ASYMPTOTIC ANALYSIS OF TRANSPORT EQUATION IN ANNULUS

LEI WU, XIONGFENG YANG, AND YAN GUO

ABSTRACT. We consider the diffusive limit of a steady neutron transport equation with one-speed velocity
in a two-dimensional annulus. A classical theorem in [1] states that the solution can be approximated in L>°
by the leading order interior solution plus the corresponding Knudsen layers in the diffusive limit. In this
paper, we construct a counterexample of this result via a different boundary layer expansion with geometric
correction.
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1. INTRODUCTION AND NOTATION

1.1. Problem Formulation. We consider a homogeneous isotropic steady neutron transport equation with
one-speed velocity ¥ = {0 = (wy,ws) : @ € S'} in a two-dimensional annulus Q = {Z = (z1,22) : 0 <
R_ <|Z| < Ry < oo} as

ew-Vyut+ut—a¢ = 0 in (1)
u(Zo, W) = gu(io,w) for @-7 <0 and |Z| = Rx, '
where
1
() = o /S u(F, w)da (1.2)

and 7 is the outward normal vector on 92, 0 < ¢ << 1 is the Knudsen number. The in-flow boundary
condition is given on the two circles Ry. In this paper, we will study the diffusive limit of the solution u¢ to
(1.1) as e = 0.

In the physical space, we consider the two-dimensional annulus Q@ = {Z = (z1,22) : 0 < R_ < |7] <
R, < oo}. Its boundary 99 includes the inner boundary and outer boundary, that is, 9Q = 9Q_ U 094
where

0. ={&: |7 =R_}, (1.3)
00, = {7 |7 = Ry} (1.4)

Based on the flow direction, we can divide the boundary in phase space I' = {(Z,w) : & € 09} into the
in-flow boundary I' ", the out-flow boundary I'", and the grazing set I'° as

I~ ={(Z,0): T€d, & i <0}, (1.5)
I't = {(Z,w@): T€dN, & i >0}, (1.6)
I = {(#,w): ¥€dQ, @ i=0}. (1.7)

SoI' =I't UI'" UT"Y. For the in-flow boundary condition, the boundary value is only given on I'~.
A classical result in [1] states that the solution u€ of (1.1) satisfies

luf = Uy — Zs0 — %-oll . = O(c) (L8)

where %4  is the Knudsen layer to the Milne problem (2.28) while Uy is the corresponding interior solution
to the Laplace equation (2.29). The goal of this paper is to construct a counterexample to such a result in
an annulus.

1.2. Background and Idea. The study of neutron transport equation can date back to 1960s. Since then,
this type of problems have been extensively studied in many different settings: steady or unsteady, linear
or nonlinear, strong solution or weak solution, etc, (see [5], [4], [6], [7], [8], [9], [10], [11], [12]). Among all
these variations, one of the simplest but most important models - steady neutron transport equation with
one-speed velocity in bounded domains, where the boundary layer effect shows up, has long been believed
to be satisfactorily solved since Bensoussan, Lions and Papanicolaou published their remarkable paper [1] in
1979.

The basic idea in [1] is to consider the boundary layer fo(n, ) satisfies that in the domain (n,¢) €
[0,00) X [—m, ),

sinqS% +fo—fo = So(n, o),

n
fo(0.6) = ho(¢) for sing >0, (1.9)
limn—>oo f0(777 ¢) = f0,0C’

where 1 denotes the normal variable and ¢ the velocity variable. This is the well-known Milne problem and
fo can be shown to be well-posedness and decays exponentially fast to fo . in L.

However, in [13] the authors pointed out that the construction of boundary layer in [1] based on Milne
problem will break down due to singularity near the grazing set. This brings our attention back to the starting
point and we have to reexamine all of the related results. Also, in [13], a new approach was introduced and
shown to be effective when the domain is a two-dimensional plate.
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The central idea of constructing boundary layer is to consider so-called e-Milne problem with geometric
correction. For annulus, the boundary layer f (7, ¢) near outer circle satisfies

singb%—%cosqﬁ%-&-ﬂr—ﬂ = S¢(n,9),
+(0, = hyt or sing > 0, '
hmn%oo f+(777¢) = f+»°°’

Simply speaking, the boundary layer of outer circle is similar to the boundary in a plate. This problem
has been extensively studied in [13, Section 4] and we know the solution f, is well-posedness and decays
exponentially fast to fi .

However, for inner circle, we must consider the boundary f_(n, ¢) satisfying

sind)a— + ;cosqﬁ% + fo - f— = S_(n,9),

0 R_+ 0¢
! o f-(0,9¢) = h_(¢) for sing >0, (1.11)
limy oo f-(0,0) = f- 0

The proof in [13] relies on the analysis along the characteristics. However, this changed sign of the second
term in (1.11) will greatly affect the shape of characteristics, which is shown by Figures 1, 2 and 3.

FIGURE 1. Characteristics of Flat
Milne Problem for fj

FI1GURE 2. Characteristics of e-Milne F1GURE 3. Characteristics of e-Milne
Problem in Convex Domain for f Problem in Non-Convex Domain for
f-

This adds new difficulties to our estimate and we have to resort to different formulation to bound f_.

1.3. Main Results. We will use the transformation in (2.13) and (2.41). That is, we define = (r cos 8, r sin 6)
with R_ <7 < Ry and —7 < 0 < 7 while @ = (—sin&, cos ) with —7 < 6 < 7. We also define the ¢ = 0+&.
The boundary value is given by g+ (0, ¢) = g+ (%o, w). For convenience, we denote the boundary condition
as g+ (0, ). Then, the diffusive limit is stated as follows:

Theorem 1.1. Assume g (To, @) € C3(I'"). Then there exists a unique solution u®(Z,w) € L>(Q x S')
for the steady neutron transport equation (1.1). Furthermore, it satisfies

|ue = Us = %o — % o], =OCe) (1.12)
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where the interior solution Ug and boundary layer £ o are defined in (2.54) and (2.53). In particular, if
9+(4,0)) =0 and g_(0,¢) = cos ¢, then there exists a positive constant C > 0 such that

|u® —Uo— 0 — %ol e >C >0 (1.13)
when € is sufficiently small, where Uy and %+ o are defined in (2.29) and (2.28).

1.4. Notation and Structure. Throughout this paper, C' > 0 denotes a constant only depends on the
parameter 2, but does not depend on the given data. It is referred as universal and can is different from
one line to another. When we write C(z), it means a certain positive constant depending on the quantity z.

Our paper is organized as follows: In Section 2, we first present the asymptotic analysis of both the
interior solution and boundary layer; In Section 3, we give a complete analysis of the e-Milne problem with
geometric correction; In Section 4, we establish the L°° remainder estimate; finally, in Section 5, we prove
the diffusive limit of the solution, i.e. Theorem 1.1.

2. ASYMPTOTIC ANALYSIS

2.1. Interior Expansion. We define the interior expansion as follows:
o
U(Z, @) ~ Y FUL(F, ). (2.1)
k=0

Plugging (2.1) into the equation (1.1) and comparing the order of ¢, the functions Uy, (k= 0,1,2--- ,) should
satisfy

Uo— Uy =0, (2.2)
Up— U= — -V, Uy, :

Uy — Uy = —0-V,U, (2.4)
Up —Up = — - VoUp_1. (2.5)

The following analysis reveals the equation satisfied by Uy:
The equalities (2.2) and (2.3) could be rewritten as

Uy =U, —@-V,Uy. (2.6)
Thus, from (2.6) into (2.4), we get
Uy — Uy = =0 - Vo (U, — 0 - VoUo) = =0 - V, Uy + |02 A Up 4 2wiw20,, 2, Uo. (2.7)
Integrating (2.7) over @ € S, we achieve the final form
ATy =0, (2.8)

which further implies Uy(Z, W) satisfies the equation

2.9
{ AUy = 0 (2:9)

Similarly, we can derive Uy (Z, @) for k > 1 satisfies

(2.10)

Uy = Up—@-VyUg
AUy = 0
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2.2. Milne Expansion. In general, the value of (2.1) on the boundary is different from the in-flow boundary
condition in (1.1). In order to match the boundary condition, we need to give the boundary layer expansion.
Here we firstly recall the idea of this expansion in [1, pp.136] in the following several substitutions:

Substitution 1: We consider the substitution into quasi-polar coordinates (xi1,x2, W) — (pi,8,w) with
(ps,0,) € [0, Ry — R_] x [—m,m) x St defined as

1 = (RyFpx)cost,
o = (R sin 6,
2 (R+ F pt) (2.11)
wy = W,
wy = W2.

Here pi denotes the distance to the boundary 921 and 6 is the space angular variable. In these new
variables, we also denote the solution as u®(u4,6,w). Then, the equation (1.1) can be rewritten as
Ou¢  e(wysin® — ws cos ) Oue 1
:Fe(w10050+w2sin9) v ( ! 2 ) Y +uf — — utdw = 0,
8/% Ri F pu+ a0 2T St
u¢(0,0, w1, ws) = g+ (0, w1, wz) for =+ (w;ycosf+wysinh) < 0.

(2.12)

Substitution 2: We further define the stretched variable 71 by making the scaling transform for u¢(u4, 6, wq, we) —
u(n+, 0, w1, wa) with (n4, 0, wi,ws) € [0,(Ry — R_)/e] x [-m,7) x S as

Nt = px/e
0 = 6,
(2.13)
w1 = 1w,
w2 = W2,
which implies
€ 1 €
Out _ 10w (2.14)
Op+  €0nt
Then equation (1.1) is transformed into
ous e(w1 sin € — ws cos 0) ous
0 in 0 — € — — dw =
:F(w1 cos 0 + wo sin )877i Ry T ens 20 +u o Jo udw = 0, (2.15)

(0,0, w1, we) = g+ (0, w1, wz) for =+ (wycosb + wysinh) < 0.

Substitution 3: Define the velocity substitution for u€(ny, 0, wy, we) — u(ny, 0, &) with (ny,0,£) € [0, (R4 —
R_)/e] x [-m,m) X [-m,m) as

N+t = "N+,
6 = 0,
, (2.16)
w; = —siné,
wy = —cosé.
Here ¢ denotes the velocity angular variable. We have the succincet form for (1.1) as
. out  ecos(0 + &) Ou® 1 [
+ sin(6 - £ — — ‘dE=0
0+ G T R v o8 Y T ap ) =0 (2.17)
ut(0,0,6) = g4 (6,€) for Zsin(9+€) > 0.
We now define the Milne expansion of boundary layer as follows:
Uie(ns,0,0) ~ > Ut 1(n+,0,0), (2.18)

k=0
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where %4 i, can be determined by comparing the order of e via plugging (2.18) into the equation (2.17).
Thus, in a neighborhood of the boundary, we have

o _
tsin(0 4+ &) =22 4 Uy o — Wi g =0, (2.19)
on+
. OU+ 1 — cos( + &) 0%+ o
+ 0 : U1 —Uyp 1 = . 2.2
sin(f + &) Ins + U 1 ) Ryt en. 00 (2.20)
. OUx 3, _ COS(Q + f) OU+ 11
+ 0 : Uy 1o — U . = : 2.21
sin(0+¢) O+ + Pk “F T RiFenr 00 (221)
where
_ 1 /7
Utk (Nx,0) = 5= U (N4, 0, §)dE. (2.22)

27

—T

We hope that the solution is formulated from the interior solution and the boundary layer solution. So it
should satisfy the boundary condition of (1.1). The boundary condition expansion derives to

Uo + Ut = g+, (2.23)
U+ %1 =0, (2.24)
Up + %:I:,k =0. (2.25)

The construction of Uy, and %4 j, in [1] can be summarized as follows:

Step 1: Construction of %4 o and Uy.
To deal with the sigularity according to r, we define the cut-off function ¢ and 1 as

1 0<pu<1/2(Ry —R-),

Y(p) = B (2.26)
0 3/4(Ry —R_)<p<oo.
1 0<pu<1/4Ry—R-),

Yo(p) = " (2.27)
0 3/8(Ry—R_)<p<oo

Then the zeroth order boundary layer solution is defined as
Uso(nx,0.8) = ¢0(677ﬂ:)(fi,0(77i,97€) - fi,o(00,9)>7
. 0 z
+sin(0 + &) af;lo +fro—fro = 0, 0<ns <oo, (2.28)
f:l:,O(Oa 07 E) = g:l:(97 g) for + Sin(g + 6) > 07
hmni%oo f:l:,O(n:i:vevf) = f:l:,()(ooag)'

Assuming g+ € L*°(I'"), by Theorem 3.12, we can show there exist unique solutions fi o(n+,6,&) €
L>([0,00) x [=m, ) x [-m,7)). Hence, %y is well-defined. Then we define the zeroth order interior
solution as

U = Uy,
A0y = 0 in 9, (2.29)
UO = fi,o(oo,ﬁ) on 8Qi

Step 2: Construction of %4 1 and Uj.
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Let ¥4 = Ry (cosf,sinf) and w = (—sin&, cos&). Then, we define the first order boundary layer solution as

Ur1(nx,0,8) = to(ens) <fi,1(77i7‘97§) - fi,1(00,9)>,
. Ofs1 - Ylent) O0Usp
+ RS — - _wiens) :
sin( + &) on. + fe1— fra cos(f + ¢) Rigen 00
f:t,l(oveag) = wvaO(f:I:au_j) fOf iSIH(g—’_g) > 0;
limni%oo f:t,l(n:tvaag) = f:l:,l(oove)~
At the same time, we define the first order interior solution as
U1 = Ul —w- VxUOa
AU = 0 in Q,
Ul = fi71(0079) on 8Qi

Step 3: Generalization to arbitrary k.
Similar to above procedure, we can define the k" order boundary layer solution as

U0 0,6) = volens) fi,kmi?o,s)—fi,k(oo,e)),

. Of+k 5 Y(eny) OUsp—
+ 0 : - = 0 ;
sin(0 + €) o + ik — frn cos( +€)Ri e 90
fi,k‘(0707£) = - vak—l(fi’w) for :I:SIH(9+§) > Oa
hmr&—)oo f:l:,k(n:l:797£) = f:t,k(oove)'
Define the k** order interior solution as
U = Up—w-VoUp_1,
AU, = 0 in Q,
Ug = frr(oo,0) on 9Q.

Combing the above discussion, we are able to prove the following result:

(2.30)

(2.31)

(2.32)

(2.33)

Theorem 2.1. Assume g+ € L>®(I'™) are sufficiently smooth. Then there exits a unique solution u(Z,w) €

L (2 x SY) for the steady neutron transport equation (1.1), which satisfies
[ = Uo = W0 = %ol . = O(e).

(2.34)

Our work begins with a crucial observation that based on Remark 3.15, the existence of solution fi ;

requires the source term

Ylent) 0o

cos(6 + 5)7};& E—T

€ L*°([0,00) X [-7,m) X [—7,T)).
Since the support of ¥ (eny) depends on €, by (2.28), this in turn requires

0

55 (£200018.6.6) = Foo(00.)) € L2([0.00) x [-m.7) x [-.)

We can check that Zy = 9g(f1 0 — fi,0(00,0)) satisty

. 074 > Of+0
+sin(@+&)——+2Z+ —Z4+ = —cos(f+ ~,
(0+¢) on +—Zx (0+¢) ony
o ag:t(evg) af:l:,()(oove) .
Z4(0,0,¢) = 2 20 for +sin(6 +¢&) > 0,
limy, oo Ze(n+,0,8§) = Zi(00,0).
On the one hand, we require the source term satisfy
~cos(9+ 2E € 1[0, 00) x [-m,7) x [-7,))

on+

(2.35)

(2.36)

(2.37)

(2.38)
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to get a solution Z1 € L>®([0,00) x [—m,7) X [—m, 7)) since we assume that Jpg+ € L>®(T 7).

On the other hand, as be shown by the Appendix of [13], it holds that 9, f+ 0 ¢ L>([0,00) X [—7,7) X
[—7, 7)) for some specific boundary condition g4. Due to the intrinsic smgularlty for (2.28), the construction
in [1} breaks down.

In fact, in general geometry domain with curved boundary, we need to control the normal derivative of
the boundary layer solution for the Milne expansion. It is the main reason that we consider the following
e-Milne expansion with geometric correction.

2.3. e-Milne Expansion with Geometric Correction. Our main goal is to overcome the difficulty in
estimating

Y(ens) aq/:t,k'

cos(f + &) Ri e 00

(2.39)

We introduce one more substitution to decompose the term (2.39). Now, we give the solution expansion in
the following steps.

Substitution 1. Define the interior expansion as follows:
(%, W) ~ ZekUk (Z, D) (2.40)

where U satisfies the same equations as Uy in (2.9) and (2.10). Here, to highlight its dependence on € via
the e-Milne problem and boundary data, we add the superscript e.

Substitution 2: We make the rotation substitution for u¢(n,6,&) — u(n+, 0, ¢) with (n+,0,¢) € [0, (R4 —

R_)/e] x [-m,7) x [-7,7) as

n+ = 74+,
o = 0, (2.41)
¢ = 0+¢,

and transform the equation (1.1) into

6

€ ou®  Ou€ 1 "
- e = cde =
Ony Ri Fens COS¢< op 00 ) T 27 /,,r u'dg =0, (2.42)
u¢(0,0,¢) = g+(0,¢) for Lsing > 0.

j:sm¢

We define the e-Milne expansion with geometric correction of boundary layer as follows:

oo

UL2,0,0) ~ Y U 1 (04,0, 0), (2.43)

k=0

where % can be determined by comparing the order of € via plugging (2.43) into the equation (2.42). Thus,
in a neighborhood of the boundary, we have

+sin ¢ 2 < 620 e e —0 (2.44)

sin cos — =0, .

5771 Ry Fens 99 =070
€ QU — cos¢p  OULy
+s cos U, —Uf = ——— = 2.45
m¢ 5771 Ry Fens ¢ 99 =1 1T RiFens 00 (2.45)
8%; k € 8% _ cos ¢ 8%; E—1
+sin = — cos —|— UE L — UL, = : . 2.46
¢ O+ Ry Fens ¢ 3¢ £k T Ry Feny 00 (2.46)
where
_ 1 (7

%ie,k(ni> 6) = %ﬁ,k(ﬁb 97 ¢)d¢ (247)

27

—T
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Here the most important idea is to include the singular term
€ €
—————cos ¢
Ry F ens o
in the Milne problem. It is notable that the solution %ﬁk depends on e.
Substitution & Similar to the classical expansion, we first consider the boundary condition expansion

(2.48)

Us + Ut o = 9+, (2.49)
Ut + 5, =0, (2.50)
Uf+ U5, = 0. (2.51)

The construction of U and %S are as follows:

Step 1: Construction of % ; and Ug.
We refer to the cut-off function ¢ and g as (2.26) and (2.27), and define the force as

_e(enst)

Fy(e = 2.52
:t(ea Wi) Ry ¥ nt ’ ( )
The zeroth order boundary layer solutions is defined as
U o(01:0,) = tn(ens) ( 15.01:6.6) — f5.(.0)).
. OfL, AfLo :
+sin ¢ 57&) + Fy(e;ny)cosd 3 =+ o~ fLo=0, (2.53)
f:EI:,O(Oﬂ 0, ¢) =9+ (97 (rb) for +sing >0,
limni—ﬂ)o f;o(Tlia 97 ¢) = fi,O(ooa 9)
OFy (¢
In contrast to the classical Milne problem (2.28), the key advantage is, due to the geometry, Lﬁi) =0,

06
such that (2.53) is invariant in 6.

With the asymptotic behavior of the boundary layer solution in hand, we define the zeroth order interior
solution U§(Z) as

us = Us,
AUS = 0 in Q, (2.54)
Us = fio(c0,0) on 90,
Notice that the asymptotic state depends on €, then the interior solution depends on € too.

. OUs o
Step 2: Estimates of 89’ .

By Theorem 3.13, we can easily see f§  are well-defined in L>(Q x §') and approach to f§ ;(c0) exponen-
tially fast as n+ — oo. Then we can derive Zy = Jp(fL o — f£ 0(00)) also satisfies the same type of e-Milne
problem

. aZ:I: 8Z:|: =
+sing— + F(en)cosp——+ 2 — Z1 =0,
m¢877ﬂ: (€5m) cos ¢ 90 +— 2y
0g+ 8fft,0(oo)

Zi(0797¢):W_T for :l:Sin¢>O7

limniaoo Zy (nj:a (b) =C.

By Theorem 3.13, we can see Z1 — C exponentially fast as n — oco. It is natural to obtain this constant
C must be zero. Hence, if g+ € C7(I'7), it is obvious to check fg j(o0) € C"(02). By the standard elliptic
estimate in (2.54), there exists a unique solution US , € W™?(Q) for arbitrary p > 2 satisfying

HUi,OHW‘V',p(Q) S C(Q) Hf:st,O(oo)HWr—l/p,p(aQ) ’ (256)
which implies V,U§ € W=1P(Q), VU5 € W=1=1/PP(9Q) and U§ € CT~11-2/7(Q).

(2.55)
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Step 3: Construction of % ; and Uj.
The first order boundary layer solution is defined as

%:E 1(77:‘:7 9, ¢) = 11[}0(677:‘:) (f:et,l(n:l:a 05 ¢) - fj:,l(oov 9)) ’

Ofs e P(enz) 562@6,0
26 I e (2.57)

fi,l(()?e? ¢) =W - V,U§(Zy,w) for Lsing >0,
hmniﬁoo f:?:,l(n:tv 97 (b) = fft}l(OO, 0)

Then, we define the first order interior solution U (Z) as

+sin (e;m4) cos

Ui = U@ V.U,
AUf = 0 in Q, (2.58)
U = fi1(00,0) on 00.
Step 4: Estimates of 8@6/:51 .

By Theorem 3.13, we can easily see f{ ; is well-defined in L>(Q2 x S') and approaches f§ (o) exponentially
fast as 7+ — oo. Also, since V,Us € W=1=1/PP(9Q), 0, J% 1 is well-defined and decays exponentially fast.
Hence, f ;(c0,0) € € Wr=1=1/pr(9Q). By the standard elliptic estimate in (2.58), there exists a unique
solution Ug ; € W"~1P(€) and satisfies

||U:t 1||Wr L () < C H.f:l: 1 )||W7*7171/p,p(8gz) ) (259)

which implies V,Uf € Wr=2P(Q), V,Uf € Wr=2-1/P2(9Q) and Uf € C"~21-2/p(Q).

Step 5: Generalization to arbitrary k.
In a similar fashion, as long as g is sufficiently smooth, above process can be continued. We construct the

k" order boundary layer solution as

W (1.0, 8) = volens) (f;km, 0,6)— f;,k(oo,m),

ofs i ofs e Yleny) OUS 11
:i:smgi)T + Fy(€;m+) cos p——— 8(]5 ko fow—fir= Ry T e cos ¢ 50 (2.60)

fi’k((),tﬁ),gb) =w-V,Uf_ | (&y,w) for £sing >0,

hm”li—N)O f:etﬁk(ni7 9, (b) = f:et,k(oo7 9)

Then we define the k" order interior solution as

Us = Uf—@- VU,
AUS = 0 in Q, (2.61)
U = fg1(00,0) on 0Q.

For g4 € C**1(T'7), the interior solution and boundary layer solution can be well-defined up to k" order,
Le. up to Uy and % .

3. eMILNE PROBLEM WITH GEOMETRIC CORRECTION

We consider the e-Milne problem for f$ (14,0, ¢) in the domain (74,6, ¢) € [0,00) X [, 7) X [—7,7)

- .f:et S;Et(ni707¢)7
15(0,0,¢) = h(0,¢) for £sing >0,
hmﬂiﬁoo fi(ﬂi»9»¢) = f:T:,oo(a)7

(€1+)
(3.1)
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where
_ 1 [
fi(niﬁe): % fi(niaaaqb)dgba
Fi(eng) )
€6NL) = —5—,
FG T Ry Fens
|h5.(0,9)| < M,
and

|Sﬁi(ni797¢)’ < Me*Kni7

for M > 0 and K > 0 uniform in € and 6.

11

(3.5)

The well-posedness and decay of f has been extensively studied in [13, Section 4], so in this section, we

will focus on the following:

ofc afc

781n¢an7+F—(€;n—)COS¢ 8¢ +f—7f— S—(n—707¢)7
fi (07 97 ¢) - he_ (97 QS) fOI‘ - Sin¢ > 07
limn,—ﬂ)o fi(n—707¢) = fi,oo(e)7
Introducing the sign substitution ¢_ = —¢, we have
. afi 8fi € re _ €
Sln¢—6n7 _F—(evn—)C05¢—a¢7 +f—_f— - S—(n—79a¢—)a

fe0,0,9-) = h<(0,¢-) for sing_ >0,

limnfﬂoofi(nf,e,(bf) = fi,oow)’

(3.6)

(3.7)

No abusing of the notation, we temporarily ignore the subscript —, superscript €, and the dependence on 6

to have
sin¢g—£ — F(n) cosqﬁg—j; +f—f = S 9¢),
f(0,¢) = h(¢) for sing >0,
hmn—mo f(77, (b) = fo<>7
where
=5 | smo)o.
__ep(en)
Fn) = R+ en
|h(®)] < M,

and

1S(n,¢)| < Me™ "7,
for M > 0 and K > 0. We may further define a potential function V(7)) satisfying

d
Vo =0 D renzo

Since V' (e,7n) is monotonically increasing w.r.t n and supp[)] C [0,3/4], we can derive

0<V(en) <ln4, 1 <exp(V(e,n)) <4 for all n € [0, 00].

(3.8)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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In this section, we introduce some special notation to describe the norms in the space (1, ¢) € [0,00) X
[—7, 7). Define the L? norm as follows:

i 1/2
10 = ([ o as) (3.15)
0o pm 1/2
272 — s 2d d ) . .
P A R (3.16)
Define the inner product in ¢ space
(f,9)6(n) = ) f(n,0)g(n, ¢)de. (3.17)
Define the L norm as follows:
[fMlze = sap [f(n.9)], (3.18)
pE[—m,m)
1l oo poe = sup |f(n,®)I, (3.19)
(n,¢)€[0,00) X [—m,m)
T 1/2
s = s ([ 1sofas) (3.20)
n€0,00) -7

Since the boundary data h(¢) is only defined on sin¢ > 0, we naturally extend above definitions on this
half-domain as follows:

, 1/2

ol = ([ woras) (3.21)

sin ¢>0
[hll = = sup [|h()]. (3.22)

sin >0
Lemma 3.1. We have

1hllp: < Cllhll e < CM (3.23)

M
1SNl 2z < C? (3.24)
ISl ooz < CllS|poope < CM (3.25)

O

Proof. They can be verified via direct computation, so we omit the proofs here.
3.1. L? Estimates.

3.1.1. Finite Slab with S = 0. Consider the e-Milne problem for f¥(n,¢) in a finite slab (1, ¢) € [0, L] x
[_7Tv 7T)
o L Fn)eoso - + 14— = 8(1.6)
FL0,6) = h(g) for sing >0, (3.26)
fH(L,¢) = fH(L,Rg),
where Rp = —¢ and S satisfies S(n) = 0 for any 7. We may decompose the solution

FEm,0) =qf () + 17 (n. ), (3.27)

where the hydrodynamical part ¢ of f*, and the microscopic part r7 is the orthogonal complement, i.e.

ko =1 = o [ e 0.6 = 0.0 - df o (3.29)

In the following, we simply write f* = ¢ + r¥ without any confusion.
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Lemma 3.2. Assume S(n) = 0 (n € [0,L]) and S(n,$) satisfy (3.11) and (3.12). Then there evists a

solution f(n,$) € L*([0, L] x [0,27]) to the finite slab problem (3.26) such that

L 2
L 2 M
/0 (| (n, .)HL2 dn < C(M + K) < o0, (3.29)
L M 1/2 L

la" )] < C{ 1+ M+ 2= |(L+0"%) + [[r(, )| (3.30)
(sing, ") (n) = 0, (3.31)

for arbitrary n € [0, L].

Proof. We divide the proof into several steps: we firstly establish the solution of the penalty problem. Sec-
ondly, the uniform estimates of the solution will be obtained. Then, by passing the limit, we achieve a
solution of (3.26) which satisfies (3.29) and (3.30). At last, the orthogonal property (3.31) follows easily.

Step 1: Ezistence of the solution for the penalty problem
Firstly, we consider the existence of the solution for the penalized e-Milne equation with A > 0

O fx Ofx

/\fx—%bmqﬁi—F() Sp—— 90 + = S0 9),
£0,6) = h(¢) for sing >0, (3.32)
f)\(La(yb) = f)\(L,R(ZS)

Here ||S|| 22 < 0o and ||h]| ;. < oo.
For the existence of the solution for (3.32), we also construct the iterative sequence. Define f& = 0 and
{fLEyoe_ are the solution of the following problem

L
AfL+sm¢ —F(n )cos¢—¢+fL o1 = S(n,9),

fE©,¢) = h(p) for sing >0, (3.33)
fo(L,¢) = [fr(L,Ro).
(

For m = 1, we have f& = 0. Multiplying f on both sides of (3.33) and integrating over ¢ € [—, 7], we
obtain

3 (g sin g = SPONUE fEsing)g + (1+3) |27, = (5. £, (330

It leads to
L
explV(DUFE, FF sind)o(L) + (14 N) / exp[V ()] || FE (. )| dy (3.35)
L
= (fF, Fsind)o(0) + / exp[V ()](S, F£) oy

r 1 2 1 L 2
< lalle+ [ explv )] 3115 i + 1A G o

where V is the potential function which is defined in (3.13). It is easy to show that exp[V (L)]{f{, f sin ) (L) =
0 because the specular refection condition at 7 = L. From (3.14) and the above inequality, one obtains that

L
2 2 2
[t w0l < s + 18T ) (3.3
0
For m > 1, we set g& = fL — fL . Tt satisfies
ogk gk
A, +Sm¢7 — F(n) cos ¢7 +0m = Ima = 0,

9 (0,9) 0 for sing >0, (3.37)
9m(Lid) = gh(L, Ro).
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By a similar argument, we can derive that

L
xolV (D) g g sind)o(0) + [ exolV (14 ) ok + (o g o) )y (339
< (grms g sin ¢) (0)
Due to the facts (g%, g% sin ¢)4(0) <0, exp[V (L)]{gL, g sin ¢),(L) = 0, we have
L L
| esalv ko) dy < 1 [ eV @liohah oy (3.39)

L
< sy [ ool (lohw s + s Y

It implies
L 1 L
/ explV ()] |95 (v, )| 5 dy < m/ explV(W)] |95 -1 (v, )| 5 dy. (3.40)
0 0

Since exp[V/(y)] > 1 for all y > 0, we know that {f£}2°_, is a contraction sequence for A > 0. Let m — oo,
we obtain a solution f& of (3.32). Moreover, it satisfies

- 8(1+ X
A T S i A e (A e ) (3.41)
m=1

In the following, we prove the uniqueness of the solution for (3.32). Assume that there are two solutions f{
and fF of (3.32). Define fL = f; — fo, it satisfies

L L
A sing e — Fn)eoso e +fE = TE = .
fE0,6) = 0 for sing >0, (3.42)
fHL,¢) = [I(L Re).
Similarly, we have
2 1 1112 1 2
11 e € e < e (3.43

which further implies fZ = 0 when A > 0. Therefore, the solution to (3.32) is unique in L2([0, L] x [, 7)).

Step 2: The uniform estimates of r¥ and q¥ w.r.t. \.
Claim: We claim that rf satisfies

/OL |7 (n, ')||2Lz dn < 4|hl7. + 8/OL 1S (n, )72 dn (3.44)
and, for any 0 <7 < L, ¢¥ satisfies
laX ()] < 167 (L + X+ [F()) (L + 0" ) (12l g2 + 1S/l 2 2) + [rX (0, )]) (3.45)
The proof of (3.44): The assumption S(n) = 0 leads to
(S, [X)o(n) = (S, aX)s(n) + (S,7X)s(n) = (S,73)6(1). (3.46)

Multiplying f& on both sides of (3.32) and integrating over ¢ € [—m, ), we get the energy estimate
1d . 1 .
3 (A sind)o(n) = PONUE £ sind)o(r) (3.47

— A0 e = ko) e + (S, ) s (0)-
Define

a(n) = S (% ¥ singho(n). (3.48)



ASYMPTOTIC ANALYSIS OF TRANSPORT EQUATION 15
Then (3.47) can be rewritten as follows
2 2
— = F(m)am) = =MLz =[x 0, ) [ 2 + (S, ) () (3.49)

The specular reflexive boundary f&(L,¢) = f&(L, R¢) ensures (L) = 0. We can integrate above on [, L]
and [0, 1] respectively to obtain

L
explVnla(n) = [ esolv )] (A7 )5 + Ik 5. = (5.rDolw) dus (3.50)

exp[V (m)]a(n) = a(0) + / DoV )] (M@~ @ + (5w dy. (351)
Hence, based on (3.50), we have
L
atn = [ explV () - V) ( - (S.rh)alo) ). (352)
Also, (3.51) implies
atn) < a@ expl-V] + [ explv ) = Vil (18.rDe(0) ) (353)

< 2|h|7a + /On exp[V(n) = V(y)] <<57 T§>¢(y)) dy,

due to the fact

ol0) = gt ;a0 < ([ p)sineas) < 5 Ihis. (354)
Then in (3.51) taking n = L, from a(L) = 0, we have
L L
[ vl Ik v <)+ [ eV @S oty (359)

L
< gl + [ eV (s rhotds

On the other hand, we can directly estimate as follows:

L L
/ exp[VW)] |rE (v, )|[52 dy > / |r% (g, )% dy. (3.56)
0 0

Combining (3.55) and (3.224) yields

L L
2
| Ikl an < i +4 [ |Srbotw] v (3.57)
By Cauchy’s inequality, we have
L 1 L 9 L 9
| srbolay < 5 [ kol ane2 1861 an (3.58)

Therefore, summarizing (3.178) and (3.180), we deduce (3.44).

The proof of (3.45): Multiplying sin ¢ on both sides of (3.32) and integrating over ¢ € [—m, ) lead to

din<sm2 6, FEYo(m) = — Nsin o, fF)(n) — (sin . 2 (1) (3.59)

L
+ 3P sin(26), 5)o(0n) + (s, $)o().

It is nature that

(sin(¢),ax)s = a3 (sin(¢), 1) = 0, (cos(2¢), ) = ¢ (cos(2¢), 1) = 0. (3.60)
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We can further integrate by parts as follows:

S F(n)(sin(26). %@me — _F(n){cos(26), fF)e(n) = —F(1){cos(20), ko ), (3.61)
to obtain
Tt 6. £ () = = Asin () — (sing.r)o() (3.62)
— Fn)cos(26), &) o) + (sin 6, S)(n).
Define
BE () = (sin? 6, FF)o(n) (3.63)
and

DX (1,6) = =A(sing, f{')(n) — (sin 6, 73)e(n) — F(1)(cos(26),73)e(n) + (sing, S)o(n).  (3.64)

Since
—Alsin g, fX)o(n) = = Alsin g, mX)s(n) = Msin, 43)o (1) = —A(sing, r3)s(n). (3.65)
we can further get
DX(n) = =A(sin g, rX) (1) — (sin @, 7X) 4 (1) — F(1)(cos(2¢),7X) (1) + (sin @, S) (1) (3.66)
Then we can simplify (3.59) as follows:
d L
We can integrate over [0,7] in (3.67) to obtain
n
5) = #50)+ | DE)ay. (3.68)
On the hand, one has
1/2 .
BE(0) = (sin? 6, [)5(0) < ((FE, S [sing)s(0)) Il sin gl 7 (3.69)

6 1/2
<5 (U s simoa)

Obviously, we have

(FE. 1 [sin 8])o(0) = / B2 (6) sin g — FE(0, 8)[2 sin 6. (3.70)

sin ¢>0 sin ¢<0

However, based on the definition of «(n) and (3.52), we can obtain

2a(0) = | GOETETS [ 15 0.0)Rsnsds (3.71)

sin ¢<0

22 [ explv )~ (S.rbyotw))

0
I
> =5 [ sy,
0

Hence, we can deduce

L
s inglo0) <2 [ R(@)singdo+ 5 [ S rRowlay (372)

sin ¢>0

1 [t 2 1t
<20+ 7 [ Ik OolGadn+ g [ 186l
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From (3.44), we can deduce

256

BR(0)* < =5 (IX, I [sin ¢l)4(0) (3.73)

L L
2
<081 +16 [ ek dn+16 [ 18013 dn
0 0
L
<196 413 + 196 [ 150,03
0

On the other hand, since DY depends on r¥ and is independent of ¢¥, we can directly estimate

DEM)| < %(1 ot |F<n>|) 1o+ 15 e (3.74)

From (3.44), (3.68), (3.74) and (3.73), we have
n n
BE()] < 14(1AlL g + 18] g2r2) + 20(1+ A+ |[F()]) / 1Py, o dy + / 15(y, Yo dy (3.75)

n ) 1/2
< (Il 2 + 18]l pa2) +27(1+ A+ [E () )n*/? (/0 7% ()| e dy)

" , 1/2
. ( / 150, )2 dy)
<1671+ A+ [FmDA+ 072 (IhlLe + 1] e)-

By (3.63) this implies

(UBX )] + [sin® [ 2 [[7X (0, )| 2) (3.76)

lax ()] S%

which completes the proof of (3.45).

Step 3:  Passing to the limit A — 0

Since estimates (3.44) and (3.45) are uniform in \, we can take weakly convergent subsequence ff — fL €
L3([0,L] x [-m,m)) as A — 0. That is, there is a function f& € L2([0, L] x (—m,7]), which is the solution of
(3.26) and satisfies the estimates (3.29) and (3.30).

Step 4: Orthogonality relation (3.31).
A direct integration over ¢ € [—m,7) in (3.26) implies

d dfL _
Sl £1)(n) = Floos o S0)oln) + 50 = Fisin /2)o(0). (377)
thanks to S = 0. The specular reflexive boundary fL(L,¢) = fL(L, Rp) implies (sin ¢, fZ)4(L) = 0. Then

we have

(sing, f£)4(n) = 0. (3.78)
It is easy to see

(sing, q")s(n) = 0. (3.79)
Hence, we may derive

(sin ¢, 1) 4 (1) = 0. (3.80)

This leads (3.31) and completes the proof of (3.2) O
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3.1.2. Infinite Slab with S = 0. We turn to the e-Milne problem in the infinite slab, that is, we will consider
the following problem

9 o) ;
sin¢l - F(n) cosq“)i +f—f = Sn¢), (no¢) €l0,00)x[-m,m)
" " f(0,0) = h(e) for sin¢ >0, (3.81)
hmn—wo f(n,cﬁ) = foo,

where h and S satisfy the assumption (3.1).

For simplicity, we denote the kinetic part r and the fluid part ¢ for f as well as r* and ¢ for fL.

Lemma 3.3. Assume S(n) = 0 for any n € [0,00) with (5.11) and (3.12). Then there exists a solution
f(n, @) of the infinite slab problem (3.81), satisfying

M
Irll 22 < C<M+ K> < 00, (3.82)
(sing,m)¢(n) =0 for any n € [0, 00), (3.83)
M
ot < € (143 + Z It ). (3.51)
Also, there exists a constant goo = foo € R such that the following estimates hold,

M
|goo] SC(l—i—M—i— K) < 00, (3.85)
[4(7) = goo| < C( ()| 2 +/ [E @)y, )l 2 dy +/ 15 (s M = dy>7 (3.86)

n n
[eS) M 2
/ la(n) = goc|*dn < C<M + K) < . (3.87)
0

The solution is unique among functions such that (3.82), (3.85)and (3.87) hold.

Proof. The existence of the solution is obtained by L — oo, the estimates (3.82)-(3.87) follow from the
equation (3.81) immediately.

Step 1: Ezistence of the solution and estimates (3.82), (3.83) and (3.84)
By the estimates from Lemma 3.3, the solution f* of the (3.26) is bounded in L? ([0, 00); L?[—m,7)). Then
there exists a subsequence, which is also denoted as f%, such that

¢t — ¢, v — r, weakly in LZQOC([O, 00); LQ[—TI',TF)). (3.88)

The limit function f = g + r satisfies the equation and the boundary condition at n = 0 in the weak sense.
This shows the existence of the solution.

Then property (3.82) naturally holds due to the weak lower semi-continuity of norm |[|-||;2;.. The orthog-
onal relation (3.83) is also preserved.

For the estimate of (3.84), we need the facts that F' € L'[0,00) N L2[0,0), r € L?([0,00) x [~7, 7)) and
S exponentially decays at the far field, corresponding to (3.73), (3.82) and (3.12). We use the notation in
Step 5 of the proof of Lemma 3.2. Recall (3.63) to (3.32) with A = 0 and L = oo, we have

dp
din = D(Ua Qj))v (3'89)
where
B(n) = (sin® ¢, f)(n) (3.90)
and
D(n,¢) = —(sing,r)g — F(n){cos(2¢),r)¢ + (sin g, S)(n). (3.91)

The orthogonal relation (3.83) implies
D(n,¢) = —F(n){cos(2¢), 1) + (sin ¢, 5)(n). (3.92)
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Hence, we can integrate (3.89) over [0, 7] to show

B(n) / F(y){cos(2¢),7)(y )dy—i—/on(sin(ﬁ,S)(z,(y)dy. (3.93)
Similar to (3.73), one has
1B(0)] < 14([|All L2 + ISl L2 £2)- (3.94)
So, it derives to
n n
1B(n)| < |ﬁ(0)|+/ IF(y)<COS(2¢),T>¢(y)|dy+/ |(sin @, S) o (y)|dy (3.95)
0 0

< 14(IAl o + 1Sl ) + ( I |F<y>|2dy)1/2< [ o dy)m
+w(/0"|s<y,->||p dy)l/g.

M
<CA+M+—).

Note that
B(n) = (sin® ¢, f)o(n) = (sin” ¢, q) (1) + (sin® ¢, )6 (n) = q(n) [|lsin @[> + (sin® §,7)s(m).  (3.96)

The inequality (3.84) is valid from (3.82) and the fact (3.12).

Step 2:  Estimates (3.85), (3.86) and (3.87) From (3.93) together with the properties of F' and S, the
limit of 5(n) exists. Set Soo = lim, o0 5(7), from (3.95), we know that

M
1Boo] <C1+ M+ —

=) (3.97)

Define the constant as go, = foo/ ||sin @||72 = Boo/7, then (3.85) follows directly from (3.97). Moreover,

= /OO D(y)dy = /oo F(y)(cos(2¢),7)(y)dy + /w<sin ¢, 9)¢(y)dy. (3.98)
n n n
Thus, (3.96) yields
7a(1) — gool = |Bn) = Boo — (502 6,7 ()] (3.99)
< [tsin? 1)) + [ |Pw)(cos26). sl dy+ [ [isind, S)o(u)|dy
< |lr(, wa/ DI, s dy+f/ 1S, = dy.

This implies (3.86). Furthermore, we integrate (3.99) over n € [0, 00). The Cauchy’s inequality implies

/OOO ( / T IF@ (. e dy>

The exponential decay of S shows that

I ( / NER dy)an <c. (3.101)

Hence, the estimate (3.87) naturally follows.

2

dy < [ 2 / / F(y)[? dydy < C. (3.100)
0 n

Step 3:  Uniqueness
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In order to show the uniqueness of the solution, we assume there are two solutions f; and f; to the equation
(3.81) satisfying (3.82) and (3.83). Then f’ = f1 — f» satisfies the equation

smgbj;/ — F(n )cosqﬁ%% I
f(0,¢) = 0 for sing >0, (3.102)
im0 f'(0,9) = fi-

Similarly, we can define 7’ and ¢’. Multiplying ¢ (" ' on both sides of (3.102) and integrating over ¢ €
[—7, ) yields

1d <<f £/ sin )y (n)e" )) o1
(<f’flsm¢> (e V“”) - ;(F(n)<f’,f’sin¢>¢(,7)eV(n>>

(<f7flsm¢> (n)e V(")> - (F(n)<f 7‘7;c05¢> (n)e V(n)>

= P e ) = — ( I (1 eV<">> <.

This implies that v(n) = 3 (f’, f’sin ®)g(n)e¥ Mis decreasing. Since ' € L?([0,00) x [~m, 7)) and ¢’ — ¢/, €
L*([0,00) x [—m,m)), there exists a subsequence ny such that ||7/(ny,)|;2 — 0 and ¢'(nx) — g5 — 0 as
k — oo. Hence, this implies

1
5(7“’,7“’ sin @) (me)e” ™) =0,k — oco. (3.104)
Also, due to the fact that ¢/(nx) is independent of ¢ and it is finite dimension with respect to ¢, we have
Y(nk) =0, k— oo. (3.105)

By the monotonicity, v(n) decreases to zero and v(n) > 0. Then we can integrate (3.103) over n € [0, 00) to
obtain

7(00) = 7(0) = —2 / 17 (5, )2 ¥ @y, (3.106)
which implies
2(0) = (', f'sin ¢} (0)e¥ @ =2 / 7 (5 )12 €V @y, (3.107)
Also, we know
1 1 / /. / 2 :
< ST s g0 O = S fsind)a0) < [ (£(0.0)sinodo =0, (3.108)
sin ¢ >0
Naturally, we have
(f', f'sing)y(0)e” () =2 / T ) e @y = 0. (3.109)
0

Hence, we have ' = 0 and f/(0,¢) = 0. Thus, f'(n,¢) = ¢'(n). Plugging this into the equation (3.102)
reveals 0,q' = 0. Therefore, f'(n,¢) = C for all (n,¢) € [0,00) x [—m, 7|. Naturally the boundary data leads
to C = 0, which derives to f* = 0. That is, f; = f2 and the uniqueness of the solution to (3.102) follows
directly. O

3.1.3. § # 0 Case. Consider the e-Milne problem for f(n, ¢) in (1, ¢) € [0,00) x [-7, 7) with a general source

term

0 _
sind)aff; — F(n)cos¢ Z; f—F = S ¢),
f(0,¢) = h(¢) for sing >0, (3.110)
lim, o0 f(17,0) = foo-
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Lemma 3.4. Assume (3.11) and (3.12) hold. Then there exists a unique solution f(n,®) of the problem
(3.110), satisfying

M
7l p22 < C(l + M + K) < o0, (3.111)
(sin g, r)y(n) = — / W=V S(y)dy, (3.112)
7
M
g < C{1+ M+ 2=+ [Ir(n,)ll2 ) (3.113)
Also there exists a constant oo = foo € R such that the following estimates hold,
M
|g0o] < C(l + M + K) < 00, (3.114)
la(n) = ¢oo| < C( ()l 2 +/ [EW)l lr(y, )l > dy +/ 15 @y, )l dy>, (3.115)
n n
M
J4) = aalle < ©(14 M+ 32 ) <o (3,116

The solution is unique among functions satisfying || f — fooll p2p2 < 00.
Proof. We can apply superposition property for this linear problem, i.e. write S = S + (S — S) = Sg + Sk.
Then we solve the problem by the following steps.

Step 1:  Construction of auziliary function f1
For the zero mean part Sg, we choose f! as the solution to

1 1
smqbafj; F(n) cos gbaa—(b +fr=f* = Sgr(ne),
f10,¢) = h(¢) for sing >0, (3.117)
limy, 0 f1(77,¢>) = féo

Since Sk = 0, by Lemma 3.3, we know there exists a unique solution f! satisfying the L? estimates (3.111),
(3.114), (3.115) and (3.116).

Step 2: Construction of auxiliary function f?
For the part Sg, We seek a function f? satisfying

——/ (smd)—F( )cos¢a;>d¢+SQ:O. (3.118)
An integration by parts transforms the equation (3.118) into
— /7; singi)a(;:dqﬁ + 7; F(n)singf2de¢ + 2mSqg = 0. (3.119)
By Setting
F2(¢,m) = al(n) sin ¢. (3.120)
and plugging this ansatz into (3.119), we have
—j—f] _7; sin® ¢d¢ + F(n)a(n) /_: sin® ¢d¢ + 2mSg = 0. (3.121)
Hence, we have
—376; + F(n)a(n) +2Sg = 0. (3.122)

By assume a(oco) = 0, we can directly solve it to obtain

a(n) = —eli F@y / o I3 P95 (4)dy. (3.123)
n
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In particular, for n = 0, we have
a(0) = —/ e I FRz984 (1) dy. (3.124)
0

Based on the exponential decay of Sg, we can directly verify a(n) decays exponentially to zero as n — oo
and f? satisfies the estimates (3.111), (3.114), (3.115) and (3.116).

Step 3: Construction of auziliary function f3
Since the boundary condition has been changed, we construct f3 verify

smqﬁﬁ—F() (;5 +f3 2 = —sinqﬁa—ﬁ—&-F( ) cos p—— or 2+ 248
99 o 09 ©
£50,6) = —a(0)sing for sing >0, (3.125)
limy, e f2(n,0) = [
Since the source term satisfy
/7T (31H¢J:+F( )cos¢¢f2+f2+SQ)d¢O, (3.126)

we can apply Lemma 3.3 to obtain a unique solution f3 satisfying the estimates (3.111), (3.114), (3.115) and
(3.116).

Step 4: Construction of auxiliary function f*
We now define f4 = f2 + f2 and an explicit verification shows

4
SIH¢L*F( )e OS‘ZS%+J”4*J?4 = Sq(n.¢),
f40,¢) = 0 for sing >0, (3.127)
limy, 00 fAne) = [,

and f* satisfies the L? estimates (3.111), (3.114), (3.115) and (3.116).

In summary, we deduce that f* + f* is the solution of (3.110) and satisfies the estimates (3.111), (3.114),
(3.115) and (3.116). A direct computation of (sing, f*)4(n) for i = 1,2,3,4 leads to (3.112). From
If = fooll 22 < 00, we deduce ||f(-) = fool|,» < 00. Set foo = fi + f4, a similar argument in Lem-
ma 3.3 shows that the uniqueness of solution. O

Combining all above, we have the following theorem.

Theorem 3.5. Assume (3.11) and (3.12) hold, there exists a unique solution f(n, @) for the e-Milne problem
(3.8), which satisfies the estimates

M
If = foollpape < O<1+M+K) < 00, (3.128)
for some real number f. such that
M
|fool < C<1 + M + K) < 0. (3.129)

3.2. L>™ Estimates. For the analysis of the e-Milne problem, we need the estimate of || f|| ;o ;. S0 we will
consider the L™ estimates in the following subsection.

3.2.1. Finite Slab. We firstly consider the penalty e-transport problem in a finite slab (1, ¢) € [0, L] x [—m, 7)

A+ sin g o0X f* — F(s)cos¢ ’;1 L= Hn).
f£0,9) = h(e), for sing > 0, (3.130)
fE(L,Rp) = fE(L,¢)

with R¢p = —¢. We have the following result.
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Lemma 3.6. Assume ||H| ;e < 00 and ||h|| < < 00, then there exists a solution f{(n,®) to the penalized
e-transport equation (3.130) satisfying

£ oo oo < Moo + 1H | oo oo (3.131)
Proof. Define the energy as follows:
E(n, ¢) = cos gV . (3.132)

In the plane (1, ¢) € [0,00) X [—7,7), on the curve ¢ = ¢(n) with constant energy, we can see

dE _ 3E OF 0¢ _ V) _ gin geV(m 99 _
a —|— 96 on —cos ¢F(n)e sin ¢e an = (3.133)
which further implies
¢ cos F(n)
= A 134
on sin ¢ (3.134)
Plugging this into the equation (3.130), on this curve, we deduce
df 0 f ofop 1 f of
el A r 1
dn + ol 877 sin ¢ ¢ cos pF (1 )8¢ (3.135)

Hence, this curve with constant energy is exactly the characteristics of the equation (3.130). Along this
curve, the equation can be simplified as follows:

Afy + sin ¢>% +fr=H. (3.136)

An implicit function n*(n, ¢) can be determined through

|E(n,9)] ="

which means (nT, ¢g) with sin ¢g = 0 is on the same characteristics as (1), ¢). We also define the quantities
for 0 < nt <1’ <n as follows:

+).

(3.137)

¢/ (6, m.m') = cos™ (cos ge¥ M=V 01)), (3.138)
R/ (¢,m,1) = — cos™*(cos ge¥ MYy = —¢/ (6, m,77), (3.139)

where the inverse trigonometric function can be defined single-valued in the domain [0, 7) and the quantities
are always well-defined due to the monotonicity of V. Finally, we denote

A . K 14
50~ |, St o (3:140)

With these notations, we can define the solution to (3.130) along the characteristics as follows:
Case I. For sin¢g > 0 and |E(n, ¢)| <1,

TH(n',¢' (p,n,1'))
sin(¢’ (¢, n,7"))

fL(n,6) = h(¢'(6,1,0)) exp(—G270) + /0 exp(—Go,)dn. (3.141)

Case II. For sin¢ > 0 and |E(n, ¢)| > 1,

TH(n', ¢ (¢,n,1'))
+ Sin(gﬁ/((ﬁ, m, 7’/))

FE0,68) = FE (1, 8), 60) exp(~G, ) + /

Case III. For sin¢ < 0 and |E(n, ¢)| > 1,

L A K H(’r]/7¢/(¢777777/)) (A /
fX(n,¢) = fX (" (n,9), do) exp(— Gn’n+)+/n+ (& (6.1.17)) exp(—G, ,)dn'. (3.143)
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Case IV. For sin¢ < 0 and |E(n, ¢)| < 1,
FE0.0) = 1O om0 exp | ~ Gy~ G, (3.144)

L / ’ /
H(U»Rﬁb(d’ﬂ?»n)) |: A A :| !
- exp| —-G7 ., —G d
o sn(@(6,n1)) A
L o /
H(77,¢(¢,77777)) A !
- exp(Gy ,,)dn .

) i@ (o) PG
In the following, we give the estimate of (3.131). In Case I, (3.141) derives to

5l e VAl exp-G) + WA [ oG]y (3.149
' 0 Sln(¢ ((ba n,mn ))

1
= Il exp(-Glo) + g (1 0x0(-Go))

< 1Pl oe + 1H | oo oo

+

In Case II and III, the main difficulty is the lack of estimate for f¥(n*(n, ®), ¢o). But, we denote the points
(77+a¢0)a (L7¢L)v and (L, 7¢L) with

61, = cos™! <QV<n+<n,¢>>V<L>> =0 (3.146)

are on the same characteristic line (3.132). Then, along this characteristic line, we can compute that

“H ., ¢ (¢1,n.7")
L+ s (6,1 17)) exp(Gy e (61)) 11, (3.147)

- EHW,RY (o, n,1))
FX*560) = SN (L, —br) exp(RGY 1 (61) — /n v sin(@ (b, m 1)

et 00) = fFX(L, L) exp(Gy 4 (1)) —

exp(RGyy, )+ (61))dn'. (3.148)

Then naturally we have

“H@, ¢ (61, L))
(@ op. L)) PGy (@) (3.149)

L H(y,R9' (61, L))
_ Loy _ xp(—G} - -
= [N (L, —¢r)exp(=G7 .+ (o1)) /77+ sin(¢’(¢r, L,n'))

The specular reflective boundary condition implies f{(L, ¢1) = f£ (L, —¢1). Then we obtain

FHL 01) exp(G e 00) — [

exp(—=Ghy i (or))dn'.

(3.150)
L 1 FHO Y (G L))
o) = oG 7607 - (G Ln+<¢L>></n+ 0@ (or, L)) P ()
. H(n7R¢/(¢L7L7n)) <D (— A /)
ye (@ (op L)) D (O2)AT )
It naturally leads to
(3.151)

d
e (@ (G, L) T e sin(@(ér Lop))
exp(Gy 1 (¢1)) —exp(=G7 . (61))

Similar to the estimates in Case I, we have

/L exp(iGi,n’(d)L)) dr’ /L exp(G?j,n’(qsL)) ’

X, ¢0)l < NH | poe e

< H | oo oo

L <D (— A ,
3 [P— (exm_gmmm [ p(~G},(61))

VIH o <UHl s (3.152
nt sin(¢/(¢L,L,77/))dn>” oo = Mo (3152)
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In case IV, it is similar to Case I, we can directly estimate to obtain
1] e oo S NPl poe + I1H | oo poc - (3.153)
Summarizing all above, we complete the proof of (3.131). |

3.2.2. Infinite Slab. Let L — oo, we consider the following problem in the infinite slab 7 € (0, 00),
Ofx I fx

AMa+sing—==—F(n)cosp—=—+ fx = H(n,¢), n>0,
o 0 ~ 154
i(0,9) = h(9) for sing > 0, (3.154)
hmn—wo f>\ = foo~

The following lemma holds.

Lemma 3.7. [[H| w0 <00 and ||h|| . < 0o, then the solution fx(n,¢) to the penalized e-Milne equation
(3.154) satisfies

e < Ol + 1) ) (3.155)
where C' is a constant independent of .

Now, we use the fact that
lim exp(—G7 ,)) = 0 for sin¢ < 0. (3.156)
L—oo ’

It can be defined the solution via taking limit L — oo in (3.141)-(3.144) as follows:
I, ¢) = Ax[h(@)] + Ta[H (n, )], (3.157)

where

Case I. For sin¢ > 0 and |E(n, ¢)| <1,

Axlh(@)] = (@' (6,7, 0)) exp(~Gy o) (3.158)
Tt o) = [ S oxp(-G) (3.159)

Case II. For sin¢ > 0 and |E(7n, ¢)| > 1,
Ax[r(9)] =0 (3.160)

7:\[H(777 ¢)} = f/\(77+7 ¢0) exp(—G:‘mﬁ) + /77 H(n/v ¢/(¢7 7, 77/))

nt Sin(¢/(¢7 , 77'))

o H(77/7R¢/(¢77]a77/)) A A /
G, —G d

ye sin@ @) PG an

n,nt
TH(n', ¢ (o,n,1"))
*/n+ sin (@' (@, 1,17)

exp(—G2,)d (3.161)

nn’

exp(—Gy ./ )dn'.

Case III. For sin¢ < 0,

Ax[h(9)]
TA[H (n,9)]

0 (3.162)
/°° H(n',R¢'(¢,m,1"))
n sin(@(é,m,1))
In Case II, we replace fa(n™,¢g) by the integral along the characteristics in sin ¢ < 0. Also, the latter two

cases are combined into a united one. In order to achieve the estimate of fy, we need to give several technical
lemmas about Ay and 7. From (3.158)-(3.162), one can easily obtain

exp(Gy,/)dn’. (3.163)

Lemma 3.8. The operator Ay satisfies
AR e oo < 1Pl o - (3.164)
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Proof. Since sin(¢’(¢,n,£)) > 0 for 0 < & < 7, we know that
exp(fG%"O) <1
Then, the estimate of (3.164) holds immediately. ]

Lemma 3.9. There exists some constant such that the integral operator Ty satisfies
ITAH ) o e < CIH oo Jor all A > 0. (3.165)

Proof. The proof of this lemma will divided into three cases.
In Case I, it implies that sin¢ > 0 and |FE(n, ¢)| < 1. One has
n
T < [ o)) exp(~ Gy )b (3.166)

1
sin(¢’(¢,n,1'))
< || H]| /n;ex (=G, )dny/
= VL= fo Sin(@ (o)) T

We can directly estimate

n 1 \ 1~ 1
- - — Ndn’ < —— 2l < —— 1
/o (@ (@) CP G ) < 1+A/o erdes Ty (8.167)

and (3.165) naturally follows.
In Case I1I, it implies that sin ¢ < 0. So it holds that

o0 1
THS/H’,’,,’_—exG’\,d’ 3.168
ITA[H]| : |H(n ¢(¢nn))|sm(¢,(¢’n7n,)) p(G.)dn ( )
o 1
<[ H| 7o 7o — —  _exp(G), )y
S A B
Then, we have

/w;e (el )d’<1/0 efdz < —— (3.169)
y s () OO =N ) Y TN '

and (3.165) easily follows in this case.
In Case II, it satisfies that sin¢ > 0. We define that

e ea [ HOLRE (b))
TA,l[H]*f(U 7¢0)e p( GU7U+) ot sin(¢’(¢,77,77'))

n /A /
7&72[}[] — / H(n 7¢ (¢a 77777 )) exp(_Gi\I,n/)dn/. (3171)
n

exp(Gp,, — Gy v )drf, (3.170)

nnt

+ Sin(¢l(¢v 7, 77/))

Since
exp(Gf‘]’n/ — G7’>7n+) < exp(ng,n,), (3.172)
then 7 ; can be treated as in Case III. Also, the proof of 7 2 is similar to the Case I, we omit it here. The
proof of Lemma 3.9 is completed. O
From Lemma 3.7, the bound of f) in L*° is independent of . So, let A — 0, we get a solution of
0 0
oG~ FayeosoZ +1 = Ho) n>o.
F0,¢) = h(¢)  for sing >0, (3.173)
limnﬁoo f = feo
In this case, we denote
m 1

Gy (@ :/ —d¢. 3.174
0= ] @6 0) (317

Then, the solution f can be rewritten as

f(n,8) = Alh($)] + T[H(n, )], (3.175)
where the operator A and 7T is defined as
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Case I For sin¢ > 0 and |E(n, ¢)| <1,

A[h(¢)] = h(¢'(#,7,0)) exp(=G,0) (3.176)
T = [ oy oG 017

Case II. For sin¢ > 0 and |E(n, ¢)| > 1,
Alh(¢)] =0 (3.178)

T, 0) = F b0 exp(~Goe) + [ RO (G ) (3.179)

nt Sin(qsl((b’n?n/))

< H(n',Rd' (¢,m,1")) ,
R A
"H, ¢ (b))
*/,,+ sin(¢/ (6, 1,7))

exp(—Gy,,)dn'.

Case III. For sin¢ < 0,

Alh(¢)] =0 (3.180)

“ H(n',R¢'(¢,m,1'))
TIH (1, ¢)] /77 sin(¢/ (¢, m,7))

exp(Gyy,,y )dn'. (3.181)

For the estimate of the solution in L, we need the following estimate of T[H].
Lemma 3.10. For any § > 0 there is a constant C(0) > 0 independent of data such that
1T e g2 < CONE 2 g + O] e . (3.182)
Proof. We divide the proof into several steps.

Step 1: The case of sing > 0 and |E(n, ¢)| < 1.
For simplicity, we denote €y = {sin(¢’'(¢,n,1')) > m} and Qo = {sin(¢'(¢,n,7’)) < m}. Then, we consider

M2 de = TH, ¢ (énn) ,>2
foomuaaafas= [ ([N i en-Goan) o (0159

=hL+1

2

for some m > 0. By Cauchy’s inequality, we get

" " —9G, )
I H', ¢ (6,n,1) d '>( 10, SP2C0) g ’)d 3.184
= /sin¢>>0 </0 [, ¢dma ) dn /0 eyl (3459

1 2 K exp(—2Gy..y)

< —|H||72 2/ (/ 1o, —————— " 2dy |dé
m HLL sin ¢>0 0 "sin(¢/ (o, 1, 1))
4 2

< —||H||72s2.

< Z|H|2,,

On the other hand, for ' <7, we can directly estimate ¢'(¢,7n,7n’) > ¢. Hence, we have the relation

sin ¢ < sin(¢' (¢, n,7'))- (3.185)
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Therefore, we can directly estimate Io as follows:

2
B<|H e [

' L G d d
1o ————— _ , /
sin ¢>0 (/g 22 sin(¢/ (¢, m,1')) exp(—Gy,y )dn ) 0]

2

n 1 2
gHgmm/ (/12.expG,d’>d¢
H ”L L sin >0 0 ¢ Sln(¢/(¢777a77/)) ( TIJI) !

n 1 ) 2
= HH||2L°°L°°/Q (/0 sin((b’(giwn’))eXp(_Gn’n/)dn) do.

n 1 o]
——exp(—G, v )d ’§/ e fdz =1,
/0 sin(¢/(¢,n, 1)) D{= G ) 0

Since

we have, for m sufficiently small,

L < |H| e / Lisn oemyd < Al H|2 e

sin ¢>0

Summing up (3.184) and (3.188), we deduce (3.182) for m sufficiently small.

Step 2: The case of sin¢ < 0.
We can decompose

2 _ * H(U/aR¢/(¢777777/))
~/Sin ¢<0 |TH‘ d¢ B sin ¢<0 (/77 Sin(¢/(¢a , 77/))

_ /(/191...>2+/</1921{n’n>0}...>

2
+/ (/1921{77/—7137}"')

:II+IQ+I37

for some m > 0 and o > 0. We can directly estimate I as follows:

I < T\ R (b)) d ’)( 1, - SP2nr) ’)d
L /sin¢<0 </7] | (T] (b (¢ G ))| ! /77 . Sin2(¢/(¢777>77/)) ! (b

IN

IN

s
s

On the other hand, for I» we have

2
B < |H e [

Note that

1 2 / </oo eXp(an-n’)
N HI?,,. Lo, = dn
m” ||L L sin $<0 n @ Sln(¢ (¢777a77/))

/>d¢

eXP(Gnm/)

1Q 1 r_ o\ T N
sin ¢p<0 </7] 2 = }Sln(¢/(¢»7la77/)

1 n —n o
= / b < _
= ) sin(@ (6 y)) m m

we can obtain

2
< A |

For I3, we can estimate as follows:

I3§H20000/ (/ Lo, Yy n<oy Gy
| H |70 r, snoco \Jy 2 =< }sm(gb’(qﬁ,?%??'))

2 e
ST N A T T
sin n

eXp<Gn,n’)

eXP(Gnm')

Sln(¢/(¢)7 777 n/

2
exp(Gn,n/)dn’> do

2

2
)dn’> de.

—o/m 2 .
(/ eZdz> do = de™m | H||? oo -
sin <0 o]

2
dn’) de

))d”')2d¢'

(3.186)

(3.187)

(3.188)

(3.189)

(3.190)

(3.191)

(3.192)

(3.193)

(3.194)



ASYMPTOTIC ANALYSIS OF TRANSPORT EQUATION 29

Note that

0

& 1
/ @ @) exp(Gyy,y )dn’ < / e*dz = 1. (3.195)
n b —00

Then1 < o = V)=V < Vta)=V(1) < 1445, and for i’ € [, n+o], sin ¢’ (¢, n,7')) = sin <cosl(a cos qb)),
sin(¢’(¢,m,1n")) < m lead to cos?(¢'(¢,m,m’)) > 1 — m?. Thus, one has

2 A / 2 _1 2
|sin¢:\/1—(3052¢=\/1—008 qbo([f’”’”)g a a+m (3.196)
1+40)2—1+m?
< v+ U)a +m < V90 + m?2.

Hence, we can obtain

I < |HI2 / 10,d6 < | H|2e e / 1 cin < vy 06 (3.197)
sin <0 sin <0

<4+v/90 + m2||HHiooLm.

Step 3: The case of sing > 0 and |E(n, ¢)| > 1.

S n

. exp(Gyy — Gy e )dn' + / oo exp(—Gyp)dn (3.198)

nt

Alh(9)] = /

+

= / exp(Gyy — Gy e )dr)
n

" "
+ (/ . exp(Gr .y — Gy ) + / . .exp(Gn,n/)dn’)
7

+ n+

=1 + Is.
Then I; can be treated as in Case I and I3 as in Case III. Hence, it is already well-treated.

Summarizing all three cases, we can choose small o and m to guarantee the relation (3.182). (]
3.2.3. Estimates of e-Milne Fquation. The difference z = f — f, satisfies the following equation

Sin¢%*F(n)COS¢gf;+z = zZ+S6,
! 2(0,6) =p(¢) = h(¢) — feo for sing >0, (3.199)
limy o0 (1, ¢) 0.

Lemma 3.11. Assume (3.11) and (3.12) hold. Then there exists a constant C' such that the solution of
equation (8.199) verifies

M
2/l poe oo < C<1 + M+ L+ ||z||L2L2>. (3.200)

Proof. Before giving the proof, we first show the following important inequalities for all function [ such that

L

120l < WUllpeges 17 e < oo (3.201)
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It could be directly derived by Cauchy’s inequality as follows:

1. = /O ) (;ﬁ)z( [ ’ l(n,¢)d¢>2dn (3.202)

< /0 T | 7;12(7777;>)d¢dn= /0 N / 2(5, @)y = 122 5,

2 2
— _ 1 ™
15 = (swwitn) =su (5 [ ttn.01a0) (3209
n n T™J—n
< Lo [ Ponoyas= 22
< g s [ P = 5l -

Then z can be rewritten along the characteristics as follows:

z(n, ¢) = Alpl + T[(2 + S)(n. 9)]. (3.204)
Then by Lemma 3.10 and (3.201), for sufficiently small §, we can show that
||~’4[pH|L°°L°° < ||p||L°° ) (3.205)
and
1712+ 810 < O06) (Wll + 1ST5ssa ) +6( Dol +1S0ms ) (3.206)

< c<6>(||zL2Lz n ||S||L2Lz> n 6(||z||LwL2 " ||S|LW)~
We can directly get
Vol e < 200 ALl e g+ [TTE + S e o (3.207)

< 2 pllm + c<a>(||z||L2Lz " ||S||W) n 6(|z||m2 n ||S|W).

By taking 6 = 1/2, there exists a constant C' independent of ¢ such that

20l Lo 2 < C( 1Pl poe + 112l L2z + (151 22 + S||L°°L°°)' (3.208)
Therefore, based on Lemma 3.9, (3.113), (3.201) and (3.208), we can achieve
12l oo oo < AP oo + T2 + STl oo o (3.209)

< C( 1Pl + 2l + ||S||LmLm)
< c( 1Pl + 151 e g + |z||m2)

< c( 9l + 180 e e + 18] pags + |z|m2)-

where C' is independent of .
Since ||pll ;o5 1S 22 1SN poo foo @0d ||2]| 22 are finite, we can yield that z satisfies (3.200). Then the proof
of Lemma 3.11 is completed. O

Combining Lemma 3.11 and Theorem 3.5, we deduce the main theorem.

Theorem 3.12. There exists a unique solution f(n, ) to the e-Milne problem (3.8) satisfying

1 = fooll poo o < C<1 + M+ ]\;) (3.210)
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3.3. Exponential Decay. In this section, we prove the spatial decay of the solution to the Milne problem.

Theorem 3.13. Assume (3.11) and (3.12) hold. For Ky > 0 sufficiently small, the solution f(n, @) to the
e-Milne problem (3.8) satisfies

€507 (f = foo)|| poo poo < C<1 + M+ A;) (3.211)

Proof. Define Z = 0"z for z = f — f.. We divide the analysis into several steps:

Step 1:
We firstly obtain the weighted |||, 2 - estimate of the difference f — fo. That is, there is some constant K
is small enough such that

[e’e] T 2
Z|20,0 = 2Kon L B) — foo)2dod 0(1 M M) . 3.212
1230 = [ [ (1.0) - fupastn < (14004 (3212

—T

As a consequence, it also holds that

M
[€%°"(q = goo0)]| oo < C’<1+M+K). (3.213)

The proof of (3.212): The orthogonal property (3.31) reveals

(f, fsing)s(n) = (r,rsing)s(n). (3.214)
Multiplying e2%07 f on both sides of equation (3.8) and integrating over ¢ € [, T), we obtain

1

L e (e”fo”@zrsm ¢>>¢(n)> (3.215)

LS, o) = 5 30 (P rsinol(n)) - ;

- 0 Katrrsin o) — (7)) ).
For Ky < 1/2, we have

r(n, )32 - (3.216)

o w

2 r 2 < —~Ko(r,rsing)g(n) + (r,r)o(n) <

Let Ky < min{1/2, K}, similar to the proof of Lemma 3.2 and Lemma 3.3, formulas (3.215) and (3.216)
imply

o] M 2
HeKo”rHQLQL2 — / 0 1) g (n)dn < 0(1 + M + K) : (3.217)
0
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From (3.217) and Cauchy’s inequality, noticing g = foo, we can deduce

/ me%"( | " (F0) - foo>2d¢)dn (3.218)

/ 2Kon(/ r?(n, ¢)d¢> dn + /000 eQKOW(/Z(q(n) _ qoc)2d¢> dn
< [T e ay

o) 00 2 00
" / K( / |F<y>|r<y,->||L2dy) dn+ / K( JAETSI dy> dn
n n
M 2 00 ) o0
<C<1+M+K) +c</ 2o ||r(n, )7, dn)( / e2fo=v) p2(y )dyd77>
0 n

o0 [e'e) 2
v/ K( / ||s<y,~>|mdy) an
n

<cf1sm+ ]‘;) wo( [T el an) ([T o)

) (o) 2
+f K( / ||S<y,'>|mdy> dn
n

M\ 2
< 1 — | .
<c(1+ar+ 5

This completes the proof of (3.212). From the proof of Lemma 3.3, one gets that

HeK‘m q— qOO)HLoo
< e [l dn| e [T d
n [,oo n Lo
<|( [ rwa) (] e2K0y|r<y,->||izdy> ’/ 5 1Sy, ) | dy
n n ! .

M
< 1+ M+ —).
_C<+ —|—K>

This shows (3.213) when S = 0. Noting that all the auxiliary functions constructed in Lemma 3.4 satisfy the
estimates (3.212) and (3.213), then we can extend above L? estimates to the general S case by the method
introduced in Lemma 3.4.

Step 2:
We consider the decay rate of f — fo, w.r.t. the spatial variable . By a similar argument as before, we can
easily show that there exists Ky small enough such that

e Apl|| o < 1P Lo - (3.219)
and the integral operator 7 satisfies
[ e T 1H Moo e

where C' is a universal constant independent H. With these estimates and Lemma 3.10, we will obtain

< CllH| oo oo (3.220)

M
121l poe o SC(1+M+K+||Z||L2L2>. (3.221)
Proof of (3.221): Z satisfies the equation

sin ¢68§ + F(n) cos qbg—i +7 = Z4eKons§ 4 KysingZ,
20,6) = p(@) = h(@) — fo for sing >0,

(3.222)
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Since we know

Z = Alp| + T|Z + e5"S + Ky sin ¢ Z], (3.223)
then by Lemma 3.10, (3.201), we can show
| T1Z + e5o"S + Kosin¢Z]||, .. .» (3.224)

< c<5><\|z L ekong 4 K0Z||L2L2> n 5<||z L efog 4 KOZHLOOLOO>
< CO) (121210 + 1678 2+ Kol 215212

+ 5<||Z||LOOL2 + (|07 oo oo + KOIZILmLm)

Therefore, based on Lemma 3.8 and (3.206), we can directly estimate
1Zll e g2 < 20 [|Ap]ll o + || T1Z + 5078 + Kosin ¢ Z] || -

<27 [pl =~ +C(5) <||Z||L2L2 + HGKO"SHLsz)

+ 5<||Z||L°°L2 + [l o e + K0||Z||L°°L°°>'
By taking 6 = 1/2, we obtain
||Z||L°°L2 S C( Hp||L°° + HeKonSHLsz + HeKO"?SHLOOLOQ + ||Z||L2L2 + K0Z|L°°L°°>' (3225)
Then based on Lemma 3.8, Lemma 3.9, Lemma 3.10 and (3.213), we can deduce
12 oo poo < [|"TAD]]| oo poo + |TTZ + €518 + Ko Z]|| oo ) (3.226)
< ||P||L<x> + HZHLOOLOO + HeKOnSHLWLoo + K0||Z||L°°L°°
< Npllpoe + 1211 poe 2 + [|U€™07S| o + Kol 2 oo
M
<0 M+ 30+ C(1Zlge + Kol Zl - ).

Taking K sufficiently small, this completes the proof of (3.221).

Combining (3.212) and (3.221), we deduce (3.211). |
3.4. Maximum Principle.

Theorem 3.14. The solution f(n,¢) to the e-Milne problem (3.8) with S = 0 satisfies the mazimum
principle, i.e.

Jmin h(8) < f(n.6) < max (). (3.227)

Proof. We claim it is sufficient to show f(n,¢) < 0 whenever h(¢) < 0. Suppose this claim is justified.
Denote m = mingn ¢>0 h(¢) and M = maxsin >0 h(¢). Then f! = f — M satisfies the equation

of! o1 i
sing—— — F(n)cosp—+ f1 =1 = 0,
on ¢ : (3.228)
fH0,¢) = h(¢)— M for sing >0, :
limn—>oo fl(nv ¢) = folo

Hence, h — M < 0 implies f! < 0 which is actually f < M. On the other hand, f2 = m — f satisfies the
equation

singb%f; fF(n)cos¢a—2 +f2-f = o,

0
’ £2(0, ) m — h(¢) for sing >0, (3.229)
limy, 00 f2n0) = fZ.
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Thus, m — h < 0 implies 2 < 0 which further leads to f > m. Therefore, the maximum principle is
established.

We now prove if h(¢) < 0, we have f(n,¢) < 0. We divide the proof into several steps:

Step 1: Penalized e-Milne problem in a finite slab.
Assuming h(¢) < 0, we then consider the penalized Milne problem for ff(n,¢) in the finite slab (1, $) €
[07 L] X [_777 71')

ofy

AfE —l—silrl(b(,)—?7 — F(n) cos¢

ar

FE(0,¢) = h(¢) for sing <0, (3.230)
L, ¢) = fEL,Re).
In order to construct the solution of (3.230), we iteratively define the sequence {fL}°_, as f& =0 and

L 0 . 0 . L L
Afm+81n¢87m_F(n)cos¢87$+fm_ m—1 = 07

n
fE0,6) = h(g) for sing <0, (3.231)
fa(L.¢) = fr(L,Re).
Along the characteristics, it is easy to see we always have f£ < 0. In the proof of Lemma 3.2, we have shown
[k converges strongly in L*°([0, L] x [—m, 7)) to fi which satisfies (3.230). Also, f satisfies
14+ A
10 e e < 7 Bl e (3.232)
Naturally, we obtain f& € L2([0, L] x [—m, 7)) and ff <o0.

Step 2: e-Milne problem in a finite slab.
Consider the Milne problem for f¥(n, ¢) in a finite slab (1, ¢) € [0, L] x [—, )
L L
sinc;ﬁai - F(n)cosgba— +fE—fF = o,
on 09 3.233

FH0,6) = h(g) for sing <0, (3.233)
fHL,¢) = [HL, Re).

In the proof of Lemma 3.2, we have shown fZ is uniformly bounded in L?([0, L) x [—, 7)) with respect to A,

which implies we can take weakly convergent subsequence f& — fL as A — 0 with fL' € L2([0, L] x [, 7)).
Naturally, we have f&(n,¢) < 0.

Step 3: e-Milne problem in an infinite slab.
Finally, in the proof of Lemma 3.3, by taking L. — oo, we have

fE—=f in L}.(0,L) x [-m,7), (3.234)

where f satisfies (3.8). Certainly, we have f(n, ¢) < 0. This justifies the claim in Step 1. Hence, we complete
the proof. O

Remark 3.15. Note that when F' = 0, then all the previous proofs can be recovered and Theorem 3.12,
Theorem 3.13 and Theorem 3.14 still hold. Hence, we can deduce the well-posedness, decay and maximum
principle of the classical Milne problem

d _
Sin%%Jrf—f = S, ¢),
f(0,¢) = h(¢) for sing >0, (3.235)
hmﬁ->©© f(777¢) = foo
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4. REMAINDER ESTIMATE
In this section, we consider the remainder estimate of the equation
e -Veyutu—u = f(Z,40) in Q,
{ u(Zo, W) = g(Zo, W) for &€ I and @ -7 < 0. 4.1

Let the measurable functions be defined on a.e. Q x S'. The Lebesgue spaces of measurable functions on
Q) x 8t are denoted by LP(Q x 8'),1 < p < co. These spaces are complete with respect to the norm

1/p
11l Looxsty = |f (&, @)|" dwdz ) (4.2)
Q.Jst
and L2(Q2 x 8') is a Hilbert space with scalar product
(1:9) = (f.g)ras = [ [ fodiiaz. (4.3)
In particular, the L? and L* norms are defined as follows
) 1/2
s = ([ [ 1. asaz) (44
QJst
[fll e @xsty =  sup  [f(Z @)|. (4.5)
(Z,0)EQx S

Let ds be the Lebesgue measure on 92, then we consider the trace spaces LP(T") for p > 1 endowed with the
norm

1/2
1l ooy = ( [ w)fdg) , (4.6)

1/2
ey = ([ 1@ 0P ag) (47)

where d§ = | - 7i(x)| dsdw. At the same time, the L norm of the function on the boundary is defined as

[y = sup [f(Z,7)], (4.8)
(Z,w)el’

[fllpeerey = sup  [f(Z,D)]. (4.9)
(#,w)elr+

In what follows, we would show the well-posedness of the solution to (4.1).

4.1. Preliminaries. In order to show the L? and L™ estimates of the equation (4.1), we start with some
preparations with the penalized neutron transport equation.

Lemma 4.1. Assume f(%, @) € L*°(Q x S') and g(Zo,w) € L>®(T) with Ty € 0. Then, for any X\ > 0 and
€, there exists a solution uy (%, W) € L>=(Q2 x SY) of the penalized transport equation

Auy +ew - Vauy +uy = f(ilﬁ) m QXSI,
(4.10)
uy = gon ONxS!, W-7<0,
which satisfies the following bound
luall o (@xsty < N9l ooy + I1f Il g (1 - (4.11)
Proof. The characteristics (X (s), W (s)) of the equation (4.17) which goes through (Z, @) is defined by
dX dw
)y, W

which implies

X(s) =&+ (eW)s, W(s) = . (4.13)
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Hence, we can rewrite the equation (4.17) along the characteristics as
ty
un(Z, @) = g(& — ety @)e~ 1HNb 4 / F(&@ = e(ty — ), w)e~ TN t=9) g, (4.14)
0

where the backward exit time t; is defined as

tp(Z, W) = inf{t > 0: (¥ — etwd, W) € T~ }. (4.15)
Then, since ¢, > 0, it gives the following estimate
1 — eI+t

1+ A
< gl poe o=y + 1f [ oo (oxesty -

Ju (%, @)| < e”1TV0 190l oo (r-) + [Nl oo (2 s) (4.16)

Since uy can be explicitly traced back to the boundary data, the existence of the solution to the equation
(4.17) naturally follows from the above estimate. O

Lemma 4.2. Assume f(Z,@) € L>(Q x S') and g(Z,@) € L>=(T') with & € Q. Then, for any X > 0 and
€, there exists a solution uy (%, W) € L>=(Q2 x SY) of the penalized transport equation

{ Muy 4 €@ - Vauy +uy —ay = f(Z,0) in QxS 417)
uy = gon xS, ¥W-7<O0,
which satisfies the following bound
losllmaxsty < S5 ( 1flimqaxsty + lollimeey ) (1.18)
Proof. We define an approximating sequence {u’f\}z‘;o, where u§ = 0 and
{ M el - Vouk +uk = @ 4 f(70) in QxS (419)
uf = g on 90 xS! and @7 < 0.
By Lemma 4.1, u}, is well-defined and
Hu}\HLOO(QxSl) <9l poe o=y + 1l Lo (axcs1) - (4.20)
We define the difference v* = u§ — w5~ for k > 1. Recall (1.2) for o*, then v* satisfies
{ P 4+ el - Vook 408 = o lin Q x ST, (421)
vy = 0 on 90 xS! and @7 < 0.
Since H@kHLm(stl) < HkaLm(stl), we naturally have
[0 ety € T 17 ety € g 1 i - (122)

Thus, (uf)$2, is a contraction series for A > 0. Since v! = u}, by combining (4.20) and (4.22), it easily
deduces

k o ([ 1+A
Hu HLOQ(QXSI) < Z HU HLoo(QXS1) < B\ (HgHLOO(F*) + ||f||L°°(Q><Sl)) . (423)
k=1
Let k — oo, we get the existence of the solution to (4.17). This completes the proof of Lemma 4.2. ]

From (4.17), the bound of the solution depends on A. Then we can not get the solution of the equation
by letting A\ tends to zero. So, we need to show a uniform estimate of the solution to the penalized neutron
transport equation (4.17) with respect to A.
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4.2. Uniform L? Estimate. We recall the following Green’s Identity, which could be found in [2, Chapter
9] and [3].

Lemma 4.3. (Green’s Identity) Assume f(Z, ), g(Z,@) € L*(Qx S') and @ -V, f, @ -V,g € L*(Q x S')

with f, g € L?(T). Then
// ((IU Vaf)g+ (@ ng)f> d@dw = / fodv, (4.24)
QxS?t T

where dy = (@ - 7)ds on the boundary.
We firstly give the uniform L? estimate of the hydrodynamic part of the solution.

Lemma 4.4. The solution uy to the equation (4.17) satisfies the uniform estimate

€ ||a>\||L2(stl) <C) ( [Jux = ﬂAHm(stl) + ||f||L2(Q><$1) te HU/\||L2(F+) te ||g||L2(F—)>a (4.25)
for0<A<land0<e<1.

Proof. From Lemma 4.2, it is nature that uy € L?(Q x S!) as well as uy € L?(T"). It follows that @ - Vuy €
L?(Q x 81) from the equation (4.17). Then, for any ¢ € L?(Q x S!) satisfying @ - V¢ € L?(2 x §t) and
¢ € L*(T), we have

//QXSIU,@—I—E/u,\quv—e//QXSI (W-Vz0)+ //QXSIu,\—u,\qS //stl . (4.26)

Similar to [13], it needs to choose a particular test function ¢. We define {(Z) on 2 satisfying

Al = uy in Q,
(4.27)
¢ = 0 on 09.
Based on the standard elliptic estimate, we have
||C||H2(Q) <C(©) ||ﬂ>\||L2(Q) : (4.28)
The test function is defined as
b= —1-Vyl (4.29)
Naturally, we have
181l 1.0y + 19l Lo ) < C ISl a2y < C() [[aallp2(q) - (4.30)

We can decompose

For the first part, we have

—€ //stl (’LB . V;cd))a)\ = E/‘/QXS1 Uy <1U1(1U1811< + 1U2812C) + wg(w1812C + w2822C)) (432)

= 6// uy <w%311C + 2wiw012 + w§322C>
Qx8St

= GW/QﬁA(auC-i-anC)

_ 2
en HUA”LZ(Q)

12
= 56 ||U/\||L2(Qx51)'

On the other hand, Holder’s inequality and the elliptic estimate imply

(W Vo) (uxr —un)| < C(Q)ellux — uxll2ou sy 1€l 20 (4.33)

QxSt
< C( Qe flux — uall2oxsny 1all 2o st) -
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Based on (4.28), (4.30), the boundary condition of the penalized neutron transport equation (4.17), the trace
theorem, Holder’s inequality and the elliptic estimate, we have

1/2 1/2
i U,\¢d7’<6( / de) ( / |¢2dv) (4.34)
N N N
< cm)e( liall s, + ||g||m>) NP

UL o fleeed

QA |lur — UAHL2(Q><81) HU/\||L2(51><81)7

I - ums] < O@) lux = il aaess) 0l e (4.36)
X

[ 6] < Coluslisns s (431)
QxS
Collecting terms in (4.32), (4.33), (4.34), (4.35), (4.36) and (4.37), we obtain

ellanllL2xsy < C(Q) ((1 e+ A) Jux — aall L2 oxsn (4.38)

+ bl + I lxaxsn + <ol ),
So we get the desired uniform estimate with respect to 0 < A < 1. O

Theorem 4.5. Assume f(Z, @) € L*(Qx SY) and g(Zo,w) € L2(L'™). Then for the steady neutron transport
equation (4.1), there exists a unique solution u(Z,w) € L?(Q x S*) satisfying

1 1
Hu||L2(Q><81 < C(Q)(eg ||f||L2(Q><Sl) + 172 |9L2(r))- (4.39)
Proof. In the weak formulation (4.26), we may take the test function ¢ = u) to get the energy estimate
2 1 2 _ 2
Mluallzzoxsty + 56/ [uxl”dy + [lux = @xllz2(0xs1) = // fux. (4.40)
r QxSt

Hence, this naturally implies

1 2 _ 2 1 2
5¢ HU/\”LZ(N) + flux — u>\||L2(Q><81) < ’// f“/\’ + 7€ HgHL2(F*)' (4.41)
Qx St

On the other hand, we can square on both sides of (4.25) to obtain
(4.42)

_ 2 _ 2 2 2 2
E sl 2aqst) < C@) ( ix — a2 sty + 12 oty + € lualaqer, + € ||g||L2<F)).

Multiplying a sufficiently small constant on both sides of (4.42) and adding it to (4.41) to absorb Hu>\||ig(ﬁ)

a'nd ||U)\ - 'l_j‘AH%Z(stl), we deduce

2 2 _ 2
ellunllzzrsy + € llanllzzoxsty + lux = @rllzzoxst (4.43)

@) (Uugsn | [ | +ellleey )
OxSt
Hence, we have

2 2 2 2
€ ||U/\||L2(r+) +é? ||u>\||L2(Q><81) <CQ) ( ||fHL2(stl) + ‘ //Q o fu,\‘ te ||9||L2(r)>~ (4.44)
X
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A simple application of Cauchy’s inequality leads to

1 9 )
//Q st fu)\ S m||fHL2(Q><31)+CEQHU/\”L2(Q><SI)' (4.45)
X

Taking C' sufficiently small, we can divide (4.44) by €2 to obtain

1 2 2 1 2 L, 2
p luallzzrsy + lluallz2oxs2y < C(2) <64 1Lz (xs2) T p |9|L2(r)>- (4.46)

Since above estimate does not depend on A, it gives a uniform estimate for the penalized neutron transport
equation (4.17). Thus, we can extract a weakly convergent subsequence uy — u as A — 0. The weak lower
semi-continuity of norms ||-[| ;2 g2y and [|-||2(p+ implies u also satisfies the estimate (4.46). Hence, in the
weak formulation (4.26), we can take A — 0 to deduce that u satisfies equation (4.1). Also uy — u satisfies
the equation

€W Vy(uy —u)+ (uy —u) — (G — @) = —Auy in Q, (4.47)
(ux — u)(Zo, W) = 0 for Zy €I and @ -7 < 0. ’
By a similar argument as above, we can achieve
2 A 2
lux = ullzz@xs2y < O  lluallzzaxse) |- (4.48)
When A — 0, the right-hand side approaches zero, which implies the convergence is actually in the strong
sense. The uniqueness easily follows from the energy estimates. (|

4.3. L*>° Estimate.

Theorem 4.6. Assume f(Z,w) € L>®(Q x S') and g(Zo,w) € L>(I'~). Then for the neutron transport
equation (4.1), there exists a unique solution u(¥,w) € L (2 x S) satisfying

1 1
Hu||L°°(Q><81) <CQ) <€5/2 ||fHLoc(stl) + . ||9||Loo(r))~ (4.49)

Proof. We divide the proof into several steps to bootstrap an L? solution to an L solution:

Step 1: Double Duhamel’s iterations.
The characteristics of the equation (4.1) is given by (4.12). Hence, we can rewrite the equation (4.1) along
the characteristics as

ty
(@, @) = g(F — ety, H)e " + / F(@ = e(ty — 8)0, @)e~ =) ds (4.50)
0

A
+ = (/ u(Z — e(ty — $)W, zﬁt)du_)'t>e(tbs)ds.
S1

2T 0

where the backward exit time t; is defined as (4.15). Note we have replaced @ by the integral of u over the
dummy velocity variable w,;. For the last term in this formulation, we apply the Duhamel’s principle again
to u(Z — e(tp — s)W, W) and obtain

ty
u(Z, W) = g(F — ey, w)e " + / F(& = e(ty — s)w, w)e” B *)ds (4.51)
0

ty
— / g(Z — e(ty — )W — espy, wt)efsbdwte*(tbfs)ds
2w 0 St

1 tp sp
+ o= / / (/ (% — ety — s)W — e(sp — 7)Wy, wt)e_(sb—T)dr) die— =9 ds
21 Jo Js 0

1 ty Sp
+ 72/ / e (to=9) (/ / e_(sb_r)u(f — €ty — )W — €(sp — )Wk, zﬁs)dtﬁsdr) dw,ds,
(2m)2 Jo Js 0o Jst

where we introduce another dummy velocity variable Wy and

sp(Z, W, s,W;) = inf{r > 0: (F — e(ty — $)W — erwy, ) € I }. (4.52)
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Step 2: Estimates of all but the last term in (4.51).
We can directly estimate as follows:

|9(Z — etyd, D)e™"| < [|gll oo (r- » (4.53)
I
%/0 /51 g(Z — €e(ty — 8) — esyly, Wy )e v dwe™ P *)ds| < [P (4.54)
ty
; f(@ — ety — s)d, w)e” " =)ds| < 11l Lo (2xs1) - (4.55)
(4.56)

< 1l @xsty -

/ / (/ f b - S) - €(Sb - T)wt, wt)e_(sb_")dr) du—}*te—(tb—s)ds
o2 St

Step 3: Estimates of the last term in (4.51).
Now we decompose the last term in (4.51) as

T A A A B Y A5 A Y AV A S

for some 6 > 0. We can estimate I; directly as
ty 7(t B ) Sp
|| < / o (tv—s (/ [l oo (251 dr)ds < 0|l oo (ox sty - (4.58)
0 max{0,s,—8}
Then we can bound I, as

(4.59)
ty max{0,s,—5}
I < / / / / lu(Z — e(ty — 8)i0 — e(sp — 1), )| e~ P~ e= (=) 44, drdad,ds.
o JstJo St

By the definition of t, and s;, we always have & — e(t, — 8)w — €(sp — r)w; € Q. Define s’ = €(t, — s) and
r’ = e(sp — r). Hence, we may interchange the order of integration and apply Holder’s inequality to obtain

(4.60)
L] < = / /1/ { }/1 1o(& — ' — ', )e ™ /< |u(Z — §' 0 — 110, @) e/ diiydr’ deb,ds’
S emin{d,sp S
c 1/2
<= —5/6(/ / / 1o(Z — "0 — ') |u(Z — s'@0 — 'y, W) dwtdrdws>
€ Jo St Jemin{éd,sp} J St

1/2
X (/ / / 1(% — s'w — r'wy)e 2" /Edd)’tdr'dzﬁs> ds’.
S' Jemin{d,sp} /St

We may write it in a new variable ¢ as w; = (cos),sint). By the change of the variable [—m, 7] x R' — Q :
(,1) = (y1,y2) = T — s'W — 1’1y, i.e.

= z1 — s'wy — 1’ cosp,
{ Y1 1 / 1 - (0 (4.61)
Yo = xo— swe — 1’ siny.
Therefore, for ' > §, we can directly compute the Jacobian
O(y1, —r'siny cos
Orga) | _ || —rsing cosv i, 5 (4.62)
a(Y,r) r’cost) sin
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Then we may further utilize Cauchy’s inequality and the L? estimate of u in Theorem 4.5 to obtain we get

C ety vy €sy oy ) 1/2 )
|[Io| < 62\/5/0 e " s”u”LQ(QXSl) (/ s }e r Edr) ds (4.63)
emin{d,sp

C
< N [ull 251

Q) /1 1
< N3 (65/2 £l L2 xs1) + < ||9||L2(r—)>
_ @

1 1
> \/g EE)W||fHLOO(Q><Sl)+g||g||L°°(F*) .

In summary, collecting (4.53), (4.54), (4.55), (4.56), (4.58) and (4.63), for fixed 0 < ¢ < 1, we have

cQ) /[ 1 1
5 (65/2 11l oo (xesty + < ||9||Loo(r—))- (4.64)

) and absorbing [|ul|;«(qxs1), for fixed 0 < < 1/2, we get

[u(@, W)| < 0|l oo (ons1) +

-

Taking supremum of u over all (Z,

1 1
HUHLOO(QXSl) < C(Q) <€5/2 ||fHL<>c(stl) + . ||g||L°°(F—))' (4.65)

5. DIFFUSIVE LIMIT

The proof of 1.1 We divide the proof into several steps:

Step 1: Remainder definitions.
We may rewrite the asymptotic expansion as follows:

oo oo oo
ut ~ Y FUE Y U+ Eul . (5.1)
k=0 k=0 k=0

The remainder can be defined as

N o] o)
Ry =u = FU=> Fuf, - éuw ) =u—Qn—2,n—2_n, (5.2)
k=0 k=0 k=0
where
N
Qv = Y _ €Uy, (5.3)
k=0
N
2y n=> Fus,, (5.4)
k=0
N
2 n=) fuc,. (5.5)
k=0

Noting the equation (2.42) is equivalent to the equation (1.1), we write £ to denote the neutron transport
operator as follows:

Lu=ewW-Vyu+u—1u (5.6)
ou € ou Ou
= £sinpg— — —— cos — 4+ — | +u—u.
gbaﬁi Ry Fens ¢(3¢ 39)

Step 2: Estimates of LQ .
The interior contribution can be estimated as

LQo = e - VoQo+ Qo — Qo = e - V.U + (Us — Us) = ew - V,Us. (5.7)
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We have
lew - V,Us| < Ce |V, US| < Ce. (5.8)
This implies
|ILQo| < Ce. (5.9)
Similarly, for higher order term, we can estimate
LOQn = el -V, Qn +Qn — Qn = Vi - V, U (5.10)
We have
[N - VUS| < CENTH IV, US| < CeNFL (5.11)
This implies
ILQN| < CeNTL (5.12)

Step 3: Estimates of L2 n.

The boundary layer solution is % = (fL j, — f§ x(00)) - 1o = V4 ko where fS ; (14,0, ¢) solves the e-Milne
problem and %4 j, = fj[ kT f; 1 (00). Notice 1p1) = 1, so the boundary layer contribution can be estimated
as

LDy, (5.13)
=+ Sln¢ 8 PR :liﬁﬁi cos¢<a°§;’0 + 5?;,0) +210— 210

== Sln¢<¢0 Do + "ﬁ:,o?jﬁ) - 7]%:62;& COS¢<aZZO + 8?5’0) + 100 — Y0 V0

= *sing <1/10 87/310 + 7 g:fi) Rfojg};& cos ¢ <6ZZO + 8?5 O) + 100 — Y0V 0

- 1/)O<j:sin¢ T ?feni cos 62 % O 4 Wy 74,0) isin%nii”f/ﬂ - R;ioini cosﬂ"f@%,o

= +sin qﬁ%“/@ao — R;/;Seeni cosd)angjo

Since 19 = 1 when 1y < 1/(4€)(Ry+ — R_), the effective region of 0,1 is n > 1/(4€)(R; — R_) which is
further and further from the origin as e — 0. By Theorem 4.13 in [13] and Theorem 3.13, the first term in
(5.13) can be controlled as

0
isiwﬂ”f/ﬂ < e (5.14)
o+
For the second term in (5.13), we have
11)06 8”//i 0 aqf/:l: 0
— =< | < C. 1
‘ Ri$€nic0s¢) 50 < Ce 50 < Ce (5.15)
This implies
L2+ 0| < Ce. (5.16)
Similarly, for higher order term, we can estimate
024+ N 024N =
Ly N = Lan € : : IR, 5.17
LN = squ o0y R Ton cos ¢ 90 + 20 + 2L N +,N ( )
Z 5111(;5 Yo cos¢87/i’N
= € ~ V+i— .
T Ry Fent 00
Away from the origin, the ﬁrst term in (5.17) can be controlled as
N
- 0
> €'sin ¢ﬂ7fﬂm < Ce N+ (5.18)
i=0 O+
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For the second term in (5.17), we have
’(/J()€N+1

Ry Feng

0V N

aViN N-‘rl
=N <
0s ¢ 50 ‘ < Ce 20

‘ < CeNHL (5.19)
This implies
|IL2y| < CNTL (5.20)

Step 4: Diffusive limit.
Proof of (1.12). In summary, since Lu® = 0, collecting (5.2), (5.12) and (5.20), we can prove

|ILRy| < CeN T (5.21)
Consider the asymptotic expansion to NV = 3, then the remainder Rj3 satisfies the equation
ew-V,R3+ R3 — R3 = LR3 for ¥ €9, (5 22)
Rs3(Zy, W) = 0 for W-i <0 and ZH € ON. ’
By Theorem 3.6 in [13], we have
c©) c(©)
||R3||Loc(g><$1) < W ||£R3HLOO(Q><$1) < 572 (064) < C(Q)G (5.23)
Hence, we have
3 3 3
ut =Y U =Y g, - > fucy, = O(e). (5.24)
k=0 k=0 k=0 L>(QxS81)

Since it is easy to see

3 3 3
STEUS > us +> ey, =0(e), (5.25)
k=1 k=1 k=1 Loo(QxS1)
our result naturally follows. This completes the proof of (1.12).
Step 5: Counterexample of the expansion.
Proof of (1.13). Tt is divided it into the following steps.
(1). The classical Milne problem.
By (2.28), the solution fi ¢ satisfies the Milne problem
. 0 =
+sin(6 + f)% +fro—fro = 0,
f£0(0.0,6) = g£(6,€) for Esin(0+&) >0, (5.26)
limni—mo fi,O(’r}i707£) = fi,O(OO’G)'
For convenience of comparison, we make the substitution ¢ = € + £ to obtain
o _
g E 4 p g = 0,
N+
f£0(0,60,6) = g:(0,9) for +sing >0, (5.27)
limni—ﬂ)o fi,O(’r}i707¢) = fi,O(Oovo)'
Assume (1.13) is incorrect, i.e.
lim |(Uo+ U0+ U-0) — (U5 + U o+ U )| o =0 (5.28)

Since the boundary g+ (¢) independent of 6, by (2.28) and (2.53), it is obvious the limit of zeroth order
boundary layer fi o(00,6) and f (00, 0) satisfy fi o(c0,0) = Cx ;1 and fS ;(00,8) = Cx o for some constant
Cx,1 and C o independent of 6. It is easy to see C; 1 = C1 2 = 0. By (2.29) and (2.54), we can derive the
interior solutions are smooth in the domain Q. Hence, for |n_| < € we may further derive

lim [| (/- 0(00) +%-0) = (< (00) + %5 )| o = 0. (5.29)
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For 0 <17 < 1/(2¢)(Ry—R_), we have ¢yp = 1, which means f_ o = %_ o+f_ o(00) and f€ = % o+ f< 5(o0)
on [0,¢]. Defineu = f_o+2,U = f£ ;+2and G_ = g_ +2 = cos ¢+ 2, using the substitution and notation
in Section 3, then u(n, ¢) satisfies the equation
0
Sinqba—u—i—u—ﬁ = 0,
u(0, @) G(¢) for sing >0, (5.30)
hmn—H)O U(Wv Qf)) 2+ fo(OO)7

and U(n, ¢) satisfies the equation

. ou ou —
s1n¢a—an(e,n)cos¢%+U7U = 0,

U0,¢) = G(¢) for sing >0, (5.31)
lim, o U(,6) = 2+ f5(00).
Based on (5.29), we have
tim U, 6) — u(y, 6)] = = 0. (52)
Then it naturally implies
lim [T (n) — a(n)]| . = 0. (5.33)

(2) Continuity of 4 and U at n = 0.
For the problem (5.30), we have for any ro > 0

i) =50 < o ([ jutn0) - 0)ldo+ |

sin p>7¢

fu(n, @) — (0, 6)] d¢). (5.34)

Since we have shown u € L*°([0,00) X [—m, 7)), then for any 6 > 0, we can take ry sufficiently small such
that
1

C )

— |u(n, ¢) — u(0, p)|dp < — arcsinrg < —. (5.35)
2m sin ¢p<rg 2m 2
For fixed rg satisfying above requirement, we estimate the integral on sin ¢ > ro. By Ukai’s trace theorem,
u(0, ¢) is well-defined in the domain sin ¢ > ry and is continuous. Also, by consider the relation

ou %(0) — u(0, ¢

015 gy - SO (0.0

m sin ¢

we can obtain in this domain 0, u is bounded, which further implies u(7, ¢) is uniformly continuous at n = 0.
Then there exists dg > 0 sufficiently small, such that for any 0 < n < §y, we have

1 0

, (5.36)

1 0
— u(n, @) — u(0, ¢ d¢§—/ —d¢ < —. 5.37
27 Jan oo, lu(n, @) — u(0, ¢)] 27 Janon, 2 5 (5.37)
In summary, we have shown for any é > 0, there exists §y > 0 such that for any 0 < n < §g,
)
[a(n) —a ()| < 5+ 5 =0 (5.38)

Hence, () is continuous at 7 = 0. By a similar argument along the characteristics, we can show U (7, ¢) is
also continuous at n = 0.
In the following, by the continuity, we assume for arbitrary § > 0, there exists a dg > 0 such that for any
0 < n < dy, we have
a(0)] <o, (5.39)
|U(n) = U(0)] <6. (5.40)
(3). The e—Milne formulation.
We consider the solution at a specific point (1, ) = (ne,€) for some fixed 0 < n < 1/2. The solution
along the characteristics can be rewritten as follows:
1

sin €

1

ne
U(Tl&,e) = G(e)efﬁne + / e*m(nefn)
0

a(k)dk, (5.41)
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ne ne ne 1 _
Ul(ne,e) = G(eg)e™ Jo sini(c)dC_F/o e Ix Sm;mdcsinq&(/@) U(k)dk, (5.42)

where we have the conserved energy along the characteristics
E(n,¢) = cos g™, (5.43)

in which (0, ¢g) and ({, ¢(¢)) are in the same characteristics of (ne, ¢).
(4) Estimates of (5.41).
We turn to the Milne problem for u. We have the natural estimate

ne 1 ne 1
/ e wme (PR _—_ (g = / efi(m*”)fdn—ko(e) (5.44)
0 Sin e 0 €
B ne L1
=e "/ e« —dr + o(e)
0 €

=e" /On eSd¢ + ofe)
=(1—-e"")+o(e).

Then for 0 < € < §p, we have |@(0) — @(x)| <, which implies
1

ne ne 1
/ e L gi0d. = / e~ o= L z0van + 0(6) (5.45)
0 S1n € 0

S1n €

=(1—-e"™)a(0)+ o(e) + O(0).

For the boundary data term, it is easy to see
Ge)e™ 7" = e "G(e) + o(e) (5.46)
In summary, we have

u(ne, e) = (1 — e ™)u(0) + e "G(e) + o(e) + O(9). (5.47)

(5). Approximation of (5.42).
We consider the e-Milne problem for U. For € << 1 sufficiently small, 1)(¢) = 1. Then we may estimate

cos p(¢)e¥ ) = coseeV (), (5.48)

which implies

COS €. (5.49)

and hence

)2 —eC —
sin(¢) = /1 — cos? ¢ \/ 1 - 26)42 ne’) cos? € + sin® e. (5.50)
— ne

For ¢ € [0, €] and ne sufficiently small, by Taylor’s expansion, we have

2 —eC —ne? =2+ o(e), (5.51)
sin? e = 2 + o(€), (5.52)
cos’e =1 —€* 4 o(€%). (5.53)
Hence, we have
sin ¢(¢) = v/e(e — 2ne + 2¢) + o(€?). (5.54)
Since \/m , we can further estimate
1 _ ! +o(1) (5.55)

sin ¢(() (e — 2ne + 2()

1 _ € — 2ne + 2¢|"° _ €—2ne+2k
L G lm Y T el = | T o), (5.56)

K
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Then we can easily derive the integral estimate

ne ne ]_ ne e—2ne+2K ].
/ o I s A Qi = o1 / o/ T dk + o(e) (5.57)
0 sin ¢(k) 0 e(e — 2ne + 2k)

71 1 € \/Z 1
= 3e /( e \/7d0+0(e)

1—2n)e €0

16_1/1 eﬁldp+o()
=- — €
2 1 N

—2n

1
=e ! / e'dt + o(e)
JT=2n

= (1—eVI72) 4 o(e).
Then for 0 < € < 8y, we have |U(0) — U(x)| < 6, which implies

" =7 smeod¢ 1 U(k)dk = /nE — S e 1 U(0)dk + O(§ 5.58
/0 e U= [ U0+ 0) (5.58)

= (1 —eVI=2HT(0) + ofe) + O(5).
For the boundary data term, since G(¢) is C*, a similar argument shows
Gleo)e I o4 = VT=2n-1G (/T = 2ne) + o). (5.59)
Therefore, we have
Ulne,e) = (1 —eVI=2"1H7(0) + VT2 "G (V1 = 2ne) + o(e) 4 O(6). (5.60)

(6). Approximation of (1.13).
In summary, we have the estimate

u(ne, €) = (1 — e ™)u(0) + e "G(e) + o(e) + O(9), (5.61)
U(ne,e) = U(ne,e) = (1 — eV HT(0) + eV 2" 1G(V1 — 2ne) + o(e) + O(9). (5.62)

The boundary data is G = cos¢ 4+ 2. Then by the maximum principle in Theorem 3.14, we can achieve
1 <u(0,¢) <3and 1 <U(0,¢) < 3. Since
1 /Tr 1 1
a0) =5 [ w09do= oo [ u0.0os - [ e (5.6
(©) 27 27 sin >0 27 Jsin $<0

—T

1
= (24 cos p)do + — / u(0, ¢)de
27 sin ¢>0 27 sin <0

=924 1 cos ¢do + = / u(0, ¢)do,
sin ¢p<0

27 sin ¢>0 27

we naturally obtain 3/2 < %(0) < 5/2. Similarly, we can obtain 3/2 < U(0) < 5/2. Furthermore, for €
sufficiently small, we have

G(v/1—=2ne) = 3+ o(e), (5.64)
G(e) = 3+ o(e). (5.65)
Hence, we can obtain
u(ne,€) = a(0) + e~ "(—u(0) + 3) + o(e) + O(9), (5.66)
U(ne, e) = U(0) +eVI=2"=1 (=T (0) + 3) + o(e) + O(5). (5.67)

Then we can see lime_,q ||U(0) — 11(0)HLoo = O naturally leads to lim¢_,q H(—Q(O) +3) — (=U(0) + 3)||Lw =0.
Also, we have —u(0) +3 = O(1) and —U(0) +3 = O(1). Due to the smallness of ¢ and §, and also
e # evV1=2n=1 we can obtain

|U(ne, €) — u(ne, e)| = O(1). (5.68)
However, above result contradicts our assumption that lime_,q [|U (7, ¢) — w(n, ¢)| .~ = 0 for any (7, ¢). This
completes the proof of (1.13).
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