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Abstract. This paper concerns the regularity and geometry of the free boundary in the optimal
partial transport problem for general cost functions. More specifically, we prove that a C1 cost
implies a locally Lipschitz free boundary. As an application, we address a problem discussed by
Caffarelli and McCann [1] regarding cost functions satisfying the Ma-Trudinger-Wang condition
(A3): if the non-negative source density is in some Lp(Rn) space for p ∈ (n+1

2
,∞] and the

positive target density is bounded away from zero, then the free boundary is a semiconvex
C1,α
loc hypersurface. Furthermore, we show that a locally Lipschitz cost implies a rectifiable free

boundary and initiate a corresponding regularity theory in the Riemannian setting.

1. Introduction

In the optimal partial transport problem, one is given two non-negative functions f =
fχΩ, g = gχΛ ∈ L1(Rn) and a number 0 < m ≤ min{||f ||L1 , ||g||L1}. The objective is to
find an optimal transference plan between f and g with mass m. A transference plan refers to a
non-negative, finite Borel measure γ on Rn×Rn, whose first and second marginals are controlled
by f and g respectively: for any Borel set A ⊂ Rn,

γ(A× Rn) ≤
∫
A
f(x)dx, γ(Rn ×A) ≤

∫
A
g(x)dx.

An optimal transference plan is a minimizer of the functional

(1.1) γ 7→
∫

Rn×Rn
c(x, y)dγ(x, y),

where c is a non-negative cost function.
Issues of existence, uniqueness, and regularity of optimal transference plans have recently been

addressed by Caffarelli & McCann [1], Figalli [2], [3], and Indrei [4]. Indeed, existence follows
readily by standard methods in the calculus of variations. However, in general, minimizers fail
to be unique and it is not difficult to construct examples when |spt(f ∧ g)| > 0 (with | · | being
the Lebesgue measure and spt(f ∧ g) the support of f ∧ g := min{f, g}). Nevertheless, Figalli
proved that under suitable assumptions on the cost function, minimizers are unique for

||f ∧ g||L1(Rn) ≤ m ≤ min{||f ||L1(Rn), ||g||L1(Rn)},

[2, Proposition 2.2 and Theorem 2.10]. Up to now, the regularity theory has only been developed
for the quadratic cost. In this case, if the domains Ω and Λ are bounded, strictly convex, and
separated by a hyperplane, Caffarelli and McCann proved (under suitable conditions on the
initial data) that the free boundaries ∂Um ∩ Ω and ∂Vm ∩ Λ are locally C1,α hypersurfaces up
to a closed singular set S̃ contained at the intersection of free with fixed boundary [1, Corollary
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7.15]; here, the free boundaries are generated by the sets Um and Vm which are referred to as the
“active regions.” Um is defined as the interior of the support of the left marginal of the optimal
transference plan, and Vm is similarly defined in terms of the right marginal (a characterization
of these regions in terms of the cost function is given by [1, Corollary 2.4]).

In the case when there is overlap, Figalli proved that away from the common region Ω ∩ Λ,
the free boundaries are locally C1 [2, Theorem 4.11]. Indrei improved this result by obtaining
local C1,α regularity away from the common region and up to a relatively closed singular set S,
necessarily contained at the intersection of fixed with free boundary, see [4, Corollary 3.13] for
a precise statement. Moreover, under an additional C1,1 regularity assumption on Ω and Λ, he
proved that S is Hn−2 σ- finite and in the disjoint case S ⊂ S̃ with Hn−2(S) <∞ [4, Theorem
4.9].

All of the aforementioned regularity results were developed for the quadratic cost. Our main
aim in this paper is to obtain free boundary regularity for a general class of cost functions F0

satisfying the Ma-Trudinger-Wang (A3) condition introduced in [8] and used in the development
of a general regularity theory for the potential arising in the optimal transportation problem
(see Definition 2.4). With this in mind, we establish the following theorem which readily implies
C1,α
loc regularity of the free boundary for the family F0 and thereby solves a problem discussed

by Caffarelli and McCann [1, pg. 676].

Theorem 1.1. (Lipschitz regularity) Let f = fχΩ, g = gχΛ be non-negative integrable functions
and m ∈

(
0,min{||f ||L1 , ||g||L1}

]
. Assume that Λ is bounded and c-convex with respect to Ω,

where c ∈ C1(Rn × Rn) and satisfies (2.1) and (2.2). Then the free boundaries arising in the
optimal partial transport problem are locally Lipschitz graphs inside Ω.

The proof of this theorem is based on a cone method: first, we utilize a result of Caffarelli and
McCann [1] to prove that the active region is generated by level sets of the cost function. Thus,
the free boundary is locally a suprema of these level sets (at least at the heuristic level). Then,
thanks to the assumptions on c, we prove that the free boundary enjoys a uniform interior cone
condition; this implies that it is locally a Lipschitz graph in some system of coordinates. To
solve the problem discussed by Caffarelli and McCann, we then connect the free normal with the
solution of a generalized Monge-Ampère equation for (A3) cost functions and employ regularity
results established by Loeper [6] and refined by Liu [5].

Corollary 1.2. (C1,α regularity) Let f = fχΩ ∈ Lp(Rn) be a non-negative function with p ∈
(n+1

2 ,∞], and g = gχΛ a positive function bounded away from zero. Moreover, assume c ∈ F0,
m ∈

(
0,min{||f ||L1 , ||g||L1}

]
, Ω and Λ are bounded, Λ is relatively c-convex with respect to Ω∪Λ,

and Ω ∩ Λ = ∅. Then ∂Um ∩ Ω is locally a C1,α graph, where ∂Um ∩ Ω is the free boundary
arising in the optimal partial transport problem and α = 2p−n−1

2p(2n−1)−n+1 .

In fact, thanks to the method developed by Figalli [2], one can localize the problem and
eliminate the disjointness assumption Ω ∩ Λ = ∅, see Corollary 3.2. We note that to obtain
the Lipschitz result, we only need the cost to be C1; however, with merely a locally Lipschitz
assumption, the free boundary can still be shown to be rectifiable, see Proposition 3.6.

The rest of the paper is organized as follows: in §2, we state and prove some preliminary
facts. Then in §3, we proceed with the proof of Theorem 1.1 and in §4 address the problem in
a Riemannian setting.
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2. Preliminaries

Definition 2.1. Given an (m − 1)-plane π in Rm, we denote a general cone with respect to π
by

Cα(π) := {z ∈ Rm : α|Pπ(z)| < Pπ⊥(z)},
where π ⊕ π⊥ = Rm, α > 0, and Pπ(z) & Pπ⊥(z) are the orthogonal projections of z ∈ Rm onto
π and π⊥, respectively.

Definition 2.2. A domain D ⊂ Rn is said to satisfy the uniform interior cone condition inside
a domain Ω ⊂ Rn if there exists α > 0 and δ > 0 such that for all x ∈ ∂D ∩ Ω, there exists
νx ∈ Sn−1 so that

(y + Cα(ν⊥x )) ∩Bδ(x) ⊂ D ∩Bδ(x),
for all y ∈ D ∩Bδ(x). We define the profile of such domains to be the ordered pair (δ, α).

Definition 2.3. A domain D ⊂ Rn is said to satisfy a uniform interior ball condition inside a
domain Ω ⊂ Rn if there exists r > 0 such that for all x ∈ ∂D ∩ Ω, there exists νx ∈ Sn−1 for
which Br(x+ rνx) ⊂ D.

Definition 2.4. We denote by F , the collection of cost functions c : Rn × Rn → R that satisfy
the following three conditions:

1. c ∈ C2(Rn × Rn);

2. c(x, y) ≥ 0 and c(x, y) = 0 only for x = y;

3. (A1) For x, p ∈ Rn, there exists a unique y = y(x, p) ∈ Rn such that ∇xc(x, y) = p (left twist);
similarly, for any y, q ∈ Rn, there exists a unique x = x(y, q) ∈ Rn such that ∇yc(x, y) = q
(right twist).

Furthermore, we denote by F0, the set of C4(Rn × Rn) cost functions in F that satisfy:

4. (A2) det(∇(x,y)c) 6= 0 for all x, y ∈ Rn;

5. (A3) For x, p ∈ Rn,

Aij,kl(x, p)ξiξjηkηl ≥ c0|ξ|2|η|2 ∀ ξ, η ∈ Rn, 〈ξ, η〉 = 0, c0 > 0,

where Aij,kl := cr,kcs,l(cm,ncij,mcn,rs − cij,rs), and (ci,j) is the inverse matrix of (ci,j).

Remark 2.5. Some authors use the notation (A3)s in place of (A3) in condition 5 of Definition
2.4.

Definition 2.6. A set V ⊂ Rn is c-convex with respect to another set U ⊂ Rn if the image
cx(x, V ) is convex for each x ∈ U .

Lemma 2.7. Let Ω ⊂ Rn, Λ ⊂ Rn be two domains and c ∈ C1(Rn × Rn); assume

(2.1) b0 := inf
x∈Ω,y∈Λ

c(x, y) > 0.
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(2.2) b1 := inf
x∈Ω,y∈Λ

|∇xc(x, y)| > 0,

Then for any b > b0, y ∈ Λ, and s > 0, the domain Eby := {x ∈ Ω : c(x, y) < b} satisfies a
uniform interior cone condition inside

Ωs := {x ∈ Ω : dist(x, ∂Ω) > s},

with profile depending only on s, b0, b1, ||c||C1, and the modulus of continuity of cx.

Proof. Fix y ∈ Λ and consider φ(x) := c(x, y). Then for a fixed point x0 ∈ {x ∈ Ω : φ(x) =
b} ∩ Ωs, we choose a coordinate system such that xn is the direction of the normal to the level
set pointing into the sublevel set {x ∈ Ω : φ(x) < b} and x0 is the origin. Let 0 < θ < π

2 and
note that if x has angle θ with en, then

φ(x) = φ(0) +∇φ(x) · x+ o(x) ≤ φ(0)− b1|x|cos(θ) + o(x).

Now since c ∈ C1(Rn × Rn), by the uniform continuity of cx we have o(x) ≤ 1
2b1|x|cos(θ), for

x ∈ Bδ(0) and δ > 0 (depending on s, b1, θ, and the modulus of continuity of cx). Thus, φ(x) < b
when x has angle at most θ from en and is in the δ-ball around the origin. �

Remark 2.8. By the positivity of b1 in (2.2), it follows that we may take νx := − cx(x,y)
|cx(x,y)| as the

direction of the cone at each point x ∈ ∂Eby ∩ Ω and y ∈ Λ.

Remark 2.9. Note that since c ∈ C1, for a sufficiently small δ > 0, we may take θ arbitrarily
close to π

2 in the proof of Lemma 2.7. In other words, given any α > 0, there exists δ(α) > 0
such that (δ(α), α) can be taken as a profile for the level sets of c under the assumptions of
Lemma 2.7.

If the domains Ω and Λ have disjoint closures and c(x, y) is a continuous cost function vanishing
only on the diagonal x = y, then (2.1) follows readily. The next lemma gives sufficient conditions
for (2.2) to hold.

Lemma 2.10. Let Ω ⊂ Rn, Λ ⊂ Rn be two domains and c ∈ C1(Rn × Rn); assume

inf
x∈Ω,y∈Λ

c(x, y) > 0,

and suppose c satisfies the left twist condition and condition 2 in Definition 2.4. Then

inf
x∈Ω,y∈Λ

|∇xc(x, y)| > 0.

Proof. Suppose to the contrary that there exists (x̄, ȳ) ∈ Ω × Λ for which ∇xc(x̄, ȳ) = 0. Let
φ(x) := c(x, x̄); using condition 2, φ(x) ≥ 0 and φ(x) = 0 only for x = x̄. Therefore, ∇xc(x̄, x̄) =
0, but by uniqueness, we must have x̄ = ȳ (using the left twist condition), and this contradicts
the positivity of b0. �

Lemma 2.11. Let c ∈ F , and consider two domains Ω ⊂ Rn, Λ ⊂ Rn with disjoint closures;
set

b0 = inf
x∈Ω,y∈Λ

c(x, y) > 0.
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Then for any b > b0 and y ∈ Λ, the domain Eby := {x ∈ Ω : c(x, y) < b} satisfies a uniform
interior ball condition inside Ωs, with radius r = r(s, b0, b1, ||c||C2) > 0, where b1 and Ωs are as
in Lemma 2.7.

Proof. First, note that since c ∈ F we have b1 > 0 by Lemma 2.10. Now for a fixed y0 ∈ Λ,
denote φ(x) := c(x, y0). Then for a fixed point x0 ∈ {x ∈ Ω : φ(x) = b} ∩ Ωs, we choose a
coordinate system such that xn is the direction of the normal to the level set pointing into the
sublevel set {x ∈ Ω : φ(x) < b} and x0 is the origin. Now let r := b1

c2
, where c2 = ||c||C2 , and

consider the ball Br centered at (0, . . . , r) with radius r. In particular ∂Br touches the origin.
Now we will show that Br ⊂ {x ∈ Ω : φ(x) < b}: indeed, it is simple to see that for x ∈ Br,
cos(θ) > |x|

2r = |x|c2
2b1

, where θ is the angle between x and en. Therefore,

φ(x) ≤ φ(0) +∇φ(0) · x+
c2

2
|x|2

= b− |∇φ(0)|en · x+
c2

2
|x|2

< b− (b1|x|)
(
|x|c2

2b1

)
+
c2

2
|x|2 = b.

�

Remark 2.12. By interchanging the roles of x and y in Lemma 2.11, a similar statement holds
for Ebx := {y ∈ Λ : c(x, y) < b}.

Fix m ∈ (0,min{||f ||L1 , ||g||L1}] and let γm denote a minimizer of (1.1). In the introduction,
we described the active region Um as the interior of the support of the left marginal of γm, and
Vm was similarly defined in terms of the right marginal. A characterization of the active region
in Ω in terms of the cost function and spt γm, i.e. the support of γm, is given by [1, Corollary
2.4]:

(2.3) Um ∩ Ω =
⋃

(x̄,ȳ)∈spt γm

{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)},

subject to the condition that f , g are non-negative, integrable, and the cost function c is con-
tinuous and dominates a sum

c(x, y) ≥ u(x) + v(y),
with uf, vg integrable. The idea is that the active regions are generated by sublevel sets of
the cost function and one may deduce this via a monotonicity inequality (see the proof of [1,
Corollary 2.4] for details). Moreover, any minimizer is supported on a relation given by [1,
Lemma 2.3] which we denote as Tm. Under suitable assumptions on the initial data, Tm is
single-valued and in fact the optimal partial transport map.

Indeed, under the assumptions of, say, Corollary 1.2, [2, Remark 2.11] implies that there is a
unique solution to the optimal partial transport problem. Moreover, by the results of [2, Section
2],

γm := (Id× Tm)#fm = (T−1
m × Id)#gm,

where Tm is invertible, and fm and gm are the first and second marginals of γm, respectively.
Now Tm is constructed by solving the classical optimal transport problem between the densities
f + (g − gm), g + (f − fm). Indeed, if we denote this solution by γ, then since c ∈ F0, by
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applying the classical theory, we know γ is supported on the graph of a map which is precisely
Tm. Moreover, by [2, Proposition 2.4] and [2, Remark 2.5], it follows that

γ = γm + (Id× Id)#((f − fm) + (g − gm)),

and there exists a potential function Ψm which satisfies

(2.4) ∇xc(x, Tm(x)) = ∇Ψm(x),

in an almost everywhere sense. Lastly, [2, Theorem 2.6 and Remark 2.11] implies

(2.5) (Tm)#(fm + (g − gm)) = g.

3. Regularity theory

Proof of Theorem 1.1. Let x ∈ ∂Um ∩ Ω and note that thanks to (2.3),

x ∈ ∂{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)} ∩ Ωs

for 0 < s < dist(x, ∂Ω), where Ωs = {x ∈ Ω : dist(x, ∂Ω) > s}. Now Lemma 2.7 implies the
existence of a profile (δ, α) so that(

x+ Cα(ν⊥x )
)
∩Bδ(x) ⊂ (Um ∩ Ω) ∩Bδ(x),

where νx := − cx(x,Tm(x))
|cx(x,Tm(x))| (see Remark 2.8) and Tm is the relation on which γm is supported

(see [1, Lemma 2.3] and the discussion below (2.3)). Tm may be multi-valued (i.e. there may
exist (x, y1) and (x, y2) in the support of γm with y1 6= y2). In this case, we select one of them
as the value of Tm(x) (the key fact is: {Tm(x)} ⊂ Λ). Now for z ∈ ∂Um ∩ Ω ∩ Bδ(x), consider
the bounded, convex set cx(z,Λ) (the boundedness follows from the C1 regularity of c combined
with the boundedness of Λ, and the convexity is a result of the c-convexity assumption of Λ).
As

0 < inf
z∈Ω,y∈Λ

|cx(z, y)| := b1

(this follows from (2.2)), the origin is not in the closure of cx(x,Λ). Thus, we may find ξx ∈ Sn−1

and ωx > 0 so that −cx(x,Λ) ⊂ Cωx(ξ⊥x ) (i.e. we may trap a bounded, convex set whose closure
does not containing the origin inside a cone of opening smaller than π). Up to possibly decreasing
ωx slightly, we may assume that the boundary of −cx(x,Λ) is disjoint from the boundary of
Cωx(ξ⊥x ); hence, by C1 regularity of c, there exists δx > 0 so that −cx(z,Λ) ⊂ Cωx(ξ⊥x ) for all
z ∈ Bδx(x), and by picking δx smaller, if necessary, we may assume Bδx(x) ⊂ Ωs; next, for
z ∈ ∂Um ∩Bδx(x),

(3.1)
(
z + Cα(ν⊥z )

)
∩Bδ(z) ⊂ (Um ∩ Ω) ∩Bδ(z),

with νz ∈ Cωx(ξ⊥x )
(
since νz = − cx(z,Tm(z))

|cx(z,Tm(z))| and −cx(z,Λ) ⊂ Cωx(ξ⊥x )
)
; now the angle between

νz and ξx is strictly less than π
2 due to the fact that the opening of Cωx(ξ⊥x ) is strictly less than

π. Thus, thanks to Remark 2.9, we may assume ξx ∈ Cα(ν⊥z ) (by picking α > 0 sufficiently
small). Hence, there exists αx > α so that (see Figure 1)

Cαx(ξ⊥x ) ⊂
⋂

z∈∂Um∩Bδx (x)

Cα(ν⊥z ).
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Combining this information with (3.1) yields that for all z ∈ ∂Um ∩Bδx(x),

(3.2)
(
z + Cαx(ξ⊥x )

)
∩Bδx(x) ⊂ (Um ∩ Ω) ∩Bδx(x)

(we may assume Bδx(x) ⊂ Bδ(z) by choosing δx sufficiently small relative to δ). In fact, by
possibly taking αx larger and δx smaller, (3.2) holds for all z ∈ Um ∩ Bδx(x): indeed, let
z ∈ Um ∩ Bδx(x). Then (z, Tm(z)) ∈ γm and thanks to (2.3), z ∈ ∂EbTm(z) ∩ Ωs with b =

c(z, Tm(z)) > 0. Remark 2.8 implies the existence of νz = − cx(z,Tm(z))
|cx(z,Tm(z))| ∈ Sn−1 so that

(y + Cα(ν⊥z )) ∩Bδ(z) ⊂ EbTm(z) ∩ Ω ⊂ Um ∩ Ω,

for all y ∈ EbTm(z) ∩Bδ(z). In particular,

(z + Cα(ν⊥z )) ∩Bδ(z) ⊂ Um ∩ Ω.

Thus, by possibly taking δx smaller, if necessary, we may assume Bδx(x) ⊂ Bδ(z), and if z is
close enough to x we also have νz ∈ Cωx(ξ⊥x ); thus, repeating the argument above from (3.1) to
(3.2) yields the result. Therefore, we proved the existence of δx > 0, αx > 0, and ξx ∈ Sn−1 so
that for all z ∈ Um ∩Bδx(x),

(3.3) (z + Cαx(ξ⊥x )) ∩Bδx(x) ⊂ Um ∩ Ω.

Figure 1. Cαx(ξ⊥x ) ⊂
⋂
z∈∂Um∩Bδx (x)Cα(ν⊥z ).
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By rotating and translating the coordinate system, we may assume x = 0, ξx = −en, and
π := ξ⊥x = Rn−1; moreover, note that the cone Cα0(π) is symmetric with respect to the en axis.
For 0 < η0 ≤ δ0, define φ : B̃η0(0) ⊂ Rn−1 → R by

φ(z′) := sup
y:=(y′,yn)∈∂Um∩Bη0 (0)

Ky(z′),

where B̃η0(0) := Projπ(Bη0(0)) and Ky is the cone function at the point y on the free boundary
generated by Cα0(π). Note that φ is Lipschitz since it is the supremum of Lipschitz functions with
bounded Lipschitz constant (depending on the opening of the cones). Moreover, by construction
we have

(3.4) ∂Um ∩Bη0(0) ⊂ graphφ|B̃η0 (0).

Now we claim that there exist constants d, d̃ ∈ (0, 1) with d depending on the profile of the level
sets of the cost function, so that

(3.5) graphφ|B̃dη0 (0) ⊂ ∂Um ∩Bd̃η0(0).

Indeed, pick any d̃ ∈ (0, 1); we may select a constant d = d(d̃, α0) > 0 small enough, so that
the graph of φ(B̃dη0(0)) is contained in Bd̃η0(0) (this is possible, since φ has a uniform Lipschitz
constant in Bη0(0) which depends only on the profile of the level sets). Let y ∈ graphφ|B̃dη0 (0) ⊂
Bd̃η0(0). If y /∈ ∂Um ∩Bd̃η0(0), then since y is on an open cone with opening inward to Um ∩Ω,
it follows that y ∈ Um ∩ Ω. Since ∂Um ∩ Bd̃η0(0) is compact, for θ > 0 small, it follows that
Qθ(y) ∩ ∂Um ∩ Bd̃η0

= ∅, where Qθ = Qθ(y) is a small cylinder whose interior is centered at y
and whose base diameter and height is equal to θ; in particular, Qθ ∩ graphφ|B̃dη0 (0) does not
contain any free boundary points. Next we consider a general fact: let w ∈ graphφ|B̃η0 (0) \∂Um,
Lt(w) := w + ten, and

s(w) := sup
{t≥0:Lt(w)∈Um∩Ω}

t;

note that since w ∈ graphφ|B̃η0 (0),

(3.6) s(w) ≥ s̃(w) := sup
{t≥0:Lt(w)∈Bη0 (0)}

t,

(otherwise it would contradict the definition of φ as a suprema of cones in Bη0(0) and w as a
point on the graph of φ). Now, keeping the base fixed, we enlarge the height of the cylinder along
the {y+ ten : t ∈ R} axis in a symmetric way (with respect to the plane yn + π = Rn−1) so that
it surpasses 4η0; we denote the resulting cylinder by Q̃θ. By (3.6) we have Q̃θ ∩Bη0 ⊂ Um ∩ Ω.
Then we increase its base diameter, θ, until the first time when Q̃θ hits the free boundary
∂Um∩Ω inside Bη0(0), and denote the time of first contact by θ and a resulting point of contact
by yθ (note that since 0 ∈ ∂Um ∩Bη0(0), this quantity is well defined). Since φ is a continuous
graph in Bη0(0), and both y and yθ are on the graph, we may select a sequence of points
yk ∈ graphφ|B̃η0 (0) ∩ Q̃θ such that yk → yθ (by connectedness of graphφ|B̃η0 (0) ∩ Q̃θ). Since

yθ ∈ Bη0(0) is an interior point, for k sufficiently large we will have yk ∈ Bη0(0)∩ Q̃θ, see Figure
2. Thus, by definition of θ, we will have that the yk are not free boundary points but on the
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graph of φ; thus, by (3.6), s(yk) ≥ s̃(yk), and this implies ỹk := yk + s̃(yk)en ∈ ∂Bη0(0) ∩ Um.
By (3.3) we have

(ỹk + Cα0(π)) ∩Bη0(0) ⊂ Um ∩ Ω.

However, for large k, yθ ∈ (ỹk + Cα0(π)) (see Figure 2) and this contradicts that yθ is a free
boundary point, thereby establishing (3.5). Thus, combining (3.4) and (3.5) we obtain that in
a neighborhood around the origin, the free boundary is the graph of the Lipschitz function φ;
hence, the normal to the graph exists for Hn−1 a.e. z′ ∈ B̃η0(0) and has the representation

(Dφ(z′),−1)√
1+|Dφ(z′)|2

at a point (z′, φ(z′)) where it exists.

Figure 2. yθ ∈ Um ∩ Ω.

�

Now we are ready to apply our Lipschitz result to solve a problem mentioned in [1]:

Proof of Corollary 1.2. Let f ′ := fm + (g− gm) and note that thanks to the assumptions on
f and g,

|det(D2
xyc)|

f ′

g(Tm)
∈ Lp(Um ∩ Ω).
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Thus, by utilizing (2.5) we may apply [5, Theorem 1] to obtain

(3.7) Ψm ∈ C1,α(Um ∩ Ω),

where Ψm is given by (2.4). Now thanks to Theorem 1.1, we know that the free boundary is
locally a Lipschitz graph, with Hn−1 a.e. defined normal νz = − cx(z,Tm(z))

|cx(z,Tm(z))| . Thus by combining
(2.4) and (3.7), we readily obtain the result.

�

In fact, one may also use Theorem 1.1 to prove a semiconvexity result. Moreover, the dis-
jointness assumption may also be weakened.

Corollary 3.1. (Semiconvexity) Let f = fχΩ and g = gχΛ be a non-negative integrable func-
tions. Assume Ω ∩ Λ = ∅ and that Λ is bounded and c-convex with respect to Ω. If c ∈ F , then
∂Um ∩ Ω is locally semiconvex.

Proof. By Theorem 1.1, it follows that ∂Um ∩ Ω is locally a Lipschitz graph, and Lemma 2.11
implies a uniform interior ball condition with νx = − cx(x,Tm(x))

|cx(x,Tm(x))| as the direction of the ball (c.f.
Remark 2.8). Thus, locally, the free boundary may be represented as a suprema of spherical
caps (see [1, Section 5]), and this readily implies semiconvexity. �

Corollary 3.2. (Non-disjoint case) Let f = fχΩ ∈ Lp(Rn) be a non-negative function with
p ∈ (n+1

2 ,∞], and g = gχΛ a positive function bounded away from zero. Moreover, assume that
Ω and Λ are bounded and Λ is relatively c-convex with respect to a neighborhood of Ω ∪ Λ. Let
c ∈ F0 and m ∈

(
||f ∧ g||L1 ,min{||f ||L1 , ||g||L1}

]
. Then away from ∂(Ω ∩ Λ), it follows that

∂Um ∩ Ω is locally a C1,α graph, where ∂Um ∩ Ω is the free boundary arising in the optimal
partial transport problem and α = 2p−n−1

2p(2n−1)−n+1 .

Proof. Note that by [2, Remark 3.2] and [2, Remark 3.3], we have Ω ∩ Λ ⊂ Um ∩ Ω. Therefore,
the free boundary does not enter the common region Ω∩Λ. Now let x ∈ (∂Um ∩Ω) \ ∂(Ω∩Λ).
Choose rx > 0 so that Brx(x) ∩ (Um ∩ Ω) does not intersect Λ. Thus, dist

(
Brx(x) ∩ (Um ∩

Ω), Tm(Brx(x) ∩ (Um ∩ Ω)
)
> 0, and so we may apply Lemma 2.11 to obtain that all level sets

of the cost function c ∈ F0 intersecting, say, B rx
2

(x) ∩ (Um ∩ Ω) have a uniform interior ball
condition (in fact, a uniform interior cone condition is sufficient). Since the results used in the
proof of Corollary 1.2 are also valid in the non-disjoint case (due to the work of Figalli [2]), by
localizing the problem in this way, we may proceed as in the proof of Corollary 1.2 to obtain
the result. �

Remark 3.3. By a localization argument, one may remove the disjointness assumption in Corol-
lary 3.1. Indeed, the precise statement (and proof) is similar to Corollary 3.2.

Remark 3.4. (Exchange symmetry) By reverse symmetry, we may interchange the roles of f
and g in Theorem 1.2 in order to obtain C1,α

loc regularity of ∂Vm ∩ Λ.

Remark 3.5. (Geometry of c-convex domains) For a geometric description of c-convex domains,
see [9, Section 2.1-2.3]. For example, based on a calculation therein, one can prove the following:
suppose Λ is a bounded, open convex set with smooth boundary and Ω ⊂ Rn. Let

a1 := inf
x∈Ω∪Λ,y∈Λ

| det cx,y(x, y)| > 0
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and a2 := ||c(·, ·)||C3; for a fixed x ∈ Ω ∪ Λ, if the principal curvatures of ∂Λ are greater than
an2
a1

, then cx(x,Λ) is convex.

Finally, we show that one may obtain a rectifiability result under only a locally Lipschitz
assumption on the cost function.

Proposition 3.6. (Rectifiability) Let f = fχΩ, g = gχΛ be non-negative integrable functions
and m ∈

(
0,min{||f ||L1 , ||g||L1}

]
. If c : Rn×Rn → R+ is locally Lipschitz in the x variable, and

(3.8) 0 /∈ ∂xc,

where ∂xc is the Clarke subdifferential of c, then the free boundary arising in the optimal partial
transport problem is (n− 1)-rectifiable.

Proof. Since c is locally Lipschitz and (3.8) holds, we may apply the nonsmooth implicit function
theorem [10, Theorem 10.50] to deduce that for a ≥ 0 and ȳ ∈ Λ, the level set

{x ∈ Rn : c(x, ȳ) = a}

is locally an (n− 1)-dimensional Lipschitz graph. Now, for x ∈ ∂Um ∩ Ω, it follows that

x ∈ ∂{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)},

for some (x̄, ȳ) ∈ γm (by (2.3)). Hence, there exists a profile (δx, αx) such that

(3.9)
(
x+ Cαx(ν⊥x )

)
∩Bδx(x) ⊂ (Um ∩ Ω) ∩Bδx(x),

for some νx ∈ Sn−1. Consider the sets

Axj :=
{
z ∈ (∂Um ∩ Ω) ∩Bδx(x) : δz ≥

1
j
, αz ≤ j

}
,

and note that by the argument leading to (3.9), each z ∈ ∂Um ∩ Ω has a profile (δz, αz). Now
for each j ∈ N, we may select εj > 0 so that P := {νi}

mεj
i=1 is a sufficiently fine partition of Sn−1

in the following sense: for each ν ∈ Sn−1, there exists νi ∈ P so that |ν − νi| < εj , where εj is
chosen so that |ν − νi| < εj implies ν ∈ C2j(ν⊥i ) (without loss, εj ↘ 0 as j →∞). Next, let

z ∈ Axij :=
{
z ∈ Axj : |νz − νi| < εj

}
.

Since νz ∈ C2j(ν⊥i ) and αz ≤ j, it follows that there exists αj > 0 so that

Cαj (ν
⊥
i ) ⊂ Cj(ν⊥z ) ⊂ Cαz(ν⊥z ).

Moreover, since δz ≥ 1
j , we may select δj > 0 and combine it with (3.9) (with x replaced by z)

to deduce
(z + Cαj (ν

⊥
i )) ∩Bδj (x) ⊂ (Um ∩ Ω) ∩Bδj (x).

Thanks to this cone property, it is not difficult to show that for each i, j ∈ N, Axij is contained on
the graph of a Lipschitz function (generated by suprema of the cones with fixed opening given
by αj). This shows that Axij is (n− 1)-rectifiable. Moreover,

(∂Um ∩ Ω) ∩Bδx(x) =
∞⋃
j=1

mεj⋃
i=1

Axij .
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Next, let (∂Um ∩ Ω)s := {x ∈ ∂Um ∩ Ω : dist(x, ∂Ω) ≥ s}. By compactness, there exists
{xk}

n(s)
k=1 ⊂ (∂Um ∩ Ω)s ⊂ ∂Um ∩ Ω so that

(∂Um ∩ Ω)s =
n(s)⋃
k=1

(∂Um ∩ Ω)s ∩Bδxk (xk).

From what we proved, it follows that

(∂Um ∩ Ω)s =
n(s)⋃
k=1

∞⋃
j=1

mεj⋃
i=1

Axkij ,

where each Axkij is (n− 1)-rectifiable. Thus, by taking s→ 0, we obtain the result. �

4. Extensions to Riemannian manifolds

In this section, we study the partial transport problem on Riemannian manifolds where the
cost is taken to be the square of the Euclidian distance d. Indeed, existence and uniqueness
of the partial transport has been established by Figalli [2, Remark 2.11]. Therefore, our main
concern here will be the regularity of the free boundary. In view of the method developed in the
previous section, we will solely focus on giving sufficient conditions for local semiconvexity of
the free boundary (for definitions, etc. regarding optimal transport in the Riemannian setting,
the reader may e.g. consult [10]):

Theorem 4.1. (Semiconvexity) Let M be a smooth n – dimensional Riemannian manifold with
Riemannian distance d. Consider two non-negative, integrable functions f = fχΩ, g = gχΛ

with Ω ∩ Λ = ∅ and cut(Ω) ∩ Λ = ∅, where cut(Ω) is the cut locus of Ω. Furthermore, assume
Λ is bounded and d2

2 - convex with respect to Ω. Then the free boundary in the partial transport
problem with cost c := d2

2 is locally semiconvex inside Ω.

Proof. Firstly, by [2, Remark 2.11], the partial transport exists and classical results imply that
it has the form Tm = exp(∇Ψm) for some c - convex function Ψm. Next, pick a free boundary
point x ∈ Ω. Then, for ε > 0 small, expx may be used as a chart between Bε(x) and the tangent
space at x. Since cut(Ω) ∩ Λ = ∅,

cut(Bε(x) ∩ (∂Um ∩ Ω)) ∩ Tm(Bε(x) ∩ (∂Um ∩ Ω)) = ∅;
thus, we may use only one chart (i.e. exp) to project(

Bε(x) ∩ (∂Um ∩ Ω)
)
∪ Tm(Bε(x) ∩ (∂Um ∩ Ω))

onto the tangent space at x. The cut locus assumption also implies that d is smooth on Ω× Λ,
and since Ω ∩ Λ = ∅, we have that it is bounded away from zero. Thus, the level sets of c
enjoy a uniform ball condition (see Lemma 2.11). Moreover, thanks to the c - convexity of Λ
with respect to Ω, we may apply Theorem 1.1 to deduce local Lipschitz regularity of the free
boundary (note that (2.2) follows from Lemma 2.10 which we can apply thanks to our cut locus
assumption). The Lipschitz regularity combines with the uniform ball property of the level sets
and readily yields local semiconvexity of the free boundary. �

Remark 4.2. We note that one may remove the disjointness assumption in Theorem 4.1 by
localizing the problem as in Corollary 3.2.
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If cut(Ω) ∩ Λ 6= ∅, then it may happen that Tm(x) ∈ cut(x), so the proof above breaks down
(since the distance function is only smooth away from the cut locus). Nevertheless, there is
currently some literature available in understanding the proper conditions which ensure that
this scenario does not happen. Indeed, Loeper and Villani [7, Theorem 7.1] shed some light on
this issue: given a uniformly regular manifold (see [7, Definition 4.1]) and two densities µ and ν
such that µ << dvol and ν(A) ≥ avol(A) for any Borel set A ⊂M , there is a σ > 0 depending
on µ and ν, so that

inf
x∈M

d(T (x), cut(x)) ≥ σ.

It is well-known that Sn−1 is a uniformly regular manifold (see [7, Example 4.3]), so one may hope
to utilize Loeper and Villani’s theory to develop a full regularity theory for the partial transport
first on the sphere, and then in a more general setting. We conclude with a family of examples
which illustrate that neither the “stay away from the cut locus” property nor the c - convexity
of the target with respect to the entire source are necessary conditions for semiconvexity of the
free boundary.

Example 4.1. In what follows, we outline a method for constructing two general densities
f = fχΩ, g = gχΛ where Ω ⊂ Sn−1 and Λ ⊂ Sn−1 so that Λ is not d2

2 - convex with respect to
Ω, yet the free boundary in the partial transport problem is locally semiconvex away from the
common region: let Ω = Sn−1 and Λ be a small spherical cap centered around the south pole
with height, say, 1

16 (measured from the south pole). It is not difficult to see that cx(N,Λ) is
an annulus (here, N is the north pole); hence, Λ fails to be c := d2

2 - convex with respect to Ω.
Assume

∫
Λ f is slightly smaller than

∫
Λ g (to ensure the existence of a free boundary), and the

mass m transported is slightly larger than
∫

Λ f . Now, enlarge Λ to a bigger spherical cap Ω̃ with
height 1

8 so that
∫eΩ f > ∫Λ g+ε, where ε is a small positive constant (this can be accomplished by

adjusting f and g at the beginning). Then, it can be shown that the spherical cap Ω1 centered
at the north pole with height 1

16 (measured from the north pole) is outside the active region:
if not, suppose

∫
Ω1∩Um fm > 0, and choose a subset A of Ω1 ∩ Um so that

∫
A fm = δ < ε;

then choose a subset B of Ω̃ \ Λ so that
∫
B f = δ. In the original partial transport plan, A is

transported to Tm(A), and it is easy to see that the distance between A and Tm(A) is bigger than
2− 1

8 = 15
8 . Now we modify the original plan by replacing the mass in A by the mass in B, and

from B to Tm(A), we can cook up a new transport map thanks to the mass balance condition.

Next, let 2θ be the largest distance on Ω̃, and note θ ≤ tan(θ) =

q
1−( 7

8
)2

7
8

=
√

15
7 ≤ 4

7 . Thus,

2θ ≤ 8
7 <

15
8 ≤ d(A, Tm(A)). Therefore, it is not difficult to see the new plan is cheaper than

the original, contradicting optimality. Thus, the original partial transport problem is equivalent
to a new one with source Ω \ Ω1 and target Λ; in the new problem we do not have a cut locus
issue – this ensures an interior ball condition; moreover, it is not difficult to see that if x is a free
boundary point away from the common region, cx(x,Λ) is contained in a cone on the tangent
space with vertex at x whose opening is strictly less than π. Thus, we may proceed as in the
proof of Theorem 4.1 to obtain local semiconvexity of the free boundary away from the common
region.
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