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Abstract

A variational model for imaging segmentation and denoising color images is proposed. The model
combines Meyer’s “u+v” decomposition with a chromaticity-brightness framework and is expressed by a
minimization of energy integral functionals depending on a small parameter € > 0. The asymptotic behavior
as € — 0T is characterized, and convergence of infima, almost minimizers, and energies are established. In
particular, an integral representation of the lower semicontinuous envelope, with respect to the L'-norm,
of functionals with linear growth and defined for maps taking values on a certain compact manifold is pro-
vided. This study escapes the realm of previous results since the underlying manifold has boundary, and
the integrand and its recession function fail to satisfy hypotheses commonly assumed in the literature. The
main tools are I'-convergence and relaxation techniques.
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A3 On the Tower Bound for A 31

1 Introduction and Main Results

An important problem in image processing is the restoration, or denoising, of a given “noisy” image. Deterio-
ration of images may be caused by several factors, some of which occur in the process of acquisition (e.g., blur
may derive from an incorrect lens adjustment or due to motion) or transmission. Variational PDE methods
have proven to be successful in the restoration process, where the desired clean and sharp image is obtained as
a minimizer of a certain energy functional. The energy functionals proposed in the literature share the common
feature of taking into account a balance between a certain distance to the given noisy image, the so-called
fidelity term, and a filter acting as a regularization of the image.

In the seminal work by Tikhonov and Arsenin [3Y], the fidelity term is expressed in terms of the L2-distance to
the noisy image, while the regularization term is given by the L2-norm of the gradient. This model suffers from
an important drawback, as an over smoothing is observed, and edges in images are not preserved. It turns out
that the L?-norm for the gradient allows the removal of noise, but penalizes too much the gradient near and on
the edges of an image. The same observation applies to any LP-norm, p > 1, and this suggests using instead
the L'-norm, as first noticed by Rudin, Osher, and Fatemi [37]. Precisely, representing by  C R? the image
domain and by ug : @ — R the observed noisy version of the true unknown image u, Rudin-Osher-Fatemi’s
model (the ROF model) aims at finding

inf {/ |Vu|dx—|—)\/ |u0—u|2dm}
uewll(Q) Q Q

ug—u€L2(Q)

or, equivalently,

min {|Du|(ﬂ)+)\/ lug — ul? dz},
Q

uw€BV (Q)
ug—u€L2(Q)

where A > 0 is a tuning parameter and BV () is the space of functions of bounded variation in 2. The ROF
model, also known as the total variation model (TV model) since the filter used is the total variation of the
image, searches functions u that best fit the data, measured in terms of the L? fidelity term, and whose gradient
(total variation) is low so that noise is removed. It yields a decomposition of the type

ug =u+ v, (1.1)

where u is well-structured, aimed at modeling homogeneous regions, while v encodes noise or textures.

The ROF model removes noise while preserving edges, and it was extended to higher-order and vectorial settings
to treat color images (see, for instance, [, I6] for an overview). However, it leads to undesirable phenomena
like blurring, stair-casing effect (see [, I6]), and it may also fail to provide a good decomposition () of the
given corrupted image as, for example, some pure geometric images (represented by characteristic functions)
are treated as noise or textures (see [83]). The reasons pointed out in literature relate to both the fidelity term

and the regularization term. In this paper, we will focus mainly on the former.

Meyer [33] showed that oscillating images are often treated as texture or noise. He proved that replacing the
L?-norm in the fidelity term by a certain G-norm leads to better decompositions. Accordingly, he suggested
the model

weEBV(Q)
u—ug€eG(R)

it {120+ Al - wlle |, 12

and we refer to Subsection B2 for a detailed description and main properties of the space G(€2) established in
[6, B3]. Meyer’s model has motivated several contributions aiming at overcoming some numerical difficulties



posed by the structure of the G-norm (see, for instance, [8, B6, &0]). Finally, we mention that the infimum in
(I22) is a minimum, but the uniqueness of minimizers is still an open problem.

When dealing with color images, the general idea of the chromaticity-brightness approach is as follows: as before,
Q) C R? denotes the image domain, while ug :  — (R(}L )3 is the observed deteriorated image, represented in
the RGB (red, green, blue) system and assumed to belong to L°°(2;R3). The brightness component, (ug)y, of
up measures the intensity of ug, is defined by

(uo)b == |uol,
and is assumed to be different from zero a.e. in 2. The chromaticity component, (ug)., of ug is given by

Ug Uo

" Juol — (uo)s

(uO)c . )
which is well defined a.e. in € and takes values in S?, the unit sphere in R3. It stores the color information
of ug. The function ug and its components are related by the identity wy = (ug)p(uo)c. The core of the
chromaticity-brightness models is to restore these two components independently. Representing by w; and u,.
the restored brightness and chromaticity components, respectively, the restored imaged is given by u := upue.

Because (ug), behaves as a gray-scaled image, to restore this component we may use, for instance, one of the
models previously mentioned. To restore the chromaticity component (ug)., we adopt Kang and March’s model
[82] using weighted harmonic maps. To be precise, we consider the problem

min ){/g(VuZ|)VuC|2dx+)\/ |uc—(uo)c|2dx}, (1.3)
Q Q

uc€EW1H2(Q;52

where ) is a tuning parameter, ug is extended by zero outside €2,

A 22
up = Go * (up)p, Go(x):= ;e_%, A>0,0>0,

is a smooth regularization of (ug)y, and g : Rf — RT is a non-increasing positive function satisfying g(0) = 1
and lim;— o g(t) = 0 (see also [IY], and the references therein, for this choice of functions g). Examples of
such functions g are

= %, g(t) := e @’ a>0.

L+ (5)
The model proposed by Kang and March in [32] is aimed at image colorization. It is assumed that the brightness
data is known everywhere in , while the color data is only available in a subset D of Q. Thus, in [32], the
second integral (fidelity term) in (I[33) is taken over D (here we assume D = ), and it forces the function u,
to be close to the chromaticity data in D. The first integral acts as a regularization functional and allows for
sharp transitions of u. across the edges of (ug), since the value of g(|Vuf|) is close to zero in the regions where
uf varies fast. To deal with the nonconvex S? constraint, in [3%] the authors introduce a penalized version of
the variational problem above, and convergence to the original variational problem as the penalty parameter
tends to infinity is established. Numerical simulations are also performed.

g(t) :

A natural question that is not considered in [BZ] is the asymptotic behavior of the variational model (I=3) as o
tends to zero. Since uy € C* () for every o > 0, it represents a smooth version of the brightness component
and, therefore, some relevant information may not be encoded in the model (I[Z3). Furthermore, it avoids a
compactness issue since, for fixed o > 0, infq g(|Vuy|) > 0 and, therefore, every minimizing sequence for ([3)
is relatively compact in W12(Q;R3).

In this paper, we deal with the denoising problem for color images by considering a model that combines the
strengths of Meyer’s decomposition, adapted to color images, with the strengths of chromaticity-brightness
models, which are preferred in literature as they are considered as reducing shadowing and providing better
simulation results (see, for example, [[7, B2, BR]). To be precise, we adopt Kang and March’s brightness-
chromaticity approach, but we avoid the smoothing step. A vectorial version of Meyer’s model is

Fo(u) := |Du| () + Mollu — uollaars)y, u € BV(QR?), u—up € GILR?), A € R



We treat the brightness component and the chromaticity component of wug separately. For the former, we use
Meyer’s model (for gray-scaled images), which leads to the functional

Fl(ub) = |Dub|(Q) + )\b||ub — (UO)bHG(Q); up € BV(Q), up — (UO)b S G(Q), PYS RT.

For the latter, we use Kang and March’s model replacing uJ by uj, assuming for the moment that u, € Wh1(Q),
and thus we introduce the functional

Fo(ue) = / g(|Vub|)|Vuc|2dx+)\c/ e — (o) dey  ue € WH2(Q52), A, € RY.
Q Q
To couple these two approaches, we set u := upu. and consider the minimization problem

in {Fo(Ub’Z,LC) + Fi(up) + Fg(uc)};
upewl1(Q),ucewl 2(0;52),
ub—(uO)bEG(Q),uofuCubeG(Q;]RS)

that is,

. 2
ubewl,l(Q),lfife.wl,z(g;sz), {/Q|v<ucub)|dx+/9V’u’b'dx—i_/f\zg('vubl)qu' d.’l?

up—(ug)p €G(Q),ug—ucup €G(QR3)

+ Ao lupte — uollgiarsy + Aollus — (wo)sllao) + Ac/ e — (ug)e|? dx}- (1.4)
Q

As stated, problem ([4) presents a lack of uniform estimates regarding the gradient of u.. To overcome this
issue, we will add a constraint for the brightness component (ug), and its test functions up, namely

(uo)p, up € o, 0] a.e. in Q, for some 0 < o < B. (1.5)

Under hypothesis (I-3), we have

a/ |Vuc\da:</ |uquc+uc®Vub|dw+/ |uC®Vub|dx</ |V(ucub)|dx+/ |Vup| dz.
Q Q Q ) Q

Consequently, if
{(uy s ul) }nen C {(ub,uc) e whi(q; [a, B]) x Wl’Q(Q; S2): up — (ug)y € G(Q), upte — ug € G(Q;RB)}

is a infimizing sequence for (), then, using the properties of the G- and BV-spaces, up to a (not relabeled)
subsequence, we conclude that there exist 4, € BV (Q; [, 8]) and 4. € BV (2; S?) such that

up 2 7, weakly-x in BV(Q), " = @, weakly-x in BV (;R?), asn — oo, (1.6)
ay — (ug)y € G(Q),  Uplie — ug € G(Q;R3),
lim FH ) u) = FFa, a.),

n—-4o0o
where
FI g, ue) = Ay |luptie — uollaams) + Aollus — (wo)slla) + /\c/ ue — (uo)e|? dz (1.7)
Q
is the sum of the three fidelity terms in (). If it turned out that u, € WH1(; [a, A]) and @, € WH1(Q; S?),
then minimizers for (Id) would exist provided that the functional given by the first three terms in (I[) (the

regularization terms) was sequential lower semicontinuous with respect to the convergences in ([Cd). This
sequential lower semicontinuity is intrinsically related to the problem of finding an integral representation for

n—oo

inf { hminf/ h(uy,u, Vuy, Vu) de: u) € WHH(Q; [a, B]), uf — up weakly in WH(Q),
Q

u € WH2(Q; 8%), u” — u, weakly in Wl’l(Q;R?’)}, (1.8)



with
h(r,s,&,m) ==&l + g(I€DInl* + s @ &+l

In general,

(&m) = h(r,s,&m) = [€] + g(|ED N + s @ & + o

is not quasiconvex. Moreover, for (r,s) € [a, 3] x S?, h satisfies the non-standard growth conditions

S0l + ) < b€ m) < OO+ 1el 4+ 1al?),

which leads us to a well-known, but poorly understood, gap problem (see [P4, PH, B4] concerning the un-
constrained setting). We also observe that the admissible sequences in ([C3) should satisfy in addition the
restrictions u? — (ug)p € G(R) and ufu? — ug € G(Q; R?) or, equivalently (see Proposition E2),

/ (uy — (ug)p)dz =0 and [ (upgul —up)dz =0. (1.9)
Q Q

It turns out to be a challenging task to construct a recovery sequence that simultaneously satisfies the manifold
constraint and the average restrictions.

In view of these considerations, to avoid the gap and to penalize deviations from average zero in ([CU), as a first
approach to problem (), we study the asymptotic behavior, as € — 0, of the problems

inf Fred U +Ffzd L) b,
<ub7uc)evv1v1(ﬂ;l[rim)le»l(Q;s2){ (g, ) + F o )} (1.10)
where
F"%9 (up, u,) ::/ \Vub|dw+/g(|Vub|)\Vuc|dx+/ |V (ucup)| dz (1.11)
Q Q Q
and
fid 1
E7"(up, ue) := Ay ||upte — ug — F (uptic — up) dz + — (upue — ug) da
o coms)  Cl/e
1
+2ullun = oo = f wn = (wo)e)da|) 42| [ (wn— (woh) o
Q ) ElJa
+/\c/ [te — (ug)e|? da. (1.12)
Q

The integrand involved in ([CT) satisfies standard growth conditions (see (ITd) below), and it remains relevant
in terms of applications to imaging. Note that the term

/ (V) [V ? da
Q

in () can be viewed as a weighted version of Tikhonov and Asenin [BY)’s regularization term mentioned at
the beginning of this introduction, while in ([CIJ) we use instead a weighted version of ROF’s regularization
term (se also [IH, T9]), namely

/g(|Vub|)|Vuc|dx.
Q

For small ¢ > 0, the functional FY' is a penalized version of the functional F/i in (IZ7) that, by means of
the factor 1, penalizes sequences {(uf,ul)}nen whose averages [,(up — (ug)y)dz and [, (uful — ug) da are
far from zero. This penalization allows us to incorporate the G-norm and the G-restrictions in our model. As



we will see, in the limit as ¢ — 0%, we will recover the functional F/** and limit pairs (up, ue) will satisfy
up — (uo)p € G(R) and upu, — ug € G(R3).

Before we state our main theorem, we introduce some notation. Regarding functions of bounded variation, we
adopt the notations in [A], and we refer to Subsection B3 for more details. Let f : RxR3 x RZ x R3*2 — [0, 4+-00)
be defined, for (r,s,£,7) € R x R? x R? x R3*2_ by

f(rys,6,m) = [+ g([&D)n| + [rn + s @&, (1.13)

where, as above, g : [0, +00) — (0, 1] is a non-increasing, Lipschitz continuous function satisfying g(0) = 1 and
lim;—, o0 g(t) = 0. Notice that

Freg(ub,uc):/Qf(ub(x),uc(x),Vub(x),Vuc(x))dx.

For s € B(0,1), we have 1|¢| + %m‘ <L+ L(m+s®8) +€]) < f(r,s,&,m), and so

1 7]
Slel+ Sl < frs, & m) < 20€] + (L[]l (1.14)
where we used the fact that g(-) < 1.

For r € R, s € §2, £ € R?, and 1) € [T5(S?)]2, where T5(S?) is the tangential space to S? at s, we denote by
Qrf the tangential quasiconvex envelope of f; to be precise (see [1J]),

Qrf(r,s,&,n) = inf { /Q Fr 8,6 +Vo(y),n+ Vi(y) dy: » € Wy™(Q), ¢ € W&’“(Q;Tsw?))}-

(1.15)
The recession function, f°°, of f is the function defined, for (r,s,£,17) € R x R? x R? x R3*2, by
0o . f T7S7t§7t .
£,y o= timsup LE2E) s (6] + (el + 1+ €]

=&l + X (o, (€D Il + [rn + s @ €], (1.16)

where x(t) :=1if t =0 and x(¢) := 0 if ¢ € R\{0}, because ¢g(0) = 1 and \ ligl g(t) = 0. Note that

— 400

[y s,6m) < B+ B)IE ) (1.17)

for r € [a, ], s € S%, € € R?, and n € [Ts(5?)]?. The recession function, (Q7f)>, of Qrf is the function
defined, for r € R, s € §2, £ € R?, and n € [Ts(S5?)]?, by

(@r ) (r.5.€m) r=limsup LI 21D,

t——+o00 t

For a,b € [a, 3] x S? and v € S, we set

K(a,b,v) :=inf{ 1 (o0), V(). Vo), Vib(y)) dy: 0 = (p,1) € P(a,b,m}

Qu
=inf{/Q (IVe)| + V()W) + X (o, (VDI VY]) dy: 0 = (p,9) € P(a,b, V)}, (1.18)
where @, is the unit cube in R? centered at the origin and with two faces orthogonal to v, and
P(a,b,v) := {19 = (p,%) € WHH(Q,; [, B] x S?): ¥ is 1-periodic in the orthogonal direction to v,

1 1
ﬁ(y):aify-yz—5719(y):bify-y:§}. (1.19)



Finally, we define the functional F"¢9¢" : BV (Q; [, 8]) x BV (£;5%) — R as
Fre95¢ (uy, u.) :z/ Or f(up(x), uc(x), Vup(z), Vue(z)) de
Q

+ / K ((y, 1e) (@), (s )™ (), Vg () AH (2)
S

(up,uc)

+L(QTf)w(ﬁb(x),ﬂc(w),sz(l’)’Wf(x))dlD”(Ub,uc)l(w), (1.20)

where () and 4.(x) are the approximate limits of up and u. at x, respectively, and where W is the Radon-
Nikodym derivative of D¢(up, u.) with respect to its total variation, W is the first row of W€, and W¢ is the
3 x 2 matrix obtained from W€ by erasing its first row. Our main result is the following.

Theorem 1.1. Let Q C R? be an open, bounded domain with Lipschitz boundary 09, and let {e,}nen and

{0 }nen be two arbitrary sequences of positive numbers converging to zero. Let F"°9, Fefjd, Fregsse” and FTid
be the functionals introduced in (), (CI2), (=), and (), respectively, and let X be the set

X = {(ub,uc) € BV(; [a, 8]) x BV(€;5%): uy, — (ug)y € G(Q), uptte — ug € G(Q;RB)}. (1.21)
Then,
: FT'eg,scf . Ffid ) = li inf Fred . Ffid ).
(ub%i?ex ( (up, ) + (up, )) nl—>Holo (up,uc) EWL1(Q; [a,ﬁ])xwl 1(©;52) ( (up, ue) + en (up, ))

Moreover, if for each n € N, (ul,u”) € WhHY(Q;[a, B]) x WL (Q;8%) is a d§,-minimizer of the functional
(Fres + FI) in WEh(Q; [, B]) x WH(Q;52), that is,

Fred Ffld < inf Fred . Ffid . 5n
() + Fe 5w, ue) (umuc)EWl*l(Q;l[rClhﬁ])><W1=1(Q;52)( (o) + Fe (s, ) + 8,

then {(up,ul)}nen is sequentially, relatively compact with respect to the weak-x convergence in BV (§2) x
BV (Q;R?); and if (up, ue) is a cluster point of {(uf',ul)}nen, then (up,u.) € X is a minimizer of (FT9%¢ +
Ffid) in X and

Freose (uy, ue) + FPuy, ue) = lim (Freg(u ul) + Ffld(ub,uc))

The proof of Theorem [l relies on the following relaxation result.

Theorem 1.2. Let Q C R? be an open, bounded domain with Lipschitz boundary, let F™°9 be given by (1),
and consider the functional F : L1 (2) x L1(Q;R3) — [0, +00] defined by

Fr9(up,ue) if (up,ue) € WHH(Q; [, B]) x WH(Q; 52),
+o00 otherwise,

F(up,ue) := {

for (up,u.) € LY(Q) x LY R3). Then the lower semicontinuous envelope of F, F : L'(Q) x LY(Q;R3) —
[0, +00], defined by

F(up, ue) := inf { liminf F(uy,u?): n €N, (u},u?) € L*(Q) x L' (Q; R?),

n—-+o0o

ul — up in LHQ), u® — u, in Ll(Q;R3)},
has the integral representation

[regsc” (uln Uc) Zf (ub, uc) c BV(Q, [a, ﬂ]) X BV(Q, 52)7

) (1.22)
400 otherwise,

Fup, ue) = {

for (up,ue) € LY(Q) x LY(Q;R3), where FT9:5¢ s given by (I=20).



The relaxation result above falls within the general context of studying lower semicontinuity and/or finding
integral representations for the lower semicontinuous envelope of functionals of the type

/Qf(x,u(a:),Vu(a:))dx, u € WhHP(Q; M),

where 2 C RY is an open, bounded set, p € [1,+0oc0), and M C R? is a (sufficiently) smooth, m-dimensional
manifold. There is a vast literature in this framework (see, for instance, [2, U, 00, I3, [4, IR, 23, B3, 41)),
motivated, for example, by the study of equilibria for liquid crystals and magnetostrictive materials, where
the class of admissible fields is constrained to take values on a certain manifold M (commonly, M = S9=1
the unit sphere in R%). As in [2, O, BS], the key ingredients in the proof of Theorem [ are the density of
smooth functions in Wh1(Q; M) [I1, I2, 2Y] and a projection technique introduced in [2, 80, 81]. However, new
arguments are required as three main features of our problem prevent us from using immediately the relaxation
results concerning the constraint case in the BV setting [B, O, B5]: unlike [2, BH], our starting point cannot be
a tangential quasiconvex function as the energy density considered here (see ([CI3)) fail always to satisfy such
condition (see Remark E3); and unlike the general setting in the literature, (i) our manifold, M = [a, 3] x 52,
has boundary, (ii) the recession function f°° in our case (see ([CTH)) does not satisfy a hypothesis of the type
|f(r,s,&,m) — f(r,s,6,m)| < C(A+ |(&n)|t~™) for some C > 0 and m € (0,1) (for a.e. (r,s) and for all
(&,m)). We anticipate that our arguments may be used to treat more general manifolds with boundary and
more general integrands.

This paper is organized as follows. In Section B, we collect the notation, we recall properties of the space G
introduced by Meyer [33], and we also recall properties of functions of bounded variation and sets of finite
perimeter. We also make some considerations on quasiconvexity. In Section B, we prove Theorem [. Finally,
in Section B, we establish Theorem 2.

2 Notation and Preliminaries

2.1 Notation

Let N,d € N. If 2,3y € RY | then x-y stands for the Euclidean inner product of x and y, and |z| := \/z - z for the
Euclidean norm of z. The space of d x N-dimensional matrices is identified with R, and we write RN, We
define SN~ :={z e RV: 2| =1}, Q := (-1, 3)", Q(z,0) := 2+ 6Q, and B(z,0) := {y € RV : |y — x| < 6},
where § > 0. Given v € SV~1 and a rotation R, such that R ex = v, we set Q, := R,Q, Q,(,6) := .+ 6Q,,

Bf(x,8) :=={y € B(x,8): (y —x)-v >0}, and B, (,6) :={y € B(z,6): (y —xz)-v < 0}.

Let 2 C RY be an open set. We represent by A(f) the family of all open subsets of €2, and by A, () the
family of all sets in .A(£2) with Lipschitz boundary. The Borel o-algebra on 2 is denoted by B(£2), and M (2; RY)
is the Banach space of all bounded Radon measures p : B(Q2) — R¢ endowed with the total variation norm
|| If p € M(;RJ) is a nonnegative Radon measure and v : Q — R? is a g-measurable function, then
fo v(z) du(x) stands for ﬁ Jov(@)dpu(z). The N-dimensional Lebesgue measure is denoted by £V and the
(N —1)-dimensional Hausdorff measure is designated by H™ 1. Also, “a.e. in Q" stands for “almost everywhere
in © with respect to £V7.

Let M be an m-dimensional manifold, m € N, in R%. The tangent space of M at z € M is represented by
T.(M). Given a Banach space X (Q;R?) of functions ¥ : Q — R? we denote by X (£2; M) the set

X(M):={ve X(QRY: 9() € M ace. in Q.
To simplify the notation, if M; is an m;-dimensional manifold in R%, M, is an ms-dimensional manifold in

R u e X(QMy), v e X(Q;Ms), and w := (u,v), we write w € X (Q; My x My).

2.2 Meyer’s (G-space

In this section, we recall the definition of the space G(Q) introduced in [83] for Q = R? and generalized in [6]
for bounded domains Q C R2. The vectorial case, which allows modeling textures in color images, has been



treated in [22]. Below we collect the main properties of the space G used in this paper. For the proofs and for
more considerations on the space G, we refer to [h‘, 22, 33].

Definition 2.1. Let Q C R? be an open, bounded domain with Lipschitz boundary, and let d € N. We define
G(URY) = {v e L2(URY): v; =divg, €€ L% (R)D), & n=00on 99, i€ {1,...d}},
where n is the outward unit normal to 0. We endow G(Q; R?) with the norm

||U||G(Q;Rd) ;= inf {||E||L90(R2;(R2)d): v; = dini7 fi -n=0 on 697 1€ {1, ,d}}

G(Q;R?) is a Banach space, and when N = 2, it admits the following characterization.

Proposition 2.2. Let Q C R? be an open, bounded domain with Lipschitz boundary. Then,

G(;RY) = {v € L*(O;RY): /

Q

v(z)dz = 0}.

The topology induced by the G-norm is coarser than the one induced by the L2?-norm as there are sequences
that converge to zero in the G-norm but not in the L?-norm. More generally, the following result shows that
the G-norm is well adapted to capture oscillations of a function in an energy minimization method.

Proposition 2.3. Let Q@ C R? be an open, bounded domain with Lipschitz boundary and let p > 2. If
{vntnen C G RY) is such that v, — 0 weakly in LP(Q;R?) as n — oo, then lim,,_ o lvnllGarey = 0.

2.3 The Space BV of Functions of Bounded Variation and Sets of Finite Perimeter

We will adopt the notations of [4] regarding functions of bounded variation and sets of finite perimeter.

In what follows, N,d € N, and Q C RY is an open set. Let p € C2°(R") be a nonnegative function such that

/ p(r)dz =1, suppp= B(0,1), p(z)=p(—x) for all z € RV,
RN

For u € L _(;R4) and § > 0, we set

loc

ps(x) == %p(%), reRN, (2.1)

and

ug(x) := (ux*ps)(x) = /Qu(y)p(;(x —y)dy, z € Qs :={x e N: dist(z,00) > §}. (2.2)

We observe that supp ps C B(0,4), and we recall that us € C*°(Qs) and |lus|| 11 (osre) < [lull L1 Qe

Definition 2.4. Let u € L] _(Q;R%).

loc

(a) We define the set A, as the set of points x € Q0 for which there exists a vector z € R? such that

lim u(y) — z|dy =0, 2.3
Jm )= (23)

in which case we say that u has an approximate limit at x, and the vector z, uniquely determined by (233),
is represented by w(x). The set S, := Q\ Ay is called the approximate discontinuity set. We say that u
is approzimately continuous at x if x € A, and u(x) = u(z), i.e., x is a Lebesgue point of u.



(b) We define the set of approzimate jump points of u, represented by J,,, as the set of points x € Q for which
there exist vectors a,b € R*, a # b, and v € SN~ such that

lim u(y) —aldy =0, lim u(y) — bl dy = 0. 24
Sim, Bi(w)l (y) —al SJim B;w)l (y) = b (2.4)

A point x € J, is called an approzimate jump point of u; the associated triplet (a,b,v), uniquely determined
by (B4) up to a permutation of (a,b) and a change of sign of v, is denoted by (u™(z),u™ (), vu(z)).

(c) We say that u is approximately differentiable at x € A, if there exists a d X N matriz L such that

lim uy) —a(z) — Ly — )| ,
§—0+ B(x,5) 1

y =0, (2.5)

in which case we denote the matriz L, uniquely determined by (23), by Vu(zx). The set of approzimate
differentiability points is denoted by D,,.

Remark 2.5. The set A, does not depend on the representative in the equivalent class of u, i.e., if v = u LV-
a.e. in Q then 4, = A, =: A and 9(x) = a(x) for all z € A. In contrast, the property of being approximately
continuous at x depends on the value of u at x, thus on the representative in the equivalent class of wu.

The proof of the following result may be found in [4, Prop. 3.64, Prop. 3.69, Prop. 3.71].

Proposition 2.6. Let u € Ll _(Q;RY), let us € C=(Qy5) be given by (232), let ¢ : R — R™ be a Lipschitz

loc
map, and let v:= ¢ ou. Then

(a) i) S, is a LN -negligible Borel set and @ : A, — R is a Borel function, coinciding LN -a.e. in A, with
u;
it) lims_ o+ us(x) = a(z) for all x € Ay;
iii) Sy C Sy and 0(x) = ¢(a(x)) for all v € A,.

(b) i) J, is a Borel subset of S, and there exist Borel functions (ut,u™,v,) : J, — R x R? x SN=1 such
that (=) holds for all x € J,,;

i) limg o+ us(z) = M forall x € Jy;

i) if & € Jy, then x € J, if and only if p(ut(z)) # ¢(u™(x)), in which case (vt (z),v™ (x),vy(z)) =
(@™ (2)), o(u™(2)), vu(x)); otherwise, x € Ay and 5(x) = dp(u'(z)) = d(u (2)).
(c) i) D, is a Borel subset and Vu : D, — R¥¥ s a Borel map;

i) if © € D, and, in addition, ¢ has linear growth at infinity and is differentiable at G(x), then v is
approzimately differentiable at © and Vov(z) = Vo(a(x))Vu(z).

A function v : © — R? is said to be a function of bounded variation, and we write u € BV(Q;Rd), if
ue ! (Q; Rd) and its distributional derivative, Du, belongs to M(Q; RdXN); that is, if there exists a measure
Du € M(Q;RdXN) such that for all ¢ € C.(Q), j €{1,---,d} and i € {1,--- , N}, one has

[ 5% @ de =~ [ ol) dDus (o)

9) Ox; Q

where u = (u1,- -+ ,uq) and Duj = (Dyuj,--- , Dyuj). The space BV (Q;R?) is a Banach space when endowed
with the norm [|ul| gy (ray = |ull L1 (Qray + [Du|(£2).

We recall that {u;}jen C BV(Q;Rd) is said to weakly-x converge in BV(Q;Rd) to some u € BV(Q;]Rd) if
u; — u (strongly) in L' (Q;Rd) and Du; X Du weakly- in M(Q;RdXN).

The proof of the following result may be found in [A, Prop. 3.7] and [6, Lemma 4.5].
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Lemma 2.7. Let u € BV (;R?) and let us € C>(Qs) be given by (Z2). Then,
i) us = u weakly-x in BV (Q;R%) as § — 0%, for all Q' CC Q. Moreover, if LN(9Q') =0, then

. T _ .
Jim |Dusl(@) = Jim [ [Vus(o)]do = [Dul(€V):

/ ()| Vus(z)| d < / (b % ps) () d| Dl ()
B(zo,¢)

B(zo,e+9)
whenever dist(xg, dQ) > e+ § and b is a nonnegative Borel function;

iii)

( dDu

Jim 6(Vus () de = / A

5=0% JB(x0,¢) B(zo,¢)

(2)) d|Dul(x)

for every positively 1-homogeneous continuous function 0 and for every ¢ € (0,dist(zq,9Q)) such that
‘DU'(@B(,IO’ 5)) = O;

iv)
51iI(I)1+<‘U5 —u|*ps)(x) =0 forallz € A,

if, in addition, u € L>(£;RY).

In what follows, Du = D®u + D%u is the Radon-Nikodym decomposition of Du in absolutely continuous and
singular parts with respect to £V |- The proof of the following results may be found in [, Rmk. 3.93, Thm. 3.83,
Thm. 3.78].

Lemma 2.8. Let ui,us € BV(;RY) and A= {z € Ay, NAy,: 1(x) = Gz(x)}. Then Duyjg = Dug 4.

Theorem 2.9. Let u € BV(Q;R?). Then,

(a) w is approzimately differentiable at LN -a.e. point of Q, and the approzimate differential Vu is the density
of the absolutely continuous part of Du with respect to ;CNLQ; that is, D%u = VUENLQ;

(b) the ?‘\ft 1Su is countably HN~!-rectifiable and HN=1(S, \ Ju) = 0. Moreover, Du|;, = (v —u") ®
I/uH - I.J .

Definition 2.10. Given u € BV (Q;R?), the measures
Diy = D*uyy, and Du:= D’u|y,

are called the jump part of the deriative and the Cantor part of the derivative, respectively. The sum Du+ D u
is called the diffuse part of the derivative and is denoted by Du.

Remark 2.11. It can be proved that Diu = Du;, (see [d, Prop. 3.92]). In view of Definition EI0 and
Theorem P9, we have the following decompositions for Du:

Du = D%+ D’u = VUENLQ + @t —u)® VUHNilLJu + D = Du + D¢u.

The next result is due to G. Alberti (see [I]).

Theorem 2.12. Ifu € BV (Q;R?%) and Du = h|Dul|, then h has rank one for (|Diu|+ |D¢u|)-a.e. point of .
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We now state a result regarding the chain rule in BV, which proof may be found in [d, Thm. 3.96].

Theorem 2.13. Let u € BV (;R?) and ¢ € CHR%R™) be a Lipschitz function satisfying ¢(0) = 0 if
LN(Q) = +o0o0. Then v := ¢ ou belongs to BV (Q;R™), and

Dv = V(u)Vull | + Vo(iu) Du = V(i) Du, Div = (p(u’) — ¢p(u7)) @ v HN 1 .. (2.6)

As a consequence of Lebesgue-Besicovitch Differentiation Theorem, we have the following.

Theorem 2.14. If i is a nonnegative Radon measure and if v € L (Q, u; R?), then

loc

lim [v(y) — v(zo)| dp(y) =0
e—0+ zo+eC

for p-a.e. xg € Q and for every bounded, convex, open set C' containing the origin.
In the remainder of this subsection € denotes an open subset of RY and E a £V-measurable subset of RY.

Definition 2.15. The perimeter of E in Q) is represented by Perq(E) and defined by

Perq(E) := sup {/ divpdz: ¢ € CHGRY), (@]l pe @) < 1}.
E
We say that E is a set of finite perimeter in Q if Perq(F) < 4o00.

The proof of the following result may be found in [4, Thm. 3.36].

Theorem 2.16. Assume that E is a set of finite perimeter in Q). Then the distributional derivative of xg,
Dxg, belongs to M(;RY) and |Dxg|(Q) = Perq(E). Moreover, the following generalized Gauss—Green
formula holds

/diwpda:z—/uEwpd|DXE|, for all p € CHQ;RY),
E Q

where Dxg = vg|Dxg| is the polar decomposition of Dxg.

Definition 2.17. Let E be a set of finite perimeter in 2. The reduced boundary of E, denoted by F*E, is the
set of all points x € Q) such that for all € > 0,

|DxE|(B(z,€) NQ) >0,
and such that the limit

(o) o T DXEBE )
: e—0+ |DXE|(B($,€))

ezists in RN and satisfies |vgp(z)| = 1. The function vg : F*E — SN~1 is called the generalised inner normal
to E.

Definition 2.18. Given t € [0,1], we represent by E* the set of all points where E has density t, i.e.,

¢ . LN(ENB(z,€)
E! = {xGRN. Eli%ﬂm t}

The set 0*E :=RN\(E° U E') is called the essential boundary of E.

The proof of the following theorem may be found in [@, Thm. 3.59, Thm. 3.61, Example 3.68].

Theorem 2.19. Let E be a set of finite perimeter in 2.
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(i) (De Giorgi) The set F*E is contained, up to HN 1 negligible sets, in a countable union of C* hypersur-
faces, and

Dxg =vpHN '\ 75, |Dxe|=H""" 5z,
where vg is the generalised inner normal to E.
(ii) (Federer) It holds
F*EcC EY?2co'E, HN"YQ\(E°UF*EUEY))=0.

In particular, E has density either 0 or 1/2 or 1 at HN"-a.e. x € Q and HN"'-a.e. x € * ENQ belongs
to F*E.

(iii) Setting u = xg, then u € BV(Q) with S, = *ENQ, F*E C J, C EY?, and {u*(z),u" (z)} = {0,1}
forall x € J,.

Remark 2.20. Another property of sets of finite perimeter in RY, which is due to De Giorgi [21], is the
following. If F is a set of finite perimeter in €2, then there exists a sequence of open sets {E,},en such that
each set OF,, is contained in a finite number of hyperplanes and

lim £Y(E,AE) =0, lim [Dxg,|(Q) = [Dxs|(%).

n—oo

2.4 Quasiconvex Functions

We say tha‘g a Borel function h : RY x RN — R is quasiconvex if for all (¢,7) € RY x RN, ¢ WOI’OO(Q),
and 1) € W, (Q; R?), we have

he,n) < /Q h(E + V() n + Vi(z)) da.

Remark 2.21. Consider the mapping that to each matrix A = (ai;)1<i<d+1,1<<N € RUEFDXN qe90ciates
the pair (£4,7m4) € RY x RN where €4 := (a(441);)1<j<n is the last row of A, and na := (aij)1<i<d,1<j<N
is obtained from A by erasing its last row. Then, to a Borel function h : RY x RV — R we may associate
the Borel function A : RUTDXN _ R defined by

h(A) := h(€a,na), AeREFTUXN

In this setting, h is a quasiconvex function if and only if & is a quasiconvex function in the usual sense; that is,
for all A € REUFDXN and 9 € Wy ™ (Q; R@HD),

B(A)g/QE(A+w(x))dx.

In view of Remark P21 and well-know results concerning the usual notion of quasiconvexity, if h : RN x R¥*N —
R is a quasiconvex for which there exists a positive constant C such that for all (£,1) € RN x R¥*N,

0<h(&n) <CA+ (&),

then h is Lipschitz; i.e., there exists a constant L > 0, only depending on C, N, and d, such that for all
(&), (€, n') € RN x RN,

Remark 2.22. We finish this subsection by noting that for all (r,s) € [a, 3] x S?, the function f(r,s, -, ")
introduced in (ICI3) is not quasiconvex in R? x R3*2. In fact, if it were, then so would be its recession function
f°(rys,-,-) introduced in (I8) (see [26, Rmk. 2.2]). In turn, by (EZ4), f°°(r,s,-,-) would be continuous in
R? x R3*2, However, taking &, € R?\{0} and n € R3*2\{0} such that &, — 0 as n — oo, we conclude
that lim, o0 f°(r, $,&n,n) = |rn| # |rn| + |n| = f°°(r,s,0,n). Thus, neither f(r,s,-,-) nor f>(r,s,-,-) are
quasiconvex functions.
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3 Proof of Theorem @1

This subsection is devoted to the proof of Theorem [, under the assumption that Theorem [ holds. We
start by observing that there are admissible fields as introduced in ([2T).

Lemma 3.1. The set
X = {(up,uc) € BV(Q; e, B]) x BV (€4 8%): up — (ug)p € G(), upue — up € G4 R?)}
1§ nonempty.

Proof. Recall that a.e. in €,

U Uo 2
= — = S%, ug = (ug)p(ug)e,
ol ~ T o = (tohluo)

(uo)b = |u0| € [a’ﬁ]v (UO)C

and 0 < a < .

Let ¢g := ][(Uo)b dz and set
Q

up(z) :==c¢o for all x € Q.

Clearly, up, € BV (Q;[a,f]) and [,upda = [ (uo)pde; since uy — (ug)y € L>(Q) C L*(Q), it follows that
up — (uo)p € G(2) by Proposition E73.

Because

]{z(uo)b(uo)c dz

< ][(Uo)b dx = co,
Q

we have §,(uo)s(uo)c dz € B(0,co) C R?; thus, there exist 6 € [0,1] and s1, 53 € dB(0, ¢o) such that

ol do = 51+ (1~ 0)sz

Let {Q1,Q2} be a Lipschitz partition of ) satisfying £2(Q1) = 0£2(Q2), £2(Q2) = (1 — 6)£3(Q2), and consider
the function u. defined, for z € Q, by

S .
Lotz e,
Co

uc(z) ==
2 freQ
Co 2z

Then, u, € BV (€ 52), upuec—ug € L>=(Q;R?), and [, upuc dz = [, (uo)s(uo)e dz = [, uo dz. Thus, upuc—uo €
G(£;R?), and this completes the proof. O

Proof of Theorem . Fix sequences {e,}nen and {8, }nen as in the statement. Let G,, Go : L'Y(Q) x
LY (Q;R3) — [0, +00] be the functionals defined, for (up,u.) € L (Q) x L1(Q;R3), by

Gl ) Fre9(up, u.) + stid(uz,,uc) if (up,uc) € Wl*l(Q; [a, B]) x Wl’l(Q;Sz),
n(Up, Ue) = n !
b +00 otherwise,

and

Freg,sc’ i Ffid . if Ve X

GO(’U/byuc) = { (Ubyuc) + (Ub,u ) 1 (ub71/.tc) ,

oo otherwise,

respectively.
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We claim that {G,, }nen [-converges to Gy in L'(Q) x L*(€;R?). Invoking [20, Prop. 8.1], this claim follows
from Steps 1 and 2 below.
Step 1. (liminf inequality) Fix (up,u.) € LY(Q) x L1 R3), and let {(ul, u?)}nen C LH(Q) x LY(Q;R?) be an
arbitrary sequence converging to (uy,u.) in L'(Q) x L'(Q;R3). We claim that

Go(up, u.) < liminf Gy, (uy, ul). (3.1)

n—oo

Without loss of generality, we assume that the limit inferior on the right-hand side of (B) is a limit and is
finite, with sup,,cy G (u)y, u) < +o0o. Then, {(uf, u?)}nen C WH(Q; o, B]) x WH1(£; 5?) and there exists a
positive constant, C, independent of n € N, such that

C = F"(uy,ul) /fub,uc,Vub,Vu /|Vub|dx+ /|Vu"|dx
1 n,n n
[z —woyaz|+ | [~ (wop) o],
Q Q

- 1
C > Flup,ul) > — +—
" 13
where we used (IId) together with the fact that u} > « and u € 5% a.e. in 2. Consequently,

n

(&
n

ult = wp weakly-—x in BV(Q),  u” = u, weakly-x in BV(Q;R3), asn — oo,

lim [ wyulde= / updz, lim [ wyder= / (ug)p dz, (3.2)
and, up to a (not relabeled) subsequence,

uy — up a.e. in Q, ul — u, a.e. in Q, asn— 0.

These two last convergences yield uy € [a, 3] and u. € S? a.e. in . By Lebesgue’s Dominated Convergence
Theorem, we have

lim [ wyuy d:lc:/ubucdx, lim u{fdx:/ubdm,
Q Q Q Q

n—oo n—oo

which, together with (B2) and in view of Proposition B3, implies (up,u.) € X. Furthermore, by Theorem 2,

Fre95¢ (up, u,.) < liminf F"9 (u, ul?). (3.3)
Finally, we prove that
F(uy, u.) < liminf Ffld(ub,u ), (3.4)

which, together with (B33), yields (B).

The sequence {upu —ug— fo(upul —ug) dztnen C G(;R?) converges a.e. in  to uyu, —uo and is bounded
in L°°(92; R?); hence, the convergence holds weakly in LP(f2) for any p > 2. Consequently, by Proposition 223,
we have

lim ||uguy —ug — ][(ugug —up) dz = [luptie — uol|c(o;r3)-
n— o0 Q G(QR)
Similarly,
i |~ (wo)s — f (65 = (wo)o)de|| = [lus = (o) o
n—oo Q G(Q)

Moreover, because u?, (up). € S% and u” — u. a.e. in 2, as n — oo,

lim [ u? — (uo)e|? dv = / e — ()2 da.
Q Q

n—oo
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Thus,

n—oo n—oo

lim inf F/™ (uy, u) > lim inf ()\v

upul — ug — ][(ugu? —ug)dz
Q

G(Q:R3)

+ N\ + /\c/ lup — (ug)el? dx>
G(Q) Q

uy — (uo)p — ][S;(Ul? — (up)p) dz

= Ffid(ubv UC),

which proves (B4). This concludes Step 1.
Step 2. (limsup inequality) Fix (up, u.) € L' (Q)x L1 (Q; R?). We claim that there exists a sequence {(u}l, u?)}nen C
LY(Q) x LY(Q;R3) converging to (up,u.) in LY(Q) x L*(;R?) that satisfies

Go(up, uc) = limsup Gy (uy , uy). (3.5)

n—oo

Without loss of generality, we may assume that (uy,u.) € X. By Theorem [, and recalling the bounds (II4)
for f (see also (ICT)), we can find a sequence {(u,u?)};eny C WHH(Q;[a, 8]) x W1(©; S?) such that

ug Xy, weakly-x in BV(Q), u! = u,. and uiug X upue weakly-x in BV (Q;R3), as j — oo;

ul — up, ul — u, and wlul — wpue ae. in Q, asj — oo;

Frense (g ) = lim P70 (), ud). (3.6)
In particular, arguing as in Step 1,

FId(yy u.) = lim ()\U

j—o0

ujul —ug — ][ (uiul — up) dz
)

G(R3)

+Xp + )\C/ [ud — (up)e|? dx). (3.7
G(Q) Q

ul — (up)p — ]{Z(ug — (ug)p) dz

Moreover, recalling Proposition 22 and the fact that (up,u.) € X,

lim uiugdx:/ubucdx:/uodz, lim uidx:/ubdx:/(uo)bdx.
j—=0 Jo Q Q j—=o0 Jo Q Q

Hence, we can find a subsequence j, < j such that

‘/ui"uﬁ" dx—/uodx <ée2, ’/ui”dx—/(uo)bdx
Q Q Q Q

From (B8), (87), and (BX), we obtain (BH) for {(u}",u/")}nen, which concludes Step 2.

<el. (3.8)

We now observe that {G,, }nen is equi-coercive in L' (Q) x L!(Q;R3). In fact, arguing as in Step 1 above, given
C € R we can find a positive constant ¢ = ¢(C, ) such that for all n € N,

{(up, uc) € LYQ) x LY R3): Gp(up, ue) < Cc}
C {(ub,uc) S Wl’l(Q) X Wl’l(Q;Rg)t ||(Ub7UC)HWLI(Q)XWI,I(Q;RS) < C}, (39)

which, together with the compact injection of W1 1(Q) x WH1(Q;R3) into L*(Q) x L'(Q;R3), yields the con-
clusion.

We have just proved that {G,, },en is an equi-coercive sequence that I'-converges to Gg in L'(Q) x L*(€;R3).
Therefore, by [20, Thm 7.8, Cor. 7.20], we have

G c) — 1 i f Gn sy Ye )
(ub,uc)GLlrn(éI)lel(ﬂ;R% 0t e) i (ub,uc)eLll(Isll)xLl(Q;R3) (up, uc) (3.10)
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Note that by Lemma B and (ICId), the minimum on the left-hand side of (BTD) is finite, and (B0) is equivalent
to saying that

: Freg,sc7 . Ffid ) = li inf Frey . Ffid ).

(ub{gglEX ( (up, tc) + (up, u >) n1—>H;o (up,uc) EWL1(y [a B xW11(Q;52) ( (e + o (us, ))
(3.11)

Let (up, u?) € WHL(; [, 8]) x W1 (Q; S?) be a §,-minimizer of the functional (F"*9+F7/) in W1 (€ [av, B]) x

WH1(Q; S2). Observe that (up, up
+ Ff(yl u), and, by (B),

En

) is also a §,,-minimizer of G, in L' (Q)x L' (Q; R3), G,, (u}, u”) = Freg( Lu”)

c

min  (F"9%¢ (uy, ue) + FF%up, ue)) = lim
e x ¢ () (e)) = Jim,

(F7es (g ) + FL (). (3.12)
Using (BH) and the fact that the minimum on the left-hand side of (BT3) is finite, we deduce that {(u}, u?) }Inen
is sequentially, relatively compact with respect to the weak-x convergence in BV (Q) x BV (€; R?) and its cluster
points belong to X. Let (4, %.) € X be a cluster point of {(u,u?)}nen. Then, by Step 1 and (B12),

Fre95¢ (wy, tie) + Fay, 4e) = Go(ip, Ge) < liminf Gy, (uft, u) = lim inf (F"9 (uy, up) + Ffjd(ug,ug))

n—oo

T mi?ex (Fre9¢ (up, ue) + F7up, ue)) < F0% (U, tie) + FF (p, ).
Up,Ue

Thus, (@, @) is a minimizer of (F7¢9:%¢" + F/id) in X and F™9% (@, c)+F/ " (0, 4.) = lim (F9(up,ul)+

(&
n—oo

ng(ub, »)). This concludes the proof. O

4 Proof of Theorem

This section is devoted to the proof of Theorem [ and is organized as follows. In Subsection B, we state
some properties concerning the densities Q7 f and K characterizing the functional in (IZ20). In Subsection B2,
we collect several auxiliary results, which will be used to establish the integral representation for F stated in
Theorem T3. A lower bound for the latter is proved in Subsection B3 and an upper bound in Subsection E-.

To simplify the notation, throughout the present section we will drop the indices b and ¢, referring to brightness
and chromaticity, respectively, and we replace uy by u, u. by v, W¢ by W¢, and W¢ by W¢. Also, we recall
that Q C R? is an open, bounded set with Lipschitz boundary 0.

4.1 Properties of Qrf and K

We start this subsection by proving some properties of Qrf (see (IIH)). Given s € S? and n € R3*2
(respectively, n € R3), set (cf. [IR])

Py = (Izxz — s ® s)n, (4.1)

which defines a projection of R3*2 onto [T,(5?)]* (respectively, of R® onto T5(5?)). Note that if n € T5(S?) U
[T5(S%)]?, then Py = n and |Pyn| < V29| Let f: R x R? x R? x R**? — [0,00) be the function defined, for
(r,5,€,m) € R x R® x R? x R®*2, by

~ 7,8, & Psn) o(|s]) if s € R3\{0},
0 otherwise,
where
a ifr <aq,
Fi=qr ifa<<r<p, §::ﬁ, (4.3)
B ifr =g,
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and ¢ € C°(R;[0,1]) is a cut-off function such that
3
o) =1ift>1, (1) =0ift< . (4.4)

Note that for all r € [a, 3], s € S%, £ € R?, and 1) € [T,(5?)]?, we have that

f(/r7 S?E’ 77) = f(/r7 S?f’ 77). (4'5)

We observe also that f:‘[a,ﬁ]xs2xR2xR3x2 plays the role of the function introduced in [[8, (1.4)] and, as stated
next, an analogous result to [I8, Prop. 2.2 (ii)] providing an alternative characterization of Qr f holds.

Lemma 4.1. Forallr € [o,f3], s € S?, £ € R?, and n € [T5(5%)]2, we have that

QTf(T7 53677’) = Qf(T, 53677’)7 (46)

where

Qf(r,s,&,m) := inf{/Qf(ns,ﬁ+V<p(y)7n+V¢(y))dy: e € Wy™(Q), ¢€W5’°°(Q;R3)}~

Proof. Fix r € [, 8], s € S?, £ € R%, and n € [Ts(5?))2.

Let p € Wy™(Q) and ¢ € W, >°(Q; T,(S?)) be given. Then, in particular, ¢ € W, ™ (Q; R?) and PyoVi) = Vi);
hence

/f(r,s,€+V<p,77+WJ)dy:/f(r,s,€+V<p,P30(77+Vw))dy
Q Q
=/Qf(7",s,§+V<p»n+V¢)dy>Qf(ns,f,n)-

Taking the infimum over all admissible ¥ and ¢, we get Qrf(r,s,&,n) = Qf(r,s,&,7).

Conversely, let ¢ € Wy (Q) and ¢ € W) (Q;R?) be given. Define ) := P, 0. Then, ¢ € Wy °(Q; Ts(5%))
and Vi = P; o V4. Thus,

/Qf(r,s,swso,nw@dy:/Qf<r,s,5+w,Pso<n+V«/3))dy

= /Qf(r,s,iJrV%nﬂLVw)dy > Qrf(r,s,&m).

Taking the infimum over all such ¢ and ¥, we get Qf (r,s,&,m) = Qrf(r,s,£,m), which concludes the proof of
(E8). O

Remark 4.2. Arguing exactly as at the end of Subsection B4, there does not exist (r,s) € [a, 3] x S? for
which

(&m) € R? x R¥? = f(r,s,¢,m) € RT
is quasiconvex. Consequently, given (r,s) € [, 8] x S2,

(&m) € R* X [To(S)]* = f(r,s,&,m) € RT

In fact, if (£,77) € R? x R3*2 and (p,%) € Wy ®(Q) x Wy (Q; R?) are such that f(r,s,&,n) > fQ flrys, &+

V(y), n+Vi(y)) dy, with (r,s) € [a, 8] x S?, then (£ )77) = (& Psn) € R?x [T(S?)]? and (¢, 9) := (¢, Psoy)) €

is not tangential quasiconvex; that is, there exists (&, 7) € R? x [T,(S%)]? such that f(r,s, &, 7) # Qr f(r, s,&, 7).
1,00 1,00 2 g . _ _
Wy (Q) x Wy (Q; Ts(S?)) are such that f(r,s,&,7) > fQ f(r,s, &€+ Vo(y), 7+ Vi(y)) dy.
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We now establish some properties of f, Qf, and (Q f )>° that will be useful in what follows, where

(Qf')oo(,r’ s, ,'7) .= lim sup Qf(?“, Svtf,tn)

t—+o00 t

for (r,5,&,m) € R x R3 x R? x R3*2. We first observe that since the application s € R3 — s ® s € R3*3 is
locally Lipschitz, there exists a positive constant, cg, such that for all s,5 € B(0,1), it holds

[s®s—5®35| <cgls— 3| (4.7
Lemma 4.3. For all (r,5,£,7) € [a, 3] x S% x R? x R**2, we have that
1
SlEl+ 5 |P 0l < fr,s,6m) < 20E + V2(1 + B)Inl, (4.8)
1
Lel+ 21Panl < QFrs.€m) < 20¢] + VAL + B (4.9

Moreover, there exists a positive constant, ¢, depending only on «, (3, c¢g, and Lip(g), such that for all r, 7 €

[, B], s, 5€ 8%, ¢ R, neTy(S?), and i € Ts(S?), one has

f(r,s,6,m) < Qf (7,5.6,m) + c(lr — 7| + |s — ) (I€] + [n]), (4.10)
|Qf(r,s,&m) — Qf (F 5577)!

i <eln—al+c(lr =71+ |s — 5|+ [ = DA + €] + €] + Inl + 7)), (4.11)
(QF)°(r,5,&,m) < (QF)®(7,5,&,m) +c(|r — 7| + |s — 5))(|€] + |7 (4.12)

Proof. Fix (r,s,&,m) € [a, 8] x S? x R? x R3*2. We have that
Flrys,&m) = 1€+ g(EDIPanl + [rPen + s © €] < €] + V20| + V2Ir|ln| + €] < 2[¢] + V2(1 + B)In],
where we used the fact that g < 1. On the other hand,
alPsn| < [rPsm+s @&+ [s@&| = [rPsn + s @ & + €],

which, together with the fact that g > 0, yields

. « 1
frys,6m) 2 €l +|rPan + s @] > S [Pl + S €]

[\

This concludes the proof of (E8). Then, (E9) follows from (E=) taking into account that the lower and upper
bounds for f in (E8) are quasiconvex functions (with respect to the pair (§,7)).

Next, we establish (EI0)-(ET2). Let 7, 7 € [a, (], s, 5 € S, &, € € R?, 5 € R3*2 € T,,(S?), and 7 € T5(5?)
be given. To simplify the notation, ¢ represents a positive constant that depends only on «, 3, ¢g, and Lip(g)
and whose value may change from one instance to another. We divide the proof into three steps.

Step 1. We show that

|QF (r, 5,6, Pai)) — QF (r,5,€, Psif)| < cls — 5lli. (4.13)
Fix € > 0, and let . € W™ (Q) and . € W, *°(Q;R?) be such that
0f(ri5.& Py +e > [ .6+ Ve, P+ Ty)dy

Using the facts that 0 < g(-) < 1, 0 < a < r < 3, the linearity of Ps-, and the estimate |Pyn| < \/§|77|, in this
order, we get

Qf(ns,g,P{ﬁ) - Qf(T,S7§,P§ﬁ)
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</f(ras»§+v<ﬂa,Psﬁ+v¢e)dy—/f(T757§+V9057P§77+V1/J5)dy+5
Q Q
= /Q [£(r,5.6 4 Voo, Py o (Pt + Vibo)) = F(r.5,€ + Vipe, Py o (Psij + Vo)) | dy + ¢

</Q(1+5)\P50(Psﬁ+ws))—Pso(Psﬁ+sz))\dy+s=/Q(1+6)|Ps(Psﬁ—Psﬁ)}dy+s
< V2(1+4 B)| P — Psijl + & = V2(1+ B)|(s ® s — 5 ® 8)if| + & < V2cx(1 + )]s — 8]|7]| +¢.

Letting € — 07 first and then interchanging the roles of s and 5, we conclude (EL3).
Step 2. We establish (E10) and (ET3).
By Step 1, applied to 7 :=n = Pyn,

Qf(r,s,&,m) < Of(r, 5, Psn) + c|s — 5[|n]. (4.14)

Next, we estimate Qf(r,s,f,]—"gn) in terms of Qf(F, 5,&, Psn). Using (E8), for all € > 0, we can find . €
WE(Q) and 1. € WH™(Q; T5(S?)) such that

Qf(F7§7£aP§n)+€: QTf(f)§7€7P§n)+€ 2/ f(fﬂ§7€+vw€apgn+vw€)dy
Q
— [ Frus.6+ Ve P+ Vi) dy,
Q

where in the last equality we used the fact that Pso (Psn+ Vi) = Psn+ V.. In particular, in view of (E3),
(E9), and the inequality |Psn| < v/2|n|, we get

1 o
24+ VA0 + Bl <> [ Gle+ Vol + GlPa+ ol du.

Thus,

max { /Q 1€+ V| dy,/Q | Psn + V| dy} < c(|é]l + |n) +e). (4.15)

Moreover, using the fact that 0 < g(-) < 1, the estimates |Psn — Psn| < cgls — 5||n| and (E13), and the identity
Ps o (Psn + V) = Psn + Vi), in this order, we obtain

Qf('f‘, S7£a Pgn) - Qf("ja 575’ P577)
</f(T7S,§+V<Pa,P§77+VﬁJa)dy—/f(f,§7f+V8057P§77+V1/)e)dy+€
Q Q

= / f(r, 8,6+ Ve, Pso (Psn+ Vi) — f(7, 8,6 + Voo, Pso (Psn+ Vi) dy + ¢
Q
< / cgls — 3| Psn + Vipe| + [Py o (Psnp+ Ve )) — FPs o (Psn + Vo)) + (s — 5) @ (€ + Ve )| dy + ¢
Q
S eles + Dls =5l + )+ [ [P0 (P + V) F rPyo (P + V)
Q
—7Ps o (Psn+ Vi.))|dy + ¢
els = (€l + Il +2) +els 1 [ 1P+ Duelay i 71 [ [P+ Doy +-
Q Q
Sce(lr =7+ s = s (€l + Inl + &) + &
Letting € — 0T, we conclude that

Qf(r,5,€, Psn) < QF(7,5,€, Psn) + c(lr — 7| + |s — 8)(|€] + In]). (4.16)
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Finally, interchanging the roles of (r, s) and (7, 5), we conclude (E10).
Property (E12) follows from (EZI0) and the definition of (Qf)>.
Step 3. We show that (ETT) holds true.

Arguing as in the previous steps, we have

‘Qf(fa 53577’) - QfN(Fa §, 53 77)| < C|£ - g‘(l + |§| + |g| + ‘77|)

and

|Qf~(fa 575377) - Q.}E(fs 5, gv 7_7)| < C|7’ - 7_7|
Using these two estimates together with (EId), we obtain (E11). O

Next, we show that for each ¢ > 0, the function H. defined by

satisfies hypotheses (H1)—(H4) of [26]. These integrands will play an important role in the proof of the lower
bound for F.

Proposition 4.4. The function H. : R x R? x R? x R3*2 — [0, +-00) defined in (EIQ) satisfies the following
conditions:

(i) H. is continuous;

(ii) H.(r,s,-,-) is quasiconvex for all (r,s) € R x R3;

(#ii) there exists a positive constant, C, depending only on 3, such that for all 0 < ¢ < 1 and (r,s,&,n) €
R x R3 x R? x R3%2,

(gl + Inl) < He(r,s,6,m) < C(IE] + nl);

(iv) for every compact set B C R x R3, there exists a positive constant, Cy, depending only on G, such that
fO{r all (r’ s’ 57 n)? (777 57 5’ 7]) e m X Rz X R3X27

|He(r,s,6,m) — He (7, 5,6,m)] < Co(|r = 7]+ |s = 5[)(1 + €] + [n])-

Proof. Conditions (ii) and (%) follow from the definition of H. and from (E9). To deduce (i) and (iv) it suffices
to observe that on the one hand,

Qf(r,s,&m) =0

for all (r,s,&,n) € R x R® x R? x R3*2 such that |s| < 2 in view of the definition of f (see (I2) and (EA)). On
the other hand, if (r,s,&,n) € R x R® x R? x R¥*? is such that |s| > §, then

Qf(r,s,&,m) = o(|s) Qf (7, 5,&,m) = ¢(|s|) Qf (7, 5, &, Psn).

Hence, to conclude, it suffices to use the local Lipschitz continuity in R x (R3\{0}) of (7, 5) defined in (E33) as
function of (r,s), (BEX0), the estimates |Psn — P:n| < cg|5 — 50| and |Psn| < v/2|n|, the Lipschitz continuity of
¢, and (9). O

We now turn our attention to the jump integrand K defined by (II8)—(II). We prove that an analogous
result to [26, Lemma 2.15] (see also [2, Lemma 4.1]) holds even though our functions f and f*° do not satisfy
some of the hypotheses assumed in [2, 26], such as quasiconvexity.

Lemma 4.5. Let K : ([a, 8] x S?) x ([, 8] x S§%) x ST — [0,00) be the function defined by (ILIS)—(ITY).
Then,
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(a) There exists a positive constant, C, such that for all a, a’, b, V' € [, B] x S%, and v € S*, it holds

|K(a,b,v) — K(a',b',v)] < C(la—d'| +|b—1]).

(b) For all a, b € [a, B] x S?, the map v € S* +— K(a,b,v) is upper semicontinuous.
(c) K is upper semicontinuous in ([a, B] x S%) x ([, B] x §%) x St.
(d) There is a positive constant, C, such that for all a, b € [o, ] x S? and v € S', we have

K(a,b,v) < Cla—b|.

Proof. (a) We start by proving that there is a positive constant, C, such that for all a = (r1,s1), b = (re,s2) €
[, B] x S2, one has

dja,p)x52(a,b) < Cla — b, (4.18)

where
1
%wwywmiiﬁ{AIV@dKVEW“«&U#wﬂXy%WWmv@)b}

is the geodesic distance between a and b on [a, 8] x S2.

We claim that to prove (EI8) it suffices to prove that there is a positive constant, C, independent of s; and sa,
such that

d52(51,52) g C|51 — 52‘7 (419)

where dg2(s1,$2) = inf{fo1 |Y(t)|dt : v € WHL((0,1); S%), v(0) = s1, (1) = s2} is the geodesic distance
between s; and sy on S2. Indeed, let v € W1((0,1); S?) be such that v(0) = s; and v(1) = s3. Then,
¥ :[0,1] — [, 8] x S? defined by F(t) := ((1 — t)r1 + tra,y(t)), t € [0,1], belongs to W1((0,1); e, 8] x S?)
and satisfies 5(0) = a and (1) = b. Moreover,

1 1
dja,p1x 52 (a, D) </ 7' ()] dt < |r1—r2|+/ Iy (t)| dt.
0 0

Thus, taking the infimum over all v € W1((0,1); %) with v(0) = s; and (1) = sy in this estimate, (EIS)
follows from (E719).

To prove (1), we show first that if |s; — so| < 3, then dg2(s1,s2) < 4]s; — sa|. To prove this implication,
assume that |s; — sa| < 1, and let
(1 — t)Sl + 159

Y = 100, £ i)

for t € [0,1]. Note that |(1 —t)sy + tso| = [s1 — t(s1 — s2)| = 1 — [s1 — s2| > 3. Moreover, 7 is an admissible
parameterization for dgz(s1, s2). Hence,

1 1
2 _
%$hw</mew</ 5= 52l 4y sy — ).
0

0 |(]. — t)51 +t82|

Therefore, if the claim (ET9) would fail, then for all n € N, there would exist s}, si € S2, s7 # s2, such
that dg2(s,s%) > n|s? — si|. Then, because dg2(s7,s5) < m, we would have [sf — s§| < § for all n € N
sufficiently large. In turn, by the implication proved above, for all such n € N, we would also have to have
dg2(s7,s5) < 4|sT — s5]. We are thus led to a contradiction. Hence, (1) holds, and so does (EI8).

Note that the infimum defining dj, gxg2(a,b) does not change if instead of the interval [0,1] we consider
any interval [t1,t2] C R with ¢; < t3 as the domain of the parameterizations v. Fix ¢ > 0, and let vy,
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Y2 € WH((1,3); [a, B] x S?) be such that

1 1 B
n(7) =t nu(z)=v / PA(0)]dt — & < diagixs2 (0,5) < Clo =V,

) (4.20)
1 1 2
2(7) =0 2(3)=d / o(8)] dt = & < di )52 (a,a') < Cla—a].
Let ¥ = (p,¢) € P(a,b,v), and define ¥* = (p*,¢*) € P(a,V',v) by setting, for y € Q,,

Y1 (y-v) if%<y~l/<%,
9" (y) == 9(2y) if ly-v| < §,
Yo(—y - V) if—%<y-u<—i.

Denoting by vy € St a fixed vector such that {vy,r} is an orthonormal basis of R?, we have that

K(a',V',v) < ; F=0(y), Vo (y)) dy

‘y'V1|<% |y.y‘<i
),y -v)orv)d
/ly-u1<é /}1<y.y<é'f (71(2! )Vl(y )® ) Y

+/ / [~y v),—7(-y - v)@v)dy.
lyl<s J—3<yv<—3

Hence, using (CI4), (B20), the 1-homogeneity of f*°(r, s, -, ), and the 1-periodicity of ¥ in the v;-direction, we
have

K, ¥,v) < %/ / £ (00), VO()) dy + B+ B)(Clb — | + Cla — '] +2¢)
ly-n|<t Jyv<i
:/Q F2W(y), VIw)) dy + 3+ B) (Clo— /| + Cla— a'| + 2¢).

Letting € — 07 and taking the infimum over ¥ = (¢, ) € P(a,b,v), we deduce that
K(a,b,v) < K(a',b',v) + C(3+ B)(|b— V| +|a - a'|).

Interchanging the roles between (a,b) and (o, '), assertion (a) follows.

(b) Let v,,, v € S, n € N, be such that lim,,_, |v, — | = 0. Fix € > 0, and let ¥ = (¢,) € P(a,b,v) be such
that

o [(0(y), Vi(y)) dy < K(a,b,v) +¢.

Let R be a rotation such that Res = v, and choose rotations R,, with lim,, . |[R, — R| = 0 and R,es = v,,.
Define 4,, € P(a,b,v,) by setting

In(y) := O(RRTy) for y € Qu, .
Then,

K(a,b,vyn) < £ (0 (y), VIn(y)) dy = fZW(RREY), VI(RR]y)RR]) dy
Qu, Quy,
= [ f*W(2),VI(z)RRL)dz.
Qu
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Since f°° is upper semicontinuous, in view of (ICTd) and Fatou’s Lemma, we obtain

limsup K (a, b, vy,) < / limsup f>(9(z), VI(2) RRE) dz < f(9(2),ViI(z))dz < K(a,b,v) + €.

n— 00 L, N—o0 Q.

To conclude, let € — 0.
(¢) Tt follows from (a) and (b).
(d) Fix € > 0, and let v € Wh((—3, 4); [a, 8] x S?) be such that

1 3 ,
— — ) = — | = o < 2 < - .
7( 2) a, 7(2) b, /_ [ ()| dt — & < da,pxs2(a,b) < Cla — b, (4.21)

where C' is the constant in (EI8), and define ¥(y) := v(y - v) for y € Q,. Then, ¥ € P(a,b,v) and, arguing as
in (o),
Kb < [ 0w 0w d= [ w6 [ o

This estimate, together with (E=20), yields the conclusion. O

4.2 Auxiliary Lemmas

As in [2], given y € B(0,1) C R?, we define the projection function 7, : B(0,1)\{y} — S? by setting

—y-(s—y)+/(y- (s —y)> +1]s —ylP(L - [y]?)
|s —yl?

(s —v),

my(s) ==y +

which projects each s € B(0,1)\{y} onto S? along the direction s —y. We have that

1 yl2 -1 _
Ty)g2 = ldsz, Vry(s) =Izxz3+ (s —y) ® 5=y (l -1 2)3 if s € 2. (4.22)

Note that by (I222), if s € S% and w € T,(S?), then

Vry(s)w = w. (4.23)

Furthermore, there exists a positive constant, C, independent of y € B(0, %), such that for all s € B(0,1)\{y},
we have

C C
Vry(s)] < —, Vir,(s)] < ———. 4.24
Vrl S oo VRl < o (424)
Consequently, there exists a positive constant, C, independent of y € B(0, %), such that for all s1, so € {5 €
B(0,1): dist(s,S%) < 1}, we have
Imy(s1) = my(s2)| < Clsy = 2|, [Vmy(s1) = Vmy(s2)] < Clsy — sal. (4.25)

The following result holds (see also [2, Lem. 5.2 and Lem. 6.1]).

Lemma 4.6. Let A€ A(Q), let v e WH1(A4; B(0,1)) N C°(A;R3), and let A’ be an open subset of A. Then,
there exists y € B(0, 1), depending on v and A’, such that wy o v € WH1(A’; S%) N C>(4; S?) and

|V (my ov)|de < C, |Vuldz, (4.26)
A A

where Cy 1s a positive constant independent of A, A, v, and y.

24



Proof. Since v : A C R? — R? is smooth, Mini-Sard’s Theorem (see [28]) yields £3(v(A)) = 0. In particular,
setting G := {y € B(0,3) : there exists # € A such that v(z) = y}, then £3(G) = 0. Moreover, for all
y € B(0, )\G the functlon 7, o v belongs to C*>°(4; S?) and, by Fubini’s Theorem and the first estimate in
),

/ IV(%(U(I)))IdIdy:/ |(Vry) (v(2)) Vo(z)| dz dy
B(0,1) Jar B(0,1) Jar

<c (|w |/ |dy> da. (4.27)

For fixed x € A’ use the change of variables z = y — v(x) to get

1 1 1
/ ——dy = / —dz < / —dz =:¢; €R, (4.28)
B(0,1) [v(z) =y B(~v(x),1) |2] B(0,2) |2l

where we used the fact that ||v][ze4) < 1. From (E27) and (E28), we conclude that
/ IV (m, (0(2)))| dady < clc_'/ Vo(a)| da.
B(0,4) Jar A

Consequently, we can find y € B(0,1)\G such that (I28) holds with C, := ¢;C/L3(B(0,3)). Finally, we
observe that for such y, we have 7, ov € Whi(A’; §2) N C>(4;5?). O

Lemma 4.7. Let A € A(Q) and w = (u,v) € BV (4;]a, 8] x S?). Then, there exists a sequence {wy }nen C
WEL(A; [, 8] x S2) N C=(A; R x R?) such that w,, = w on A for alln € N, lim,, . ||, — wl| L1 (arxr3) =0,
and limsup,, . [, |V, (z)]dz < C|Dw|(A), where C is a positive constant only depending on C, C, and C,.

Proof. Because w = (u,v) takes values on [a, 3] x S?, its mollification (see (E2)) takes values on [, 3] X
( 1). Thus, by [27, Thm. 2.17, Rmk. 1.18] (see also [27, Rmk. 2.12]), there exists a sequence {wy }neny C
L1(A; o, B] x B(0,1)) N C*°(A;R x R3) such that

w, =w on DA for all n € N, w, = w weakly-x in BV (A;R x R3) as n — oo,

. (4.29)
lim . |Vwy,(z)|dx = |Dw|(A).

n—oo

We write wy,(-) = (un(-),vn(")) € [a,8] x B(0,1) L2-a.e. in A. Fix &y € (0,%), and set A, := {z € A:
dist (v, (x), S?) > o}. By Lemma I8 applied to A, vy, and A,, we can find y,, € B(0, 3) such that m,, ov, €
C*(A;S?) and

/ |V (my, ovy)|de < C'*/ [Vou,|dz.
An

n

Using the first estimate in (E224), we obtain

C
/ |V (7y, ovyp)|lde < / ——|Vu,|dz < 4C’/ Vo, |de,
A\A, A\A,, |V — Ynl A\A

n

and so
/ |V (7y, ovy)|de < max{C*,4C’}/ [Vu,|dz. (4.30)
A A

Setting Wy, = (un, Ty, o v,), we have that {@,then C WH(4;]a, 8] x S?) N C>®(A;R x R3) is a bounded
sequence in WH1(A; [, 8] x S?). Moreover, using (22), the first estimate in (IZ23), and the fact that v(-) € S?
(so that m,, ov =w) for L%-a.e. in A, and the estimate |m,, o v, —v| <2 < 2/§g|v, —v]| in A4, we obtain

/ |7y, ovn—v\dx:/ |7y, ovn—v|dx+/ |7y, © Uy — Ty, ov|da
A A A\An

n
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_ 2 _
<2L%(A,)+C \vn—v|dx<—/ |vn—v\dm+0/ |v, — v] dz
A, A\A,,

A\A,, do
9 _
gmax{—,C}/ |vp, — v| da. (4.31)
do A
In view of (E29)—(E=3T), we conclude that {w, }nen satisfies the requirements stated in Lemma 4. O

Remark 4.8. If A € A(Q) is of the form A = A;\ Ay, where 4; € A(Q), A9 € Ax(R), and Ay CC Ay,
then a simple adaptation of the proof above yields the existence of a sequence as in Lemma E74 with the trace
condition only holding on 0A; that is, the trace condition becomes “w, = w on dAq’.

The next lemma is a simplified version of a result proved in [[2] (see also [2, Thm. 2.2]), which will be useful
in the subsequent slicing result.

Lemma 4.9. Let Q be an open subset of R2. The space W11(£2;.82) N C>(Q; 5?) is dense in WH(Q; 5?)
with respect to the WH1(Q; R3)-norm.

Lemma 4.10. Let Q C R? be an open, bounded set and b : [, 8] x S? x R? x R3*2 — [0, +00) be an upper
semicontinuous function satisfying, for some C > 0 and for all (r,s,&,n) € [a, B] x S? x R? x R3*2,

0<h(r,s,&n) <O+ + [nl). (4.32)

Let A € Ax(Q), w = (u,v) € BV(A;[a, B] x §%), and w,, = (un,v,) € WHL(A; [, B] x §%), n € N, be such
that limy, .o [|wn, — w1 (arxrz) = 0. Then, for all n € N, there ezists Wy, = (tn,n) € W (A; [, 8] x S?)
satisfying

lim [|@, — w|[z1(amxrs) =0, W, =w on 0A, (4.33)
limsup/ H(Un, Ty Vi, VU,) da < liminf/ b (tn, Vny Vg, Vu,) de. (4.34)
n— oo A n—oo Ja

Proof. In view of the hypotheses on h, by Fatou’s Lemma, Lemma B9, and using a diagonalization argument,
we may assume that the component v,, of w,, belongs to W1 1(A; 5%) N C>(A;S?).

Extracting a subsequence, if needed, we may assume without loss of generality that the limit inferior on the
right-hand side of (E234) is a limit. By Lemma BT, there exists a sequence {@Wn}nen = {(Un,0n)}nen C
W A; e, B] x §%) N C>=(A; R x R3) such that

0, = w on DA for all n € N, @, = w weakly-x in BV (A4;R x R?) as n — oo. (4.35)

a
For each n € N, let &, := b—n, where
n

an =\ llun = @l ay + 1on = Onllzs as)

I

with [|b|] denoting the integer part of b. Clearly, k, — 0T as n — oco. For i € {1,--- ,b,}, define
Apo:={z € A: dist(xz,04) > a,}, A,;:={xecA: dist(z,04) > a, — ik, }.

b, := nﬂl + Vunllrape) + [Vanllorame) + Vol rags<z) + VO]l amsx2)

We have that A, 0 C A, 1 C -+ C Ay, and, for all n large enough, A, ¢ # 0 since a,, — 0 as n — oco. Fix any
such n, and let ; € C2°(R?;0,1]) be a cut-off function such that ¢; = 1 in A, 1, p; = 0 in R*\ 4,,;, and
[Veilloo < ;= being ¢ a positive constant independent of i and n, and set

wy, = (Upyy03) 7= @i (Uny V) + (1= 93) (U, U) = @i wy + (1 = @3) Wy

We have that w!, € Wh(A4;[a, 8] x B(0,1)), vi € WH1(A4; B(0,1)) N C>(4;R?),

wl =wy in Ay 1, wl =w, on A\A,,, nILH;O [|lw? — w1 (arxr3) = 0, (4.36)
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and, since Vw!, = ¢;Vw, + (1 — ;) Vi, + (w, — 0,) @ Vi,

/ IVt | de < / (|an| + V| + - wn — wn|) da. (4.37)
n,i\An,ic1 Ani\An,ic1 Kn

We now apply Lemma BB to A, v}, and A, ;\A,i 1, to find a point ¢}, € B(0,3) such that 7, o v}, €
WHL(A, i\ A,,i-1;5%) N C*°(A;5?) and

| Nmgede<e [ il (438)
Ani\An,i—1 Ani\An,i—1
In view of (EZ38) and (I222), since v, and v, take values in S? L£2?-a.e. in A, we get
/ |V (my; ovl,)|dz = / |V (7y: 0 v,)|de = / [V, |dz,
Anica Anica Anica

/ |V (7y: 0wy )|dx—/ |V (i ovy,)|da :/ |V, |de.
A\A,, ; " A\A,, ; o A\A,, ;

Thus, (E38) and (E39) yield w}, = (a,, 0},) = (ul,, 7y ov},) € WH1(A; [a, 5] x S?). Moreover, the first condition

n’vn

in (ZEZH), (=), and the second condition in (E238) ensure that

(4.39)

W = w on DA. (4.40)
Next, we prove that for fixed ¢,
Jim [, — wl1 (amxrs) = 0. (4.41)
We have

/\u;—u|dx:/|goiun+(lf<pi)ﬂn7<piu—(lfcpi)u|dzg/(|un—u|+|ﬂn7u\)dx
A A A

and, arguing as in (E31) with A, replaced by the open set {z € A: dist(v},S?) > do}, where dy € (0, %) is
fixed,

/|7ryl ov! —v|dx < maX /|v —v|dz < max{ C}/ (|vn = v| + [0n — v|) da
A

This yields (E=0) because {un}neN and {@, }nen are sequences converging to u in L'(A), while {v, }nen and
{¥ }nen are sequences converging to v in L!(A4;R3).

We now estimate the functional evaluated at @?. Using the bounds in (I232), (E=38), and (E=37), in this order,
we deduce that

/bun,vn,Vu , Vol ) dz
A
< L H(un, v, Vg, Vo) dx—i—/ B C(1+|Va |+ |Vol|) dz
Anz 1 An,’i\An‘i—l
+/ C(1 + |Vin| + |Vo,]) do
A\Ani
</ b(un,vn,Vun,an)dx+é/
A

(1 + |Vwy,| + |V, | + i|wn — wn|) dx
Api\An,i—1 Kn

+20 (14 |Vi,|) dz, (4.42)
A\An.O

where C is a positive constant only depending on C' and C,. Furthermore, using the definition of &,

br

C
— (1+\an|+|V1Dn|+—\wn—u‘)n|>dx
bn;‘/n L\ZTLL' 1 Hn
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1 c L2(A 1 1
< */ (14 IVwn] + V] + -, — 0] ) d < 42 4 el - Wnl £ (amxms):
bn Ja Kn by, n ;

Thus, there exists i, € {1,---,b,} such that

C
/ (1+|an|+|Van|+—|wn—1Dn|) dz
An,in\zn,i"—l K/n

£2(4)

<
S bn

1 1
+ - + cllwn — Wnll 71 4pups) = 0(1) as n — oo. (4.43)

Fixing j € N and defining flj = {xz € A: dist(x,04) > 1/j}, we have A\flj D A\ A, o for all n large enough
because a,, — 0 as n — co. Hence, using the fact that A\flj is a closed subset of A and Dw,, = Dw weakly-*
in M(A;R? x R3*?), we get, for fixed j,

limsup/ (1+ |Vwy,|)dr < limsup/ (14 |V, |) de < L2(A\A;) + | Dw|(A\A)). (4.44)
A\A, 0 A

n—oo n—oo \A].

Observing that {A\A;} ey is a decreasing sequence of (£2 + | Dw|)-finite measure sets whose intersection is the
empty set, letting j — oo in (E44), we conclude that

lim (1 +[Vw,])dz =0. (4.45)
n—oo A\An,o

Finally, setting w,, := @i, in view of (EZ40)—(AZ3) and (EZF), the sequence {1y, }nen C WH(A;[a, 8] x S?)
satisfies (A233) and (E-34). O

Remark 4.11. If A € A(Q) is of the form A = A;\ Ay, where 4; € A(Q), Ay € A(Q), and Ay CC Ay, then
in view of Remark B8, Lemma B0 holds for all such open sets A as long as we replace the trace condition in
(E333) by “@, = w on 0Ay”.

Lemma 4.12. For every (u,v) € BV (Q; [a, 8]) x BV (£2; S2), the set function

A€ AQ) — Flu,v; A) := inf { liminf/Af(un(x),vn(x), Vi (2), Vo, (z)) dz:

n—-+00
n €N, (un,vn) € WH(As [, B]) x WH(4;57),
Up — u in L'(A),v, — v in L' (4; R3)} (4.46)

is the restriction of a Radon measure on Q to A(Q).

Proof. Fix w = (u,v) € BV(;[a, 8] x S?). Using the bounds (IId) and a diagonalization argument, we can
find a sequence {wy, }nen = {(Un, vn) tnen € WHL(; [, 8] x §?) converging to w in L'(£; R x R?) such that

f(w;Q) = lim f(un(x)avn(x)a Vun(z),an(x))dx,

n—oo Q

= f (U, Uy Vg, an)ﬁfﬂ X p weakly-+ in M(Q)

for some nonnegative Radon measure p € M(Q).

We claim that for all A € A(Q),

F(w; A) = p(A). (4.47)
We will proceed in three steps.
Stepl. We prove that for all A € A(Q),
F(w; A) < (3+ B)C|Dwl(A), (4.48)

28



where C is a positive constant only depending on C' and C,.

Arguing as in Lemma E74, we can find a sequence {w, }nen = {(tn, Un) tneny C WHL(A4; o, B] % S?) NC>(A; R x
R?) such that lim, .o [|@n — w|[L1(arxrs) = 0 and limsup,, ., [, [V, (z)|dz < C|Dw|(A), where C is a
positive constant only depending on C' and C,. Then, by (II4),

F(w; hmmf/ fan(z (x), Vi (), Vo, (z)) dz

n—oo

n—oo

gliminf/A(S-Fﬂ)an( 2)|dz < (3 + B)C|Dw|(A).

Step 2. We claim that for all A, Ay, A3 € A(f2) such that A; CC Az C As, the following inequality holds
F(w; Az) < F(w; Ag) + F(w; A3\ Ay). (4.49)

Let U € A () be such that A; CC U CC Aa. Let {wl}nen = {(ul,v})neny € WH(A3\A1;[e, 8] x S?)
and {w2nen = {(u2,v2) }nen € WHL(Ag; [, 8] x S?) be sequences converging to w in L'(A3\A;; R x R3) and
L'(Ay; R x R3), respectively, and such that

F(w; Az\Ar) = lim flup(),vh(2), Vuh (2), Vo, (2)) dz,
n—oo As\z1

F(w; Ag)—nhm A f2 (z),v2(x), Vui(z), Vol (z)) da.

(4.50)

In view of Lemma AT0 and Remark I, we can find sequences {w} }nen = {(@,, 55) bnen € WHH(A3\U; [a, 5] %
S?) and {2 },en = {(42,92) }bnen C W LU [, B] x 8?) converging to w in L*(A3\U; R x R3) and L' (U; R x
R?), respectively, and such that

Wl =won OU, w2 =w on U,

limsup/ flul, vk, V! Vol)de > limsup/ fal, ok, vat, Vi) de,

n—oo JAz\U n—oo JAz\U (451)
limsup/ fu2 02, Vi, Vo?) hmsup/ (a2, 2, Va2, Vi2) de

Define for n € N,

_Jw)l in A5\U,
' 2 inU.
Then, @, = (ln,¥n) € WH(As; o, 8] x S5?) and {0, }nen is a sequence converging to w in L1(A43;R x R3).

Moreover, using (I50) and (E51), together with the set inclusions A3\U C As\A; and U C A, and the
non-negativeness of f,

F(w; Az) < lim inf f (U, Oy Vi, VU,) da

n—oo A3

—liminf</ _ flak, oL, Vi, Vo) dx+/fun,vn,Vu wi)dx>
AS\U

n—oo

glimsup/ 7f(u71L,vn,Vu VL) derhmsup/fun,vn,Vu , V2 dx
Ag\U

n—oo n—oo

< Flw; A3\ A1) + F(w; Ag),
which concludes Step 2.

Step 3. We establish (-47). Fix A € A(f2).
Substep 3.1. We prove that F(w; A) < p(A4).
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Using the upper semicontinuity of the weak-x convergence in M () with respect to compact sets and the fact
that {wy, }nen is an admissible sequence for F(w; A), we conclude that

F(w; A) < lim inf/ F (U, v, Vg, Vo,) do = liminf p,, (A) < limsup p, (A) < u(A). (4.52)
A

n— o0 n— o0 n—00

Fix ¢ > 0 and let AL, A” € A(Q) be such that A. CC A” cC A and |Dw|(A\A.) < /¢, where ¢ := (3 + 3)C.
Using (A49), (E48), and (E532), in this order, we obtain

Flw; A) < F(w; AL) + F(w; A\AL) < Fw; AZ) + e < p(AL) + < p(A) + e,

from which Substep 3.1 follows by letting ¢ — 0.
Substep 3.2. We prove that F(w; A) > p(A).

Fix ¢ > 0, and let A, € A(Q) be such that A. CC A and pu(A\A.) < e. Using the equality F(w; Q) = (%),
from Substep 3.1 (applied to Q\A.) and Step 2 (applied to A CC A C ), it follows that

1(A) = p(A\Ae) + p(Ac) < e+ p(Ac) = e + () — p(AN\A:)
<e+ Flw; Q) — F(w; Q\Ae) < e + F(w; A).

Letting ¢ — 0, we conclude the proof of Substep 3.2 as well as of Lemma ET2. O

Lemma 4.13. Let w € BV (Q; [, 3] x S?). Then?,

(a) w(x) € o, B] x S? for all x € Ay = Q\Sw;
(b) wE(x) € [, B] x S? for all x € Jy;
(¢) Vw(z) € [Ty (lov, 8] % 52)]2 for L2-a.e. x € ;

(d) W(z) = dﬁgz' (@) € [Tow (o 8] x 5%)] for |Dew|-a.e. z € 9.

Proof. We start by proving (a) and (b). Let xg € A,. Because w(-) € [a, 8] x S? L%-a.e. in Q, we have
lw(-) — w(xg)| = dist(w(xo), [ov, B] x S?) L?-a.e. in Q, and so

0= lir(1)1+ lw(y) — @(zo)| dy > dist(@(zo), [, B] x S?).
A B(zo,€)

This implies that w(xg) € [a, 3] x S?. Similarly, if ¢ € J,,, then

0= lim lw(y) — w*(zo)|dy > dist (w* (z0), [, B] x S?),
e—0t Bfw(mo)(’mve)

from which we conclude that w™(z¢) € [a, 8] x S2.

In order to prove (c¢) and (d), we fix an open, bounded subset U of R x R? such that U D [a, §] x S?, and we
consider a cut-off function § € C°(R x R?; [0, 1]) satisfying supp # C U and 0(r, s) = 1 for all (r, s) € [, 5] x S2.
Finally, we define ¢ : R x R® — R by setting ¢(r, s) := 0(r,s)(|s|> — 1). Then, ¢ belongs to C}(R x R*) and

0 08 0 06
sy =S )sl? 1), S20rs) = 5 (r5)(IsP? — 1) +26(r,5)s.

Hence, if (r,5) € [a, 3] x S% and h = (hy,h’) € R x R3, then

Vo(r,s)-h=0 hi €R A B -s=0 & heT,q(op] xS%). (4.53)

1We refer to Subsection E3 for the notation concerning BV functions.
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Moreover, by Theorem PT3, we have that ¢ o w € BV(§2) and (see (E8))

D(¢ow) = Vo(w)Vwl + (p(w™) — p(w™)) @ v HN ! |5, + Vo () Dw
= Vo(w)Vwl? + V()W Dw|,

where we also used (b) together with the fact that ¢(r,s) = 0 for s € S?. Similarly, since w(-) € [a, 8] x S?
for £2-a.e. in Q, it follows that ¢ o w = 0 for £%-a.e. in Q. Thus, D(¢ o w) = 0 and, because £? and |Dw| are
mutually singular measures, we conclude that

Vo(w(z))Vw(z) = 0 for L2-a.e. z € Q, Vo(w(z))We(x) =0 for |[Dw|-a.e. z €
that is,

Vo(w(x)) - (Vw(z),0) =0 for L*-a.e. z € Q, Vo(w(x)) - (0,W(x)) =0 for |[Dw|-a.e. x €,

which, together with (E53), yields (¢) and (d). O

4.3 On the Lower Bound for F

Let G denote the function on the right-hand side of (C22). We claim that
F(u,v) = G(u,v)

for all (u,v) € LY () x L'(Q;R3) or, equivalently,

liminf F'(u,,v,) 2 G(u,v) (4.54)

n—-+o0o

whenever {(u,, vn)nen C L1 () x L1(£;R?) is a sequence converging to (u,v) in L1(2) x L1 (£2;R?). To prove
(E5d), we may assume without loss of generality that

liminf F(up,v,) = lim F(u,,v,) € RS, (4.55)

n—-—+00 n—-—+00

and for all n € N,
(tn,vn) € WHL(Q; [, B]) x WHL(Q; 52).
In particular,
Flun, vn) = /Q (1Vtn] + (V) [Von] + |V (tnvn)]) do = /Qf(un,vn, Vn, Vo) dz < C, (4.56)
for some positive constant C' independent of n. Hence,
[ (9wl + e ds < c. (457)
and, in turn,

a/ |an|dw</ |unVUn+vn®Vun\dx+/ |, ® Vu,|dx < C. (4.58)
Q Q Q

Thus, up to the extraction of a subsequence (not relabeled), we have

U, = u weakly-x in BV (Q) and v,, = v weakly-+ in BV (Q;R?) as n — +o00;
u(z) € [a, B] and v(x) € S? for L?-a.e. z € Q;
o = f(Un, Un, Vg, an)ﬁfﬂ X 1 weakly-+ in M(Q)
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for some nonnegative finite Radon measure p € M(£). In view of the Radon-Nikodym Theorem, we can
decompose p into a sum of four mutually singular, nonnegative finite Radon measures as follows:

1= pa Lo + el D (. 0)] + iyl 0)* — (w,0) "L, e

We claim that

pa(z0) = Or f(u(xo), v(z0), Vu(xo), Vo(zg)) for L2-a.e. xg € (4.59)
pe(zo) = (Qr )™ (alzo), o(x0), Wi (20), Wi(w0)) for |D(u,v)|-a.e. zg € Q; (4.60)
ps (o) > : K (0,0 (0), (0,0) ™ (50), Y (70)

|(u, v)* (o) = (u,v)~ (o)
for |(u,v)t — (u,v)” |HLJ< -a.e. zg € Q. (4.61)

Assume that (E5Y), (E6d), and (EBT) hold, and let {¢x}ren C CF(£2;]0,1]) be an increasing sequence of
smooth cut-off functions such that sup,cy¢r(z) = 1 for all € Q. Then, using the convergence u, N
weakly-x in M(Q),

lim /fun,vn,Vun,an dx>hm1nf/¢k un,vn,Vun,an)dx:/(bk(:v)d,u
Q

n—-+4oo Q n—-+4oo

/ o1 (2) Qr f(u(x), (), Vu(z), Vo(z)) da
/S Ox (@) K (1, 0)* (2), (1 0) (), vy () dH ()
(u,v)
+ / br(@)(Qr ) (), 5(x), WE (), WE(x)) d| D (u,v)|(2). (4.62)

In view of Lebesgue’s Monotone Convergence Theorem, (E53), and (B58), letting k — +oo in (E632), we obtain
We start by proving (E59) and (E60). Let H. be the function defined in (ET4), and let A € A(2). Because
H. satisfies conditions (H1)—(H4) of [26] by Proposition B4, we have

liminf/ H.(tp, O, Vg, Vo) dx

n—-+o0o

> /AHg(u,v,Vu,Vv)dx+/A(HE)O"(ﬂ,{J,W,f,Wj)d|D“(u,v)|(x)
:/ OF (u, v, Vi, Vo) d:z:+/(Qf)m(ﬂ,ﬁ,Wj,Wf)d|DC(u,v)|(x)+O(5) (4.63)
A A

as € — 0T, where in the last equality we also used the identity

(Ho)®(r,s,&m) = (Q)*(r,5,&m) + (€] + In)-
Recalling that for (r,s) € [a, B] X S, T(; 5 ([, 8] x 52) = R x T(S?), from Lemma E13, (EH), (E57), and
(E38R), we conclude that

liminf/ f un,vn,Vun,an)dxfhmlnf/ f(un,vn,Vun,an)dz

n—-+oo n——+oo

>liminf/ Qf(un,vn,Vun,an)dx hmlnf/H (Un, U, Vg, Vo) dz — eC.

n—-+oo n—-+o0o

These estimates and (EG3) entail

liminf/ J (U, U, Vg, Vo, ) d /Qf u, v, Vu, Vv)dx—l—/(Qf) (a, 0, WS, W$)d| D (u,v)|(x).

n—-+oo A
(4.64)
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Since E{\é) and [D¢(u,v)| o are mutually singular, (E59) and (E&0) are a consequence of (E5d).

We now establish (EG1). We start by recalling that if v € S1, then @, denotes the unit cube in R? centered at
the origin and with two faces orthogonal to v. We set

Qj::{ery:x-l/>0}, Q;::{xEQV:x-I/<O},

and, for g € R? and € > 0,

Qu(xo,€) :=x0 +Qy, QE (w0, €) := xo +eQE.

To simplify the notation, we further set w := (u,v) and w,, := (un,v,), n € N. Let z¢ € J,, be such that

lim — lw(z) — wi(mo)’ dz =0, (4.65)
e—0t €2 wa(zo)(xme)
1 1
li - + an— d 1 — 1 ot — 0y |1
ﬁi%l* € JSuNQuy () (T05€) ‘w (z) ~w (m)‘ H(z) egng €|w v ‘HL(SwmQ“w”O)(IO’e))
= [w* (z0) — w™ (20)], (4.66)
1;(z0) = lim Qv (a0) (0. 9) ER. (4.67)

+ = 1
e—0* |w w |HL(SwﬁQ,,w(m0)(ro7E))

In view of Proposition 28, Theorem T4, and Besicovitch Differentiation Theorem, (E63)—(EHA) hold for
lwt — w‘|Hi,w—a.e. zo € .

Let {€; }sen be a sequence of positive numbers converging to zero such that the boundary of each Q,, (z0) (o0, €;)
has zero p-measure. Using (EBB), (EB3), and the weak-+ convergence ju,, — u in M(f2), we obtain

_ o1
0 () = 0 (o) s o) = tim = [ dp
Ql’w(zo)(xo’q)

1——+00 €;

1
= . lim lim — / f(un($>7vn<x)a vun(x)v vvn(‘r)) dz
i——+oo n—+0co €; Quw(zo)(xovei)
1 1
- . hm hm € f <un,€i (y)7 Un,q (Z/)7 *VU;”,Q (Z/)7 7vvn,ei (y)> dy
i——+00 n——+o0 QVw(mo) €; €;
. . 1
= Jim i 9 0)] 49 (v ) W)+ 9 (Ve (0)]) Vo )] s (468)
va (20) ¢

where
Un,e; (V) = Un(To + €Y),  Vne,(Y) = vn(To + €Y), Y E Quy(z0)

Setting wy.e, := (Un,e, Un,e,), We have that wy e, € WHH(Q,, (2); [, 8] X S?, and, in view of (EE3),
lim lim |wn,€i (y) —wo(y)|dy = 0, (4.69)

i——+00 n——+o0 Quu (2g)
w (zg

where

() = d @) iy v(wo) 20,
O(y) = {w_ (-TO) if Y- Vw(l"o) < 0.

By a standard diagonalization argument, from (EH58), (E6Y), and Lemma B0, we can construct a sequence
{wk}keN = {(ﬂk, @k)}keN C Wl’l(QVw(IO); [Oé,ﬂ] X 52) such that wy, = wp on 0Q,,, (zp) for all k € N,

k:lljr—loo Hwk B wOHLl(Quw(wo)?RXRS) =0,
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and

[t (o) — w (o) 1 (o) > lim sup /Q (V)| + 1V (00) @) + (= Vs )]) Vs ()] dy.

k—+o0 v (zg) Uk

(4.70)

Because

[ a(cvawl)vawl > V(o) dy
Q

€y, ~/{y€Qyw(m0):Vﬁk(y)—0}

v (20)

- / Xy (V1)) [ V01 (v)] dy,

QVm(Io)

from (E70) and (II8), and since (g, Ux) € P((u,v) " (x0), (4, v) ™ (20), Y(u,v0)(20)) for all k € N, we obtain (EET).

4.4 On the Upper Bound for F

We identify the Radon measure on Q) given by Lemma ET3 with its restriction F(u,v;-) to A() introduced in
(E44). In view of (E48) and [, Step 1 of Prop. 4.4], we have that F(u,v;-) is local in B(f2) in the following

sense:
F(u,v; B) = F(u',v'; B)
for all B € B(Q) and w := (u,v), v’ := (v',v") € BV(Q; [, B]) x BV(; S?) such that
B C SyN Sy, (wh (@), w™ (2), v (x)) ~ (W' (@), 0" (@), v () for all z € B,
where
(a,b,v) ~ (a0, V)& (a=d Ab=b Av=V)V(b=d ANa=b Av=-1). (4.71)
Lemma 4.14. Let (u,v) € BV (Q;[a, 8]) x BV (Q; S?). Then, for L?-a.e. xg € Q, we have

dj:(ua v; )

V& (z0) < Qr f(u(xo),v(20), Vu(xo), Vo(zo)). (4.72)

Proof. Let g € Q be such that

a < u(zg) < B, (4.73)
[o(z0)| =1, V(@) € [Toae) (S?)]%, (4.74)
dF(u,v;-) . . .

T(xo) exists and is finite, (4.75)
lim ][ |u(z) — u(zo)| dz =0, (4.76)
e—0T B(z0,€)

lim |[Vu(z) — Vu(zg)|dz =0, (4.77)
e—0+ B(z,€)

lim [v(x) —v(z)| dz =0, (4.78)

€=0% JB(x0,¢)

lim |[Vu(z) — Vou(zo)|dz = 0, (4.79)

€=0% JB(xo,¢)

|D*u|(B(zo, €))

2 TE2Ban ) (4.80)
lim 2UBE09) (4.81)

e—0t+ L2 (B(.’]’JQ7 6))
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We observe that (E°Z3)—(E=S1) hold for £%-a.e. zg € Q.

Fix e > 0. Let . € Wy'™(Q) and 1. € Wy (Q; Ty(zy)(S?)), extended by periodicity to the whole R2, be such
that

Qr f(u(xo), v(20), Vu(zo), Vo(xo)) + € = 4f(U(xo)7v(wo),Vu(xo) + Vee(y), Vo(xo) + Vie(y)) dy.  (4.82)

For each n € N and € > 0, consider the function ®,, . : R — R defined by

B o)t (Bt a)leele
Pue(") = T ey + 2o

Then, &, . € C*(R), 0 < @], (r) < 1 for all 7 € R, and {®], _}nen converges uniformly to 1 in R. Observe
that

l[pe lloo [[pe |l oo
Prelio—lipelloe /m Bt lpellofm) o [0 = Ty B4+ T | — [, ] (4.83)

defines a projection of [a — ||¢c|loo/n, B + [|0c |00 /n] onto [a, 4.

Fix 0p € (0,1/2), and consider the nearest point projection II : y € B(v(xg),d0) — % € 52 of B(v(zo),d)
onto S2%, which defines a C™ mapping. Let

e = max {2+ 2|Vu(@o)| + [Vee oo, (I VT]loc + 1)(2 + 2 T0(w0)| + [ V¥clloc) }.
be := 14 |Vu(zo)| + [ Ve -
In view of the continuity properties of f and the regularity of I, we can find £, € (0,1) such that
&1l (€2, Imul, Im2| < ae, [§10 = &als Im — m2| < Le = | f(u(@o), v(wo), §1.m) — flu(zo), v(@o), &2, m2)| <&, (4.84)

and there exists 0. € (0,dp) such that

L.
s1,82 € B(v(xg),d:) = |VI(s1) — VI(s2)| <

: 4.
o0, (4.85)

Let {sx }ren be a decreasing sequence of positive real numbers such that B(zo, 2¢;) C 2 and |Du|(0B(xo,sx)) =
|Dv|(0B(x0,sx,)) = 0 for all &k € N. Let {p,}nen be the sequence of standard mollifiers defined in (ET) for
d = 1/n. Choose ng = ng(zo) € N such that for all n > ng, we have B(xg,2¢1) C {z € Q: dist(z,9Q) > 1/n}.
For n > ng, we define (see (232))

U (T) (= Uk P, Uy 1=V Py

Then (see Lemma 272-i)), for all k € N, u,, € WHY(B(z0,t); [o, 8]) N C°°(B(xo,5k)) converges strictly to u in
BV (B(z,sk)), and v, € WH(B(z0,x); B(0,1))NC>(B(xo, sk ); R?) converges strictly to v in BV (B(x, sk ); R?)
as n — oo; i.e., for all k € N, u,, = u weakly-+ in BV (B(xo,5t)), vn - v weakly-x in BV (B(zo,s); R?), as
n — oo, and

lim |Vuy,|dx = |Du|(B(zo, k), lim |Vou,|dz = |Dv|(B(zo,k))- (4.86)

0 J B(xo,5k) =0 J B(zo,5k)

Without loss of generality, we assume that ng = 1. Also, in what follows, C. represents a positive constant
depending on ¢ but independent of n and k and whose value may change from one instance to another.

Step 1. We construct admissible sequences for F(u,v; B(xg,sk))-

Let vy i := my, , 0vn € WH(B(0,5,); 5%) NC°(B(x0,); R?), where yy, » € B(0,1/2) is given by Lemma I@
applied to B(zo; k), vn, and A5, ;= {x € B(xo,sx): dist(vn(z), S?) > 0:/2}, so that

/E Vo k(x)|de < C’*/E Vo, ()| de. (4.87)

n,k n,k
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)

Because <

have

< 1§, [vn(®) = ynk| = § whenever z € B(zg, )\ A5, - Thus, by (B23), for x € B(zo,<k)\4;, 1, we

|Vopi(x)| = |V7y,  (0n(2)) Vo, ()] < 4C |V, ()]. (4.88)

Moreover, by (E23) and (EZ4), Vm,, , (v(zg))Vv(zg) = Vu(xg). Hence, (E2d), (E23), and the inequality
lv(zo) — > 1 yield, for z € B(zo,s,)\AS, ;. and C := max{2C + 20, C|Vo(zo)|},

Vo1 (2) = Vu(zo)|

< |V, 4 (0 (2)) Vo (2) = Vi, , (0(20)) Vo (2)] + [Vy, , (0(20))Von(z) = Vi, (0(20)) Vo (zo)]
Clon(@) = v(20)||Vn(z)| + 2C|Vun(z) — Vo(zo)]

C(IVun(x) = Vo(@o)| + [vn(@) — v(@o)|). (4.89)

We claim that

<
<

lim |vnk(z) —v(z)|dx = 0. (4.90)

N0 J B(zo,sk)

In fact, using the condition v(x) € S? for L£%-a.e. z € Q and the convergence v,, — v in L'(B(zo,s;); R?) as
n — 00, we get

2 2
limsup £2(45, ;) < limsup — dist(vn(az:)7 S§%)dx < limsup — |vn () —v(x)|dz =0,
n—00 n—oo 6 n—00 5 B(xo,sk)
and so
nlLH;OEZ( sx) =0 (4.91)

Observing that

[ o) = v@ldo= [ Jons@) - o@lde+ [on i (z) — v(z)| do
B(Io,(k) Asg B(mo,gk)\AfL,k

n,k

< 2[:2( ) +C |vn (2) — v(x)| de,
B(zo,sk)

where we used (E232) and (E23), invoking again the convergence v, — v in L'(B(zo,s); R3) as n — oo and
(E91), we obtain (A-90).

Let (1 € C°(R;[0,1]) and (o € C2°(R3;[0,1]) be cut-off functions such that [|(]]|c < 2/6:, |[V(2]leo < 2/0e,
and

Cl(r)zlifre(—%,%), Gr)y=0ifr ¢ —6 66),

Gls)=1ifse 3(07 %) Co(s) =0if s ¢ B(o, ‘55).
Set
Uy, 1 (7)== un(z) + %Cl(un(fﬂ) —u(zo)) pe(nz), € B(zo,sk),

1
() = k() - ol () — vz vlna), @ € Blao, o).
2
Finally, for n € N such that n > 5 max { [|@eloc, 10|l } and for @ € B(zo, <), define
€

afb,k(x) =P e (ui,k(x))

36



and
. e
U k() if (o k(x) —v(z0)| = 5
€ . e
(v k(2))  if Jon(z) — (@)l < 5

By (E=3), we have u;, ; € WHL(B(zo,); [, B]) and (NS WY (B(xo,s1); S?). We claim that

{@5, . tnen weakly-x converges to u in BV (B(wo, <)),

B . (4.92)
{9, x tnen weakly-x converges to v in BV (B(zo, sk ); R3).
In fact, we have
n(f —a)ué (z) + (8 + a)||vellso
/ @ () _u(x”dx:/ (8 — aJug, y (@) + (B + )|l || _u(x)’dx
B(:Eo,(k) ’ B(Io,Ck) n(/B - O{) + 2”905”00
n(f —a) / n(p —
u;, p(z) —u(x)|dz + -1 )| d
n(B — ) +2H906||oo B(zo,sk) I - n(B — 04)4‘2”905”00 ‘ B(zo, Ck) |

(B + a)|leeloo 2
75— @) + 2pell - )

< lun(2) — u(z)|dz + =——L(B(zo, %)) + lu(z)| dx
/B(Zomc) n ’ n(ﬁ - Oé) + 2”506”00 B(zo,sk)

B+ Dpelloc o
ey + 2l P

Letting n — oo, taking into account that {u,}nen converges to u in L'(B(xo,x)), we conclude that {a, , }nen
converges to u in L'(B(zo,sk)). Furthermore, using the fact that 0 < @], _(r) < 1 for all r € R, we obtain for
L2%-a.e. x € B(xg,sk),

Vit (2| = @, 0,4 (0) V4 0)|
< [Vaalo) + G (2) = u(20)) Vi (00) + =92 (00 (o) — u(0) Vit 0)
< V(@) + 9l + 20 et T, ()
< 2IVun (o) + [ Voeloc (1.93)

provided that n > 2|/¢clloco/de, where we used the fact that ||(]|lcc < 2/d.. This, together with (ERH) and
the convergence in L'(B(zg,c)) proved above, allows us to conclude that {@;,  }nen is a bounded sequence in

W(B(xg, k) weakly-x converging to u in BV (B(xg,sx)). We observe further that in view of (E93) we have
that

Vg, 1. (2)] < Ce(1 + [Vun(2) — Vu(zo)]) (4.94)

for L2-a.e. z € B(zo, k)

We now turn to the sequence {@ ; }nen. We start by proving that o7, , — v in L'(B(zo,<); R?) as n — oo.
Because II(vp, 1 (+) = v i (+) in {z € B(xo,<k): |vnk(xr) — v(xo)| < 0¢/2}, it follows that

/ 195, () — v()| dz = / o () — 0()| dz
B(zo,sk) {z€B(w0,51):|vn k() —v(z0)|> %}

+/ (w5, 1 () = (on,k(2) 4+ M(vp k(2)) — v(z)| dz
{2€B(20.5k):|vn, K () —v(z0) | < 2 }

/ fom (@) — ()] de + [T 00 / 08,0 (2) — vn k()] dz
B(zo,sk) B(zo,sk)

N
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Welle 2 g, ),

1,00

<[ o) - o)l de+
B(zo,sk)
which, together with (EX0), implies the convergence in L'(B(xo,s;); R?) of {95, 1 tnen to v. To estimate the

sequence {V;, ; }nen, we observe that if |vy, i (7) — v(zo)| > dc/2, then

Vo, (2)] = [Vonk(2)]- (4.95)

< IV e V12 + oo () = 000)) Vi () + 6 (02) © Vo 4(2) — v(0)) T (2)
< 19T (21900, ()] + [Vl c). (4.96)

Hence, in view of (EX7), (A88), (E=0), and the convergence in L(B(zo,cx); R?) proved above, we infer that
{95, 1 Inen is a bounded sequence in W' (B(xo,<k); R?) weakly-x converging to v in BV (B(zo,sk); R?). We
observe further that from (93) and (B98), we get

[VUg e (2)] < Ce(1+ [Voni(2) = Vo(zo)]) (4.97)

for £%-a.e. z € B(xo,s)-

We have just proved that {%;, ; }nen and {o}, ; }nen are admissible sequences for F(u,v; B(zo; <)), which con-
cludes Step 1.

Step 2. We prove that the sequences {@, ; }nen and {7y, ; fnen constructed in Step 1 satisfy

A (u, v; -
2 o) < imsnptimsnp £ fu(ro),vleo). Vit o 0), V05 () (4.98)
k—oo n—oo B(zo,s1)

By Step 1, (E48), and (EZ73), we obtain

df(u,v;-) T }-(U»U;B(%Sk))
acz o) = e )

< likm inf lim inf fas, p(x), o5 1 (x), Vas, ,(x), Vo, ;. (z)) da.
—00 MN—0 B(zo,5k) ’ ’ ’ ’

We claim that
Jin inf Tim inf ][ FE5 (), 55 4 (2), VS 4 (), VI 4(2)) d
B(zo,sk)

k—oo n—oo
< hinsuP lim sup ]{9( )f(“(xo)»v($0)aVﬁi,k(w)7V62,k(x)) dz, (4.99)
—oo  m—s00 _—
from which (E98) follows. Using the definition of f (see (ICI3)), (E794), and (E94), we get
/Bmm (054 (2), 55,4 (2), V4 (2), V55 5 (2)) — F(u(ao), v(z0), Vs (@), V55, (2))] da
s /Bm) (1, 4(2) = (o) |95 ()] + |75 4 (2) = v(w0) IV 1(2)]) d

<C. [ / () )]+ 554 0) (o))

—|—/B(IO’%) |ﬂik(x) — u(zo)||Vun k()| dz —|—/B [0, k(%) — v(z0)|| VU, ()| dz|. (4.100)

(z0,5k)
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By (E92), (B7@), and (E77R), we deduce that

lim lim (la5,1(x) = u(o)| + |05, k() — v(wo)|) d
k—o00 n—00 B(a:o,ck)

= lim (Ju(z) — u(wo)| + |v(z) — v(wo)|) dz = 0. (4.101)

k=00 JB(zo,5k)

We now estimate the last two integrals in (IT00). Since |a, ;. () — u(zo)| < 26, (B53), and (E=8), we obtain
[ ) - u@)[Vonalo) dz
B(zo,sk)

<24 |an7k(:r)|dx+4é/
ALk B(zo,sk)\AS, .

< 2ﬂC'*/ (|Von(z) = Vu(zo)| + [Vu(zo)]) da

|5, 1 (2) = u(@o)|[Von ()| dz

wc [ (2817 (2) = V)| + [, 4() — uao) [ V(o)) d
B(mo,gk)\Afl &

< C’(/ |V, (x) — Vou(zo)| dz + L3( k) +/
B(xo,s%)

[ () — u(ao)| dx), (4.102)
B(xo,s%)

where C' := max{26(C, + 4C), 28C,|Vv(z¢)|,4C|Vuv(xo)|}. Because v, = v * p, and |Dv|(dB(x0,sx)) = 0, we
have

lim Vo, (z) — Vo(zg)|dz = / |Vu(z) — Vou(zo)| dz + |D*v|(B(zo,sk))- (4.103)

"0 J B(xo,5k) B(xo,5k)

Recalling that {@, , }nen converges to u in L'(B(wo,s)) (see (E92)), from (E102), (E103), (E9T), (E73),
(1), and (E774), we deduce that

lim lim |15, 1. (2) — u(zo)|| Vv, i (2)] dz = 0. (4.104)

k— o0 n—o0 B(z0,5%)
Finally, we estimate the last integral in (E100). We have that

/ 105, 1(2) — 0(20)|Vaun ()] de
B(zo,sk)

< 2/ |Vun(z) — Vu(zo)| de +/ |07, (2) — v(z0)||Vu(zo)| dz. (4.105)
B(zo,sk) B(zo,5k
Arguing as above, an equality for w similar to that in (EI03) holds; that is,
lim [V, (z) — Vu(zo)| dox = / [Vu(z) — Vu(zo)|dz + | D*u|(B(zo,sk))- (4.106)
0 J B(xo,5k) B(zo,5k)

Recalling that {2}, ; }nen converges to v in LY(B(z,c); R?) (see (A92)), from (EI03), (A108), (I77), (E=0),
and (E7R), we deduce that

lim lim Uy, k(%) — v(z0)[|Vun(2)|dz = 0. (4.107)

k—o0 n—oo B(wo,gk)

Hence, (E99) follows from (E100), (E10), (E104), and (E103).
Step 3. We conclude the proof of Lemma ET4.
Set

25 () :== Vu(zo) x + %@E(nx), ws (x) == Vou(zo) z + %wg(nx),
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and observe that
[V (@) < [Vu(zo)| + [Veelloo < ae,  [Vwg(2)] < [Vo(zo)| + Vel < ae.

Additionally, let

le
Ve ‘= )
2([[VH oo + 1)

and define
de
By = { € B(ro,): Jun(@) —u(wo)| < T}, By = {z € Blro,o0): [Vun(@) = Vu(wo)| <7 },
de
B, = {x € B(xo,sk): |vnk(z) —v(z0)| < Z}’ By, = {f € B(zo,<k): [Von k() — Vo(zo)| < %}-

If x € B, N By, N B, N Byy, then (i (u,(x) — u(zo)) = 1, (2(vnix(z) — v(xo)) = 1, and, by (E93) and (£98),
for n > 2/6. max {||¢c|c, || Ve[| }, we have

Vg, (2)] < 292 + 2[Vu(zo)| + [[Veelloo < e,
Yoy, (@)] < IVIloo (276 + 2| Vo(z0)| + Ve[l 0) < ae

Moreover, using the fact that @, _(r) = n(8 —a)/(n(8 — a) + 2||¢:[l) € (0,1] for all r € R, we get

V5(2) — V()| = @) - (un(2) + e (00) ) (Vin () F Vo) + Vepa(na)) — (Vulo) + Vipe ()|

< V(@) — Vo) + @), (un(@) + = pe(n)) = 1][Vu(zo) + Vipe ()
2[|oc || oo

<y + Vu(xzg)| + ||Voeloo
L L

<— _— =

S5 t5 le,

provided that

. 2)[: ll0 (21 V(o) + 2([ Vel — L)
(B —a)l:

Next, using the second condition in (EZ74) and the equality VII(v(z0))Vibe(-) = V)< (+), which holds for £-a.e.
in R? since Voo (+) € [Tyy(z0)(S?)]? for L*-a.e. in R?, we obtain

V55 4(2) = Vi (a)
= ‘VH (vmk(ac) + %1/)5(7”@)) (Voi(z) — Vo(zo) + Vo(zg) + Vipe (nz)) — (Vo(zo) + Vzbs(n:c))‘
< IV el V() — Vo) + [ V11 (v,1(2) + 245 (n2)) — FTI(o(0))| V(o) + Ve ()

+7:‘€€7

po | &>
A

1
< VTl + 5= (IVo(zo)| + [ Veelloo) <
€
provided that n > 2|[the[|o /8<, because for all such n € N, we have [vy, i (2)+ L tpe (n@) —v(2o)| < 0e/4+0./2 < 6.,

and so (E=X3) applies.
Thus, using (E84), Riemann-Lebesgue’s Lemma, and (E8J), in this order, we conclude that

1
lim sup lim sup S (u(zo), v(wo), Vs, (), Vg, 4 (2)) da

k—oo n—oo L2(B(wo,ck)) »/BuﬂBVuﬂBvﬂBVv

< lim sup lim sup ][ f(u(wo), v(z0), Vu(zo) + Vo (nz), Vo(zg) + Vipe (nx)) do + ¢
B(zo,5k)

k—o0 n—oo
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— /Q £ (u(zo), v(0), V(o) + Vo (), Vo(zo) + Ve (y)) dy + ¢

< Q7 f (u(zo), v(wo), Vu(zo), Vu(zo)) + 2. (4.108)
Next, we observe that from (EX7) and (IRY), we have, for ¢ := max{C, + 1,C, (Cyx + 1)|Vu(xo)|},

/ |V, i (z) — Vo(zg)| de < (Cy + 1) / (|an(x) — Vou(zo)| + |Vv(x0)|) dx
B(zo,sk) A

e
n,k

+C(/B(;p0’§k)\A5 (|an(z) o VU(ION + |Un($) — ’U(l‘o)| )dx)

n,k

- v\x v () — vz T 2 £ .
<c</B(mo’gk) (IVvn(z) = Vu(zo)| + |vn(z) — v(z0)| )dz + L3( mk))
(4.109)

Note also that

o ),
—_— l1de < — |tn (2) — u(zo)| da, (4.110)
L2(B(w0, k) JB(wo,)\Bu 0 J B(ao,s1)

and, by ([I4), (294), and (£92),
1
limsuplimsupi/ flu(zo), v(zo), Vs, 1 (x), Vs, 1 (x)) de
PSP IS 2 (Bre, ) Jiencn s, (u(zo), v(zo) k() x())
1
< (3+ Q) limsuplimsup ————
( /6) k:~>oop n—)oop ,CQ(B(JIo,Ck))

1

< C¢ limsup lim su 7/ 1+ |Vu,(x) — Vu(xg)| + |Vo, k(z) — Vo(x dz. (4.111
kaoop n~>oop EQ(B($07§k)) B(mo,gk)\Bu( | ( ) ( 0)| | 7k( ) ( O)D ( )

Plugging in (EI09) and (E110) in (EII), from the convergences u, — u in L'(B(zg,<)) and v, — v in

LY(B(zo,s;);R?), as n — oo, and from (I9T), (E103), (E108), (I78), (I77), (I79), (I=80), and (EXT), it

follows that

/ (V5 (o) + [93,4(2)]) do
B(zo,s1)\Bu

1

lim lim 7/ flu(zo),v(zo), Vs, ,(x), VU, . (z)) de = 0. 4.112
koo n—00 L2(B(x0,k)) JB(zg.c0)\ Bu (u(z0), v(0) #(@) (@) ( )

Similarly, using in addition (E790) and (EZ7R),

1
lim lim 7/ flu(zo),v(x0), Vg, (), Vg, 1. (z)) dz = 0. 4.113
e e Z2(B(r0,n) nien.co i, (u(wo), v(zo) (@), VU5, (7)) (4.113)
Also, since
1
/ lde < — |Vun(z) — Vu(zo)| de,
B(0,5%)\Bvu Ve JB(zo,s%)
1
/ lde < — |V, i (z) — Vu(zo)| dz,
B(zo0,s1)\Bvo Ve JB(zo,sx)
we have

. . 1
lim sup lim sup

L2(B(zo.<)) u(wo),v(20), Vg, (), VUy, i (z))dz =0 4.114
mawplimeny oz [ fluan) (o), V0,V 4(2) o

and

1
hms‘lphmsupi/ fu(zo), v(wo), VI, (), VTE 4 (x)) dz = 0. 4115
k—oo n—oo EQ(B(JJO;Ck)) (BuNBy)\ By ( ( O) ( 0) ,k:( ) ,k?( )) ( )

Finally, owing to (£298), (E108), and (E1I9)-(EIIH), we conclude that
dF (u,v; )

dcz
and (EC72) follows by letting e — 0. O

(w0) < Qr f(u(z0), v(z0), Vu(zo), V(20)) + 2,
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Lemma 4.15. The infimum in (B48) does not change if we replace f by Qrf.
Proof. For (u,v) € BV (2;[a, 8]) x BV(Q;5?) and A € A(Q), set

OF (u,v; A) := inf { lim inf QTf(un( ) On (), Vg (x), Vo (x)) da:

n—-+oo

neN, (un,vn) € Whi(A4; [, B]) x WH(A; 8%), u, — w in L' (A),v, — v in Ll(A;R3)}.

The inequality QF (u,v; A) < F(u,v; A) follows from the fact that Qrf < f. To prove the converse inequality,
let (4,v) € WH(A4; [, B]) x WH1(A;5?). Using the growth conditions (IId) satisfied by f, we conclude that

Fla, 5 A /fa (@), Va(z), Vi /|Vu ) dz + (1 +ﬁ/\w )| da,

which proves that A € A(Q2) — F(a,7;A) is absolutely continuous with respect to the Lebesgue measure.
Hence, by Lemma ET4, we conclude that

Fla,54) < | Orf(a(z),o(z), Va(z), Vo(z)) dz. (4.116)

Fix (u,v) € BV (Q;[a, 8]) x BV (2; S?). Let {(un, vn) tnen € WHL(A4; [a, 8]) x WH1(A; S?) be such that u,, — u
in L'(A) and v,, — v in L'(4;R3). The sequential lower semicontinuity of JF(-,; A) with respect to the strong
convergence in L'(A) x L*(A4;R3), together with (EII8), yields

Flu,v; A) < liminf F(uy, vy; A) < liminf | Op f(un(2), ve(x), Vun(z), Vo, (2)) dz.
n—oo n—oo A

Taking the infimum over all admissible sequences, we conclude that F(u,v; A) < QF (u,v; A). O

Lemma 4.16. Fiz (u,v) € BV (Q;[a, 8]) x BV (Q; 5%). Then,

dF(u,v;-)

d[De(u,v)| (wo) < (Qrf)™ (11(,730), 0(x0), W (o), Wf(ﬂco)) (4.117)

for |D¢(u,v)|-a.e. g € Q.

Proof. Set w := (u,v), and define v := |Dw| — | D°w|. Let z¢ € Q be such that

w(wo) = (@), 5(x0)) € [a, f] x %, W(x0) € [Ti(a) (S*)?, (4.118)
%iféc |) (o) exists and is finite, (4.119)
v(B(zo,€))
125 Dl B, ) " e
111(1)1Jr [@(x) — w(zo)|d|Dw|(z) = 0, (4.121)
€— B(xo,€)
lir(r)1+ |[We(x) — We(xo)|d|Dw|(z) = 0, (4.122)
e B(zo,¢)
lim, Q) (a(x), b(x), Wi (), Wi (x))
€ B(zo,sk)
—(QF)> (@(xo), 5(x0), WE(0), WE(20)) |d|Dcw\(x) =0. (4.123)

We observe that (E118)—(ET23) hold for |Dwl-a.e. zy € Q.

As in the proof of Lemma B4, let {¢x}ren be a decreasing sequence of positive real numbers such that
B(xg,2¢;) C Q and |Du|(0B(x0,sx)) = |Dv|(0B(xo,sk)) = 0 = |Dw|(0B(zo,sx)) for all k € N. Let {pn, tnen
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be the sequence of standard mollifiers defined in (EZT) for 6 = 1/n. Without loss of generality, we may assume
that for all n € N, we have B(zg,2¢1) C {z € Q: dist(z,9Q) > 1/n}, and thus define (see (E2))

Un(Z) == Uk pp, Vp = URPy, Wy =Wk Py = (Up, Up)-

*

Then, u, € Wl’l(B(angk); [avﬂ}) n COO(B(ZOvQC))a Up € Wl’l(B(xovgk); B(Ov 1)) n COO(B(xovgk);RS)v Up — U
weakly-x in BV (B(zq, <)), and v, = v weakly-+ in BV (B(xo,<);R?), as n — oo, for all k € N.

Fix § € (0,1/4). For n, k € N, consider the function vy, j, := m, , ov, € W (B(20,<x); S?) NC>(B(zo, s, ); R?)
with y,, x € B(0,1/2) given by Lemma I8 applied to B(zo; k), Un, and A, i := {x € B(zo,c): dist(v,(x),S?) >
d}. Then, arguing as in Step 1 of the proof of Lemma BET4, for all n,k € N and = € B(xo, sx)\An.k,

lim £2(Apx) =0, / Vo ()] dz < C, / Vo ()| dz, (4.124)
n— 00 A A
Vo k(z)] < AC|Vu,(2)],  |vnk(x) — 0(z0)| < Clun(z) — 9(x0))- (4.125)

Step 1. We prove that

dF (w;-)
dDeu] ")
1 -
< lim sup lim sup (/ Qf (o), v(w0), Vun(z), Vop i (x)) do + c I, )7 4.126
k—oo n—oo |Dc'w|(B(eT07§k)) B(zo,sk) ( ( 0) ( 0) ( ) k( )) k ( )

where ¢ is the constant in (E10) and

Ik = /B( ) (Jun (@) = @(wo)| + |vnk(x) — 0(20)]) (|Vn ()] + [Vvnk(2)]) dz. (4.127)

The sequence {(Un,Vn k) }nen is admissible for F(w; B(zo;<x)), thus, in view of (E119) and Lemma ETH, we
have

dF(w;-) F(w; B(xo,sk))
i et ) -]
apeul 0= Dol (Blao, b))
1
< liminf lim inf / Or f(un (), vnk(x), Vun(x), Vo, 1 (x)) de.
k—oo n—co |Dw|(B(x0,5k)) JB(we.cx) 7 (tn (@), 004 (@) (@) k(@)

Observing that Vv, x(-) € [T, (.

y(S?)]? L2-a.e. in B(xo; <) and using (EII8), then (E8) and (1) applied
to r = up k(x), F=0(z0), s = vpk(x), 5=

(o), & = Vuy, and n = Vo, entails
O (tn(2), 0 (2), Tt (), Vi (@) = QF 1t (2), . (2), Vet (), T 4(2))
< Qf (@(wo), (o), Viun (), Vo k()
+e(|un(z) — @(@o)| + [vn k(@) — 0(@0)|) (|Vuun (@)] + [V i (2)]),
from which (ET28) follows.
Step 2. We prove that

1
lim lim I,x =0, 4.128
k—o0 n—o0 |Dcw|(B(l'0,§k)) ok ( )

where I, j is the integral defined in (ET27).

In this step we will denote by Cs any positive constant only depending on §, 3, C,, and C . By (EIZ3),
recalling that v, x(+), 9(z0) € S?, u,(-), @(z) € [, B], and using Lemma P73-ii) applied to u and bh(-) =
[un(-) = @(xo)| + [vn(-) — 0(zo)|, we have

/ (lun(z) = @(2o)| + |vnk(2) — 0(z0)])[Vuun(z)| dz
B(zo,sk)
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SS

<@3+2) [ @il [ () 0] + ) 0 T @)
<2 @) @)V ()] do

+f (lun (@) — (z0)| + Clon(@) — 5(w0)])[Vun ()| dz
B(x0,5:)\An,k
<G [ (fun(o) = )] + foule) — 5(a0) [ Van(@)] da
B(zo,sk)
<af . (= 5(20)] # pu) @) + (fon — B(a0)| ) (2)] | Dulz)
<20 | (o — @(0)| * po) () d| Dul ().
B(zo,sk+21)
Similarly,
[ (unta) = (o) + onrlz) = 5a0)]) Vone ()] do
B(z0,sK)

< (2684 2)C*/A |V, (z)| dz + 4C e (Jun(z) — @(z0)| + Clon(x) — 0(z0)|) |VUn(z)| da

< Ca/ (lun(@) = @(zo)| + |vn(2) — 0(0)|) | Von ()| dz
B(zo,5k)

<2 / (wn — @(x0)] * pu) () d|Do|(z). (4.120)
B(zo,sk+21)

Hence, since |Du| + |Dv| < 2|Dw| in B(£2), we deduce that

Lo <Cs / (Iwn — B(z0)| * pu) () | D] (2).
B(wo,sk+2)

Using the estimate [||w, — @(z0)| * pnl Lo (B(zo,c0+ 1)) < 2(8 + 1), we obtain
. 1
Loy < cg/ (lwn — ©(x0)| * pn)(x) d| Dw|(x) + Cs|Duw| (B (xo,ck + f) N sw)
B(0,5k+2)\Sw n
< Ca/ ((lwn = w] * p) (@) + (lw = B(z0)| * pu)(2)) d| Dw](2)
B(zo,56+2)\Sw
1
+Cs|Dw| (B (xo,% + ﬁ) N Sw)-

Define w(-) := |w(-) — w(xzp)|. By Proposition B8 (a)-ii) and (a)-ii) applied to w and to w, respectively, we
conclude that

lim (Jw — @(xo)| * pn)(x) = w(x) = [@(x) — w(xg)| forall z € Ay, = Q\S,,

n—oo
while in view of Lemma 273-iv) applied to w,

lim (|w, —w|*pp)(z) =0 forall z € A, = Q\S,.

n—oo

These last two limits, together with Lebesgue’s Dominated and Monotone Convergence Theorems, yield

limsup I, ;; < 65/ @ (x) — w(zo)| d|Dw|(z) + Cs| Dw|(B(zo, s) N Sw)

n—oo B(20,5%)\Sw

< C5/ |w(z) — w(xo)| d|Dw|(z) + Csv(B(zo,sx)) + Cs| Dw|(B(xo, k) N Sw),
B(zo,sk)

44



where we used the fact that |Dw|(0B(zo,sx)) = 0 and the equality |Dw| = |D°w| + v. We observe that
| Dw|(B(zo,sk) N Syw) = v(B(xo,sk) N Sw) + |[Dw|(B(xo,sk) N Sw) = v(B(xo,sk) N Sw) < v(B(zo,sk)); hence,
by (EI2T) and (ET20),

1
lim sup lim sup ——
k—oo n—oo |Dcw|(B($07<k))

< Cs lim sup (][ |w(z) — w(zo)|d|Dw|(x) +
B(zo,k)

k—oo

In,k

v(B(zo,<k)) ) —0
| Dew|(B(wo, sk)) ’
and we conclude (EI28).

Step 3. We show that

1
lim sup lim sup / Of (u(xg), v(xo), Vun(x), Vo, k(x)) de
k—oo n—oo ‘Dc’w|(B(.’I707§k>) B(zo,sk) 0 0 " "

<(Qrf)* (a(xo), o(w0), W (o), W (x0)). (4.130)

As in [B, Prop. 4.2], we define a function 3 : R**2 — [0, +00) by setting

3(<) .= sup Qf(ﬂ(ﬂ?o),i(lﬂo),tg,tﬁ)’ C c R4X2,

t>0

where § is the first row of ¢ and 7 is the 3 x 2 matrix obtained from ¢ by erasing its first row. Observe that for
allT € R, s € R®, Qf(r,s,0,0) = 0 since Qf < f and f(r,s,0,0) = 0 by (E2), (E), and (II3). Note also that

3(0) = Qf (it(xo), (o), &,m)  for all ¢ € R, (4.131)

Moreover (cf. [3, Prop. 4.2]), 3 is a positively 1-homogeneous quasiconvex function satisfying () and the
rank-one convexity of Qf(u(xo),d(xg),,) implies that

3(¢Q) = (Q)>(u(xo), (x0),&,m)  for all ¢ € R*™?) rank(¢) < 1. (4.132)

In view of (ET3T) and (B72), we have
/ QF (o), 5(0), Vtin (z), Vo () da
B(zo,sk)
< / 3(Vwy(z))dz + L/ [V, (z) — Vo, ik (z)| dz. (4.133)
B(zo,<k) B(zo,sk)

We claim that

. . 1
lim sup lim sup

k—oo n—oo |Dcw|(B($O, gk)) /B(zo,Ck) 3(vw"(x)) dr s (QTf)OO (a(xO)’ {}('TO)7 WS(xO)7 Wg(x()))

(4.134)

and that

1

lim lim / Vo, (z) = Vo, k(z)|de = 0, 4.135
k—00 n—00 |Dcw|(B(£170,§k)) B(zo,5k) ( )

which, together with (ET33), yield (ET30).
We start by proving (E13d). By Lemma B73-4ii), we obtain
1 1 dDw
lim / 3(Vwy(z))dx = / 3 7=— () ) d|Dw|(z)
n—oo |Dw|(B(20,k)) JB(zo,er) |Dew|(B(0,5%)) JB(2o,0r) <d|Dw| )

1 c(p cwl(x v(B(wo,sk))
< DTG0l oV DA 0) + 2+ VR ) R s
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where we also used (E9). In view of Theorem P19, (ET32), (ET20), and (ETIR), in this order, we have

1
lim sup lim sup
k—o00 n—oo |DC’LU|(B($O,§k))

< nmsup][ (QF)* ((wo), 5(wo), We(x), WE(=)) d|Dewl(x)
B(xo,5%)

k—oo

/ 5(Veon () dz
B(zo,sk)

< Q) ((wo), B(xo), W (o), W (o))
+ lim [(QF)> (o), (o), W (x0), Wi (0))

k—oo B(zo,sk)
—(Qf)™(alx), 5(x), We(z), We(z)) | d| Dw] (x)
4 limsup ][ (QF)™(a(x), 5(x), We(z), We(x)
B(zo,sk)

k—oo
—(Qf) (a(xo), B(xo), Wi (), W (x)) | d|Dw(x)
< (Qrf)*(a(zo), 0(z0), Wy (20), W (0))

+climsup][ (Ja(z) — @(zo)| + [0(x) — B(wo)|) (IWE(2)] + [WE(2)|) d|Dw|(z),  (4.136)
B(z0,5%)

k—o0

where in the last inequality we used (E8), together with Lemma ET3 and the definition of the recession functions
of Orf and Qf, (A123), and (IT12). Furthermore,

k—o0

timsup f (|a(e) — o)+ [0(e) ~ 3(e0)]) (W )] + W (o)) diD*w)
B(zo,5k)

< 4 limsup ]{3 o W) = ata)| + 3+ DIW (@) = W (o)) D] @),

k—o0

which, together with (E138), (E121), and (E123), entails (EL34).

Finally, we establish (E13H). Arguing as in Step 2, using (EI122
applied to y = Ynk, 51 = vn(x) (for z € B(zo, )\ Ank

V7y, o (Un()) Vo, (+), we obtain

), (EI23), and the second estimate in (E23)
, and sp = 0(xp), and recalling that Vv, (-) =

~—

/ |V, (z) = Vo, i, (z)| de
B(xo,5k)

1+ C . — .
< 5 / |vn () = 0(x0)|| Vo (z)|dz + C |vn(z) — 0(x0)||Von(z)| d
Ank B(x0,5%)\An,k
+/ Vo, (z) =V, (0(x0)) Vo, (z)] de. (4.137)
B(Io’gk)\ATL,k

Moreover (see (E129)),

1

lim lim / |vn () — 0(x0)||Von(x)|dz =0,
k— o0 n—o00 |DC’LU‘(B(J?O,§]€)) B(l’o,%) 0

and so, in view of (EI3d), to prove (E133) it suffices to show that

1
lim lim / Von () — Vi, (5(z0)) Von(@)| dz = 0. (4.138)
k— 00 n—00 |Dc'w|(B(£L'(),§k)) B(zo,5%) Yn,k

In the remaining part of the proof, I4x4 denotes the 4 x 4 identity matrix and B,,  denotes the 4 x 4 matrix
whose last three rows and columns are those of Vm,  (9(x0)) and the first row and column are those of the

identity matrix. We observe that [Lixs — Bp x| = [I3x3 — Vy, , (8(20))] < V34 2C. Moreover,

[Von () = Vi, (0(20)) Von ()] = [(laxca = Bn k) Vwn ()] = [V(0n i % pn) ()],
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where
Un k(1) = (Taxa — Bpk)w.
Since
DOy = (laxa — Bn k) VLo + (laxa — Bug)(wh —w™) @ v H|;, + (laxa — Bux) WD w],

using Lemma P74-45) with h = 1 and observing that 1 * p,, = 1, we have

_ 1
/ Vo (z) — Vi, (5(20)) Von ()] dz < | DO, 4| (B(xo, o + f))
B(zo,sk) n
S 1 c c
< (V3+20)(B (20,9 +-)) +/ (Lixs — Bu)We(2)| d|Dw|(z).  (4.139)
n B(zo,su+2)

By Lemma ET3, v(x) € S? for all z in Q except possibly for x belonging to the H!-negligible set S, \J..
Therefore, redefining v on Sy, \Jy, so that v(z) € S for all x € Q if necessary, in view of (E223) and (EIIR), we
conclude that

Vry, (0())WS(z) =WS(z) for |[Dwl|-a.e. x €.
Hence, using once more (E23) and recalling that |W¢(x)| = 1 for |Dw|-a.e. € Q, we deduce that
[ M= Ba)We@)] diDul (o)
B(wzo,sk+2)
= [ VM GEWEE) - Iry,, (@) W@ Dl ()
B(zo,sk+1)
<C |t(2) — 0(20)| d|Dw|(z) < C |w(z) — w(wo)| d|Dw](z). (4.140)

B(zo,5k+%) B(zo,5k+%)

Since D°w(9B(xo,sk)) = v(0B(zg,sk)) = 0, from (AI39), (E140), (I20), and (AI2T), we infer (II3R), which
concludes Step 3.

Finally, (A1T4) follows from (A128), (E128), and (E130). O

Lemma 4.17. If (u,v) € BV (Q; [a, 8]) x BV (£; 8?), then for all A € A(Q),

Flu,v; A0 Sy < /A () @), (0) (@), (1) AH ). (4.141)
NS (u,v)

Proof. Let A € A(Q)), and set w := (u,v). We will proceed in three steps, and we closely follow the argument
in [26, Step 3 in Sect. 5.2] (see also [2, Lem. 6.5]).
Step 1. We prove that (ET41) holds whenever w is of the form

w(z) = axp(z) + bxge(v),
where a, b € [a, 8] x S? and E C Q is a set of finite perimeter in 2.
Substep 1.1. We start by considering the case in which A = k + AQ, and

w(x) = (4.142)

b ifx-v>ocandx€ A,
a ifx-v<oandze€ A,

for some kK € R, A € RT, v € S', and o € R.

Without loss of generality, we may assume that AN {x € R?: z-v =0} # 0. Fix ¢ > 0, and let ¥ = (p,9) €
P(a,b,v), depending on e, be such that

K(a,b,v) +¢e> 0 W (y), Vi(y)) dy. (4.143)

47



Substep 1.1.1. Assume that v = es.
Set Q := Q.,, and for n € N, define w,, € W, (R?; [, B] x S?) as

b o> —— 4
27 %0+ 7
x — (K1,0) )
= = - < Y °
W () = (tn (@), vn(z)) 19((2n+ HE— ) if 22 = 0] < 557 (4.144)
a lf X9 < *m + o.

For allnGNlarge enough, we have that Aﬁ{zGRQ' = erU} # () and AQ{IERQ: To =

7y T U} # (. For all such n € N, a change of variables ylelds
A A
@n )+cr Ki+%5 _
/|wn B )|dx—/22 1 / ﬁ<(2n+1)w>_b‘dxldx2
o K1—2

A
o H1+%
o
A 1

2(2n+

o(2n+ )Ty ol g, ar,

2(2n+1)+‘7 A
(/ / ((2n 4+ 1)y1,y2) — b| dy1 dys
/ ) / . ((2n+ 1)y1,y2) — aldys dyg) (4.145)
3/-3

By the Riemann-Lebesgue Lemma, by the 1-periodicity of ¢ in the e; direction, and by the Lebesgue Dominated
Convergence Theorem, we obtain

lim </ /1 ((2n+1) y17y2)—b|dyldy2+/ /1 2n+1)y1,y2)—ady1dy2>

n—oo

%
</ /1 (21,92) —b\dzldy2+/ /1 (21,92 —a|dz1dy2>
2 2

Hence, passing (II49) to the limit as n — oo, we conclude that

Jim Jwn = wl[L (amxrs) = 0. (4.146)

Consequently,

F(w; A) <liminf | f(wn(x), Vwy(z)) dz

n—oo A

L o) B g g )

= limin
e 72(23+1)+‘7 K1—% A
1 2n41
L. 2 2 2n+1
—tiwint [* [ - —(Qn e (90, 25 90) vy
1
.. 2 2n+1
=lgggf/\/ /1 1) I(y), Vi(y )) dyy dys,

where we used f(+,-,0,0) = 0 and in the last equality we invoked the 1-periodicity of ¥ in the e; direction
Hence, Fatou’s Lemma, together with (ICId), and (E143) yield

F(w; A) < )\/ W), VO(y)) dy < MK (a,b, e2) + Ae = K(a,b,ea)H (AN Sy) + Ae,
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from which we obtain (EI4T) by letting ¢ — 0T.
Substep 1.1.2. We complete Substep 1.1.
Let R € SO(2) be such that Res = v, and define

w(x) ;= w(Rx), v € RTA=R" +2Q.,, 9(y) :=9(Ry), vy <€ Q.

Let {0y, }nen be the sequence in (EI24) with 9 replaced by 9. Then, (E-I48) reads as @, — w in L' (RTA; RxR3),
which in turn implies that w,, — w in L'(A;R x R?), where

wy(2) := w,(RT2), x€A neN.

Finally, arguing as in Substep 1.1.1, we obtain

F(w; A) <liminf | f(wy(x), Vwy,(z))de = liminf f (@ (), Vo, (z)RT) da

n—oo [ 4 n—oo  [pry

< [ o), VO RT) dy = A / £ W(), V9()) dy,
Qey Qv

which, together with (ET43), concludes Substep 1.1.

Substep 1.2. We prove that if K € R2, A € RT, v € S!, 0 € R, and § > 0 are such that for x € k + (A +0)Q,,
we have

{b ifx-v>o,
w(zr) = .
a ifzx-v<o,

then
Flw;k +2Q,) < K(a,b,v) H*((k +AQ,) N Sy). (4.147)

Let {\n}neny C (A, A+ d) be a strictly decreasing sequence converging to A. By Lemma BT and Substep 1.1,
we have

Fw;k+2Q,) = nILrI;O Flw;k+X1Q,) < lim K(a,b,v)H (k4 Q)N Sw) = K(a,b,v) H ((k4+XQ,) N Sy),

which proves (E147).
Substep 1.3. We treat the case in which A € A(f2) is arbitrary and w is of the form (ET43).

Let v; € S! be a fixed vector such that {vq,v} is an orthonormal basis of R?, and let {c¢;; € R?: i,j € Z} be
the collection of nodes of a grid in R? of size 1 with respect to the basis {v1,v} such that

Co o
{2;11 cR?: Z,JEZ,nEN}ﬁ{mERQ: z-v=c}=0. (4.148)
Next, we write A as a union of convenient closed squares for which the previous substep applies. For i,j € Z
and n € N, let QE?) represent the open square of size 2%1 whose left inferior vertex is ;—Zl, and let Iﬁ:l(;L) € R?

be such that QE;L) = FJE-;L) + 2n1,1 Q.. Set B := (), and define recursively the sets

Quii,j €2, Q%) ¢ 4, QY nuUL BY =0}, nen.

(n)._ o) _ ()

B = {Qij = Kij T o
Without loss of generality, we may assume that B #£ ( for all n € N, otherwise we simply consider the
subsequence of the sequence {B(™}, cy obtained by removing all its empty sets. Let ™) := {(i,5) € Z x Z:

QE;L) S B(”)} € Nand Ay = U’f,;lfln, where A,, := Ui jyerm (/{E?) + in,l @V) Then,

A=JA, AicArcCAC,
k=1
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and, by construction and (ET4R), { (m) | st Qu: n €N, (i,7) € I(”)} is a family of mutually disjoint sets
such that

1 (n) 2. — —
H (0 (k) + 5o 1Qu)ﬂ{:z:€]R v=0})=0.
Hence, using Lemma BT and (ET47), we conclude that

F(w; A) = lim F(w; Ag) hmlnfz Z f(w”i(n) in 1@ )

k—o0
n=1(i,j)eI(™

hjrgloréfz Z K(a,b,v H1(< (n) 2: -Q, )OS ) K(a,b,v) H' (AN S,).

n=lL(i,j)el™
This concludes Substep 1.2.
Substep 1.4. We now treat the case in which A € A(Q) is arbitrary and w has a polygonal interface; that is,

w(z) = axe(r) + bxp:(v),

where F is polyhedral open set with OF = UM | H;, H; a closed segment of a line of the type {z € R?: z-v; = 0;}
for some v; € S* and 0; € R, i € {1,..., M}.

Let I :={i € {1,..,M}: H*(ANH;) > 0}. Note that since A is open and H; is a closed segment, H'(ANH;) = 0
is equivalent to saying that ANH; = (). Asin Substep 1.1, the only nontrivial case is the case in which card I > 0.

Assume that card I = 1, and let i € {1,..., M} be such that H'(A N H;) > 0. Define the sets
A= ANE", Ay = ANE,
Az = {J:EAOEC: x-v; >0 U{z € ANE: x-v; <o;}U(ANH;).

We have that A1, Ao, and A3 are open and satisfy A = A1 UAs U A3, w=bin Ay, w =a in Ay, and

b ifxz-v;>0;and x € Az,
w(z) = .
a fzr-v,<o;and x € As.

Since f(-,-,0,0) = 0, we obtain F(w; A1) = F(w; A2) = 0, which, together with Lemma BT and Substep 1.2,
yields
F(w; A) < Flw, A3) < K(a,b,v)H (A3N S,) = K(a,b,v)H' (AN S,).

By induction, we assume that the statement holds true if card I = k for some k € {1,..., M — 1} and we prove
that it is also true if card I = k£ + 1. Assume that

ANIOE =(ANH)U---U (AN Hiy1),
and define
Ay i={z € A: dist(x, Hy) < dist(z, HoU---U Hpp)}, Ag:= A\A;.

We have that A; and A, are open sets such that A; N Hy # 0, Ay N (H2 U---uJ Hk+1) =0, A,NnH; =0, and
AsN (H2 U---u Hk+1) # (). Moreover, we observe that 0A4; N9As C S := {z € R?: dist(x, Hy) = dist(z, Hy U

~-UHp)} and HY(SNS,,) = 0 since H*(H;NH;) = 0 for i # j. Fix § > 0. By the induction hypothesis applied
to A; and As, there exist sequences {w}},en C WH(Ay; [, B8] x S?) and {w?},en € WH(Ag; [, 8] x S?)
such that

lim ||’lU,,11 — w||L1(A1;R><R3) = 0, lim ||'IUEL — wHLI(AQ;RXRg) = 0,
n— 00 n— oo

lim f(wi(x),vw}z(f))dfg/AOS K(a,b,vy(x)) dH' (z) + 4, (4.149)

n—oo Al

lim fw2(x), Vw?(z)) de < /A s K(a,b,vy(2))dH (z) + 6

n—oo A2

a0



Let A, A, € Ao () satisfy A} CC Ay, A, CC Ay, and
Dul(ANT) <6, |Dul(ANE) < 6 (1150)

By Lemma EI0, there exist sequences {w) }nen € WH(AY; [, B] x S?) and {02 }en € WHL(AL; [, B] x S?)
satisfying

7}5{.10 [y, — wll L1 (A mxrs) =0, nh_{rgo @7 — wll L1 (agmxrs) =0,

Wl = w on DA}, W2 = w on DAL,

limsup [ f(@)(x), Vo) (2))dz < liminf [ f(wl(z), Vwl(z))dz, (4.151)
n—oo J A, n—oo JA

lim sup f(@2(z), Vo2 (z)) dz < liminf f(w2(z), Vw? () da.
A

n—oo n—oo Al

Moreover, by Lemma B0 and Remark B8, together with the fact that dist(Ai'D Ié) > 0, there exist a positive
constant C' and a sequence {3 },en C WA\ (A7 U AL); [, 8] x S?) such that

nlljr;o ||u~1;3 — 'LUHLl(A\(Ai’luAi’Q);RXRS) =0, ’lbi = w on 8A’1 U aA/Q,
\ _ o (4.152)
limsup/ |Vwi(z)|dz < C|Dw|(A\(A] U A})).
n—oo JA\(AJUAY)

Define for n € N,

Wy in Al

Wy =< W2 in A),
-3 AT ) AL
wy  in A\(A] U A)).

In view of (EI51) and (EI52), we have that {w, }nen C WHL(A; [, 8] x S2) and lim,, oo |Jwy, —w||L1aRxR3) =
0. Consequently, by definition of F(w; A), and by (E1449), (I'Id), and (EI50), we obtain

n—oo

F(w; A) < liminf < f} (x), Vo (z)) de + f(@02 (x), Vi (z)) de
AL Al

Hf o @), Vel d)

A\(ATUAD)

</ K(a,b,vy(2)) dH(2) +/ K(a,b, vy (@) dH! (z) + 26
A1NSw AxNSy

+(3 + ) lim sup/ |Vad (z)| de
A\(A7UAy)

n—oo

< / K (a, b, v (2)) dH (z) + 20[1 + C(3 + B),
ANSy,

and we deduce Substep 1.3 by letting § — 0F.
Substep 1.5. We conclude Step 1.
Let {E, }nen be a sequence of polyhedral open sets such that (see Remark EZ20)

lim L*(E,AE) =0, lim Perg(E,) = Perg(E),
and define
wy(z) = axg, (z) + bxeg (©).
Then
Jim Jwn — w1 @mxrs) =0, lim | Dw,[(Q) = |Dw|(2).
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We now consider the homogeneous of degree-one extension K (a,b,-) of K(a,b,-) to the whole R? defined for
v € R? by

~ 0 ifo=0
K(a,b,v) = i ’

|[v|K(a,b,v/|v|) if v#£0.
In view of Lemma EH, K (a,b,-) is an upper semicontinuous function in R? satisfying K (a,b,v) < C|v| for all
v € R? and for some positive constant C. Therefore, we can find a decreasing sequence {h,, }men of continuous
functions satisfying for all v € R2,

K(a,b,v) < hp(v) < 2C|v|, K(a,b,v) = int;\lhm(v).
me

Using the lower semicontinuity of F(-; A) with respect to the L!-convergence (of sequences taking values on
[, B] x S?), Substep 1.3, and Reshetnyak’s Continuity Theorem, for every m € N, we obtain

F(w; A) < liminf F(wy; A) < lim inf/ K(a,b,v(z)) dH" (z)
SuwnNA

< lim inf B (v(2)) dH (2) = / B (v(2)) dH ().
n=0o0 JSw,NA SwNA

We conclude Step 1 by letting m — oo and using Lebesgue’s Monotone Convergence Theorem.

Step 2. We prove that (ET4) holds whenever w is of the form

k
w(z) = aixg,(z), (4.153)
=1

where k € N, a; € [o, 8] x S%,i € {1,...,k}, and {E;}¥_, is a family of mutually disjoint sets of finite perimeter
in 2, which covers €.

By Theorem BT (see also (E7Zl)), we have that for all 4,5 € {1, ..., k},
(wh(x),w™ (x), v () ~ (ai,a;,vE, (z)) for all z € F*E; N F*E;,
UF EnFEj) c S, c BU|J(FEiNF'E))
i<j i<j

where B is a suitable Borel set satisfying H'(B) = 0 and (F*E; N F*E;) N (F*E, N F*E,,) = 0 for all
i,5,,m € {1,...,k} such that i # j, l #m, and {i,5} # {l,m}. Moreover,

k
Dw = Zai ® I/Eﬂ'(1 |F*E; = Z(ai — (Ij) ® VEiHll_(]'_*Eimj:*Ej)'

i=1 i<j

Therefore, having in mind (E48) and the identification observed at the beginning of Subsection E4, we conclude
that F(w;-) < |[Dw| < H' g, and
Fw;A)=F(w; ANSy,) = Zf(w; AN (F*E;NF*E;))
i<j

= Z]:(a’iXEi + CLjXEic;A N (f*El m}—*E]‘)).

i<j
On the other hand, by Step 1 together with Theorem 2T, we obtain for 4,5 € {1,...,k} with i < j,

f(aiXEi +anEic;Aﬁ(}"*Eiﬁ}'*Ej))
= inf {f(a,XEL +anE;?;A/): A/ S A(Q)7 A/ DAN (.7:*E‘Z ﬂ]:*Ej)}

< inf{/ K(a;,aj,vp,(z))dH (z): A" € A(Q), A’ D AN (F*E; ﬁf*Ej)}
A'NF*E;
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K(a;,a;,vg,(z)) dH (z).

/Aﬂ(]—'*Eiﬂ]-‘*Ej)

Consequently,

a;,ai, Vg (T Lig) = wh(z), w™ (z), vz ),
Z/Am(fEnf* Klas, aj,ve, (@) dH (2) /Amsu,K( (@) (z), vu()) dH ()

1<J

which concludes Step 2.
Step 3. We establish Lemma ET3.

Let ¢ € C°(R?;[0,1]) be a smooth cut-off function such that ¢(z) = 0 if |2| < I, and ¢(z) = 1if |z| > 3. Let
é: Rx (R3*\{0}) — [a, B3] x S? be the function defined by ¢(r, s) := (7, 5), where 7 and § are given by (E33). Note
that for all § > 0, ¢ is a Lipschitz function in R x (R*\B(0,4)). Set § = g, and let Lj := Lip(¢jnx 23\ 5(0,1)))-
Consider the extension K : (RxR?)x (RxR3)x S — [0, +00) of K defined for a = (71, 51), b = (2, 52) € RxR3
and v € S1, by

0 if sy =0o0r s =0,

Rl {¢<sl>¢<52>K<¢<a>,o><b>,u> i 51 # 0 and 5, 0.

Then, the properties stated in Lemma B hold in (R x R3) x (R x R3) x S! for K, where the corresponding
constant depends on the constant in Lemma I3, on Lg, and on [|¢]|1,0c. Because w takes values on [a, ] x 2,
arguing as in [5, Step 2 of Prop. 4.8] we can construct a sequence {wy, }nen C BV (€;R x R3) where each w, is
of the type (EI53) (but whose coefficients do not necessarily belong to [, 3] x S?) and such that

JimJwn —wl[ L~ @mxrs) = 0, (4.154)
lim inf/ K(w! (z),w, (), v, (z)) dH (z) (4.155)
n— oo ANSw,,

< C|Dw|(A\Sy) +/Ams K(wh(2),w (2), v(z)) dH (z)
:C|Dw|(A\Sw)+/AmS K(w (), w™ (2), v () dH(2), (4.156)

where C is a positive constant depending only on the constants in Lemma B3 for K, and where in the last
equality we used Lemma B3 and Theorem Pd.

In view of (ECI5d) and since w takes values on [, 3] X S2, w,, takes values in R x (R*\B(0,3/4)) for all n € N
sufficiently large. Then, also w(z) € R x (R3\B(O 3/4)) for H!'-a.e. z € S, and for all n € N sufficiently
large. For all such n € N, the functlon

Wy, 1= (g(wn)

belongs to BV (; R x R?), takes values on [a, 3] x S2, and is of the type (EI53). Moreover, by the Lipschitz
continuity of ¢, the equality ¢(w) = w, and (EI54), we also have lim,, o ||0n —w| 11 (0 rxr*) = 0. Furthermore,
using Proposition B8 (a)-i4), (b)- m) and Theorem B (b), we have Sz, C Su,, H*(Sw, \(Juw, N Ja,)) = 0,
and (w0 (z), w; (), v, (1)) = (¢(w) (2)), p(w;, (x), v, (z)) for all z € an N Jg, . Thus,

/ K (@t (z), 0 (2), ve, (x)) dH (z) < / RK(wy (2), 0o (@), v, () dHY(z).  (4.157)
ANS ANS

Hence, using the lower semicontinuity of F(-, A) with respect to the L!-convergence (of sequences taking values
in [, 8] x S?), Step 2, (II58), and (I57), yields
n—oo n—oo

F(w, A) < liminf F (o, A) < lim inf/ K(w} (x),w, (z),ve, (x)) dH (z)
ANS

<CIDUl(A\S,)+ [ K@) wm (@), @) K 2).
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Finally,
F(w,ANS,)=inf {]—'(w;A'): A e A(Q), A D> AN Sw}

< inf {C|Dw|(A/\Sw) +/A K(wt(z),w (z), v(z))dH (z): A" € A(Q), A’ D AN Sy,}

'"NSw

_ / K (wt (), w (2), v (2)) dH (2),
ANSy,

which concludes the proof of Lemma ET4. O
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