. Let # = ——. Taking 7 derivative on

or or
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both sides of (3.28), we have #  satisfies the equation

sinasa;j +Fmyeosol s - = Brgy+ TelD) (F(n) cosqu/),

99 or Ry(r) = en 96
v(0,1,9) = %(T,qﬁ) for sing > 0, (3.302)

V(L,7,¢) = W (LT, Ro),

where R/, is the 7 derivative of R,. Our assumptions on S verify

oS
eKonaiT(na T, ¢))

<C. (3.303)
LOC LOO

For n € [0, L], we have
Ry(7)
Ri(7) —en
Based on Corollary 3.18 and the equation (3.28), we know
oY
(Pl cosa G ) .0

Therefore, the source term in the equation (3.302) is in L* and decays exponentially. By Theorem 3.6, we
have

< Cmax R (1) < C. (3.304)

< Clin(e)®. (3.305)

Lo Loe

e (.7, 6 < Cin(o)”, (3.306)

M oo £
which is the desired estimate. O

3.8. Diffusive Boundary. In this subsection, we come back to the e-Milne problem with diffusive boundary.
In [17, Section 6], it has been proved that

Lemma 3.20. In order for the equation (3.1) to have a solution f(n,T,$) € L>([0, L] X [-m,7) X [-7, 7)),

the boundary data h and the source term S must satisfy the compatibility condition

L T
/ h(7, ) sin pdp + / / e VES(s, 7, ¢)dpds = 0. (3.307)
sin ¢>0 0 —T
In particular, if S = 0, then the compatibility condition reduces to
/ h(r, ¢)sin pdg = 0. (3.308)
sin >0
It is easy to see if f is a solution to (3.1), then f + C is also a solution for any constant C. Hence, in
order to obtain a unique solution, we need a normalization condition
P[f1(0,7) = 0. (3.309)

The following lemma in [17, Section 6] tells us the problem (3.1) can be reduced to the e-Milne problem with
in-flow boundary (3.11).

Lemma 3.21. If the boundary data h and S satisfy the compatibility condition (3.307), then the solution f
to the e-Milne problem (3.11) with in-flow boundary as f = h on sin¢g > 0 is also a solution to the e-Milne
problem (8.1) with diffusive boundary, which satisfies the normalization condition (3.309). Furthermore, this
is the unique solution to (3.1) among the functions satisfying (3.309) and || f(n,7,¢) — fo(7)|| 22 < C.

In summary, based on above analysis, we can utilize the known result for e-Milne problem (3.11) to obtain
the desired results of the solution to the e-Milne problem (3.1).

Theorem 3.22. There exists a unique solution f(n, T, d) to the e-Milne problem (3.1) with the normalization
condition (3.309) satisfying

1f(n, 7, ¢) = fr(T)llpzpe < C. (3.310)
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Theorem 3.23. The unique solution f(n, T, d) to the e-Milne problem (3.1) with the normalization condition
(3.309) satisfying

1f (0,7 8) = fr(T)ll e poe < C. (3.311)

Theorem 3.24. There exists Ko > 0 such that the solution f(n,T,$) to the e-Milne problem (3.1) with the
normalization condition (3.309) satisfies

e (f(0.7.6) - 12(7))

<C. (3.312)
Lo Lo
Theorem 3.25. There exists Ko > 0 such that the unique solution f(n,T,$) to the e-Milne problem (3.1)
with the normalization condition (3.809) satisfies
of — f)
Kon
He or (

0,7, }) < Cn(e)[®. (3.313)

Lo [oe

4. REMAINDER ESTIMATE

In this section, we consider the remainder equation for u(Z,w) as

eW-Vyu+u—a = f(&,7) in Q, (4.1)
u(Zo, W) = Plul(Zy) + h(Zo, W) for @ -7 <0 and Fy € 09, )
where
1

(%) = Py /S1 u(Z, w)dw, (4.2)

" 1 R
Plu)(Zo) = 7/ u(Zy, W) (W - ¥)dw, (4.3)

2 Jz.r>0

7 is the outward unit normal vector, with the Knudsen number 0 < € << 1. To guarantee uniqueness, we
need the normalization condition

/ u(Z, w)dwdZ = 0. (4.4)
QxS
Also, the data f and h satisfy the compatibility condition

/ (&, 0)dwdz + e/ / h(Zo, W) (W - ¥)dwdzy = 0. (4.5)
QxsS? 89 J@.7<0

We define the L? norm with 1 < p < co and L* norms in Q x S! as usual:

1/p
lsracsy = ([ [ 1@ oras) " (4.6)

1l Lo @xsty = sup  [f(Z )] (4.7)
(#,5)€NxS?

Define the LP norm with 1 < p < co and L* norms on the boundary as follows:

1/p
vy = ([ 11007 10 -slaaaz) (48)
P
|waﬂ(//|fprwlmmm> , (19)
|

Ve = sup |fG D), (4.10)
(&,w)er

[flpoe sy = sup |f(Z,@)]. (4.11)
(#,@)eT+

In particular, we denote dy = (W - ¥)dwdZy on the boundary.
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4.1. Preliminaries. In order to show the L™ estimates of the equation (4.1), we start with some prepara-
tions with the transport equation.

Lemma 4.1. Assume f(%,%) € L=(Q x 8*) and h(xg,w) € L>°(I'~"). Then for the transport equation

{ e -Vout+u = f(Zd) in Q (412)
u(Zo, W) = h(Zy, W) for Zoe o and W-7 <0,
there exists a unique solution u(Z,w) € L>°(Q x St) satisfying
[ull oo (2xs1) < 1l Lo xsty + 11l oo - (4.13)
Proof. The characteristics (X (s), W(s)) of the equation (4.12) which goes through (Z, @) is defined by
dX(s) W), dW(s) _o,
ds ds (4.14)
(X(0), W(0)) = (%, )
which implies
X(s) =2+ (ew)s, W(s)=u (4.15)
Along the characteristics, the equation (4.12) takes the form
j—Z—i—u = f(Z,W) in Q (4.16)
w(Zp, W) = h(Zp,w) for @ -7 <0,
where
ty(Z, W) = inf{t > 0: & — et € 00}, (4.17)
xp(Z, W) = T — etpwd. (4.18)
We rewrite the equation (4.12) along the characteristics as
w(F, B) = h(F — etyid, F)e" + /O " E — by — 5)i e ) ds, (4.19)
The existence and uniqueness directly follows from above formulation. Also, we have
[ull oo (axsty < Ill oo oy + 11l oo (xesty - (4.20)
Hence, our desired result is obvious. ([l

4.2. L? Estimate. In this subsection, we start from the preliminary equation (4.12) and take @ and P[u]
into consideration.

Lemma 4.2. Define the near-grazing set of I't or '™ as

Iy = {(z, @) e T : [#(Z) - w| < 6} (4.21)

Then
Jutessns |, < €O Tallisiass) + 18 Forlasn, ) (122
Proof. See the proof of [3, Lemma 2.1]. a

Lemma 4.3. (Green’s Identity) Assume u(Z, ), v(%, @) € L*(Q x St) and & -V, u, - V,v € L2(Q x St)

with u, v € L*(T). Then
// ((tﬁ Vau)v + (@ - un)v> dZdw = / uvdry. (4.23)
QxS?t T

Proof. See the proof of [2, Chapter 9] and [3]. O
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Lemma 4.4. Assume f(7, @) € L>=(QxS') and h(zg, @) € L>(I'"). Then for the transport equation (4.1),
there exists a unique solution u(Z,w) € L*(Q x S') satisfying

1 2 1 1
1= Py + ey < (5 W oy + ¢ Mhlliageny ). (124)
Proof. We divide the proof into several steps:

Step 1: Penalized equation.
We first consider the penalized equation

(4.25)
ew - Vaujx+ (1 + )\)Uj))\ —Uj\ = f(Z,@) in Q,
1
Uj)&fo,ﬂj) = (1 - ) ’P[Uj,)\](fo) + h(fo,ll_;) for w-v <0 and fo € 89,
J
) .2 . . o & 0
for A >0,j€Nandj> % We iteratively construct an approximating sequence {uj7/\}g‘3:0 where u; , =0
and
(4.26)
eiwf - Voul y + (1+ Nuf, —aiy = f(#d) in
1
uﬁ)\(fo,zﬁ) = (1 - j) P[u?;l](fo) + h(Zy, W) for Zp € 0N and &- 7 < 0.
By Lemma 4.1, this sequence is well-defined and Hu%\” (@xst) < 00. We rewrite equation (4.26) along
Lo (2%
the characteristics as
S 1 k— S oo o
uf)\(a:,w) = (h + (1 - j) P[uj’)\l]> (T — etyd, w)e~ 1TV (4.27)
ty
- /0 (f + a3 — ety — s)i, d)e” TN,
We define the difference v = uf)\ — uf;l for k> 1. Then v}i/\ satisfies
- 1 - Yok Lo .
vfjl(a:,w) = (1 - j) 'P[’U?’/\](CL' — etyl, wW)e~ (TN +/() vf»\(x — e(ty, — s)w, wW)e” MMt =3)q5(4.28)
. -k k k k : 4
Since “Uj’AHLOO(stl) < ij")‘HLOO(stl) and P[Uj’)‘]HLOO(F+) < ij’AHLOC(Q><81)7 we can directly estimate
1 o
k+1 —(14 )t 1 k+1 k —(14N) (Ep—s)
HUM HLOO(QxSl) =¢ b (1 j) Ui HLOO(QxSl) - ||Uj’)‘HL°°(QXSI)/0 © s (429)
1 1
—(14+N)t _ - k+1 A (1N k
=° b (1 j) CiA HL‘”(QXSl) Tt I o5all e ey
1 k
< (1 - j) HUJ'AHLoo(QXsl) ’
. .2
since j > Y Hence, we naturally have
o5 < (1= L) |l (4.30)
IA e (@xst) = g ) HiMlLeaxst) '

Thus, this is a contraction iteration. Considering 11]1- N = ujl \» we have

1 k—1
e < (1-3) Tohall (431
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for k > 1. Therefore, uf 5 converges strongly in L* to the limiting solution u; ) satisfying

(oo}

lasalle@xst) < 2 N05allLw sty £ 7 45l ety (4.32)
k=1

Since u} , satisfies the equation

ty
ul (&, W) = h(F — etyw, w)e TV + / F(& = e(ty — s)w, w)e” THNE=9) s,
0
Based on Lemma 4.1, we can directly estimate
||U},/\||Loo(m51) < ||fHLoc(Qx51) + Hh“Loo(r) . (4.33)

Combining (4.32) and (4.33), we can naturally obtain the existence and the estimate

sl sy <3 1limqcsy + Il ) (134)

This justify the well-posedness of u; ». Note that when A — 0 or j — oo, this estimate blows up. Hence, we
have to find a uniform estimate in A and j.

Step 2: Energy Estimate of uy ;.
Multiplying u; » on both sides of (4.25) and integrating over  x S, by Lemma 4.3, we get the energy
estimate

1 2 2 — 2
3¢ [ il 04 Mgy + i = w3 asy = [ Fusa (4.35)
2 Jr Oxst
A direct computation shows
1
56/ jujaf* dy (4.36)
r
2
o3 (5)
= —el||lujall7e ——e|[l1—==)Pluja] +h
9 | ]J\HL T " 9 j [ J,A] L)
2
ae(oti = (15) ) =g =< (1) [ w7l
= —el ||ujall72 — [l 1= = | Plujx — —€llh y—ell—= hPluj | |w - 7| dy.
se( il 5 Pl ) = gellee 2) [ nPtulia -7
Hence, we have
1 1 2
2 2 — 2
(Il = | (1= 5) Pl )+ M Bsaliaans 152 = lsressy 457
L2(r-

1 1 oo
— [[[ fuint selblagey +e(1-3) [ wPlusalla ol
QxS? J/ Jr-

Noting the fact that

2 2 2
6( ||Uj,/\||L2(r+) - |P[Uj,/\]L2(r)> =ell(1- P)[“j,/\]”Lz(m) J (4.38)

we deduce

1 2 2 _ 2
7€ 11— P)[“j,A]||L2(r+) +A Huj)\HL?(stl) + [lejx — .5 ‘L2(stl) (4.39)
1 oo
< [ twat el e [ nPlugai@- A,
QxS?t r—
Applying Cauchy’s inequality, we obtain for n > 0 sufficiently small,

oL 4
e / Py - 7y < ey + Pl e (4.40)
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which further implies

1 2 2 _ 2
7€ 11— P)[“j,h]”m(rﬂ +A Huja)\HL?(QxSl) + [l — uj,AHm(stl) (4.41)

4 2 2
< / / fusn + (1 + ) 1y + € [Pl -
QxS n

Now the only difficulty is €21 ”P[uj,)\]”iﬂrf)’ which we cannot bound directly.

Step 3: Estimate of ||73[uj,>\]||2LQ(F,)

Multiplying u; » on both sides of (4.25), we have
1 _
€0 Va(ujn) = =Aujy = win(uwjn = @5p) + fuja. (4.42)

Taking absolute value on both sides of (4.42) and integrating over 2 x S, we get

} 2) ) 2 o 2
|7 Vo ()| sty € = Iallza@us + % lwin = Ballieust) + < //st1 fujn. (443)

Based on (4.41), we can further obtain

. 1 4 9 9 4
[ 90 r sy < 5 (13 ) ey + enlPlusalleery 4 ¢ [ pu
QxS
Hence, by Lemma 4.2, (4.41) and (4.44), we know for given § > 0
2
[steee ], 0, < (nuj sy + 10 9o s ) (4.45
1 ) 11 )
( (14 5) Wty + (5 + 5 ) @ IPLsall ey

(3 >//M o)

Noting the fact that

Hp[uj’ﬂm“i] Ly = Huj’AIM\Fi 2r-y’ (4.46)
and for J sufficiently small, we have
[Plossten]], 2 3 1PsANae - (4.47)
Combining with (4.45), we naturally obtain
2 2
1Plusalzaey < 2 |[Plasateang]|, ) <2 watrany |, (4.48)

< () ((i + 1) (1 + ) T (i + 1)(6277) (L[

G M)

For fixed A, taking n > 0 sufficiently small, we obtain
1 1
Pl < (54 1) (e + [ Fuin). (4.49)
X
Plugging (4.49) into (4.41), we deduce

1 _
SN = P) sl 22y + M la sy + g — (4.50)

cce(3 ) ([ rua il )
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Step 4: Limit j — oo.
Naturally, based on (4.50), we deduce

lusalasy < 5 (54 1) ([ fun+ Wiy ) (451)
QxS

Applying Cauchy’s inequality, we obtain for Cy > 0 sufficiently small

()\—i—e)
SGHY) ] < T Uy + Colusalless - (@52)
Combining (4.51) and (4.52), we obtain

2 1 2 1 2
s sy < o s + 332 Il ): (4.53
which further implies
1
sz < © (52 Wl + 57z Wl ) (@54

Since this estimate is uniform in j, we may take weak limit u; ) — wy in L*(Q x 8') as j — oo up to
a subsequence. By Lemma 4.3 and weak lower semi-continuity, there exists a unique solution uy to the
equation

ew-kuA-i-(l—i-)\)uA—a)\ = f(:)’_f tU) in €, (4.55)
ux(Zo, W) = Plur](Zo) + h(Zo, W) for &-7 <0 and &y € 09, '
and satisfies
1 1
luliaaest < (552 Ml + 5a7a Ilasceny ). (4.50

However, this estimate still blows up when A — 0, so we need to find a uniform estimate for uy.

Step 5: Kernel Estimate.
Applying Lemma 4.3 to the equation (4.55). Then for any ¢ € L?(2 x S!) satisfying - V,¢ € L?(2 x St)
and ¢ € L*(T"), we have

Y Ry Y Ry Ry

Our goal is to choose a particular test function ¢. We first construct an auxiliary function ¢. Since uy €
L?(Q2 x 81), it naturally implies uy € L?(2). We define (%) on Q satisfying

Al = uy in Q,

4.58
8—€ = 0 on 09. ( )
ov

A direct integration over  x S! in (4.55) implies
/ ux (%, ) dddE = 0. (4.59)

QxS
Hence, in the bounded domain 2, based on the standard elliptic estimate, there exists ¢ € H?(2) such that
¢l 20y < ClluallL2(qy » (4.60)
and

¢(@)dz = 0. (4.61)

Q

We plug the test function
¢ =—w-V,( (4.62)
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into the weak formulation (4.57) and estimate each term there. Naturally, we have
||¢HL2(Q) <C ||C||H1(Q) <C ||ﬂ>\||L2(Q) : (4.63)

Easily we can decompose

We estimate the two term on the right-hand side separately. By (4.58) and (4.62), we have

—€ //QXS1 (117 . quﬁ)ﬂ)\ = 6//Q><51 Uy <w1 (w1811C + w2812§) + wg(wlalg(j + wgaggc)) (465)

= 6// Uy (wf@uC + w§822C)
QxS
= 267T/ 17,)\(811( + 8224)
Q

_ 2
= 2€7T||UAHL2(Q)

2
=¢€ ||U>\HL2(Q><81) :
In the second equality, above cross terms vanish due to the symmetry of the integral over S'. On the other
hand, for the second term in (4.64), Holder’s inequality and the elliptic estimate imply

—6//Q . (W - Vo) (ux — ux) < Cellun — Ul 2qx sy IS 2(0) (4.66)
X

< Cellur = a2 ousny 1EAll 2ok s1) -

We may decompose @ = (- 7)V + @, where w, denotes the tangential component and combine with (4.58)
to obtain

e/Fqubdy = E/FU)\<'LU' Vz()dy (4.67)
= [ w7 V.00 Ay +e [ (s .0y
:E/FU/\("BJ_ - VaQ)dy

Based on (4.60), (4.63), the boundary condition of the penalized neutron transport equation (4.55), the trace
theorem, Holder’s inequality and the elliptic estimate, we have

; /F urddry = ¢ /F (i1 - VaC)dy (4.68)

¢ / Plual(@y - VaC)dy + ¢ / (1= P)url(s - VoC)dy + ¢ / Wi - VaC)dy
I T+

-y / =Pl - VaO)dy e / B - Val)dy

< ellanllzzaxsr) (I(1 = P)lualll 2y + ||h||L2(F)>'

Also, we obtain

<CA ||a/\||L2(stl) [lux — 71/\HLE(stl) J

I =500 < Cllinlzzy Ir = il (4.70)
X

//Q . fo < Cllanll2axsty 1flL2@xsty - (4.71)
X
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Collecting terms in (4.65), (4.66), (4.68), (4.69), (4.70) and (4.71), we obtain
ellaallpzansyy < C((l e+ A) [lux — Uall 2oty T elluall g2y + 171l L2@xsty (4.72)
+ el =Pl + il )
When 0 < A < 1and 0 < e <1, we get the desired uniform estimate with respect to A as
elluall L2 ousr) < C( lux = Ul p2oxsty T €llunllpzry + 1l 2oxst) (4.73)
+ el =Pl + bl )

Step 6: Limit A — 0.
In the weak formulation (4.57), we may take the test function ¢ = uy to get the energy estimate

2 1 2 _ 2
Mia sy + 3¢ [ i+ s = w2 assy = [ o (474
r QxS
Similar to (4.41), we have

1 2 2 2
7€ (L =P)ualllz2 sy + Aluallzzoxsty + llua = @allz2(oxs) (4.75)

4
< [[ pus (1 + ) Wl + 1 1Pl -
OxSt Ui

Also, based on Step 3, we know
”P[UA]HQL?(F—) < C( ||U>\||i2(9><51) + ||1E ) vx(ui)HLl(ngl) > (4.76)
_ 2 _ 2 1 1 2 1
< C( l[ux — @xllz2 sy + 10AlT20x sty + - (1 + 77) 1Rl 72 0y + - //stl fu>~
Hence, combining (4.75) and (4.76), we know
ell(1— P)[U/\]\\%2(r+) + flux = ﬂAHiZ(stl) < C<€277 Ha>\||2L?(Q><Sl) + //Q s Jux+ ||h%2(r)>-(4-77)
X 1
On the other hand, we can square on both sides of (4.73) to obtain
& rBaessy < O llu — il ? sl : 178
Mzzaxsty = ux — Uallz2xsty € luallzery + 11 2 @xst) (4.78)
=Pl + & Wil )

Taking 7 sufficiently small, multiplying a sufficiently small constant on both sides of (4.78) and adding it to
(4.77) to absorb ||(1 — P)[u,\]Hig(Fﬂ, €? ||u>\||2Lz(QX31) and |luy — ﬂ,\HQLz(stl), we deduce

2 — 2 — 2
ell(1 = P)uallzzory + € aallz2(axsty + lux = @allzz(oxst) (4.79)

2 2
SC(|f||L2(Q><51)+// fUA+||h||L2(r—)>~
QxSt
Hence, we have

1= P usllgrey + & s By < O (I Baaesn + [ i+ Wil ). 450)
X

A simple application of Cauchy’s inequality leads to

1 2 2
//Q o fux < ca [ Z20xs1) + Ce? luallzz(oxst) - (4.81)
X
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Taking C' sufficiently small, we can divide (4.80) by €2 to obtain

1 2 2 1 2 1 2
P (1= P)[UA]HH(H) + ||U/\||L2(st2) < 0(64 ||f||L2(Q><52) + 2 ||hL2(F)>' (4.82)

Since above estimate does not depend on ), it gives a uniform estimate for the penalized neutron transport
equation (4.55). Thus, we may take weak limit uyx — u in L?(Q x S') as A — 0 up to a subsequence. By
weak lower semi-continuity, we have u also satisfies the estimate (4.82). Hence, in the weak formulation
(4.57), we can take A — 0 to deduce that u satisfies equation (4.1). Also u) — u satisfies the equation

€W - Vy(uyx —u)+ (uy —u) — (@ —u) = —Auy in €, (4.83)
(ux — u)(Zo, @) = Plur —u|() for To € N and @ -7 < 0. '
By a similar argument as above, we can achieve
A
lux = ullZ2 sy < C<64 leallZz (s2) ) (4.84)

When A — 0, the right-hand side approaches zero, which implies the convergence is actually in the strong
sense. The uniqueness easily follows from the energy estimates.
|

4.3. L*° Estimate - First Round. In this subsection, we prove the L> estimate. We consider the char-
acteristics that reflect several times on the boundary.

Definition 4.5. (Stochastic Cycle) For fized point (t,T,0) with (Z,%) ¢ I'°, let (to, To,wWo) = (0, T, ). For
W41 such that W41 - V(Tp41) > 0, define the (k + 1)-component of the back-time cycle as

(tha1s Trg1, Wig1) = (b + to (D, W), To (T, W), Wi 1) (4.85)
where
ty(Z, W) = inf{t > 0: & — etd ¢ Q} (4.86)
2p(Z, W) = T — ety(Z, W)W ¢ Q (4.87)
Set
Xa(sit,#,0) = > Ly, <scty (fk — ety — s)wk> (4.88)
k
Wer(s; 6, %,0) = Y Ly, <ot Wi (4.89)
k

Define g1 = {1 € S' 10 - F(Fy11) > 0}, and let the iterated integral for k > 2 be defined as

k=1
[ e[ (] ) e "
IRz 1y j=1 1 fE—1

where do; = (F(Z;) - W)dw is a probability measure.

Lemma 4.6. For Ty > 0 sufficiently large, there exists constants Cq,Co > 0 independent of Ty, such that
for k=T,

k—1 1 CoTy*
/ o1 1tk(75755,11771317~--,IUk71)<To H daj < <2) (4'91)

j=1 K j=1
Proof. See [3, Lemma 4.1]. O
Theorem 4.7. Assume f(Z,w) € L>®(Q x 8*) and h(xg, @) € L= ~). Then the solution u(Z,w) to the
transport equation (4.1) satisfies

1 1
[ull oo x5y < C(E) (63 £l z2xs) + 3 17l 2=y + [1f1 e (axst) ||h|Loo(r)>~
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Proof. We divide the proof into several steps:

Step 1: Mild formulation.
We rewrite the equation (4.1) along the characteristics as

u(f, U7) = h(f— et1u7, U#))eitl + P[U](f— Etllf), 1,17)€7t1 (492)
t1 t1
* / f(f_ 6(tl — 51)16, w)ei(tlisl)dsl + / ﬂ(f— €(t1 — sl)w)e*(“*“)dsl.
0 0

Note that here P[u] is an integral over py at &1, using stochastic cycle, we may rewrite it again along the
characteristics to Zs. This process can continue to arbitrary Zy. Then we get

k—1 l k—1 l
(@, W) =e "H+ Y (/ e G [ doj> +) (/ e Plu) (F, Wk-1) [ | daj) (4.93)
=1 M= j=1 =1 M=

j=1
=T+ II+1III.
where
H = h(Z — et1W, W) (4.94)
t1 tl
+ f(f* E(tl - sl)u_i, u_)’)esldsl + / ’Z_L((Z — E(tl — sl)w')esldsl,
0 0
G= h(fl — €ty 1171) (4.95)
1 t
+ (& — e(tigr — S141) Wy, Wy )e™ + dsiqq +/ w(@) — e(tig1 — Si41)Wp)e* 1 dsq1.
0 0

We need to estimate each term on the right-hand side of (4.93).

Step 2: Estimate of mild formulation.
We first consider I11. We may decompose it as

I1] = Z |(Zg, W1 )e "t Hdcrj (4.96)

] 1
k-1
= Z/ Ly, <1, Plu](Zg, W1 )e~ 1+ Hd%
=1 /1=
k-1
+ Z/ Loy >, Pl (Zy, W1 )e ™"+ Hdo’g,
=1 /15—
=11 + 111,
where Ty > 0 is defined as in Lemma 4.6. Then we take k = ClT05/4. By Lemma 4.6, we deduce
1 Tyt
11 <0(5) Mol (1.97)
Also, we may directly estimate
[I1L| < Ce™™ [Juf poe sty - (4.98)

Then taking Tj sufficiently large, we know
[II] <6 [[ull oo (x5t 5 (4.99)

for § > 0 small. On the other hand, we may directly estimate the terms in I and II related to h and f,
which we denote as I1 and Il;. For fixed T, it is easy to see

(| + [T < ([ fll o axsty + 1l oo -y - (4.100)

Step 3: Estimate of % term.
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The most troubling terms are related to @. Here, we use the trick as in [3] and [18]. Collecting the results
in (4.99) and (4.100), we obtain

ty
lu] <A+ / (% — e(ty — s1)w)e” B3 ds, (4.101)
0
k—1 t l
+[> (/ . </0 a(Zy — e(tipr — Sl+1)wl)e(tl“sl“)dslﬂ) H dgj) 7
=1 j=1 j=1
= A+ I+ 115,
where
A= [[fllLo@xsry + 17l oo o=y + 0 lull oo (@xs1) - (4.102)

By definition, we know
2| =

t1
/ (/ U;(f— 6(t1 o 81)’(17’ U_jsl)dw&)e_(tl_sl)dsl
0 St

where @y, € S! is a dummy variable. Then we can utilize the mild formulation (4.93) to rewrite u(Z —
€(t1 — s1)W, Ws, ) along the characteristics. We denote the stochastic cycle as (t},, &, ;) correspondingly
and (t, 2y, W) = (0,7 — €(t; — $1)W, Ws, ). Then

ty
/ ( Adwsl>e(“sl)dsl
0 St

t t] .,
/ (/ / w(7 — e(t] s/l)u')'sl)e(tlSl)dslldu')'sl)e(tlSl)dsl
0 stJo

th k—1 t;/ 4
Ty — () oy — shoq )y e~ =) ds,) dojdw
0 s 0 l U+1 U+1)Wi I'+1 J s1

l/
=171l ji=1
ei(tlisl)dsl

, (4.103)

L) < (4.104)

+

+

)

= |Ig1| + |L22] + |I23] -
It is obvious that

T2, <A (4.105)

t1
/ </ Adwsl>e(t151)dsl
0 St

Hf||Loo(Q><31) + ||h||L°°(F—) +4 Hu||L°°(Q><Sl) '

IN

Then by definition, we know

tl t;‘ ’ ’
|12,2| = |/ (/ / ’l_l,(f/ _ e(tll — Sll)wsl)e(tlSl)dsadwsl)e(tlsl)dsl
0 St Jo

We may decompose this integral

1 t tq t1
/ / / = / / / +/ / / =101+ 1229. (4.107)
o JstJo o JstJy—si<s Jo JstJu—si>s

For I 51, since the integral is defined in the small domain [¢] — §,¢]], it is easy to see

. (4.106)

[L2,2,1] < 6 [[ull o (oxs1) - (4.108)
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For I5 5 9, applying Hélder’s inequality, we get

/ / / (@ — e(t) — $)iws, Je~ Ve (=50 ¢! dai sy
St Jt—s1>6
tl ’ ’ 1/2
(/ / / e—(tl—Sl)e—(t1—81)d8/1dwsldsl>
0 St Jt)—s)>68
t 2 / ’ 1/2
([T L] temmmenlil @ - et = s )e b 0asa, as
o JstJy_s>s

" 1/2
—12 / I\ - (=" —(t— P
= (/ / / Lo —c(ty sy, €0 [l (" — ety — sy)ds, Je (=5 =t Sl)dsldwsldsl) .
0 St Jtj—s)>6

Since w,, € S, we can express it as (cos ¢,sin¢). Then considering & — e(t} — s} )w,, € €, we apply the
substitution (¢, s}) — (y1,y2) as

A

[I2,2,2] < (4.109)

IN

F=7 — et — 8, (4.110)

whose Jacobian is

Oy, y2)| e(ty —sy)sing  cosg || 20y N 25 4111
/ - (o . _6(1_31)—6' ( )
(¢, 1) e(t) —si)cos¢ sing
Therefore, we know
[12,2,2 (@xS1) - (4.112)
Therefore, we have shown
1
22| < 6 lull poe (oxs1) + 5. ]l L2 (oxsty - (4.113)
After a similar but tedious computation, we can show
1
23] < 5Hu||Loo(stl) + 5te ||U||L2(Qx31)- (4.114)
Hence, we have proved
1
[I2] <6 [[ull poo (o 51) + o lall 2xsty + 1 Fll oo (@xsry T 1l oo -y - (4.115)
In a similar fashion, we can show
1
HIa| < 6 l|ull pee (oxsry + 5Te Il 2 x5ty + 1 Fll Lo (@xsry T 1Bl o -y - (4.116)
Step 4: Synthesis.
Summarizing all above, we have shown
1
lul <6 lJull poo (o ns1) + 5Te lall2oxsry + 1l oo xsty + 1Bl o (o) (4.117)

1
< 6 Jull g (axsy + 1o Py lull p2(axsty + 1l Lo (@xsry T 11l oo -y -

Since (#,w) are arbitrary and § is small, taking supremum on both sides and applying Lemma 4.4, we have
1
[ull oo (axs1y < C(R) ( lull 2ty + ||f||L°°(Q><Sl) + ||hLoo(r)> (4.118)

<@ )( £l 20xs) + 2 Hh||L2 +||f||Loo(stl>+||h||Loo<r)>~

This is the desired result. O
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4.4. L*™ Estimate. In this subsection, we try to improve previous estimates. In the following, we assume
m > 2 is an integer and let o(1) denote a sufficiently small constant.

Theorem 4.8. Assume f(Z,w) € L=(Q x S8') and h(z¢, @) € L=(I'~). Then u(ZF, @) satisfies

1 _ 1 _
T (1= P)[U]HL?(H) + Hu||L2m(Q><Sl) + - ||U - u||L2(Q><Sl) (4.119)
1 1
< (oW lullymr + 5 1ty 5 161 s gy + + Wiy + Wil )

Proof. We divide the proof into several steps:

Step 1: Kernel Estimate.
Applying Green’s identity to the equation (4.1). Then for any ¢ € L?(Q x S!) satisfying - V¢ € L?(2x S?)
and ¢ € L*(T"), we have

Our goal is to choose a particular test function ¢. We first construct an auxﬂlary function ¢. Naturally
u € L®(Q x S!) implies @ € L2™(Q) which further leads to (7)2™~! € L7=-1(Q). We define ¢(Z) on Q
satisfying

AC = (a)?m ! —glu/(u)%"_ldf in Q,
Q

4.121)
P (
—g = 0 on 99.
ov
In the bounded domain €2, based on the standard elliptic estimate, we have a unique ( satisfying
m— 2m—1
1612 ) < C @™, sz g = € Nl oy (4.122)
and
/ ¢(#)d7 = 0. (4.123)
Q
We plug the test function
¢ =—w-V,(C (4.124)
into the weak formulation (4.120) and estimate each term there. By Sobolev embedding theorem, we have
2m—1
16l 22 ) < ClClan (@) < CIICIIW iy g S O llzzn @), (4.125)
2m—1
191, s2 gy < C Il n. 52 g < C Nl - (1126)

Easily we can decompose

[ @V =[] @ vom-e[[ @ Vom-m. @

We estimate the two term on the right-hand side of (4.127) separately. By (4.121) and (4.124), we have

_e//QXSI(u? Vep)u = 6//Q><51 u(w1(w1811C + w2012¢) + wa(w1012¢ + w2822§)> (4.128)

= 6//9 o u(w%anC + w§822§>
= 2€7T/Qﬂ(311§ + 022()

—12m
= 6||U||L2m(Q)-



54 YAN GUO AND LEI WU

In the second equality, above cross terms vanish due to the symmetry of the integral over S'. On the other
hand, for the second term in (4.127), Holder’s inequality and the elliptic estimate imply

- 0-Vad)(u—u) < Cellu—ull p2mqys Vool j2m, 4.129
[ @ Vabu =) < Cellull s Vol g o (4.129)

< Ce|lu— 1_/,||L2m(Q><51) ||C||W2

Ty Q)
_ —12m—1
< Cellu =l pomgysny 1l L2m o) -

Based on (4.122), (4.125), (4.126), Sobolev embedding theorem and the trace theorem, we have

(4.130)
2m—1
||VQE<HL7""ll () <C vacnwzm ey (ry — <C Hv C”W S e Q) — <C ”C”W Iy Q) — <C ||u||L2m(Q
We may also decompose W = (W - V)V + W, to obtain
e/ updy = e/ u(w - Vz¢)dy (4.131)
r r

= e/ w(v - VyQ) (W - V)dy + e/ u(Wy - Vi¢)dy
r r

= e/ w(wWy - V. ¢)dy
r

Based on (4.122), (4.126) and Holder’s inequality, we have
e/ updy = e/ u(wy - VzQ)dy (4.132)
r r
—e [ Pl(@L - oOdy e [ (=Pl VaOdy e [ b VaOdy
r r

= 6/ (1 - P)[U]('IBJ_ : Vzg)d’y + 6/ h(u_jJ_ : V:L’C)d’y
T+

< eVl gy (1L = P Uy + bl )

2m—1
< CellalZit e (||<1 Pl + WAl )

Hence, we know

2m—1

e [[usdy < Celalzonss (10 =Pl + olle-y ) (4.133)

Also, we have

_ _ 2m—1
//Q Sl(“ —u)p<C ||¢||L2(stl) llu — u||L2(Q><Sl) <C ||u||L2m Q) [ U||L2(stl)a (4.134)
X
2m—1
] 16 Clolinsn Ilisansy < C Nl Il (4.135)
X

Collecting terms in (4.128), (4.129), (4.133), (4.134) and (4.135), we obtain
ellallLom@usry < C(E lu = tl| p2mons1) + U= Ul L2 onsty + 1 fllL2(0xst) (4.136)
+ el =Pl + €lbllme-y )

Step 2: Energy Estimate.
In the weak formulation (4.120), we may take the test function ¢ = u to get the energy estimate

3¢ [Pt =l s = [ f (4.137)
OxS?t
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Hence, by (4.77), this naturally implies
2 2 2 2
el = P)llFaqeey + 4= sy < o0 Nilaaesny + [[ Fut Il (4138)
X 1
On the other hand, we can square on both sides of (4.136) to obtain
2 11 112 2 2 2 2
€l z2m@xsty < C(ﬁ [u = Ul z2m@xsry + 1w =l 2o sty + 1l 22(0xs1) (4.139)
2
1= Pl + € Il )

Multiplying a sufficiently small constant on both sides of (4.139) and adding it to (4.138) to absorb |ju — ﬂHi?(QxSl)

and €2 Hﬂ||2L2(Q><81)’ we deduce

2 —2 —112
el =P)[ulllz2r+) + ¢ @l 2m x5ty + 1w = Al L2 sty (4.140)

2
Lm(r)>~

pnesy < 10 =Pl gy 10 = Pl Z s (4.141)
1 2 m—2 m=2
(o 10 = Pl ey ) (57 N - Pl 2 )

€E m

< c(ez = @2 sty + € 1L = P el ey

2 2
WM resry + [ Fut Wy + €
QxS?t
By interpolation estimate and Young’s inequality, we have

11 = P)[ul|

m m

(1= Pl T, )

L (1 = P)[ulll 2y + 0™ (1= Pl e sy

< C( o (1= P ]Ilfz(m> +0<1)<;:,;;

IN

IN

1
) (1 - P)[U]Hm(m) +o(1)e ||“||Loo(stl) .

Similarly, we have

mo1
UHLZ(QXSI) lu—all 2 s (4.142)

1 m—1 _ m—1
= < Y 1 ||’lL U||£L2(Q><S1)) <€ m?2 ||’U,U||L$(QX51))
m m—1 et
( ||u u||L2(QX51)> +0(1) (6 m? ||u_u||L$(Q><Sl)>
C

1 _
S = [[u = @l 2oy Fo(L)e™ [lu— Ul poc (o s1y -

lu =l p2maxst)

—_m__
m—1

I /\

We need this extra em for the convenience of L estimate. Then we know for sufficiently small e,
2 2 2
(1 =Pl fmrry < O 5 (1= PYllZ ey + 0(1)eX = [full7 o o (4.143)
2 2 2
< o(De[|(1 = P)[ulllz2r+) + (1) [l o ey -

Similarly, we have

2+ 2

m

2
ull? sty (4.144)

2
u||L°°(Q><$1)'

_2 _2m=—2 —n2
€ [u—=ullz2m@xsry < T lu = @l| 2 s1) +0(1)€

2
<o) [lu = ull 2 (gusr) +0(1)€ 2
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In (4.42), we can absorb [[u — | f2(gxs1) and €||(1 — P)[u]”iz(ﬁ) into left-hand side to obtain
2 2 2
el = P)[ull 720+ + € @l 72m@xsr) + v = Al 72 @xs1 (4.145)

2 2 2 2 2
S C(O(l)€2+m UHLOC(QXSI) + Hf”LQ(stl) + //Q s f’ll, + ||h||L2(F_) + 62 ||h‘ L’"(F‘))'
X 1

We can decompose
//Q><81 fu= //stl fﬂJr//stl flu—a). (4.146)

Holder’s inequality and Cauchy’s inequality imply

_ _ C 2 —112
S T8 e g Vs < 5 11 e g+ 006 Nl sy (4147

and
2
I 5= < CUf sy + o) =l sy (4.148)
OxS?t
Hence, absorbing €2 ||ﬂ||L2m(stl) and |lu — ﬂ||ig(QX$1) into left-hand side of (4.145), we get
2 _2 _2

el = PY 2 s + € Nl am st + ||u — a1l s (4.149)

2 9 2 2 2

S 0(0(1)62-"_7” Hu||Loo(F+) + Hf”LZ(QXSl ||f||L2"L T stl) + ||hHL2(I‘—) + 62 ||h| an(I‘)>7

which implies

1 _ 1 _
10 = P)lullaqe, + ||u||L2m<M> + ==l s (4.150)

1
< (oW lullymr + 5 1 lusaesny 5 161 st gy + + Wy + Wil )

4.5. L*>* Estimate - Second Round.
Theorem 4.9. Assume f(%, %) € L®(Q x St) and h(xo, @) € L>®(T~). Then for the steady neutron
transport equation (4.1), there exists a unique solution u(Z,w) € L>(Q x S8*) satisfying
1 1
[ull poe (2 51y < C<M £l 2xsty + Ty 11, g2 @axsty T [l xsm (4.151)

1 1
+ e Wiy + 2 Wlmeny + Ml )-

Proof. Following the argument in the proof of Theorem 4.7, by double Duhamel’s principle along the char-
acteristics, the key step is to utilize L?™ estimates as

/ / / u(Z — e(ty — s))w,s )e_(tll_s/l)e_(tl_Sl)dslldu_)'sld81
St Jt)—si>

IN

|12,2,2] (4.152)

2m—1

2m
(/ / / ti=s1)g=(ti=s1 dsldwsldsl)
St t’—s’>5
([ L] teismen ™ @ = - sy o5, s )
th—si>

/ /1/ 1z ety —st)w., e a*™ (7 — e(t) — )b, e~ (=st)e=(ti=n dsldwsldsl)
St Jt)—s]>6

Then using the same substitution (¢, s}) — (y1,y2) as
J=& — elth — ), (4.153)

IA

|
3=
3

5
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whose Jacobian is larger than €26, we know

1 _
[I22,2] < o ]l p2m . s1y - (4.154)
Therefore, we can show
1

el sty < C(e,; il o sty + 1l ety + ||g||Lm(F_)). (4.155)

Considering Theorem 4.8, we obtain

1 1

[ell oo (ax sty < C<61+% 11l 2 xs1y + ere. I 22ms sy T Il sy (4.156)

1 1
+ e Wil + 2 Wllmeny + 1ilimeny ) 000 Bl

Absorbing [|u[| .« sy into the left-hand side, we obtain

1 1
[ull oo (axs1) < C(elﬁl [l 2xsry + oL 11l p2m @xsy T 11l oe 1) (4.157)

1 1
# g Wllageny + — Wllmgey + Wil )

5. DIFFUSIVE LIMIT

Theorem 5.1. Assume g(Zo,w) € C2(I'™) satisfying (1.5). Then for the steady neutron transport equation
(1.1), there exists a unique solution u®(Z,w) € L>(Q x S8Y) satisfying (1.4). Moreover, for any 0 < § << 1,
the solution obeys the estimate

lu€ = Uoll oo x5y < C(6, D)€, (5.1)
where Uy is defined in (2.83).
Proof. Based on Theorem 4.9, we know there exists a unique u¢(%, @) € L>(Q x S1), so we focus on the

diffusive limit. We can divide the proof into several steps:

Step 1: Remainder definitions.
We define the remainder as

2 1
R:ue—ZekUk—Zek%g:us—Q—Q, (5.2)
k=0 k=0
where
Q = Up + €Uy + €U, (5.3)
2 = Uy + €U’ (5.4)

Noting the equation (2.60) is equivalent to the equation (1.1), we write £ to denote the neutron transport
operator as follows:

Llul =eW-Vyu+u—1a (5.5)
—sin(b@—;cosﬁ @—i—@ +u—u
N oy R.—en 0¢p Ot '

Step 2: Estimates of £[Q].
The interior contribution can be estimated as

LQ) = el -V,Q +Q — Q=T -V, Us. (5.6)
Based on classical elliptic estimates, we have
H'C[Q]”LOC(QXSl) S ||63U_j : VmU2HL°O(Q><Sl) S C€3 ||va:U2||Loo(Q><51) S C63~ (57)
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This implies

||‘C[Q]||L2(Q><31) < 063, (5.8)

3
ILIQI  2nr 51y < C€ (5.9)
JE1Q] sty < O (5.10)

Step 3: Estimates of LZ2.
Since %5 = 0, we only need to estimate %, = (f{ — f{ 1) -0 = ¥tpo where f{(n, T, $) solves the e-Milne
problem and ¥ = ff — ff ;. The boundary layer contribution can be estimated as

cletrt) = sin ™) - o cosg(AH) 4 2D 4 et - (e (5.11)
7/ v v
= (smd)(lpoa 881/;]()) —Rwiee co ¢<88¢ +3 >+1/)07/ Yo >
v v _ v
e AT O Ty

81/)0 woﬁ oY
( qﬁ— Rn_encosqﬁ&_).

Since 1o = 1 when 1 < Ryin/(4€!/2), the effective region of 9,1 is 7 > Ruin/(4€/?) which is further and
further from the origin as e — 0. By Theorem 3.6, the first term in (5.11) can be bounded as

?ﬁo

_ Ko

< Cee” /7 < Ce. (5.12)

Lo (QxS1)
Then we turn to the crucial estimate in the second term of (5.11), by Theorem 3.25, we have

H thoe
—€

oS p—— %
R, —en or

o < Ce? In(e)[®. (5.13)

L (QxSt)

< Cé?

L>(QxSt)

Also, the exponential decay of %—7/ by Theorem 3.25 and the rescaling 7 = p/e implies
T

H—e Yoe cos o7 <é? o (5.14)
Ry —en or L2(QxSY) or L2(QxS1)
5 1/2
/ / (1—p H (1, 7) dudr
—T Lo
1/e 1/2
<e 3(/ / (1-en) H (n,7) dndT>
1/e 1/2
<c (/ / o 2K0n |1 ( )|16dnd7>
< Ce? In(e)|®.
Similarly, we have
Yoe 3— L 8
—€ —_— < Ce’ 2m |In(e)|” . 5.15
| ooy e S (@) (5.15)
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In total, we have

IL[2)]| 2 xsry < C€? [In(e)]®, (5.16)
IEL2N s gy < € MO (5.17)
IL[D)] 1 @xsr) < Ce* (o). (5.18)

Step 4: Diffusive Limit.
In summary, since L[u¢] = 0, collecting estimates in Step 2 and Step 3, we can prove

I£[RIpzoxsn) < O n(e)l®, (5.19)
LRIz, o) < O (), (5.20)
ILIR e sty < C€ n(e)[® (5.21)

Also, based on our construction, it is easy to see
R —P[R] = —*(w@ - V,Uy — P[& - V.U1)), (5.22)

which further implies

IR = PRl 2 < C€, (5:23)
IR =PRIl -y < C€, (5.24)
IR = PR]| oo r-y < C (5.25)

Hence, the remainder R satisfies the equation

{ e -VoR+R—R = L[R] for e, (5.26)

R—P[R] = R-P|[R] for W-7<0 and %, € ON.

It is easy to verify R satisfies the normalization condition (4.4) and the data satisfies the compatibility
condition (4.5). By Theorem 4.9, we have for m sufficiently large,

1 1
IRl Lo (axs1) < C<61+1 ILIR] L2 (x sty + ey IL[R]]| 2

HLQT”’Zl(QXSl) + ||’C[RH|LOC(Q><SI) (527)

1 1
+ elj IR — P[R]Hm(r—) + ej IR — P[R]HLm(F—) +[|R— P[RHLOC(F—))a

1 5 1 __1
< C’(eH;L (ez |1n(e)|8) + €2+71n<53 m ln(e)|8> + (62 |1n(e)|8)

b (@) (@) <e2>>

™ €m

< Ce' =z |In(e)|® < Ce' 0 (5.28)

Note that the constant C' might depend on m and thus depend on §. Since it is easy to see

2 1
S U+ Fuy < Ce, (5.29)
k=1 k=0 Lo (Q2xS1)
our result naturally follows. This completes the proof of main theorem. O
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