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Abstract. This paper concerns the dynamics of two layers of compressible, barotropic, viscous
fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and the upper
fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem:
the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted
on by gravity in the bulk, and at the free interfaces we consider both the case of surface tension
and the case of no surface forces. We are concerned with the Rayleigh-Taylor instability when
the upper fluid is heavier than the lower fluid along the equilibrium interface. When the surface
tension at the free internal interface is below the critical value, we prove that the problem is
nonlinear unstable.

1. Introduction

The Rayleigh-Taylor instability, one of the classic examples of hydrodynamic instability, is
an interfacial instability between two fluids of different densities that occurs when a heavy fluid
initially lies above a lighter one in a gravitational field. The instability is well-known since the
classical work of Rayleigh [16] and of Taylor [17], and it is one of the fundamental problems
in fluid dynamics. A general discussion of the physics related to this topic can be found, for
example, in [12].

The Rayleigh-Taylor instability problem has received a lot of attention in the mathematics
community due both to its physical importance and to the mathematical challenges it offers. The
linear Rayleigh-Taylor instability is well understood (see, for instance, Chandrasekhar’s book
[2]). However, there is no general theory that guarantees the passage from linear instability
to nonlinear instability for PDEs, so the question of nonlinear instability is not immediately
resolved by the linear analysis.

In this paper, we are concerned with the nonlinear dynamical Rayleigh-Taylor instability
of viscous compressible two-fluids having different densities along a free interface, when the
upper fluid is heavier than the lower fluid along the equilibrium interface. This is the final
paper in a trio [10, 11] that establishes a sharp stability criterion for the compressible viscous
surface-internal wave problem.

1.1. Governing equations in Eulerian coordinates. We consider two distinct, immiscible,
viscous, compressible, barotropic fluids evolving in a moving domain Ω(t) = Ω+(t) ∪ Ω−(t) for
time t ≥ 0. One fluid (+), called the “upper fluid”, fills the upper domain

Ω+(t) = {y ∈ T2 × R | η−(y1, y2, t) < y3 < `+ η+(y1, y2, t)}, (1.1)

and the other fluid (−), called the “lower fluid”, fills the lower domain

Ω−(t) = {y ∈ T2 × R | −b < y3 < η−(y1, y2, t)}. (1.2)

Here we assume the domains are horizontally periodic by setting T2 = (2πL1T)× (2πL2T) for
T = R/Z the usual 1–torus and L1, L2 > 0 the periodicity lengths. We assume that `, b > 0
are two fixed and given constants, but the two surface functions η± are free and unknown. The
surface Γ+(t) = {y3 = `+η+(y1, y2, t)} is the moving upper boundary of Ω+(t) where the upper
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fluid is in contact with the atmosphere, Γ−(t) = {y3 = η−(y1, y2, t)} is the moving internal
interface between the two fluids, and Σb = {y3 = −b} is the fixed lower boundary of Ω−(t).

The two fluids are described by their density and velocity functions, which are given for each
t ≥ 0 by ρ̃±(·, t) : Ω±(t) → R+ and ũ±(·, t) : Ω±(t) → R3, respectively. In each fluid the
pressure is a function of density: P± = P±(ρ̃±) > 0, and the pressure function is assumed to be
smooth, positive, and strictly increasing. For a vector function u ∈ R3 we define the symmetric
gradient by (Du)ij = ∂iuj + ∂jui for i, j = 1, 2, 3; its deviatoric (trace-free) part is then

D0u = Du− 2

3
div uI, (1.3)

where I is the 3× 3 identity matrix. The viscous stress tensor in each fluid is then given by

S±(ũ±) := µ±D0ũ± + µ′± div ũ±I, (1.4)

where µ± is the shear viscosity and µ′± is the bulk viscosity; we assume these satisfy the usual
physical conditions

µ± > 0, µ′± ≥ 0. (1.5)

The tensor P±(ρ̃±)I − S±(ũ±) is known as the stress tensor. The divergence of a symmetric
tensor M is defined to be the vector with components (divM)i = ∂jMij . Note then that

div (P±(ρ̃±)I − S±(ũ±)) = ∇P±(ρ̃±)− µ±∆ũ± −
(µ±

3
+ µ′±

)
∇ div ũ±. (1.6)

For each t > 0 we require that (ρ̃±, ũ±, η±) satisfy the following equations:

∂tρ̃± + div(ρ̃±ũ±) = 0 in Ω±(t)

ρ̃±(∂tũ± + ũ± · ∇ũ±) +∇P±(ρ̃±)− div S±(ũ±) = −gρ̃±e3 in Ω±(t)

∂tη± = ũ3,± − ũ1,±∂y1η± − ũ2,±∂y2η± on Γ±(t)

(P+(ρ̃+)I − S+(ũ+))n+ = patmn+ − σ+H+n+ on Γ+(t)

(P+(ρ̃+)I − S+(ũ+))n− = (P−(ρ̃−)I − S−(ũ−))n− + σ−H−n− on Γ−(t)

ũ+ = ũ− on Γ−(t)

ũ− = 0 on Σb.

(1.7)

In the equations −gρ̃±e3 is the gravitational force with the constant g > 0 the acceleration of
gravity and e3 the vertical unit vector. The constant patm > 0 is the atmospheric pressure,
and we take σ± ≥ 0 to be the constant coefficients of surface tension. In this paper, we let
∇∗ denote the horizontal gradient, div∗ denote the horizontal divergence and ∆∗ denote the
horizontal Laplace operator. Then the upward-pointing unit normal of Γ±(t), n±, is given by

n± =
(−∇∗η±, 1)√
1 + |∇∗η±|2

, (1.8)

and H±, twice the mean curvature of the surface Γ±(t), is given by the formula

H± = div∗

(
∇∗η±√

1 + |∇∗η±|2

)
. (1.9)

The third equation in (1.7) is called the kinematic boundary condition since it implies that the
free surfaces are advected with the fluids. The boundary equations in (1.7) involving the stress
tensor are called the dynamic boundary conditions. Notice that on Γ−(t), the continuity of
velocity, ũ+ = ũ−, means that it is the common value of ũ± that advects the interface. For a
more physical description of the equations (1.7) and the boundary conditions in (1.7), we refer
to [20].

To complete the statement of the problem, we must specify the initial conditions. We assume
that the initial surfaces Γ±(0) are given by the graphs of the functions η±(0), which yield the
open sets Ω±(0) on which we specify the initial data for the density, ρ̃±(0) : Ω±(0)→ R+, and
the velocity, ũ±(0) : Ω±(0) → R3. We will assume that ` + η+(0) > η−(0) > −b on T2, which
means that at the initial time the boundaries do not intersect with each other.
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1.2. Equilibria. We now seek a steady-state equilibrium solution to (1.7) with ũ± = 0, η± = 0,
and the equilibrium domains given by the slabs

Ω+ = {y ∈ T2 × R | 0 < y3 < `} and Ω− = {y ∈ T2 × R | −b < y3 < 0}. (1.10)

Then the system (1.7) reduces to the ODEs for the equilibrium densities ρ̃± = ρ̄±(y3):

d(P+(ρ̄+))

dy3
= −gρ̄+, for y3 ∈ (0, `),

d(P−(ρ̄−))

dy3
= −gρ̄−, for y3 ∈ (−b, 0),

P+(ρ̄+(`)) = patm,

P+(ρ̄+(0)) = P−(ρ̄−(0)).

(1.11)

The system (1.11) admits a solution ρ̄± > 0 if and only if the equilibrium heights b, ` > 0,
the pressure laws P±, and the atmospheric pressure patm fulfill a collection of admissibility
conditions. These are enumerated in detail in our companion paper [11]. For the sake of brevity
we will not repeat them here, but we will assume that those admissibility conditions are satisfied
so that an equilibrium exists. We remark that the equilibrium densities ρ̄ are strictly positive
and smooth when restricted to [−b, 0] and [0, `].

We denote the equilibrium density at the fluid interfaces by:

ρ̄1 = ρ̄+(`), ρ̄+ = ρ̄+(0), ρ̄− = ρ̄−(0). (1.12)

Notice in particular that the equilibrium density can jump across the internal interface. The
jump in the equilibrium density, which we denote by

Jρ̄K := ρ̄+(0)− ρ̄−(0) = ρ̄+ − ρ̄−, (1.13)

is of fundamental importance in the analysis of solutions to (1.7) near the equilibrium. Since
we are interested in the Rayleigh-Taylor instability, we assume Jρ̄K > 0, that is, the upper fluid
is heavier than the lower fluid along the equilibrium interface. We refer to our companion paper
[11] for the analysis of the stable regime Jρ̄K ≤ 0.

In studying perturbations of the equilibrium density it will be useful to employ the enthalpy
functions. These are defined in terms of the pressure laws P± and the equilibrium density values
via

h+(z) =

∫ z

ρ̄1

P ′+(r)

r
dr and h−(z) =

∫ z

ρ̄−

P ′−(r)

r
dr. (1.14)

1.3. Reformulation in flattened coordinates. The movement of the free surfaces Γ±(t)
and the subsequent change of the domains Ω±(t) create numerous mathematical difficulties.
To circumvent these, we will switch to a coordinate system in which the boundaries and the
domains stay fixed in time. In order to be consistent with our study of the nonlinear stability of
the equilibrium state in [11], we will use the equilibrium domain as the fixed domain. We will not
use a Lagrangian coordinate transformation, but rather utilize a special flattening coordinate
transformation motivated by Beale [1].

To this end, we define the fixed domain

Ω = Ω+ ∪ Ω− with Ω+ := {0 < x3 < `} and Ω− := {−b < x3 < 0}, (1.15)

for which we have written the coordinates as x ∈ Ω. We shall write Σ+ := {x3 = `} for the
upper boundary, Σ− := {x3 = 0} for the internal interface and Σb := {x3 = −b} for the lower
boundary. Throughout the paper we will write Σ = Σ+ ∪Σ−. We think of η± as a function on
Σ± according to η+ : (T2 × {`}) × R+ → R and η− : (T2 × {0}) × R+ → R, respectively. We
will transform the free boundary problem in Ω(t) to one in the fixed domain Ω by using the
unknown free surface functions η±. For this we define

η̄+ := P+η+ = Poisson extension of η+ into T2 × {x3 ≤ `} (1.16)

and

η̄− := P−η− = specialized Poisson extension of η− into T2 × R, (1.17)
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where P± are defined in the appendix by (A.4) and (A.9). The Poisson extensions η̄± allow us
to flatten the coordinate domains via the following special coordinate transformation:

Ω± 3 x 7→ (x1, x2, x3 + b̃1η̄+ + b̃2η̄−) := Θ(x, t) = (y1, y2, y3) ∈ Ω±(t), (1.18)

where we have chosen b̃1 = b̃1(x3), b̃2 = b̃2(x3) to be two smooth functions in R that satisfy

b̃1(0) = b̃1(−b) = 0, b̃1(`) = 1 and b̃2(`) = b̃2(−b) = 0, b̃2(0) = 1. (1.19)

Note that Θ(Σ+, t) = Γ+(t), Θ(Σ−, t) = Γ−(t) and Θ(·, t) |Σb= Id |Σb .
If η is sufficiently small (in an appropriate Sobolev space), then the mapping Θ is a diffeo-

morphism. This allows us to transform the problem (1.7) to one in the fixed spatial domain Ω
for each t ≥ 0. In order to write down the equations in the new coordinate system, we compute

∇Θ =

 1 0 0
0 1 0
A B J

 and A :=
(
∇Θ−1

)T
=

 1 0 −AK
0 1 −BK
0 0 K

 . (1.20)

Here the components in the matrix are

A = ∂1θ, B = ∂2θ, J = 1 + ∂3θ, K = J−1, (1.21)

where we have written

θ := b̃1η̄+ + b̃2η̄−. (1.22)

Notice that J = det∇Θ is the Jacobian of the coordinate transformation. It is straightforward
to check that, because of how we have defined η̄− and Θ, the matrix A is regular across the
interface Σ−.

We now define the density ρ± and the velocity u± on Ω± by the compositions ρ±(x, t) =
ρ̃±(Θ±(x, t), t) and u±(x, t) = ũ±(Θ±(x, t), t). Since the domains Ω± and the boundaries Σ±
are now fixed, we henceforth consolidate notation by writing f to refer to f± except when
necessary to distinguish the two; when we write an equation for f we assume that the equation
holds with the subscripts added on the domains Ω± or Σ±. To write the jump conditions on
Σ−, for a quantity f = f±, we define the interfacial jump as

JfK := f+|{x3=0} − f−|{x3=0}. (1.23)

In the new coordinates, the PDEs (1.7) become the following system for (ρ, u, η):

∂tρ−K∂tθ∂3ρ+ divA(ρu) = 0 in Ω

ρ(∂tu−K∂tθ∂3u+ u · ∇Au) +∇AP (ρ)− divA SA(u) = −gρe3 in Ω

∂tη = u · N on Σ

(P (ρ)I − SA(u))N = patmN − σ+HN on Σ+

JP (ρ)I − SA(u)KN = σ−HN on Σ−

JuK = 0 on Σ−

u− = 0 on Σb.

(1.24)

Here we have written the differential operators ∇A, divA, and ∆A with their actions given by

(∇Af)i := Aij∂jf, divAX := Aij∂jXi, and ∆Af := divA∇Af (1.25)

for appropriate f and X. We have also written

N := (−∂1η,−∂2η, 1) (1.26)

for the non-unit normal vector to Σ(t), and we have written

(DAu)ij = Aik∂kuj +Ajk∂kui, D0
Au = DAu−

2

3
divA uI,

and SA,±(u) := µ±D0
Au+ µ′± divA uI. (1.27)

Note that if we extend divA to act on symmetric tensors in the natural way, then divA SAu =
µ∆Au + (µ/3 + µ′)∇A divA u. Recall that A is determined by η through (1.20). This means
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that all of the differential operators in (1.24) are connected to η, and hence to the geometry of
the free surfaces.

1.4. Perturbation equations. We will now rephrase the PDEs (1.24) in a perturbation for-
mulation around the steady-state solution (ρ̄, 0, 0). We define a special density perturbation
by

q = ρ− ρ̄− ∂3ρ̄θ. (1.28)

For the pressure term P (ρ) = P (ρ̄+ q+∂3ρ̄θ), we expand it via the Taylor expansion: by (1.11)
we have

P (ρ̄+ q + ∂3ρ̄θ) = P (ρ̄) + P ′(ρ̄)(q + ∂3ρ̄θ) +R = P (ρ̄) + P ′(ρ̄)q − gρ̄θ +R, (1.29)

where the remainder term is given by

R =

∫ ρ̄+q+∂3ρ̄θ

ρ̄
(ρ̄+ q + ∂3ρ̄θ − z)P ′′(z) dz. (1.30)

Recalling (1.13), (1.19), and (1.22), we find that

−gρ̄+θ = −ρ̄1gη+ on Σ+, and J−gρ̄θK = − Jρ̄K gη− on Σ−. (1.31)

The equations (1.24) can be written as the following system when perturbed around the
equilibrium (ρ̄, 0, 0):

∂tq + divA((ρ̄+ q + ∂3ρ̄θ)u)− ∂2
3 ρ̄Kθ∂tθ −K∂tθ∂3q = 0 in Ω

(ρ̄+ q + ∂3ρ̄θ)∂tu+ (ρ̄+ q + ∂3ρ̄θ)(−K∂tθ∂3u+ u · ∇Au) + ρ̄∇A (h′(ρ̄)q)

−divA SAu = −∇AR− g(q + ∂3ρ̄θ)∇Aθ in Ω

∂tη = u · N on Σ

(P ′(ρ̄)qI − SA(u))N = ρ̄1gηN − σ+HN −R+N on Σ+

JP ′(ρ̄)qI − SA(u)KN = Jρ̄K gηN + σ−HN − JRKN on Σ−

JuK = 0 on Σ−

u− = 0 on Σb.

(1.32)

Remark 1.1. The special density perturbation q given by (1.28) and the subsequent perturbation
equations of the form (1.32) are crucial for our study in the stability regime in [11]. However, it
is not essential for the instability regime in this paper. Indeed, we could consider ρ− ρ̄ directly.
We choose here to consider q in order to be consistent with the study in [11].

1.5. Main result. For a given jump value in the equilibrium density Jρ̄K > 0, we define the
critical surface tension value by

σc := Jρ̄Kgmax{L2
1, L

2
2}. (1.33)

In our companion paper [11], we have proved the global existence of solutions decaying to the
equilibrium state (0, 0, 0) in the problem (1.32) when σ− > σc. The goal of this paper is to
show that when σ− < σc, the equilibrium state (0, 0, 0) is unstable in the compressible viscous
surface-internal wave problem (1.32).

Our main result can be stated as follows:

Theorem 1.2. Assume that Jρ̄K > 0 and σ− < σc, where σc is defined by (1.33). Let the triple
norm |||·|||00 be defined by (5.1) (with N ≥ 3 an integer). There exist constants θ0 > 0 and C > 0
such that for any sufficiently small 0 < ι < θ0 there exist solutions (qι(t), uι(t), ηι(t)) to (1.32)
such that

|||(qι(0), uι(0), ηι(0))|||00 ≤ Cι, but
∥∥ηι−(T ι)

∥∥
L2 ≥

θ0

2
. (1.34)

Here the escape time T ι > 0 is

T ι :=
1

λ
log

θ0

ι
, (1.35)

where Λ
2 < λ ≤ Λ with Λ the sharp linear growth rate defined by (2.34).
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Remark 1.3. Theorem 1.2 shows that the instability occurs in the L2 norm of η−. This high-
lights the fact that the instability occurs at the internal interface. This also means that although
our instability analysis works in a framework with some degree of regularity, the onset of insta-
bility occurs at the lowest level of regularity.

Remark 1.4. Our results can be readily applied to the compressible viscous internal wave prob-
lem, i.e. the problem posed with a rigid top in place of the upper free surface.

To our best knowledge, this work is the first rigorous result to address the nonlinear Rayleigh-
Taylor instability for compressible viscous fluids with or without surface tension; for the com-
pressible viscous internal wave problem, the linear instability was shown by Guo and Tice [6].
Theorem 1.2 together with our results in [11] establish sharp nonlinear stability criteria for the
equilibrium state in the compressible viscous surface-internal wave problem. We summarize
these and the rates of decay to equilibrium in the following table.

Jρ̄K < 0 Jρ̄K = 0 Jρ̄K > 0

σ± = 0
nonlinearly stable

almost exponential decay
locally well-posed nonlinearly unstable

0 < σ+

0 < σ− < σc

nonlinearly stable
exponential decay

nonlinearly stable
exponential decay

nonlinearly unstable

0 < σ+

σc = σ−

nonlinearly stable
exponential decay

nonlinearly stable
exponential decay

locally well-posed

0 < σ+

σc < σ−

nonlinearly stable
exponential decay

nonlinearly stable
exponential decay

nonlinearly stable
exponential decay

Note that our results do not cover the critical case: σ− = σc. From [10] we know that the
problem is locally well-posed, but at the moment of writing it is not clear to us what the
stability of the system should be.

We mention some previous mathematical results concerning the Rayleigh-Taylor instability.
For the inviscid Rayleigh-Taylor problem without surface tension, Ebin [3] proved the nonlinear
ill-posedness of the problem for incompressible fluids, Guo and Tice [5] showed an analogous
result for compressible fluids, and Hwang and Guo [8] proved the nonlinear instability of the
incompressible problem with a continuous density distribution. For the viscous Rayleigh-Taylor
problem, Prüss and Simonett [15] proved the nonlinear instability for incompressible fluids with
surface tension in an Lp setting by using Henry’s instability theorem, and Wang, Tice, and Kim
[18, 19] established the sharp nonlinear instability criteria for the incompressible surface-internal
wave problem with or without surface tension.

Since linear instability can be established in the same way as that for the compressible
viscous internal wave problem in [6], the heart of the proof of Theorem 1.2 is the passage from
linear instability to nonlinear instability. This is in general a delicate issue for PDEs since the
spectrum of the linear part is fairly complicated and the unboundedness of the nonlinear part
usually yields a loss in derivatives. Our proof is based on a variant of the bootstrap argument
first developed by Guo and Strauss [4]. The main strategy of Guo-Strauss approach is to show
that on the time scale of the instability, higher-regularity norms of the solution are actually
bounded by the growth of low-regularity norms (in our case L2). For our problem, the term
Jρ̄K gη− along the interface is the cause of the instability; since it is of low order, we are led to
use the Guo-Strauss bootstrap framework here.

We encounter a number of mathematical difficulties in analyzing our complicated nonlinear
problem, especially due to the fact that our problem is defined in a domain with a boundary.
First, even to guarantee the existence of local-in-time solutions in our energy space, the initial
data must satisfy certain nonlinear compatibility conditions that the growing modes to the
linearized problem constructed in Section 2 would not satisfy. We employ an argument from
Jang and Tice [9] that uses the linear growing mode to construct initial data for the nonlinear
problem.
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Second, because the spectrum of the solution operator for the linearized problem is compli-
cated, we can only derive the largest growth rate for the linearized problem by using careful
energy estimates as in [6]; this is in the context of strong solutions, which requires the initial
data to satisfy the linear compatibility conditions. Such estimates would not be applicable to
the nonlinear problem by directly employing Duhamel’s principle. To get around this issue, we
provide the estimates for the growth in time of arbitrary solutions of the linear inhomogeneous
equations in Section 3; clearly, the estimates can be applied directly to the nonlinear problem.

The last difficulty is to derive the bootstrap energy estimates, a key step in showing the
instability of η−. We employ a variant of the energy method elaborated in our companion
paper [11] to derive these estimates in Section 4. There are new ingredients. First, we need
to weaken the dissipation (see (4.2) for Dσ2N ) due to the lack of the dissipation estimates of
L2 norm of q and η. The missing terms are controlled by using the energy Eσ2N instead. This
is not possible in the global analysis of [11] but is effective in the local-in-time framework of
our instability analysis. Second, the term Jρ̄K gη− contributes negative energy in the unstable
regime and thus the estimates of η− can not be obtained simultaneously with the other terms.
We derive the estimates of η− by making use of the kinematic boundary condition, a transport
equation for η−. Our complete bootstrap estimate is recorded in Theorem 4.1, which shows
that the stronger Sobolev norm |||·|||00 of the solution is actually bounded by the lower-order
norm ‖η−‖L2 . The bootstrap analysis allows us to finally prove Theorem 1.2 in Section 5.

1.6. Definitions and terminology. We now mention some of the definitions, bits of notation,
and conventions that we will use throughout the paper.

Universal constants
Throughout the paper we will refer to generic constants as “universal” if they depend on N ,

Ω±, the various parameters of the problem (e.g. g, µ±, µ′±, σ±) and the functions ρ̄±, with the
caveat that if the constant depends on σ±, then it remains bounded above as either σ± tend to
0. For example this allows constants of the form gµ+ + 3σ2

− + σ+ but forbids constants of the
form 3 + 1/σ−. We make this choice in order to be able to handle together all the cases σ± ≥ 0.

We will employ the notation a . b to mean that a ≤ Cb for a universal constant C > 0.
Universal constants are allowed to change from line to line. When a constant depends on a
quantity z we will write C = C(z) = Cz to indicate this. To indicate some constants in some
places so that they can be referred to later, we will denote them in particular by C1, C2, etc.

Norms
We write Hk(Ω±) with k ≥ 0 and Hs(Σ±) with s ∈ R for the usual Sobolev spaces. We will

typically write H0 = L2. If we write f ∈ Hk(Ω), the understanding is that f represents the
pair f± defined on Ω± respectively, and that f± ∈ Hk(Ω±). We employ the same convention
on Σ±. We will refer to the space 0H

1(Ω) defined as follows:

0H
1(Ω) = {v ∈ H1(Ω) | JvK = 0 on Σ− and v− = 0 on Σb}. (1.36)

To avoid notational clutter, we will avoid writing Hk(Ω) or Hk(Σ) in our norms and typically
write only ‖·‖k, which we actually use to refer to sums

‖f‖2k = ‖f+‖2Hk(Ω+) + ‖f−‖2Hk(Ω−) or ‖f‖2k = ‖f+‖2Hk(Σ+) + ‖f−‖2Hk(Σ−) . (1.37)

Since we will do this for functions defined on both Ω and Σ, this presents some ambiguity. We
avoid this by adopting two conventions. First, we assume that functions have natural spaces on
which they “live.” For example, the functions u, ρ, q, and η̄ live on Ω, while η lives on Σ. As
we proceed in our analysis, we will introduce various auxiliary functions; the spaces they live on
will always be clear from the context. Second, whenever the norm of a function is computed on
a space different from the one in which it lives, we will explicitly write the space. This typically
arises when computing norms of traces onto Σ± of functions that live on Ω.

Occasionally we will need to refer to the product of a norm of η and a constant that depends
on ±. To denote this we will write

γ ‖η‖2k = γ+ ‖η+‖2Hk(Σ+) + γ− ‖η−‖2Hk(Σ−) . (1.38)

Derivatives



8 JUHI JANG, IAN TICE, AND YANJIN WANG

We write N = {0, 1, 2, . . . } for the collection of non-negative integers. When using space-time
differential multi-indices, we will write N1+m = {α = (α0, α1, . . . , αm)} to emphasize that the
0−index term is related to temporal derivatives. For just spatial derivatives we write Nm. For
α ∈ N1+m we write ∂α = ∂α0

t ∂α1
1 · · · ∂αmm . We define the parabolic counting of such multi-indices

by writing |α| = 2α0 + α1 + · · · + αm. We will write ∇∗f for the horizontal gradient of f , i.e.
∇∗f = ∂1fe1 + ∂2fe2, while ∇f will denote the usual full gradient.

For a given norm ‖·‖ and an integer k ≥ 0, we introduce the following notation for sums of
spatial derivatives: ∥∥∥∇k∗f∥∥∥2

:=
∑
α∈N2

|α|≤k

‖∂αf‖2 and
∥∥∥∇kf∥∥∥2

:=
∑
α∈N3

|α|≤k

‖∂αf‖2 . (1.39)

The convention we adopt in this notation is that ∇∗ refers to only “horizontal” spatial deriva-
tives, while ∇ refers to full spatial derivatives. For space-time derivatives we add bars to our
notation: ∥∥∥∇̄k∗f∥∥∥2

:=
∑

α∈N1+2

|α|≤k

‖∂αf‖2 and
∥∥∥∇̄kf∥∥∥2

:=
∑

α∈N1+3

|α|≤k

‖∂αf‖2 . (1.40)

We allow for composition of derivatives in this counting scheme in a natural way; for example,
we write ∥∥∥∇∗∇k∗f∥∥∥2

=
∥∥∥∇k∗∇∗f∥∥∥2

=
∑
α∈N2

|α|≤k

‖∂α∇∗f‖2 =
∑
α∈N2

1≤|α|≤k+1

‖∂αf‖2 . (1.41)

2. Growing mode solution to the linearized equations

In this section, we consider the linearization of (1.32):

∂tq + div(ρ̄u) = 0 in Ω

ρ̄∂tu+ ρ̄∇ (h′(ρ̄)q)− div S(u) = 0 in Ω

∂tη = u3 on Σ

(P ′(ρ̄)qI − S(u))e3 = (ρ1gη+ − σ+∆∗η+)e3 on Σ+

JP ′(ρ̄)qI − S(u)K e3 = (Jρ̄K gη− + σ−∆∗η−)e3 on Σ−

JuK = 0 on Σ−

u− = 0 on Σb.

(2.1)

We seek a growing mode solution to (2.1) of the following form:

u(x, t) = w(x)eλt, q(x, t) = q̃(x)eλt, η(x′, t) = η̃(x′)eλt (2.2)

for some λ > 0 (the same in the upper and lower fluids), where x′ = (x1, x2). Substituting the
ansatz (2.2) into (2.1), we find that

q̃ = −λ−1div(ρ̄w) and η̃ = λ−1w3|Σ. (2.3)

By using (2.3), we can eliminate q̃, η̃ from (2.1) and arrive at the following time-invariant system
for w: 

λ2ρ̄w − ρ̄∇ (h′(ρ̄) div(ρ̄w))− λdiv S(w) = 0 in Ω

(−P ′(ρ̄) div(ρ̄w)I − λS(w))e3 = (ρ1gw3 − σ+∆∗w3)e3 on Σ+

J−P ′(ρ̄) div(ρ̄w)I − λS(w)K e3 = (Jρ̄K gw3 + σ−∆∗w3)e3 on Σ−

JwK = 0 on Σ−

w− = 0 on Σb.

(2.4)

Since the coefficients of the linear problem (2.4) only depend on the x3 variable, we are free
to make the further structural assumption that the x′ dependence of w is given as a Fourier
mode eix

′·ξ for the spatial frequency ξ = (ξ1, ξ2) ∈ L−1
1 Z × L−1

2 Z. Together with the growing
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mode ansatz (2.2), this constitutes a “normal mode” ansatz, which is standard in fluid stability
analysis [2]. We define the new unknowns ϕ, θ, ψ : (−b, `)→ R according to

w1(x) = −iϕ(x3)eix
′·ξ, w2(x) = −iθ(x3)eix

′·ξ, and w3(x) = ψ(x3)eix
′·ξ. (2.5)

For each fixed ξ, and for the new unknowns ϕ(x3), θ(x3), ψ(x3), and λ, we obtain the following
system of ODEs (here ′ = d/dx3):

− (λµϕ′)′ +
[
λ2ρ̄+ λµ |ξ|2 + ξ2

1 (λµ′ + λµ/3 + P ′(ρ̄)ρ̄)
]
ϕ

= −ξ1 [(λµ′ + λµ/3)ψ′ + P ′(ρ̄)(ρ̄ψ)′]− ξ1ξ2 [λµ′ + λµ/3 + P ′(ρ̄)ρ̄] θ in (−b, `)
−(λµθ′)′ +

[
λ2ρ̄+ λµ |ξ|2 + ξ2

2 (λµ′ + λµ/3 + P ′(ρ̄)ρ̄)
]
θ

= −ξ2 [(λµ′ + λµ/3)ψ′ + P ′(ρ̄)(ρ̄ψ)′]− ξ1ξ2 [λµ′ + λµ/3 + P ′(ρ̄)ρ̄]ϕ in (−b, `)
− [(4λµ/3 + λµ′)ψ′]′ − ρ̄ [h′(ρ̄)(ρ̄ψ)′]′ +

(
λ2ρ̄+ λµ |ξ|2

)
ψ

= [(λµ′ + λµ/3) (ξ1ϕ+ ξ2θ)]
′ + ρ̄ [P ′(ρ̄) (ξ1ϕ+ ξ2θ)]

′ in (−b, `)
µ+λ(ξ1ψ+ − ϕ′+) = µ+λ(ξ2ψ+ − θ′+) = 0 at x3 = `

−(λµ′ + λµ/3)(ψ′ + ξ1ϕ+ ξ2θ)− P ′(ρ̄) ((ρ̄ψ)′ + ρ̄(ξ1ϕ+ ξ2θ))

−λµ (ψ′ − ξ1ϕ− ξ2θ) = (ρ1g + σ+ |ξ|2)ψ at x3 = `

JϕK = JθK = JψK = Jµλ(ξ1ψ − ϕ′)K = Jµλ(ξ2ψ − θ′)K = 0 at x3 = 0

J(λµ′ + λµ/3)(ψ′ + ξ1ϕ+ ξ2θ)K + JP ′(ρ̄) ((ρ̄ψ)′ + ρ̄(ξ1ϕ+ ξ2θ))K
+ Jλµ (ψ′ − ξ1ϕ− ξ2θ)K = −(Jρ̄K g − σ− |ξ|2)ψ at x3 = 0

ϕ = θ = ψ = 0 at x3 = −b.

(2.6)

We can reduce the complexity of the problem by removing the component θ. To this end,
note that if ϕ, θ, ψ solve the equations (2.6) for ξ ∈ R2 and λ > 0, then for any rotation operator

R ∈ SO(2), (ϕ̃, θ̃) := R(ϕ, θ) solve the same equations for ξ̃ := Rξ with ψ, λ unchanged. So,
by choosing an appropriate rotation, we may assume without loss of generality that ξ2 = 0 and
ξ1 = |ξ| ≥ 0. In this setting θ solves

−(λµθ′)′ + (λ2ρ̄+ λµ |ξ|2)θ = 0

θ(−b) = θ′(`) = 0

JθK = Jλµθ′K = 0,

(2.7)

which implies that θ = 0 since we assume λ > 0. Then the equations (2.6) are reduced to the
equations for ϕ,ψ:

− (λµϕ′)′ +
[
λ2ρ̄+ λµ |ξ|2 + |ξ|2 (λµ′ + λµ/3 + P ′(ρ̄)ρ̄)

]
ϕ

= − |ξ| [(λµ′ + λµ/3)ψ′ + P ′(ρ̄)(ρ̄ψ)′] in (−b, `)
− [(4λµ/3 + λµ′)ψ′]′ − ρ̄ [h′(ρ̄)(ρ̄ψ)′]′ +

(
λ2ρ̄+ λµ |ξ|2

)
ψ

= [(λµ′ + λµ/3) |ξ|ϕ]′ + ρ̄ [P ′(ρ̄) |ξ|ϕ]′ in (−b, `)
µ+λ(|ξ|ψ+ − ϕ′+) = 0 at x3 = `

−(λµ′ + λµ/3)(ψ′ + |ξ|ϕ)− P ′(ρ̄) ((ρ̄ψ)′ + ρ̄ |ξ|ϕ)

−λµ (ψ′ − |ξ|ϕ) = (ρ1g + σ+ |ξ|2)ψ at x3 = `

JϕK = JψK = Jµλ(|ξ|ψ − ϕ′)K = 0 at x3 = 0

J(λµ′ + λµ/3)(ψ′ + |ξ|ϕ)K + JP ′(ρ̄) ((ρ̄ψ)′ + ρ̄ |ξ|ϕ)K
+ Jλµ (ψ′ − |ξ|ϕ)K = −(Jρ̄K g − σ− |ξ|2)ψ at x3 = 0

ϕ = ψ = 0 at x3 = −b.

(2.8)

Solutions to (2.8) can be constructed in the same way as that for the compressible viscous
internal wave problem in [6], so we will outline the procedure with minor modifications and
refer some of the proofs to [6].

It is not trivial at all to construct solutions by utilizing variational methods since λ appears
both linearly and quadratically. In order to circumvent this problem and restore the ability to
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use variational methods, we artificially remove the linear dependence on λ in (2.8) by introducing
an arbitrary parameter s > 0. This results in a family (s > 0) of modified problems:

− (sµϕ′)′ +
[
λ2ρ̄+ sµ |ξ|2 + |ξ|2 (sµ′ + sµ/3 + P ′(ρ̄)ρ̄)

]
ϕ

= − |ξ| [(sµ′ + sµ/3)ψ′ + P ′(ρ̄)(ρ̄ψ)′] in (−b, `)
− [(4sµ/3 + sµ′)ψ′]′ − ρ̄ [h′(ρ̄)(ρ̄ψ)′]′ +

(
λ2ρ̄+ sµ |ξ|2

)
ψ

= [(sµ′ + sµ/3) |ξ|ϕ]′ + ρ̄ [P ′(ρ̄) |ξ|ϕ]′ in (−b, `)
µ+s(|ξ|ψ+ − ϕ′+) = 0 at x3 = `

−(sµ′ + sµ/3)(ψ′ + |ξ|ϕ)− P ′(ρ̄) ((ρ̄ψ)′ + ρ̄ |ξ|ϕ)

−sµ (ψ′ − |ξ|ϕ) = (ρ1g + σ+ |ξ|2)ψ at x3 = `

JϕK = JψK = Jµs(|ξ|ψ − ϕ′)K = 0 at x3 = 0

J(sµ′ + sµ/3)(ψ′ + |ξ|ϕ)K + JP ′(ρ̄) ((ρ̄ψ)′ + ρ̄ |ξ|ϕ)K
+ Jsµ (ψ′ − |ξ|ϕ)K = −(Jρ̄K g − σ− |ξ|2)ψ at x3 = 0

ϕ = ψ = 0 at x3 = −b.

(2.9)

A solution to the modified problem (2.9) with λ = s corresponds to a solution to the original
problem (2.8). Note that for any fixed s > 0 and ξ, (2.9) is a standard eigenvalue problem
for −λ2, which has a natural variational structure that allows us to use variational methods
to construct solutions. In order to understand λ in a variational framework, we consider the
energy functional

E(ϕ,ψ; s) = E0(ϕ,ψ) + sE1(ϕ,ψ) (2.10)

with

E0(ϕ,ψ) =
σ− |ξ|2 − Jρ̄K g

2
(ψ(0))2 +

σ+ |ξ|2 + ρ1g

2
(ψ(`))2 +

1

2

∫ `

−b
h′(ρ̄)((ρ̄ψ)′+ ρ̄ |ξ|ϕ)2, (2.11)

E1(ϕ,ψ) =
1

2

∫ `

−b
µ

(
(ϕ′ − |ξ|ψ)2 + (ψ′ − |ξ|ϕ)2 +

1

3
(ψ′ + |ξ|ϕ)2

)
+ µ′(ψ′ + |ξ|ϕ)2, (2.12)

and

J(ϕ,ψ) =
1

2

∫ `

−b
ρ̄(ϕ2 + ψ2), (2.13)

which are both well-defined on the space 0H
1((−b, `))× 0H

1((−b, `)) where

0H
1((−b, `)) = {φ ∈ H1((−b, `)) | φ− = 0 at x3 = −b}. (2.14)

Note that functions in this space automatically satisfy the condition JφK = 0 at x3 = 0. Consider
the admissible set

S = {(ϕ,ψ) ∈ 0H
1((−b, `))× 0H

1((−b, `)) | J(ϕ,ψ) = 1}. (2.15)

Notice that E0(ϕ,ψ) is not positive definite for Jρ̄K > 0.
The first proposition asserts that a minimizer of E in (2.10) over S exists and the minimizer

solves (2.9).

Proposition 2.1. Let ξ and s > 0 be fixed. Then the following hold:

(1) E achieves its infimum over S.
(2) The minimizers are smooth when restricted to (−b, 0) or (0, `) and solve the equations

(2.9) with λ2 given by

−λ2 = α(s) := inf
(ϕ,ψ)∈S

E(ϕ,ψ; s). (2.16)

Proof. A completion of the square and the fact that ρ̄ solves (1.11) allow us to write

h′(ρ̄)
(
(ρ̄ψ)′ + ρ̄ |ξ|ϕ

)2
= P ′(ρ̄)ρ̄

(
ψ′ + |ξ|ϕ

)2 − 2gρ̄ |ξ|ψϕ− 2gρ̄ψ′ψ − gρ̄′ψ2. (2.17)
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We employ an integration by parts to see that∫ `

−b
−2gρ̄ψ′ψ − gρ̄′ψ2 = −

∫ `

−b
g
(
ρ̄ψ2

)′
= −ρ1g(ψ(`))2 + Jρ̄K g(ψ(0))2. (2.18)

We then obtain another expression for E0(ϕ,ψ):

E0(ϕ,ψ) =
σ− |ξ|2

2
(ψ(0))2 +

σ+ |ξ|2

2
(ψ(`))2 +

1

2

∫ `

−b
P ′(ρ̄)ρ̄

(
ψ′ + |ξ|ϕ

)2 − 2gρ̄ |ξ|ψϕ. (2.19)

Notice that by further employing the identity −2ab = (a− b)2− (a2 + b2) and the constraint on
J(ϕ,ψ), we see from (2.19) that

E(ϕ,ψ; s) ≥ E0(ϕ,ψ) ≥ −2g |ξ|
∫ `

−b
ρ̄ψϕ ≥ −g |ξ| (2.20)

for any (ϕ,ψ) ∈ S. This shows that E is bounded below on S. The results thus follow from
standard compactness arguments, the variational principle for Euler-Langrange equations, and
a bootstrap argument for smoothness. For more details, we refer to Propositions 3.1 and 3.2 of
[6]. �

In order to construct the growing mode solution to the original problem (2.1) we first need to

ensure the negativity of the infimum (2.16). For σ− ≥ σc, we always have that σ− |ξ|2−Jρ̄K g ≥ 0
for any nonzero frequency ξ ∈ L−1

1 Z × L−1
2 Z, which implies E(ϕ,ψ; s) ≥ 0 because of (2.11).

This then means that α(s) ≥ 0, which suggests that no growing mode solution to (2.1) can be
constructed when σ− ≥ σc, and in turn indicates that the system is linearly stable. In fact,
in [11] we have established the nonlinear stability of the compressible viscous surface-internal

wave problem for the case σ− > σc. However, when 0 ≤ σ− < σc, for 0 < |ξ| <
√

Jρ̄K g/σ− (it

is interpreted that when σ− = 0 this means 0 < |ξ| < ∞), σ− |ξ|2 − Jρ̄K g < 0, and then it is
possible for E(ϕ,ψ; s) to be negative. We denote this critical frequency by |ξ|c:

|ξ|c :=

√
Jρ̄K g
σ−

. (2.21)

Lemma 2.2. Let 0 < |ξ| < |ξ|c. Then there exists s0 > 0 depending on σ±, g, ρ̄, P, b, `, µ±, µ
′
±, |ξ|

such that for 0 < s ≤ s0 it holds that α(s) < 0.

Proof. Since E and J have the same homogeneity, we may reduce to constructing any pair
(ϕ,ψ) ∈ 0H

1((−b, `)) × 0H
1((−b, `)) such that E(ϕ,ψ; s) < 0. We will take ψ with ψ(`) = 0

and ϕ = −ψ′/ |ξ|, and we then further reduce to constructing any ψ ∈ H2
0 ((−b, `)) such that

Ẽ(ψ; s) := E(−ψ′/ |ξ| , ψ; s) =
σ− |ξ|2 − Jρ̄K g

2
(ψ(0))2 +

1

2

∫ `

−b
P ′(ρ̄)ρ̄ψ2 + sE1(−ψ′/ |ξ| , ψ) < 0.

(2.22)
For α ≥ 5 we define the test function ψα ∈ H2

0 ((−b, `)) according to

ψα(x3) =


(

1− x23
`2

)α/2
, x3 ∈ [0, `)(

1− x23
b2

)α/2
, x3 ∈ (−b, 0).

(2.23)

Simple calculations then show that∫ `

−m
(ψα)2 =

√
π(b+ `)Γ(α+ 1)

2Γ(α+ 3/2)
= oα(1), (2.24)

where oα(1) is a quantity that vanishes as α→∞. We thus find that

Ẽ(ψα; s) =
σ− |ξ|2 − Jρ̄K g

2
+ oα(1) + sC (2.25)

for the constant C = E1(−ψ′α/ |ξ| , ψα), which depends on α, ρ̄, b, `, µ±, µ
′
±, |ξ|. Since σ− |ξ|2 −

Jρ̄K g < 0, we may then fix α sufficiently large so that the first two terms sum to something
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strictly negative. Then there exists s0 > 0 depending on σ±, g, ρ̄, P, b, `, µ±, µ
′
±, |ξ| so that for

s ≤ s0 it holds that Ẽ(ψα; s) < 0. Thus α(s) < 0 for s ≤ s0. �

Remark 2.3. For a minimizer (ϕ,ψ) ∈ S we have

σ− |ξ|2 − gJρ̄K
2

(ψ(0))2 ≤ α(s) < 0, (2.26)

which in particular requires that ψ(0) 6= 0 and |ξ|2 < gJρ̄K/σ−.

As in Proposition 3.6 of [6], one can prove that α = α(s) is continuous and strictly increasing
and that there exists s∗ ∈ (0,∞) so that

S = α−1((−∞, 0)) = (0, s∗). (2.27)

Arguing as in Theorem 3.8 of [6], we deduce the following.

Lemma 2.4. For each fixed 0 < |ξ| < |ξ|c there exists a unique s ∈ S so that λ(|ξ|, s) =√
−α(s) > 0 and

s = λ(|ξ|, s). (2.28)

Hence, we may now think of s = s(|ξ|) and we may also write λ = λ(|ξ|) from now on. In
conclusion, we now have the existence of solutions to the system (2.6).

Proposition 2.5. For ξ ∈ R2 so that 0 < |ξ| < |ξ|c there exists a solution ϕ = ϕ(ξ, x3),
θ = θ(ξ, x3), ψ = ψ(ξ, x3), and λ = λ(|ξ|) > 0 to (2.6) so that ψ(ξ, 0) 6= 0. The solutions are
smooth when restricted to (−b, 0) or (0, `), and they are equivariant in ξ in the sense that if
R ∈ SO(2) is a rotation operator, thenϕ(Rξ, x3)

θ(Rξ, x3)
ψ(Rξ, x3)

 =

R11 R12 0
R21 R22 0
0 0 1

ϕ(ξ, x3)
θ(ξ, x3)
ψ(ξ, x3)

 . (2.29)

Proof. We may find a rotation operator R ∈ SO(2) so that Rξ = (|ξ| , 0). For λ = λ(|ξ|) given
in (2.28), we define (ϕ(ξ, x3), θ(ξ, x3)) = R−1(ϕ(|ξ| , x3), 0) and ψ(ξ, x3) = ψ(|ξ| , x3), where the
functions ϕ(|ξ| , x3) and ψ(|ξ| , x3) are the minimizer of (2.16), which solves the equations (2.9),
with s = λ. This gives a solution to (2.6). The equivariance in ξ follows from the definition. �

To obtain a largest growth rate, we next show the boundedness of λ(|ξ|).

Proposition 2.6. For any 0 < |ξ| < |ξ|c, λ(|ξ|) satisfies the bound

λ(|ξ|) ≤ bg Jρ̄K
µ−

. (2.30)

Proof. For given |ξ| ∈ (0, |ξ|c), let (ϕ,ψ) be the corresponding minimizer of E so that −λ2 =
E(ϕ,ψ;λ). From (2.10) and (2.11), we have E = E0 + λE1 and E0 ≥ −Jρ̄K g(ψ(0))2/2. Hence,

λE1 ≤ −E0 ≤
Jρ̄K g

2
(ψ(0))2 (2.31)

On the other hand, since ψ(−b) = 0, ψ(0) =
∫ 0
−b ψ

′dx3 ≤
√
b(
∫ 0
−b(ψ

′)2dx3)1/2, and thus

(ψ(0))2 ≤ b
∫ 0

−b
(ψ′)2dx3 = b

∫ 0

−b

(
ψ′ − |ξ|ϕ

2
+
ψ′ + |ξ|ϕ

2

)2

dx3. (2.32)

By further using the inequality: (A+B)2 ≤ 4(A2 +B2/3) for all A,B ∈ R, we have

(ψ(0))2 ≤ b
∫ 0

−b
(ψ′ − |ξ|ϕ)2 +

1

3
(ψ′ + |ξ|ϕ)2dx3

=
2b

µ−

1

2

∫ 0

−b
µ−

(
(ψ′ − |ξ|ϕ)2 +

1

3
(ψ′ + |ξ|ϕ)2

)
dx3 ≤

2b

µ−
E1.

(2.33)

Combining this with (2.31), we deduce (2.30). �



COMPRESSIBLE VISCOUS SURFACE-INTERNAL WAVES 13

Proposition 2.6 then allows us to define

0 < Λ := sup
0<|ξ|<|ξ|c

λ(|ξ|) <∞. (2.34)

For σ− > 0, only a finite number of spatial frequencies ξ ∈ (L−1
1 Z) × (L−1

2 Z) satisfy |ξ| < |ξ|c,
so the the largest growth rate Λ must be achieved when 0 < σ− < σc. For σ− = 0 it is not
clear whether Λ is achieved. However, we can achieve a growth rate that is arbitrarily close to
Λ, and so in particular Λ∗ is achieved, where

0 < Λ/2 < Λ∗ ≤ Λ. (2.35)

We may now construct a growing mode solution to the linearized problem (2.1).

Theorem 2.7. Let Λ be defined by (2.34) and Λ∗ be defined by (2.35). Then the following hold.

(1) Let 0 < σ− < σc. Then there is a growing mode solution to (2.1) so that

‖q(t)‖k = eΛt‖q(0)‖k, ‖u(t)‖k = eΛt‖u(0)‖k, ‖η(t)‖k = eΛt‖η(0)‖k (2.36)

for any k ≥ 0.
(2) Let σ− = 0. Then there is a growing mode solution to (2.1) so that

‖q(t)‖k = eΛ∗t‖q(0)‖k, ‖u(t)‖k = eΛ∗t‖u(0)‖k, ‖η(t)‖k = eΛ∗t‖η(0)‖k (2.37)

for any k ≥ 0.

Proof. Let |ξ| > 0 be so that λ(|ξ|) = Λ for σ− > 0 or λ(|ξ|) = Λ∗ for σ− = 0. Let ϕ = ϕ(ξ, x3),
θ = θ(ξ, x3), ψ = ψ(ξ, x3) be the solution to (2.6) with λ(|ξ|) as stated in Proposition 2.5. We
then define q, u, and η according to (2.2), (2.3), and (2.5). Then we have that q ∈ Hk(Ω),
u ∈ 0H

1(Ω) ∩Hk(Ω), and η ∈ Hk(Σ) for any k ≥ 0 and (q, u, η) solve the linearized problem
(2.1). Moreover, q, u, η satisfy (2.36) or (2.37). �

3. Growth of solutions to the linear inhomogeneous equations

In this section, we will show that Λ defined by (2.34) is the sharp growth rate of arbitrary
solutions to the linearized problem (2.1). Since the spectrum of the linear operator is compli-
cated, it is hard to obtain the largest growth rate of the solution operator in “L2 → L2” in the
usual way. Instead, motivated by [6], we can use careful energy estimates to show that eΛt is
the sharp growth rate in a slightly weaker sense, say, for instance “H2 → L2”. However, this
will be done for strong solutions to the problem, and it may be difficult to apply directly to
the nonlinear problem due to the issue of compatibility conditions of the initial and boundary
data since the problem is defined in a domain with boundary. We overcome this obstacle by
proving the estimates for the growth in time of arbitrary solutions to the linear inhomogeneous
equations: 

∂tq + div(ρ̄u) = G1 in Ω

ρ̄∂tu+ ρ̄∇ (h′(ρ̄)q)− div S(u) = G2 in Ω

∂tη = u3 +G4 on Σ

(P ′(ρ̄)qI − S(u))e3 = (ρ1gη+ − σ+∆∗η+)e3 +G3
+ on Σ+

JP ′(ρ̄)qI − S(u)K e3 = (Jρ̄K gη− + σ−∆∗η−)e3 −G3
− on Σ−

JuK = 0 on Σ−

u− = 0 on Σb,

(3.1)

where Gi’s are given functions.
It will be convenient to work with a second-order formulation of the equations (3.1). To arrive

at this, we differentiate the second equation in time and eliminate the q and η terms using the
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other equations. The resulting equations for u read as

ρ̄∂ttu− ρ̄∇ (h′(ρ̄) div(ρ̄u))− div S(∂tu) = F in Ω

(−P ′(ρ̄) div(ρ̄u)I − S(∂tu))e3 = (ρ1gu3 − σ+∆∗u3)e3 + G+ on Σ+

J−P ′(ρ̄) div(ρ̄u)I − S(∂tu)K e3 = (Jρ̄K gu3 + σ−∆∗u3)e3 −G− on Σ−

J∂tuK = 0 on Σ−

∂tu− = 0 on Σb,

(3.2)

where
F := −ρ̄∇

(
h′(ρ̄)G1

)
+ ∂tG

2, (3.3)

G+ := −P ′+(ρ̄+)G1e3 − ∂tG3
+ + (ρ1gG

4
+ − σ+∆∗G

4
+)e3, (3.4)

and
−G− := −

q
P ′+(ρ̄+)G1

y
e3 − ∂tG3

− + (Jρ̄K gG4
− + σ−∆∗G

4
−)e3. (3.5)

Our first result gives an energy and its evolution equation for solutions to the second-order
problem (3.2).

Lemma 3.1. Let u solve (3.2). Then

d

dt

(∫
Ω

ρ̄

2
|∂tu|2 +

h′(ρ̄)

2
|div (ρ̄u)|2 +

∫
Σ

σ

2
|∇∗u3|2 +

∫
Σ−

gρ1

2
|u3|2 +

∫
Σ−

−g JρK
2
|u3|2

)
+

∫
Ω

µ

2

∣∣∣∣D∂tu+D∂tu
T − 2

3
(div ∂tu)I

∣∣∣∣2 +

∫
Ω
µ′ |div ∂tu|2 =

∫
Ω
F · ∂tu−

∫
Σ
G · ∂tu. (3.6)

Proof. We multiply the first equation of (3.2) by ∂tu and then integrate by parts over Ω. By
using the boundary conditions in (3.2), we obtain (3.6). �

The variational characterization of Λ, which was given by (2.34), gives rise to the next result.

Lemma 3.2. Let u ∈ 0H
1(Ω) ∩H2(Ω). Then we have the inequality∫

Ω

h′(ρ̄)

2
|div (ρ̄u)|2 +

∫
Σ

σ

2
|∇∗u3|2 +

∫
Σ−

gρ1

2
|u3|2 +

∫
Σ−

−g JρK
2
|u3|2

≥ −Λ2

2

∫
Ω
ρ̄ |u|2 − Λ

2

∫
Ω

µ

2

∣∣∣∣Du+DuT − 2

3
(div u)I

∣∣∣∣2 + µ′ |div u|2 . (3.7)

Proof. We take the horizontal Fourier transform to see that

4π2

(∫
Ω

h′(ρ̄)

2
|div (ρ̄u)|2 +

∫
Σ

σ

2
|∇∗u3|2 +

∫
Σ−

gρ1

2
|u3|2 +

∫
Σ−

−g JρK
2
|u3|2

)
=

∑
ξ∈L−1

1 Z×L−1
2 Z

{∫ `

−b

h′(ρ̄)

2
|iξ1ρ̄û1 + iξ2ρ̄û2 + ∂3(ρ̄û3)|2 dx3

+
σ+|ξ|2 + ρ1g

2
|û3(`)|2 +

σ−|ξ|2 − Jρ̄K g
2

|û3(0)|2
}
. (3.8)

For ξ = 0, the term in the sum of (3.8) is

ρ1g

2
|û3(`)|2 − g JρK

2
|û3(0)|2 +

∫ `

−b

h′(ρ̄)

2
|∂3(ρ̄v̂3)|2 dx3. (3.9)

We expand the derivative term in the integral and integrate by parts to get∫ `

−b

h′(ρ̄)

2
|∂3(ρ̄û3)|2 dx3 =

∫ `

−b

h′(ρ̄)

2
|∂3ρ̄û3 + ρ̄∂3û3|2 dx3

=

∫ `

−b

1

2
P ′(ρ̄)ρ̄ |∂3û3|2 − gρ̄∂3û3û3 −

1

2
g∂3ρ̄ |û3|2 dx3

=

∫ `

−b

1

2
P ′(ρ̄)ρ̄ |∂3û3|2 −

ρ1g

2
|û3(`)|2 +

g Jρ̄K
2
|û3(0)|2 . (3.10)
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This implies

ρ1g

2
|û3(`)|2 − g Jρ̄K

2
|û3(0)|2 +

∫ `

−b

h′(ρ̄)

2
|∂3(ρ̄û3)|2 dx3 =

1

2

∫ `

−b
P ′(ρ̄)ρ̄ |∂3û3|2 ≥ 0. (3.11)

Consider now the sum of (3.8) for fixed ξ 6= 0, writing ϕ(x3) = iû1(ξ, x3), θ(x3) = iû2(ξ, x3),
ψ(x3) = û3(ξ, x3). That is, define

Z(ϕ, θ, ψ; ξ) =
σ+ |ξ|2 + ρ1g

2
(ψ(`))2 +

σ− |ξ|2 − Jρ̄K g
2

(ψ(0))2

+

∫ `

−b

h′(ρ̄)

2

∣∣ξ1ρ̄ϕ+ ξ2ρ̄θ + (ρ̄ψ)′
∣∣2 dx3, (3.12)

where ′ = ∂3. The expression for Z is invariant under simultaneous rotations of ξ and (ϕ, θ), so
without loss of generality we may assume that ξ = (|ξ| , 0) with |ξ| > 0 and θ = 0. If σ− > 0
then we assume that |ξ| < |ξ|c as well. Then, using (2.10) with s = λ(|ξ|), we may rewrite

Z(ϕ, θ, ψ; ξ) =E(ϕ,ψ;λ(|ξ|))− λ(|ξ|)
2

∫ `

−b
µ′
∣∣ψ′ + |ξ|ϕ∣∣2

− λ(|ξ|)
2

∫ `

−b
µ

(∣∣ϕ′ − |ξ|ψ∣∣2 +
∣∣ψ′ − |ξ|ϕ∣∣2 +

1

3

∣∣ψ′ + |ξ|ϕ∣∣2) (3.13)

and hence

Z(ϕ, θ, ψ; ξ) ≥− Λ2

2

∫ `

−b
ρ̄(|ϕ|2 + |ψ|2)− Λ

2

∫ `

−b
µ′
∣∣ψ′ + |ξ|ϕ∣∣2

− Λ

2

∫ `

−b
µ

(∣∣ϕ′ − |ξ|ψ∣∣2 +
∣∣ψ′ − |ξ|ϕ∣∣2 +

1

3

∣∣ψ′ + |ξ|ϕ∣∣2) . (3.14)

Here in the inequality above we have used the following variational characterization for Λ, which
follows directly from the definitions (2.16) and (2.34),

E(ϕ,ψ;λ(|ξ|)) ≥ −λ(|ξ|)2J(ϕ,ψ) ≥ −Λ2

2

∫ `

−b
ρ̄(|ϕ|2 + |ψ|2). (3.15)

For |ξ| ≥ ξc the expression for Z is non-negative, so the inequality (3.14) holds trivially, and so
we deduce that it holds for all |ξ| > 0.

Translating the inequality (3.14) back to the original notation for fixed ξ, we find

σ+|ξ|2 + ρ1g

2
|û3(`)|2 +

σ−|ξ|2 − Jρ̄K g
2

|û3(0)|2 +

∫ `

−b

h′(ρ̄)

2
|iξ1ρ̄û1 + iξ2ρ̄û2 + ∂3(ρ̄û3)|2 dx3

≥ −Λ2

2

∫ `

−b
ρ̄ |û|2 − Λ

2

∫ `

−b
µ′ |iξ1û1 + iξ2û2 + ∂3û3|2 +

µ

2

∣∣∣B̂∣∣∣2 , (3.16)

where

B = Du+DuT − 2

3
(div u)I. (3.17)

Taking sum of each side of this inequality over all 0 6= ξ ∈ L−1
1 Z× L−1

2 Z, together with (3.11),
then proves the result. �

Now we can prove our main result of this section. We write

EG :=
∥∥G1

∥∥2

1
+
∥∥∂tG2

∥∥2

0
+
∥∥∂tG3

∥∥2

0
+
∥∥G4

∥∥2

2
. (3.18)

Theorem 3.3. Let (q, u, η) solve (3.1). Then we have the following estimates for t ≥ 0:

‖u(t)‖21 . e
2Λt(‖u(0)‖22 + ‖∂tu(0)‖20) +

∫ t

0
e2Λ(t−s)√EG(s) ‖∂tu(s)‖1 ds, (3.19)

‖η(t)‖0 . e
Λt(‖u(0)‖2 + ‖∂tu(0)‖0 + ‖η(0)‖0) +

∫ t

0

∥∥G4(s)
∥∥

0
ds (3.20)
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+

∫ t

0

√∫ s

0
e2Λ(s−τ)

√
EG(τ) ‖∂tu(τ)‖1 dτds,

‖q(t)‖0 . e
Λt(‖u(0)‖2 + ‖∂tu(0)‖0 + ‖q(0)‖0) +

∫ t

0

∥∥G1(s)
∥∥

0
ds (3.21)

+

∫ t

0

√∫ s

0
e2Λ(s−τ)

√
EG(τ) ‖∂tu(τ)‖1 dτds,

Proof. Integrating the result of Lemma 3.1 in time from 0 to t, and then applying Lemma 3.2,
we find that∫

Ω

ρ̄

2
|∂tu|2 +

∫ t

0

∫
Ω

µ

2

∣∣∣∣D∂tu+D∂tu
T − 2

3
(div ∂tu)I

∣∣∣∣2 +

∫
Ω
µ′ |div ∂tu|2

≤ K0 +

∫ t

0

∫
Ω
F · ∂tu−

∫ t

0

∫
Σ
G · ∂tu

−
(∫

Ω

h′(ρ̄)

2
|div (ρ̄u)|2 +

∫
Σ

σ

2
|∇∗u3|2 +

∫
Σ−

gρ1

2
|u3|2 +

∫
Σ−

−g JρK
2
|u3|2

)
≤ K0 +

∫ t

0

∫
Ω
F · ∂tu−

∫ t

0

∫
Σ
G · ∂tu

+
Λ2

2

∫
Ω
ρ̄ |u|2 +

Λ

2

∫
Ω

µ

2

∣∣∣∣Du+DuT − 2

3
(div u)I

∣∣∣∣2 + µ′ |div u|2 , (3.22)

where

K0 =

∫
Ω

ρ̄

2
|∂tu(0)|2 +

h′(ρ̄)

2
|div (ρ̄u(0))|2

+

∫
Σ

σ

2
|∇∗u3(0)|2 +

∫
Σ−

gρ1

2
|u3(0)|2 +

∫
Σ−

−g JρK
2
|u3(0)|2 . (3.23)

For notational simplicity we introduce the norms

‖u‖2? :=

∫
Ω
ρ̄|u|2 and ‖u‖2?? :=

∫
Ω

µ

2

∣∣∣∣Du+DuT − 2

3
(div u)I

∣∣∣∣2 + µ′ |div u|2 (3.24)

and the corresponding inner-products given by 〈·, ·〉? and 〈·, ·〉??, respectively. We may then
compactly rewrite the previous inequality as

1

2
‖∂tu(t)‖2? +

∫ t

0
‖∂tu(s)‖2?? ds ≤ K0 +

Λ2

2
‖u(t)‖2? +

Λ

2
‖u(t)‖2?? + H(t) (3.25)

where we have written

H(t) =

∫ t

0

∫
Ω
F · ∂tu−

∫ t

0

∫
Σ
G · ∂tu. (3.26)

Integrating in time and using Cauchy’s inequality, we may bound

Λ ‖u(t)‖2?? = Λ ‖u(0)‖2?? + Λ

∫ t

0
2〈u(s), ∂tu(s)〉?? ds

≤ Λ ‖u(0)‖2?? +

∫ t

0
‖∂tu(s)‖2?? ds+ Λ2

∫ t

0
‖u(s)‖2?? ds.

(3.27)

On the other hand

Λ∂t ‖u(t)‖2? = 2Λ〈u(t), ∂tu(t)〉? ≤ ‖∂tu(t)‖2? + Λ2 ‖u(t)‖2? . (3.28)

We may combine these two inequalities with (3.25) to derive the differential inequality

∂t ‖u(t)‖2? + ‖u(t)‖2?? ≤ K1 + 2Λ

(
‖u(t)‖2? +

∫ t

0
‖u(s)‖2?? ds

)
+

2

Λ
H(t) (3.29)
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for K1 = 2K0/Λ + 2 ‖u(0)‖2??. An application of Gronwall’s theorem then shows that

‖u(t)‖2? +

∫ t

0
‖u(s)‖2?? ≤ e

2Λt ‖u(0)‖2? +
K1

2Λ
(e2Λt − 1) +

2

Λ

∫ t

0
e2Λ(t−s)H(s)ds. (3.30)

Now plugging (3.30) and (3.27) into (3.25), we find that

1

Λ
‖∂tu(t)‖2? + ‖u(t)‖2?? ≤ K1 + Λ ‖u(t)‖2? + 2Λ

∫ t

0
‖u(s)‖2?? ds+

2

Λ
H(t)

≤ e2Λt(2Λ ‖u(0)‖2? +K1) +
2

Λ
H(t) + 4

∫ t

0
e2Λ(t−s)H(s)ds. (3.31)

Notice that

4

∫ t

0
e2Λ(t−s)H(s)ds = − 2

Λ

∫ t

0
∂t

(
e2Λ(t−s)

)
H(s)ds

= − 2

Λ
H(t) + e2ΛtH(0) +

2

Λ

∫ t

0
e2Λ(t−s)∂tH(s)ds (3.32)

and

H(0) = 0 and ∂tH =

∫
Ω
F · ∂tu−

∫
Σ
G · ∂tu. (3.33)

We then have,

‖u(t)‖2?? ≤ e
2Λt(2Λ ‖u(0)‖2? +K1) +

2

Λ

∫ t

0
e2Λ(t−s)

(∫
Ω
F(s) · ∂tu(s)−

∫
Σ
G(s) · ∂tu(s)

)
ds.

(3.34)
By the trace theorem,

K1 . ‖u(0)‖22 + ‖∂tu(0)‖20 . (3.35)

On the other hand,

‖F‖20 + ‖G‖20 .
∥∥G1

∥∥2

1
+
∥∥∂tG2

∥∥2

0
+
∥∥∂tG3

∥∥2

0
+
∥∥G4

∥∥2

2
= EG. (3.36)

So by Korn’s inequality (Proposition A.4) and the trace theorem, (3.34) implies (3.19).
Next we use the kinematic boundary condition ∂tη = u3 + G4 and the trace theorem to

estimate

‖∂tη(t)‖0 ≤ ‖u3‖H0(Σ) +
∥∥G4

∥∥
0
. ‖u3‖1 +

∥∥G4
∥∥

0
. (3.37)

This and (3.19) allow us to estimate

‖η(t)‖0 ≤ ‖η(0)‖0 +

∫ t

0
‖∂tη(s)‖0 ds . ‖η(0)‖0 +

∫ t

0

∥∥G4(s)
∥∥

0
ds+

∫ t

0
‖u3(s)‖1 ds

. ‖η(0)‖0 +

∫ t

0

∥∥G4(s)
∥∥

0
ds+

∫ t

0
eΛs(‖u(0)‖2 + ‖∂tu(0)‖0)

+

∫ t

0

√∫ s

0
e2Λ(s−τ)

√
EG(τ) ‖∂tu(τ)‖1 dτds, (3.38)

which implies (3.20).
Similarly, we use the continuity equation ∂tq = −div(ρ̄u) +G1 to estimate

‖∂tq‖0 ≤ ‖div(ρ̄u)‖0 +
∥∥G1

∥∥
0
. ‖u‖1 +

∥∥G1
∥∥

0
. (3.39)

We then deduce (3.21) as that for (3.20). �
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4. Nonlinear energy estimates

This section, the most technical part of the paper, is devoted to the nonlinear energy estimates
for the system (1.32). Our analysis here is similar to that found in our companion paper on the
stable regime [11]. The primary difference is that we will use slightly different versions of the
energy and dissipation functionals in order to handle the fact that the internal interface makes
a negative contribution to the energy and dissipation.

For any integer N ≥ 3, we define the energy as

Eσ2N :=

2N∑
j=0

∥∥∥∂jt u∥∥∥2

4N−2j
+ ‖q‖24N +

2N∑
j=1

∥∥∥∂jt q∥∥∥2

4N−2j+1

+ σ ‖∇∗η‖24N + ‖η‖24N +
2N∑
j=1

∥∥∥∂jt η∥∥∥2

4N−2j+3/2
, (4.1)

and the “dissipation” as

Dσ2N :=

2N∑
j=0

∥∥∥∂jt u∥∥∥2

4N−2j+1
+ ‖∂tq‖24N−1 +

2N+1∑
j=2

∥∥∥∂jt q∥∥∥2

4N−2j+2

+ σ2 ‖∇∗η‖24N+1/2 + σ2 ‖∂tη‖24N+1/2 + ‖∂tη‖24N−1/2 +
4N+1∑
j=2

∥∥∥∂jt η∥∥∥2

4N−2j+5/2
. (4.2)

We also define

F2N := ‖η‖24N+1/2 . (4.3)

The surface tension coefficients σ± are included in the definitions (4.1) and (4.2) so that we will
be able to treat the cases with and without surface tension together. It is noteworthy that the
definition (4.2) of Dσ2N is different from the one introduced in [11] for the nonlinear stability

analysis: ‖q‖24N and ‖η‖24N−1/2 are not included in Dσ2N here. This implies that to control ‖q‖24N
or ‖η‖24N−1/2, we have to use E0

2N ; mostly we will replace Dσ2N in the estimates of some nonlinear

terms derived in [11] by the sum Dσ2N + E0
2N .

Our goal is to derive a priori estimates for solutions (q, u, η) to (1.32) in our functional
framework, i.e. for solutions satisfying Eσ2N , Dσ2N , F2N < ∞. Throughout the rest of this
section we will assume that

Eσ2N (t) ≤ δ2 ≤ 1 (4.4)

for some sufficiently small δ > 0 and for all t ∈ [0, T ] where T > 0 is given. This assumption, in
particular, will guarantee that the geometric terms introduced in Section 1.3 are well-behaved
(see Lemma A.3). We will implicitly allow δ to be made smaller in each result, but we will
reiterate the smallness of δ in our main result. Here is the main result of this section.

Theorem 4.1. If sup0≤t≤T Eσ2N (t) ≤ δ2 for sufficiently small δ, then the following holds. For
any ε > 0, there exists Cε > 0 such that

Eσ2N (t) + F2N (t) +

∫ t

0
Dσ2Nds ≤CεEσ2N (0) + F2N (0) + Cε

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds

+ ε

∫ t

0
(Eσ2N + F2N ) ds+ Cε

∫ t

0
‖η−‖20 ds (4.5)

for all t ∈ [0, T ].

Theorem 4.1 will be established by a series of energy estimates, elliptic estimates, and com-
parison results and its final proof will be given at the end of this section. We start with the
time differentiated version of problem (1.32).
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4.1. Energy evolution for temporal derivatives in geometric form. We will employ the
form of the equations (1.32) primarily for estimating the temporal derivatives of the solutions.

Applying the temporal differential operator ∂jt for j = 0, . . . , 2N to (1.32), we find that

∂t(∂
j
t q) + divA(ρ̄∂jt u) = F 1,j in Ω

(ρ̄+ q + ∂3ρ̄θ)∂t(∂
j
t u) + ρ̄∇A(h′(ρ̄)∂jt q)− divA SA(∂jt u) = F 2,j in Ω

∂t(∂
j
t η) = ∂jt u · N + F 4,j on Σ

(P ′(ρ̄)∂jt qI − SA(∂jt u))N = ρ1g∂
j
t η+N − σ+∆∗(∂

j
t η+)N + F 3,j

+ on Σ+r
P ′(ρ̄)∂jt qI − SA(∂jt u)

z
N = Jρ̄K g∂jt η−N + σ−∆∗(∂

j
t η−)N − F 3,j

− on Σ−r
∂jt u

z
= 0 on Σ−

∂jt u− = 0 on Σb,

(4.6)

where
F 1,j = ∂jtF

1 −
∑

0<`≤j
C`j∂

`
tAlk∂k(ρ̄∂

j−`
t ul), (4.7)

F 2,j
i = ∂jtF

2
i +

∑
0<`≤j

C`j

{
µAlk∂k(∂`tAlm∂

j−`
t ∂mui) + µ∂`tAlk∂

j−`
t ∂k(Alm∂mui)

+ (µ/3 + µ′)Aik∂k(∂`tAlm∂
j−`
t ∂mul) + (µ/3 + µ′)∂`tAik∂

j−`
t ∂k(Alm∂mul)

−ρ̄∂`tAik∂k(h′(ρ̄)∂j−`t q)− ∂`t (q + ∂3ρ̄θ)∂t(∂
j−`
t u)

}
, (4.8)

F 3,j
i,+ = ∂jtF

3
i,+ +

∑
0<`≤j

C`j

{
µ+∂

`
t (NlAik)∂

j−`
t ∂kul + µ+∂

`
t (NlAlk)∂

j−`
t ∂kui

+(µ′+ − 2µ+/3)∂`t (NiAlk)∂
j−`
t ∂kul + ∂`tNi∂

j−`
t (ρ1gη+ − P ′(ρ̄)q − σ+∆∗η+)

}
,

(4.9)

−F 3,j
i,− = −∂jtF 3

i,− +
∑

0<`≤j
C`j

{
∂`t (NlAik)∂

j−`
t Jµ∂kulK + ∂`t (NlAlk)∂

j−`
t Jµ∂kuiK

+∂`t (NiAlk)∂
j−`
t

q
(µ′ − 2µ/3)∂kul

y
+ ∂`tNi∂

j−`
t (Jρ̄K gη− −

q
P ′(ρ̄)q

y
+ σ−∆∗η−)

}
,

(4.10)

for i = 1, 2, 3, and

F 4,j =
∑

0<`≤j
C`j∂

`
tN · ∂

j−`
t u. (4.11)

In the above, F 1, F 2 and F 3 are defined by

F 1 = ∂2
3 ρ̄Kθ∂tθ +K∂tθ∂3q − divA((q + ∂3ρ̄θ)u), (4.12)

F 2 = −(ρ̄+ q + ∂3ρ̄θ)(−K∂tθ∂3u+ u · ∇Au)−∇AR− g(q + ∂3ρ̄θ)∇Aθ, (4.13)

F 3
+ = −RN − σ+ div∗(((1 + |∇∗η+|2)−1/2 − 1)∇∗η+)N , (4.14)

and
−F 3
− = − JRKN + σ− div∗(((1 + |∇∗η−|2)−1/2 − 1)∇∗η−)N . (4.15)

We present the estimates of these nonlinear terms F 1,j , F 2,j , F 3,j and F 4,j in the following
lemma.

Lemma 4.2. For each 0 ≤ j ≤ 2N , we have∥∥F 1,j
∥∥2

0
+
∥∥F 2,j

∥∥2

0
+
∥∥F 3,j

∥∥2

0
+
∥∥F 4,j

∥∥2

0
. E0

2N

(
Dσ2N + E0

2N

)
. (4.16)

Proof. The estimate is restated from Lemma 3.8 of [11]. Note that the appearance of (E0
2N )2 in

the estimate is due to the lack of ‖q‖24N and ‖η‖24N−1/2 in the definition (4.2) of Dσ2N ; we use

E0
2N to control them here. �

We now estimate the energy evolution of the pure temporal derivatives.
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Proposition 4.3. It holds that

2N∑
j=0

(∥∥∥∂jt q(t)∥∥∥2

0
+
∥∥∥∂jt u(t)

∥∥∥2

0
+
∥∥∥∂jt η+(t)

∥∥∥2

0
+ σ

∥∥∥∇∗∂jt η(t)
∥∥∥2

0

)
+

∫ t

0

2N∑
j=0

∥∥∥∂jt u∥∥∥2

1
ds

. Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N ) ds+

∫ t

0
‖η−‖20 ds. (4.17)

Proof. We take the dot product of the second equation of (4.6) with J∂jt u and integrate by
parts over the domain Ω; using the other conditions in (4.6) and some easy geometric identities
involving J,A, and N , as in Proposition 3.1 of [11], we obtain the following energy identity:

1

2

d

dt

(∫
Ω

(ρ̄+ q + ∂3ρ̄θ)J
∣∣∣∂jt u∣∣∣2 + h′(ρ̄)J

∣∣∣∂jt q∣∣∣2 +

∫
Σ+

ρ1g
∣∣∣∂jt η+

∣∣∣2 +

∫
Σ
σ
∣∣∣∇∗∂jt η∣∣∣2)

+

∫
Ω

µ

2
J
∣∣∣D0
A∂

j
t u
∣∣∣2 + µ′J

∣∣∣divA ∂
j
t u
∣∣∣2

=
1

2

∫
Ω
∂t(J(ρ̄+ q + ∂3ρ̄θ))

∣∣∣∂jt u∣∣∣2 + h′(ρ̄)∂tJ
∣∣∣∂jt q∣∣∣2 +

∫
Ω
J(h′(ρ̄)∂jt qF

1,j + ∂jt u · F 2,j)

+

∫
Σ
−∂jt u · F 3,j +

∫
Σ+

ρ1g∂
j
t η+F

4,j
+ −

∫
Σ
σ∆∗(∂

j
t η)F 4,j +

∫
Σ−

Jρ̄K g∂jt η−N · ∂
j
t u. (4.18)

First, we may argue as in Proposition 4.3 of [7], utilizing Lemma A.3, to estimate∫
Ω

µ

2
J
∣∣∣D0
A∂

j
t u
∣∣∣2 + µ′J

∣∣∣divA ∂
j
t u
∣∣∣2 ≥ ∫

Ω

µ

2

∣∣∣D0∂jt u
∣∣∣2 + µ′

∣∣∣div ∂jt u
∣∣∣2 − C√Eσ2NDσ2N . (4.19)

We then estimate the right hand side of (4.18) for 0 ≤ j ≤ 2N . For the first two terms, we may
bound as usual ‖∂tJ‖L∞ .

√
Eσ2N and ‖∂t(J(ρ̄+ q + ∂3ρ̄θ))‖L∞ .

√
Eσ2N to have

1

2

∫
Ω
∂t(J(ρ̄+ q + ∂3ρ̄θ))

∣∣∣∂jt u∣∣∣2 + h′(ρ̄)∂tJ
∣∣∣∂jt q∣∣∣2

.
√
Eσ2N

(∥∥∥∂jt u∥∥∥2

0
+
∥∥∥∂jt q∥∥∥2

0

)
.
√
Eσ2NE

σ
2N . (4.20)

By Lemma 4.2, we may bound the F 1,j and F 2,j terms as∫
Ω
J(h′(ρ̄)∂jt qF

1,j + ∂jt u · F 2,j) .
∥∥∥∂jt q∥∥∥

0

∥∥F 1,j
∥∥

0
+
∥∥∥∂jt u∥∥∥

0

∥∥F 2,j
∥∥

0

.
√
Eσ2N

√
Eσ2N

(
Dσ2N + Eσ2N

)
. (4.21)

For the F 3,j and F 4,j terms, by Lemma 4.2 and trace theory, we have∫
Σ
−∂jt u · F 3,j +

∫
Σ+

ρ1g∂
j
t η+F

4,j
+ −

∫
Σ
σ∆∗(∂

j
t η)F 4,j

.
∥∥∥∂jt u∥∥∥

H0(Σ)

∥∥F 3,j
∥∥

0
+
(∥∥∥∂jt η+

∥∥∥
0

+ σ
∥∥∥∆∗∂

j
t η
∥∥∥

0

)∥∥F 4,j
∥∥

0

.
(∥∥∥∂jt u∥∥∥

1
+
∥∥∥∂jt η+

∥∥∥
0

+ σ
∥∥∥∆∗∂

j
t η
∥∥∥

0

)√
Eσ2N

(
Dσ2N + Eσ2N

)
.
√
Dσ2N + Eσ2N

√
Eσ2N

(
Dσ2N + Eσ2N

)
. (4.22)

For the last term, by the trace theorem and Cauchy’s inequality, we have∫
Σ−

Jρ̄K g∂jt η−N · ∂
j
t u .

∥∥∥∂jt η−∥∥∥
0

∥∥∥∂jt u∥∥∥
H0(Σ−)

. Cε
∥∥∥∂jt η−∥∥∥2

0
+ ε

∥∥∥∂jt u∥∥∥2

1
(4.23)

for any ε > 0.
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Consequently, employing Korn’s inequality from Proposition A.4 in (4.19) together with the
estimates (4.20)–(4.23), taking ε sufficiently small, and integrating (4.18) from 0 to t, we deduce
that ∥∥∥∂jt q(t)∥∥∥2

0
+
∥∥∥∂jt u(t)

∥∥∥2

0
+
∥∥∥∂jt η+(t)

∥∥∥2

0
+ σ

∥∥∥∇∗∂jt η(t)
∥∥∥2

0
+

∫ t

0

∥∥∥∂jt u∥∥∥2

1
ds

. Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N ) ds+

∫ t

0

∥∥∥∂jt η−∥∥∥2

0
ds.

(4.24)

Now taking j = 0 in (4.24), we have

‖q(t)‖20 + ‖u(t)‖20 + ‖η+(t)‖20 + σ ‖∇∗η(t)‖20 +

∫ t

0
‖u‖21 ds

. Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N ) ds+

∫ t

0
‖η−‖20 ds.

(4.25)

For j = 1, . . . , 2N , the kinematic boundary condition, trace theory and the estimates (4.16)
show that∥∥∥∂jt η−∥∥∥2

0
≤
∥∥∥∂j−1

t u · N
∥∥∥2

H0(Σ)
+
∥∥F 4,j−1

∥∥2

0
.
∥∥∥∂j−1

t u
∥∥∥2

1
+ Eσ2N (Dσ2N + Eσ2N ). (4.26)

Plugging (4.26) into (4.24), by using
√
Eσ2N ≤ 1, we obtain∥∥∥∂jt q(t)∥∥∥2

0
+
∥∥∥∂jt u(t)

∥∥∥2

0
+
∥∥∥∂jt η+(t)

∥∥∥2

0
+ σ

∥∥∥∇∗∂jt η(t)
∥∥∥2

0
+

∫ t

0

∥∥∥∂jt u∥∥∥2

1
ds

. Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N ) ds+

∫ t

0

∥∥∥∂j−1
t u

∥∥∥2

1
ds.

(4.27)

Hence, by chaining together (4.25) and (4.27), we get (4.17). �

We remark that the energy identity in Proposition 3.1 of [11] is slightly different from (4.18).
Unlike in Proposition 3.1 of [11], we do not employ the kinematic boundary condition in treating
the last term in (4.18) because Jρ̄K > 0; if we did this, it would involve a negative term,

− Jρ̄K g ‖η−‖20, in the energy. As a result, for σ− < σc, the energy becomes non-positive definite,
which is the cause of the instability.

4.2. Energy evolution for horizontal space-time derivatives in linear form. We now
estimate the energy evolution of the mixed horizontal space-time derivatives. It turns out to be
convenient to rewrite the system (1.32) in a linear form such that the coefficients get fixed and
that the elliptic regularity is readily adapted in later sections. The PDEs (1.32) can be also
rewritten for (q, u, η) as

∂tq + div(ρ̄u) = G1 in Ω

ρ̄∂tu+ ρ̄∇ (h′(ρ̄)q)− div S(u) = G2 in Ω

∂tη = u3 +G4 on Σ

(P ′(ρ̄)qI − S(u))e3 = (ρ1gη+ − σ+∆∗η+)e3 +G3
+ on Σ+

JP ′(ρ̄)qI − S(u)K e3 = (Jρ̄K gη− + σ−∆∗η−)e3 −G3
− on Σ−

JuK = 0 on Σ−

u− = 0 on Σb,

(4.28)

where we have written the function G1 = G1,1 +G1,2 for

G1,1 = K∂tθ∂3q − ulAlk∂kq, (4.29)

G1,2 = ∂2
3 ρ̄Kθ∂tθ − qAlk∂kul −Alk∂k(∂3ρ̄θul)− (Alk − δlk)∂k(ρ̄ul), (4.30)

the vector G2 for

G2
i =− (q + ∂3ρ̄θ)∂tui + (ρ̄+ q + ∂3ρ̄θ)(K∂tθ∂3ui − ulAlk∂kui)

+ µAlk∂kAlm∂mui + µ(AlkAlm − δlkδlm)∂kmui
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+ (µ/3 + µ′)Aik∂kAlm∂mul + (µ/3 + µ′)(AikAlm − δikδlm)∂kmul

− ρ̄(Ail − δil)∂l(h′(ρ̄)q)−Ail∂lR− g(q + ∂3ρ̄θ)Ail∂lθ (4.31)

for i = 1, 2, 3, the vector G3
+ = G3,1

+ + σ+G
3,2
+ for

G3,1
i,+ =µ+(Ail∂luk +Akl∂lui)(Nk − δk3) + µ+(Ail − δil)∂lu3 + µ(A3l − δ3l)∂lui

+ (µ′+ − 2µ+/3)Alk∂kul(Ni − δi3) + (µ′+ − 2µ+/3)(Alk − δlk)∂kulδi3
+ ρ1gη+(Ni − δi3)−RNi + P ′(ρ̄)q(δi3 −Ni) (4.32)

and
G3,2
i,+ = −∆∗η+(Ni − δi3)− div∗(((1 + |∇∗η+|2)−1/2 − 1)∇∗η+)Ni (4.33)

for i = 1, 2, 3, and the vector G3
− = G3,1

− + σ−G
3,2
− for

−G3,1
i,− =(Ail Jµ∂lukK +Akl Jµ∂luiK)(Nk − δk3) + (Ail − δil) Jµ∂lu3K− (A3l − δ3l) Jµ∂luiK

+Alk
q
(µ′ − 2µ/3)∂kul

y
(Ni − δi3) + (Alk − δlk)

q
(µ′ − 2µ/3)∂kul

y
δi3

+ Jρ̄K gη−(Ni − δi3)− JRKNi +
q
P ′(ρ̄)q

y
(δi3 −Ni) (4.34)

and
G3,2
i,− = ∆∗η−(Ni − δi3) + div∗(((1 + |∇∗η−|2)−1/2 − 1)∇∗η−)Ni (4.35)

for i = 1, 2, 3, and the function G4 for

G4 = −u1∂1η − u2∂2η. (4.36)

We now present the estimates of these nonlinear terms G1, G2, G3 and G4. Recall the
notation ∇̄ for space-time derivatives in (1.40).

Lemma 4.4. It holds that∥∥∇̄4N−2G1
∥∥2

1
+
∥∥∇̄4N−2G2

∥∥2

0
+
∥∥∇̄4N−2
∗ G3

∥∥2

1/2
+
∥∥∇̄4N−1
∗ G4

∥∥2

1/2
. E0

2N (Eσ2N + F2N ) , (4.37)

and ∥∥∇̄4N−1G1,1
∥∥2

0
+
∥∥∇̄4N−2∂tG

1,1
∥∥2

0
+
∥∥∇̄4NG1,2

∥∥2

0
+
∥∥∇̄4N−1G2

∥∥2

0

+
∥∥∇̄4N−1
∗ G3

∥∥2

1/2
+
∥∥∇̄4N−1
∗ G4

∥∥2

1/2
+
∥∥∇̄4N−2
∗ ∂tG

4
∥∥2

1/2
+ σ2

∥∥∇̄4N
∗ G4

∥∥2

1/2

. E0
2N

(
Dσ2N + E0

2N + F2N

)
. (4.38)

Proof. The estimates are restated from Lemma 3.3 of [11]. The reason for the appearance of
(E0

2N )2 is the same as in Lemma 4.2. �

Next we present some variants of these estimates involving integrals of certain products. First
we consider products with derivatives of G4.

Lemma 4.5. Let α ∈ N2 such that |α| = 4N . Then∣∣∣∣∫
Σ
∂αη∂αG4

∣∣∣∣ .√E0
2N

(
D0

2N + E0
2N

)
+
√
D0

2NE0
2NF2N (4.39)

and ∣∣∣∣∫
Σ
σ∆∗∂

αη∂αG4

∣∣∣∣ .√E0
2ND0

2NDσ2N +
√
Dσ2NE0

2NF2N . (4.40)

Proof. The estimates are restated from Lemma 3.5 of [11]. �

Next we consider products with derivatives of G1,1.

Lemma 4.6. Let α ∈ N3 such that |α| = 4N . Then∣∣∣∣∫
Ω
h′(ρ̄)∂αq∂αG1,1

∣∣∣∣ .√D0
2N + E0

2N

√
E0

2N

(
D0

2N + E0
2N + F2N

)
. (4.41)

Proof. The estimate is restated from Lemma 3.6 of [11]. �

We also consider a similar estimate involving weights and derivatives of G1,1.
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Lemma 4.7. Let α ∈ N1+3 with |α| ≤ 4N and α0 ≤ 2N − 1. Then∣∣∣∣∫
Ω

(
1 +

4µ/3 + µ′

h′(ρ̄)ρ̄2

)
∂α(h′(ρ̄)q)∂α

(
h′(ρ̄)G1,1

)∣∣∣∣ .√D0
2N + E0

2N

√
E0

2N

(
D0

2N + E0
2N + F2N

)
.

(4.42)

Proof. The estimate is restated from Lemma 3.7 of [11]. �

We now estimate the energy evolution of the mixed horizontal space-time derivatives.

Proposition 4.8. It holds that∑
α∈N1+2

|α|≤4N
α0≤2N−1

(
‖∂αq(t)‖20 + ‖∂αu(t)‖20 + ‖∂αη+(t)‖20 + σ ‖∂αη(t)‖21

)
+

∫ t

0

∑
α∈N1+2

|α|≤4N
α0≤2N−1

‖∂αu‖21 ds

. Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds+

∫ t

0
‖η−‖24N−1/2 ds. (4.43)

Proof. Since the boundaries of Ω± are flat we are free to apply time derivatives and horizontal
derivatives to the equations (4.28). Let α ∈ N1+2 such that α0 ≤ 2N − 1 and |α| ≤ 4N . We
apply ∂α to (4.28) and argue as in Proposition 4.3 to obtain the following energy identity:

1

2

d

dt

(∫
Ω
h′(ρ̄) |∂αq|2 + ρ̄ |∂αu|2 +

∫
Σ+

ρ1g |∂αη+|2 +

∫
Σ
σ |∇∗∂αη|2

)
+

∫
Ω

µ

2

∣∣D0∂αu
∣∣2 + µ′ |div∂αu|2

=

∫
Ω
h′(ρ̄)∂αq∂αG1 + ∂αu · ∂αG2 +

∫
Σ
−∂αu · ∂αG3

+

∫
Σ+

ρ1g∂
αη+∂

αG4
+ −

∫
Σ
σ∆∗(∂

αη)∂αG4 +

∫
Σ−

Jρ̄K g∂αη−∂αu3. (4.44)

We first estimate the G2, G3, G4 terms in the right hand side of (4.44). We assume initially
that |α| ≤ 4N − 1. Then by the estimates (4.38) of Lemma 4.4, we have∣∣∣∣∫

Ω
∂αu · ∂αG2

∣∣∣∣ ≤ ‖∂αu‖0 ∥∥∂αG2
∥∥

0
.
√
Dσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.45)

Similarly, the estimates (4.38) of Lemma 4.4 and trace theory show that∣∣∣∣∫
Σ
∂αu · ∂αG3

∣∣∣∣ ≤ ‖∂αu‖H0(Σ)

∥∥∂αG3
∥∥

0
. ‖∂αu‖1

∥∥∂αG3
∥∥

0

.
√
Dσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
(4.46)

and∣∣∣∣∫
Σ+

ρ1g∂
αη+∂

αG4
+ −

∫
Σ
σ∆∗(∂

αη)∂αG4

∣∣∣∣ . (‖∂αη‖0 + σ ‖∆∗∂αη‖0)
∥∥∂αG4

∥∥
0

.
√
Dσ2N + Eσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.47)

Now we assume that |α| = 4N . We first estimate the G2, G3 terms. Since α0 ≤ 2N − 1, ∂α

involves at least two spatial derivatives, and so we may write α = β + (α− β) for some β ∈ N2

with |β| = 1. We then integrate by parts and use the estimates (4.38) of Lemma 4.4 to see that∣∣∣∣∫
Ω
∂αu · ∂αG2

∣∣∣∣ =

∣∣∣∣∫
Ω
∂α+βu · ∂α−βG2

∣∣∣∣ . ∥∥∥∂α+βu
∥∥∥

0

∥∥∥∂α−βG2
∥∥∥

0

. ‖∂αu‖1
∥∥∇̄4N−1
∗ G2

∥∥
0
.
√
Dσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.48)
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Arguing similarly and using trace theory, we also find that∣∣∣∣∫
Σ
∂αu · ∂αG3

∣∣∣∣ =

∣∣∣∣∫
Σ
∂α+βu · ∂α−βG3

∣∣∣∣ . ∥∥∥∂α+βu
∥∥∥
H−1/2(Σ)

∥∥∥∂α−βG3
∥∥∥

1/2

. ‖∂αu‖1
∥∥∇̄4N−1
∗ G3

∥∥
1/2
.
√
Dσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
.

For the G4 term, we split into two cases: α0 ≥ 1 and α0 = 0. If α0 ≥ 1, then ∂α involves at
least one temporal derivative, so ‖∂αη‖3/2 ≤ ‖∂

α0
t η‖4N−2α0+3/2 ≤ D0

2N . This together with the

estimates (4.38) of Lemma 4.4 implies∣∣∣∣∫
Σ+

ρ1g∂
αη+∂

αG4
+ −

∫
Σ
σ∆∗(∂

αη)∂αG4

∣∣∣∣ . (‖∂αη‖0 + σ ‖∂αη‖3/2
)∥∥∂αG4

∥∥
1/2

.
√
Dσ2N + Eσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.49)

If α0 = 0, we must resort to the special estimates (4.39)–(4.40) of Lemma 4.5 to bound, with a
use of Cauchy’s inequality,∣∣∣∣∫

Σ+

ρ1g∂
αη+∂

αG4
+ −

∫
Σ
σ∆∗∂

αη∂αG4

∣∣∣∣ .√Eσ2N (Dσ2N + Eσ2N + F2N ) . (4.50)

We now turn back to estimate the G1 term, and we recall that G1 = G1,1 + G1,2. For the
G1,2 part, it follows directly from the estimates (4.38) of Lemma 4.4 that∣∣∣∣∫

Ω
h′(ρ̄)∂αq∂αG1,2

∣∣∣∣ . ‖∂αq‖0 ∥∥∂αG1,2
∥∥

0
.
√
Eσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.51)

Now for the G1,1 term we must split to two cases: α0 ≥ 1 and α0 = 0. If α0 ≥ 1, then by the
estimates (4.38) of Lemma 4.4, we have∣∣∣∣∫

Ω
h′(ρ̄)∂αq∂αG1,1

∣∣∣∣ . ‖∂αq‖0 ∥∥∂αG1,1
∥∥

0
.
√
Dσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.52)

If α0 = 0, we must resort to the special estimates (4.41) of Lemma 4.6 to bound∣∣∣∣∫
Ω
h′(ρ̄)∂αq∂αG1,1

∣∣∣∣ .√Dσ2N + Eσ2N
√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.53)

Finally, for the last term in (4.44), by the trace theorem and Cauchy’s inequality, since
α0 ≤ 2N − 1 and |α| ≤ 4N , we have∫

Σ−

Jρ̄K g∂αη−∂αu3 . ‖∂αη−‖−1/2 ‖∂
αu3‖H1/2(Σ)

. Cε ‖∂α0
t η−‖24N−2α0−1/2 + ε ‖∂αu‖21 (4.54)

for any ε > 0.
In light of (4.45)–(4.54), we may now integrate (4.44) from 0 to t, apply Korn’s inequality,

choose ε sufficiently small, and use Cauchy’s inequality to find that

‖∂αq(t)‖20 + ‖∂αu(t)‖20 + ‖∂αη+(t)‖20 + σ ‖∇∗∂αη(t)‖20 +

∫ t

0
‖∂αu‖21 ds

. E2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds+

∫ t

0
‖∂α0

t η−‖24N−2α0−1/2 ds. (4.55)

Now for α0 = 0, summing (4.55) over such α gives∑
|α|≤4N
α0=0

(
‖∂αq(t)‖20 + ‖∂αu(t)‖20 + ‖∂αη+(t)‖20 + σ ‖∇∗∂αη(t)‖20

)
+

∫ t

0

∑
|α|≤4N
α0=0

‖∂αu‖21 ds

. E2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds+

∫ t

0
‖η−‖24N−1/2 ds. (4.56)
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For α0 = j with 1 ≤ j ≤ 2N − 1, the kinematic boundary condition, trace theory, and the
estimates (4.38) imply that

‖∂α0
t η−‖24N−2α0−1/2 ≤

∥∥∥∂j−1
t u3

∥∥∥2

H4N−2j−1/2(Σ−)
+
∥∥∥∂j−1

t G4
∥∥∥2

4N−2j−1/2

≤
∥∥∥∇4N−2j−1
∗ ∂j−1

t u
∥∥∥2

1
+
∥∥∥∂j−1

t G4
∥∥∥2

4N−2(j−1)−5/2

≤
∥∥∥∇4N−2(j−1)−3
∗ ∂j−1

t u
∥∥∥2

1
+ Eσ2N (Dσ2N + Eσ2N + F2N ) .

(4.57)

Plugging (4.57) into (4.55), we obtain∑
|α|≤4N
α0=j

(
‖∂αq(t)‖20 + ‖∂αu(t)‖20 + ‖∂αη+(t)‖20 + σ ‖∇∗∂αη(t)‖20

)
+

∫ t

0

∑
|α|≤4N
α0=j

‖∂αu‖21 ds

. E2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds+

∫ t

0

∥∥∥∇4N−2(j−1)−3
∗ ∂j−1

t u
∥∥∥2

1
ds (4.58)

since
√
Eσ2N ≤ 1. Consequently, chaining (4.58) and (4.56) together leads us to (4.43). �

4.3. Energy evolution for η in transport equation. Note that the energy estimates of η−
are still missing in the energy evolutions presented in Sections 4.1–4.2. We thus need to derive
the estimates for η−, and this can be done by revisiting the kinematic boundary condition,
which is a transport equation for η:

∂tη + u · ∇∗η = u3 in Σ, (4.59)

where u · ∇∗η = u1∂1η + u2∂2η.

Proposition 4.9. For any ε > 0, there exists a constant Cε > 0 such that

2N∑
j=0

∥∥∥∂jt η(t)
∥∥∥2

4N−2j
. Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds

+ ε

∫ t

0
Eσ2N ds+ Cε

∫ t

0

∥∥∇̄4N
∗ u

∥∥2

1
ds (4.60)

and

F2N (t) ≤ F2N (0) + C

∫ t

0

√
Eσ2NF2Nds+ ε

∫ t

0
F2N ds+ Cε

∫ t

0

∥∥∇4N
∗ u

∥∥2

1
ds. (4.61)

Proof. We first prove the estimates (4.60). Recall that we have written ∂tη = u3 +G4. Applying
∂α for α ∈ N1+2 with |α| ≤ 4N to this and then taking the inner product with ∂αη, we obtain

1

2

d

dt
‖∂αη‖20 =

∫
Σ
∂αη∂αu3 +

∫
Σ
∂αη∂αG4. (4.62)

For the G4 term, if α0 ≥ 1, then ∂α involves at least one temporal derivative, so the estimates
(4.38) of Lemma 4.4 imply∣∣∣∣∫

Σ
∂αη∂αG4

∣∣∣∣ . ‖∂αη‖0 ∥∥∂αG4
∥∥

0
.
√
Eσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.63)

If α0 = 0, we use the special estimates (4.39) of Lemma 4.5 to estimate∣∣∣∣∫
Σ
∂αη∂αG4

∣∣∣∣ .√Eσ2N (Dσ2N + Eσ2N + F2N ) . (4.64)

On the other hand, trace theory and Cauchy’s inequality allow us to bound∣∣∣∣∫
Σ
∂αη∂αu3

∣∣∣∣ . ‖∂αη‖0 ‖∂αu3‖H0(Σ) .
√
Eσ2N ‖∂

αu‖1 . εE
σ
2N + Cε

∥∥∇̄4N
∗ u

∥∥2

1
(4.65)

for any ε > 0. Then the estimate (4.60) follows.
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To prove (4.61), we define the operator J =
√

1−∆∗. We apply J 4N+1/2 to (4.59), multiply

the resulting equation by J 4N+1/2η, and then integrate over Σ; using the standard commutator
estimate, Sobolev embeddings on Σ, and trace theory, we find that

1

2

d

dt
F2N = −1

2

∫
Σ
u · ∇∗|J 4N+1/2η|2 +

∫
Σ

(
J 4N+1/2u3 −

[
J 4N+1/2, u

]
· ∇∗η

)
J 4N+1/2η

=
1

2

∫
Σ

(∂1u1 + ∂2u2)|J 4N+1/2η|2 +

∫
Σ

(
J 4N+1/2u3 −

[
J 4N+1/2, u

]
· ∇∗η

)
J 4N+1/2η

. ‖∇∗u‖L∞(Σ)

∥∥∥J 4N+1/2η
∥∥∥2

0
+

(∥∥∥J 4N+1/2u3

∥∥∥
L2(Σ)

+ ‖∇∗u‖L∞(Σ)

∥∥∥J 4N−1/2∇∗η
∥∥∥

0

+
∥∥∥J 4N+1/2u

∥∥∥
0
‖∇∗η‖L∞(Σ)

)∥∥∥J 4N+1/2η
∥∥∥

0

. ‖u‖H3(Σ) ‖η‖
2
4N+1/2 +

∥∥J 4Nu
∥∥

1
(1 + ‖η‖3) ‖η‖4N+1/2

.
√
Eσ2NF2N +

√
F2N

∥∥∇4N
∗ u

∥∥2

1
. (4.66)

Then the estimate (4.61) follows by using Cauchy’s inequality. �

4.4. The evolution of energies controlling ∂3q. The energy evolutions presented in Sections
4.1–4.3 are not enough to get the full energy estimates by applying the Stokes regularity as in
the incompressible case [18, 19] since we have not controlled div u. Motivated by Matsumura
and Nishida [14], to control div u we introduce the material derivative of q in our coordinates:

Q := ∂tq −K∂tθ∂3q + ujAjk∂kq = ∂tq −G1,1 = −div(ρ̄u) +G1,2. (4.67)

We may then derive the following from (4.28):

∂3Q+ ρ̄∂3(div u) = ∂3G
1,2 − div(∂3ρ̄u)− ∂3ρ̄∂3u3,

ρ̄∂tu3 + ρ̄∂3(h′(ρ̄)q)− µ∆u3 − (µ/3 + µ′)∂3(div u) = G2
3.

(4.68)

By eliminating ∂33u3 from the equations (4.68), we obtain

4µ/3 + µ′

h′(ρ̄)ρ̄2
∂3

(
h′(ρ̄)Q

)
+ ∂3(h′(ρ̄)q) =

4µ/3 + µ′

ρ̄2
∂3G

1,2 +
1

ρ̄
G2

3 +
4µ/3 + µ′

h′(ρ̄)ρ̄2
∂3h
′(ρ̄)Q

− ∂tu3 −
4µ/3 + µ′

ρ̄2
(div(∂3ρ̄u) + ∂3ρ̄∂3u3) +

µ

ρ̄
(∂11u3 + ∂22u3 − ∂31u1 − ∂32u2). (4.69)

In the light of (4.67), we can view (4.69) as the evolution equation for ∂3q.
We now present the energy evolution of ∂3q.

Proposition 4.10. For 0 ≤ j ≤ 2N − 1 and 0 ≤ k ≤ 4N − 2j − 1, we have∑
k′≤k

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt (h

′(ρ̄)q)
∥∥∥2

0

+

∫ t

0

∑
k′≤k

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt

(
h′(ρ̄)q

)∥∥∥2

0
+
∑
k′≤k

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jtQ

∥∥∥2

0
ds

. Eσ2N (0) +

∫ t

0

∥∥∥∂j+1
t u

∥∥∥2

4N−2j−1
+
∥∥∇̄4N
∗ u

∥∥2

1
+
∑
k′≤k

∥∥∥∇4N−2j−k′
∗ ∂jt u

∥∥∥2

k′+1
ds

+

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds. (4.70)

Proof. We first fix 0 ≤ j ≤ 2N − 1 and then take 0 ≤ k ≤ 4N − 2j − 1 and 0 ≤ k′ ≤ k. Let

α ∈ N2 so that |α| ≤ 4N − 2j − 1 − k′. Applying ∂α∂k
′

3 ∂
j
t to (4.69), multiplying the resulting

equation by ∂α∂k
′+1

3 ∂jt (h
′(ρ̄)q) + ∂α∂k

′+1
3 ∂jt (h

′(ρ̄)Q), and then integrating over Ω, we obtain

I + II + III = IV, (4.71)
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where

I =

∫
Ω
∂α∂k

′
3 ∂

j
t

(
4µ/3 + µ′

h′(ρ̄)ρ̄2
∂3

(
h′(ρ̄)Q

))
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q), (4.72)

II =

∫
Ω
∂α∂k

′
3 ∂

j
t

(
4µ/3 + µ′

h′(ρ̄)ρ̄2
∂3

(
h′(ρ̄)Q

))
∂α∂k

′+1
3 ∂jt

(
h′(ρ̄)Q

)
, (4.73)

III =

∫
Ω

∣∣∣∂α∂k′+1
3 ∂jt (h

′(ρ̄)q)
∣∣∣2 +

∫
Ω
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)Q

)
, (4.74)

IV =

∫
Ω

{
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q) + ∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)Q

)}
× ∂α∂k′3 ∂

j
t

{
4µ/3 + µ′

ρ̄2
∂3G

1,2 +
1

ρ̄
G2

3 +
4µ/3 + µ′

h′(ρ̄)ρ̄2
∂3h
′(ρ̄)Q− ∂tu3

−4µ/3 + µ′

ρ̄2
(div(∂3ρ̄u) + ∂3ρ̄∂3u3) +

µ

ρ̄
(∂11u3 + ∂22u3 − ∂31u1 − ∂32u2)

}
. (4.75)

We will now estimate I, II, III, IV . First, using the Cauchy-Schwarz inequality, we may
easily estimate

IV .

∥∥∥∂α∂k′+1
3 ∂jt (h

′(ρ̄)q)
∥∥∥

0
+
∑
k′′≤k′

∥∥∥∂α∂k′′+1
3 ∂jtQ

∥∥∥
0


×

∥∥∥∂jtG1,2
∥∥∥

4N−2j
+
∥∥∥∂jtG2

∥∥∥
4N−2j−1

+
∑
k′′≤k′

∥∥∥∂α∂k′′3 ∂jtQ
∥∥∥

0

+
∥∥∥∂j+1

t u
∥∥∥

4N−2j−1
+
∑
k′′≤k′

∥∥∥∂α∂k′′3 ∂jt u
∥∥∥

1
+
∥∥∥∂α∂k′′3 ∇∗∇∂

j
t u
∥∥∥

0

 . (4.76)

For the last term in III we recall the definition of Q from (4.67) in order to rewrite∫
Ω
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)Q

)
=

∫
Ω
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)(∂tq −G1,1)

)
=

1

2

d

dt

∫
Ω

∣∣∣∂α∂k′+1
3 ∂jt (h

′(ρ̄)q)
∣∣∣2 − ∫

Ω
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)G1,1

)
. (4.77)

For II we estimate by expanding with the Leibniz rule:

II ≥
∫

Ω

4µ/3 + µ′

h′(ρ̄)ρ̄2

∣∣∣∂α∂k′+1
3 ∂jt

(
h′(ρ̄)Q

)∣∣∣2 − C ∥∥∥∂α∂k′+1
3 ∂jt

(
h′(ρ̄)Q

)∥∥∥
0

∑
k′′≤k′

∥∥∥∂α∂k′′3 ∂jtQ
∥∥∥

0
.

(4.78)
For I, we have

I ≥
∫

Ω

4µ/3 + µ′

h′(ρ̄)ρ̄2
∂α∂k

′+1
3 ∂jt

(
h′(ρ̄)Q

)
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)

− C
∥∥∥∂α∂k′+1

3 ∂jt
(
h′(ρ̄)q

)∥∥∥
0

∑
k′′≤k′

∥∥∥∂α∂k′′3 ∂jtQ
∥∥∥

0

=
1

2

d

dt

∫
Ω

4µ/3 + µ′

h′(ρ̄)ρ̄2

∣∣∣∂α∂k′+1
3 ∂jt (h

′(ρ̄)q)
∣∣∣2

−
∫

Ω

4µ/3 + µ′

h′(ρ̄)ρ̄2
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)G1,1

)
− C

∥∥∥∂α∂k′+1
3 ∂jt

(
h′(ρ̄)q

)∥∥∥
0

∑
k′′≤k′

∥∥∥∂α∂k′′3 ∂jtQ
∥∥∥

0
. (4.79)
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Combining the estimates (4.76)–(4.79) with (4.71), applying Cauchy’s inequality in order to

absorb the term
∥∥∥∂α∂k′+1

3 ∂jt (h′(ρ̄)q)
∥∥∥

0
onto the left, and then integrating in time from 0 to t,

we arrive at the inequality∥∥∥∂α∂k′+1
3 ∂jt (h

′(ρ̄)q)
∥∥∥2

0
+

∫ t

0

∥∥∥∂α∂k′+1
3 ∂jt

(
h′(ρ̄)q

)∥∥∥2

0
+
∥∥∥∂α∂k′+1

3 ∂jt
(
h′(ρ̄)Q

)∥∥∥2

0
ds

. Eσ2N (0) +

∫ t

0

∑
k′′≤k′

∥∥∥∂α∂k′′3 ∂jtQ
∥∥∥2

0
ds (4.80)

+

∫ t

0

∣∣∣∣∫
Ω

(
1 +

4µ/3 + µ′

h′(ρ̄)ρ̄2

)
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)G1,1

)∣∣∣∣ ds
+

∫ t

0

∥∥∥∂jtG1,2
∥∥∥2

4N−2j
+
∥∥∥∂jtG2

∥∥∥2

4N−2j−1
+
∥∥∥∂j+1

t u
∥∥∥2

4N−2j−1
+
∥∥∥∇4N−2j−k′
∗ ∂jt u

∥∥∥2

k′+1
ds.

Owing to the Leibniz rule and the properties of ρ̄, we may estimate∥∥∥∂k′+1
3 ∂α∂jtQ

∥∥∥2

0
.
∥∥∥h′(ρ̄)∂k

′+1
3 ∂α∂jtQ

∥∥∥2

0

.
∥∥∥∂k′+1

3 ∂α∂jt (h
′(ρ̄)Q)

∥∥∥2

0
+
∑
k′′≤k′

∥∥∥∂k′′3 ∂α∂jtQ
∥∥∥2

0
. (4.81)

Combining this with (4.80) and summing over all α with |α| ≤ 4N −2j−1−k′, we deduce that∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt (h

′(ρ̄)q)
∥∥∥2

0

+

∫ t

0

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt

(
h′(ρ̄)q

)∥∥∥2

0
+
∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jtQ

∥∥∥2

0
ds

. Eσ2N (0) +

∫ t

0

∑
k′′≤k′

∥∥∥∇4N−2j−k′−1
∗ ∂k

′′
3 ∂jtQ

∥∥∥2

0
ds

+

∫ t

0

∑
|α|≤4N−2j−1−k′

∣∣∣∣∫
Ω

(
1 +

4µ/3 + µ′

h′(ρ̄)ρ̄2

)
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)G1,1

)∣∣∣∣ ds
+

∫ t

0

∥∥∥∂jtG1,2
∥∥∥2

4N−2j
+
∥∥∥∂jtG2

∥∥∥2

4N−2j−1
+
∥∥∥∂j+1

t u
∥∥∥2

4N−2j−1
+
∥∥∥∇4N−2j−k′
∗ ∂jt u

∥∥∥2

k′+1
ds (4.82)

for each 0 ≤ k′ ≤ k.
Finally, we will estimate the nonlinear terms in the right hand side of (4.82). We use the

estimates (4.38) of Lemma 4.4 to estimate, for 0 ≤ j ≤ 2N − 1,∥∥∥∂jtG1,2
∥∥∥2

4N−2j
+
∥∥∥∂jtG2

∥∥∥2

4N−2j−1
. Eσ2N (Dσ2N + Eσ2N + F2N ) . (4.83)

Then we use Lemma 4.7 to bound∣∣∣∣∫
Ω

(
1 +

4µ/3 + µ′

h′(ρ̄)ρ̄2

)
∂α∂k

′+1
3 ∂jt (h

′(ρ̄)q)∂α∂k
′+1

3 ∂jt
(
h′(ρ̄)G1,1

)∣∣∣∣
.
√
Dσ2N + Eσ2N

√
Eσ2N

(
Dσ2N + Eσ2N + F2N

)
. (4.84)

Plugging the nonlinear estimates (4.83) and (4.84) into (4.82) then yields that every 0 ≤ k′ ≤ k,∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt (h

′(ρ̄)q)
∥∥∥2

0

+

∫ t

0

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt

(
h′(ρ̄)q

)∥∥∥2

0
+
∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jtQ

∥∥∥2

0
ds

. Eσ2N (0) +

∫ t

0

∑
k′′≤k′

∥∥∥∇4N−2j−k′−1
∗ ∂k

′′
3 ∂jtQ

∥∥∥2

0
ds
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+

∫ t

0

∥∥∥∂j+1
t u

∥∥∥2

4N−2j−1
+
∥∥∥∇4N−2j−k′
∗ ∂jt u

∥∥∥2

k′+1
+
√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds (4.85)

since
√
Eσ2N ≤ 1. We recall the notation Q in (4.67). We may use the estimates (4.38) of Lemma

4.4 to obtain the bound∥∥∇̄4N
∗ Q

∥∥2

0
.
∥∥∇̄4N
∗ div(ρ̄u)

∥∥2

0
+
∥∥∇̄4N
∗ G1,2

∥∥2

0
.
∥∥∇̄4N
∗ u

∥∥2

1
+ Eσ2N (Dσ2N + Eσ2N + F2N ) . (4.86)

Then a standard induction argument on (4.85), together with (4.86), yield (4.70). �

Note that the novelty of Proposition 4.10 is twofold. First, it presents the energy estimates
of ∂3q. Second, it provides the dissipation estimates of ∂3Q and hence ∂3 div(ρ̄u) by (4.67).
These are crucial for improving the horizontal energy and dissipation estimates derived in the
previous section into the full ones in later sections, respectively.

4.5. Combined energy evolution estimates. Now we chain the results in Sections 4.1, 4.2
and 4.4 with the elliptic regularity theory of a certain Stokes problem into an intermediate
energy-dissipation estimate.

We first derive the elliptic estimates. We deduce from (4.28) that

div(ρ̄u) = G1,2 −Q,

− µ

ρ̄
∆u− µ/3 + µ′

ρ̄
∇ div u+∇

(
h′(ρ̄)q

)
=

1

ρ̄
G2 − ∂tu.

(4.87)

Direct calculations give the form of the Stokes problem we shall use:

−µ∆

(
u

ρ̄

)
+∇

(
h′(ρ̄)q

)
=

1

ρ̄
G2 − ∂tu− µ

(
2∂3

(
1

ρ̄

)
∂3u+ ∂33

(
1

ρ̄

)
u

)
+
µ/3 + µ′

ρ̄
∇
(

1

ρ̄

(
G1,2 −Q− ∂3ρ̄u3

))
in Ω±

div

(
u

ρ̄

)
=

1

ρ̄2

(
G1,2 −Q− 2∂3ρ̄u3

)
in Ω±

u = u on ∂Ω±.

(4.88)

We now prove the Stokes estimates.

Lemma 4.11. Fix 0 ≤ j ≤ 2N − 1. Then for any 1 ≤ k ≤ 4N − 2j,∥∥∥∇4N−2j−k
∗ ∂jt u

∥∥∥2

k+1
+
∥∥∥∇∇4N−2j−k

∗ ∂jt
(
h′(ρ̄)q

)∥∥∥2

k−1

.
∥∥∥∂j+1

t u
∥∥∥2

4N−2j−1
+
∥∥∥∇4N−2j−k
∗ ∂jtQ

∥∥∥2

k
+
∥∥∇̄4N
∗ u

∥∥2

1
+ Eσ2N (Dσ2N + Eσ2N + F2N ) . (4.89)

Proof. We first fix 0 ≤ j ≤ 2N − 1 and then take 1 ≤ k ≤ 4N − 2j. Let α ∈ N2 such that

|α| ≤ 4N − 2j − k. We apply ∂α∂jt to the equations (4.88) in Ω± respectively; then the elliptic
estimates of Lemma A.6 with r = k′ + 1 ≥ 2 for any 1 ≤ k′ ≤ k and trace theory allow us to
obtain the bounds∥∥∥∂α∂jt u∥∥∥2

k′+1
+
∥∥∥∇∂α∂jt (h′(ρ̄)q

)∥∥∥2

k′−1
.

∥∥∥∥∂α∂jt (uρ̄
)∥∥∥∥2

k′+1

+
∥∥∥∇∂α∂jt (h′(ρ̄)q

)∥∥∥2

k′−1

.
∥∥∥∂α∂jtG2

∥∥∥2

k′−1
+
∥∥∥∂α∂j+1

t u
∥∥∥2

k′−1
+
∥∥∥∂α∂jt u∥∥∥2

k′

+
∥∥∥∂α∂jtG1,2

∥∥∥2

k′
+
∥∥∥∂α∂jtQ∥∥∥2

k′
+
∥∥∥∂α∂jt u∥∥∥2

Hk′+1/2(Σ)

.
∥∥∥∂α∂jtG1,2

∥∥∥2

k
+
∥∥∥∂α∂jtG2

∥∥∥2

k−1
+
∥∥∥∂α∂j+1

t u
∥∥∥2

k−1
+
∥∥∥∂α∂jtQ∥∥∥2

k
+
∥∥∥∂α∂jt u∥∥∥2

k′

+
∥∥∥∇k′∗ ∂α∂jt u∥∥∥2

H1/2(Σ)

.
∥∥∥∂jtG1,2

∥∥∥2

4N−2j
+
∥∥∥∂jtG2

∥∥∥2

4N−2j−1
+
∥∥∥∂j+1

t u
∥∥∥2

4N−2j−1
+
∥∥∥∇4N−2j−k
∗ ∂jtQ

∥∥∥2

k
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+
∥∥∇̄ 4N
∗ u

∥∥2

1
+
∥∥∥∂α∂jt u∥∥∥2

k′
. (4.90)

A simple induction based on the above yields that∥∥∥∂α∂jt u∥∥∥2

k+1
+
∥∥∥∇∂α∂jt q∥∥∥2

k−1
.
∥∥∥∂jtG1,2

∥∥∥2

4N−2j
+
∥∥∥∂jtG2

∥∥∥2

4N−2j−1

+
∥∥∥∂j+1

t u
∥∥∥2

4N−2j−1
+
∥∥∥∇4N−2j−k
∗ ∂jtQ

∥∥∥2

k
+
∥∥∇̄4N
∗ u

∥∥2

1
. (4.91)

Finally, we use the estimates (4.38) of Lemma 4.4 to have∥∥∥∂jtG1,2
∥∥∥2

4N−2j
+
∥∥∥∂jtG2

∥∥∥2

4N−2j−1
. Eσ2N (Dσ2N + Eσ2N + F2N ) (4.92)

We then sum (4.91) over such |α| ≤ 4N − 2j − k to conclude (4.89). �

We will now combine the energy evolution estimates of Sections 4.1–4.2 with the ∂3q estimate
of Section 4.4 and the estimates of Lemma 4.11. The full dissipation estimates of u will be
obtained, and also some estimates of q will be improved along the way. To do so, we first
introduce some notation. We write

Eσ2N =
∥∥∇̄4N
∗ u

∥∥2

0
+
∥∥∇̄4N
∗ q

∥∥2

0
+

2N∑
j=0

∥∥∥∂jt η+

∥∥∥2

4N−2j
+ σ

2N∑
j=0

∥∥∥∇∗∂jt η∥∥∥2

4N−2j
(4.93)

and

D2N =
∥∥∇̄4N
∗ u

∥∥2

1
(4.94)

for the various terms appearing in Propositions 4.3 and 4.8. Similarly, for integers 0 ≤ j ≤ 2N−1
and 0 ≤ k ≤ 4N − 2j − 1 we write

Aj,k2N :=
k∑

k′=0

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt (h

′(ρ̄)q)
∥∥∥2

0
(4.95)

and

Bj,k
2N :=

k∑
k′=0

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt

(
h′(ρ̄)q

)∥∥∥2

0
+

k∑
k′=1

∥∥∥∇∇4N−2j−k′
∗ ∂jt (h

′(ρ̄)q)
∥∥∥2

k′−1

+
∥∥∇̄4N
∗ Q

∥∥2

0
+

k∑
k′=0

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jtQ

∥∥∥2

0
, (4.96)

where Q is defined in (4.67). In addition, we introduce the following intermediate energies:

Ēσ2N :=
∥∥∇̄4N
∗ u

∥∥2

0
+

2N∑
j=0

∥∥∥∂jt q∥∥∥2

4N−2j
+

2N∑
j=0

∥∥∥∂jt η+

∥∥∥2

4N−2j
+ σ

2N∑
j=0

∥∥∥∇∗∂jt η∥∥∥2

4N−2j
(4.97)

and

D̄2N :=
2N∑
j=0

∥∥∥∂jt u∥∥∥2

4N−2j+1
+
n−1∑
j=0

∥∥∥∇∂jt (h′(ρ̄)q)
∥∥∥2

4N−2j−1
. (4.98)

The rest of the section is devoted to the derivation of the energy bounds for Ēσ2N and D̄2N based

on the evolution equations for Eσ2N ,D2N ,A
j,k
2N ,B

j,k
2N .

Proposition 4.12. Let Ēσ2N and D̄2N be as defined by (4.97) and (4.98). Then we have

Ēσ2N (t) +

∫ t

0
D̄2Nds . Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds+

∫ t

0
‖η−‖24N−1/2 ds. (4.99)
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Proof. First, we sum the result of Proposition 4.3 with the result of Proposition 4.8; this yields
the estimate

Eσ2N (t) +

∫ t

0
D2Nds . Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds+

∫ t

0
‖η−‖24N−1/2 ds, (4.100)

where Eσ2N and D2N are as defined in (4.93) and (4.94).
Next, for 0 ≤ j ≤ 2N−1 and 0 ≤ k ≤ 4N−2j−1, we may combine the results of Proposition

4.10 and Lemma 4.11 (summed over 1 ≤ k′ ≤ k) with (4.86) to see that

Aj,k2N +

∫ t

0
Bj,k

2Nds . E
σ
2N (0) +

∫ t

0

∥∥∥∂j+1
t u

∥∥∥2

4N−2j−1
+

k∑
k′=1

∥∥∥∇4N−2j−k′
∗ ∂jtQ

∥∥∥2

k′
ds

+

∫ t

0
D2N +

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds, (4.101)

where Aj,k2N and Bj,k
2N are given in (4.95) and (4.96). Note that Lemma 4.11 used here is to

control the term
∥∥∥∇4N−2j−k′
∗ ∂jt u

∥∥∥2

k′+1
in the right hand side of (4.70). If we write

Hj,k2N :=
∥∥∇̄4N
∗ Q

∥∥2

0
+
∥∥∥∇4N−2j−k−1
∗ ∂jtQ

∥∥∥2

k+1
, (4.102)

then we have

Hj,k2N .
∥∥∇̄4N
∗ Q

∥∥2

0
+

k∑
k′=0

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jtQ

∥∥∥2

0
≤ Bj,k

2N . (4.103)

In turn, we have

Aj,k2N +

∫ t

0
Hj,k2Nds . E

σ
2N (0) +

∫ t

0

∥∥∥∂j+1
t u

∥∥∥2

4N−2j−1
+

k∑
k′=1

∥∥∥∇4N−2j−k′
∗ ∂jtQ

∥∥∥2

k′
ds

+

∫ t

0
D2N +

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds. (4.104)

A standard induction argument on the above yields

4N−2j−1∑
k=0

Aj,k2N +

∫ t

0

4N−2j−1∑
k=0

Hj,k2Nds . E
σ
2N (0) +

∫ t

0

∥∥∥∂j+1
t u

∥∥∥2

4N−2j−1
+
∥∥∥∇4N−2j
∗ ∂jtQ

∥∥∥2

0
ds

+

∫ t

0
D2N +

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds

. Eσ2N (0) +

∫ t

0

∥∥∥∂j+1
t u

∥∥∥2

4N−2j−1
+ D2N +

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds, (4.105)

where we have used (4.86) to derive the second inequality.

Note now, using the definition of Hj,k2N , that

∥∥∇̄4N
∗ Q

∥∥2

0
+
∥∥∥∂jtQ∥∥∥2

4N−2j
.

4N−2j−1∑
k=0

Hj,k2N . (4.106)

Using Lemma 4.11 with k = 4N − 2j, we then have that∥∥∥∂jt u∥∥∥2

4N−2j+1
+
∥∥∥∇∂jt (h′(ρ̄)q)

∥∥∥2

4N−2j−1

.
4N−2j−1∑
k=0

Hj,k2N +
∥∥∥∂j+1

t u
∥∥∥2

4N−2j−1
+ D2N + Eσ2N (Dσ2N + Eσ2N + F2N ) . (4.107)
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Hence (4.105) implies

4N−2j−1∑
k=0

Aj,k2N +

∫ t

0

(∥∥∥∂jt u∥∥∥2

4N−2j+1
+
∥∥∥∇∂jt (h′(ρ̄)q)

∥∥∥2

4N−2j−1

)
ds

. Eσ2N (0) +

∫ t

0

∥∥∥∂j+1
t u

∥∥∥2

4N−2j−1
+ D2N +

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds, (4.108)

for all 0 ≤ j ≤ 2N − 1. A standard induction argument on the above yields

2N−1∑
j=0

4N−2j−1∑
k=0

Aj,k2N +

∫ t

0

2N−1∑
j=0

(∥∥∥∂jt u∥∥∥2

4N−2j+1
+
∥∥∥∇∂jt (h′(ρ̄)q)

∥∥∥2

4N−2j−1

)
ds

. Eσ2N (0) +

∫ t

0
D2N +

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds. (4.109)

Consequently, a suitable linear combination of (4.100) and (4.109) gives

Eσ2N (t) +

2N−1∑
j=0

4N−2j−1∑
k=0

Aj,k2N +

∫ t

0
D̄2Nds

. Eσ2N (0) +

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds+

∫ t

0
‖η−‖24N−1/2 ds. (4.110)

Note that

2N−1∑
j=0

4N−2j−1∑
k=0

Aj,k2N �
2N−1∑
j=0

4N−2j−1∑
k=0

k∑
k′=0

∥∥∥∇4N−2j−k′−1
∗ ∂k

′+1
3 ∂jt (h

′(ρ̄)q)
∥∥∥2

0

=
2N−1∑
j=0

4N−2j−1∑
k=0

∥∥∥∇4N−2j−k−1
∗ ∂3∂

j
t (h
′(ρ̄)q)

∥∥∥2

k
�

2N−1∑
j=0

∥∥∥∂3∂
j
t (h
′(ρ̄)q)

∥∥∥2

4N−2j−1
:= Z. (4.111)

Since

∂3∂
j
t q =

1

h′(ρ̄)

[
∂3∂

j
t (h
′(ρ̄)q)− ∂3(h′(ρ̄))∂jt q

]
. (4.112)

and h′(ρ̄) is smooth on [−b, 0] and [0, `] and bounded below from zero, we may estimate∥∥∥∂3∂
j
t q
∥∥∥2

0
.
∥∥∥∂3∂

j
t (h
′(ρ̄)q)

∥∥∥2

0
+
∥∥∥∂jt q∥∥∥2

0
. Z +

∥∥∥∂jt q∥∥∥2

0
. Z +

∥∥∇̄4N−1
∗ q

∥∥2

0
(4.113)

and similarly∥∥∥∂3∂
j
t q
∥∥∥2

i
.
∥∥∥∂3∂

j
t (h
′(ρ̄)q)

∥∥∥2

i
+
∥∥∥∂jt q∥∥∥2

i
. Z +

∥∥∥∇i∗∂jt q∥∥∥2

0
+
∥∥∥∂3∂

j
t q
∥∥∥2

i−1

. Z +
∥∥∇̄4N−1
∗ q

∥∥2

0
+
∥∥∥∂3∂

j
t q
∥∥∥2

i−1
(4.114)

for i = 1, . . . , 4N − 2j − 1. A standard induction argument then yields∥∥∥∂3∂
j
t q
∥∥∥2

4N−2j−1
≤

4N−2j−1∑
i=0

∥∥∥∂3∂
j
t q
∥∥∥2

i
. Z +

∥∥∇̄4N−1
∗ q

∥∥2

0
. (4.115)

On the other hand, ∥∥∥∂jt q∥∥∥2

4N−2j
≤
∥∥∇̄4N
∗ q

∥∥2

0
+
∥∥∥∂3∂

j
t q
∥∥∥2

4N−2j−1
, (4.116)

so summing (4.115) and (4.116) yields

2N∑
j=0

∥∥∥∂jt q∥∥∥2

4N−2j
. Z +

∥∥∇̄4N
∗ q

∥∥2

0
. (4.117)

We then deduce (4.99) from (4.110) and (4.117). �
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4.6. Full energy estimates. In this section, we will derive our ultimate energy estimates.
First, we combine the results in Sections 4.3 and 4.5. We define

Ẽσ2N := Ēσ2N +
2N∑
j=0

∥∥∥∂jt η∥∥∥2

4N−2j
. (4.118)

Then a linear combination of the estimates (4.99) of Proposition 4.12 and the estimates (4.60)–
(4.61) of Proposition 4.9 gives

Ẽσ2N (t) + F2N (t) +

∫ t

0
D̄2Nds ≤CεEσ2N (0) + F2N (0) + Cε

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds

+ ε

∫ t

0
(Eσ2N + F2N ) ds+ Cε

∫ t

0
‖η−‖24N−1/2 ds (4.119)

for any ε > 0 and a corresponding constant Cε > 0.
Next, we show that Eσ2N is comparable to Ẽσ2N and that Dσ2N is comparable to D̄2N . We begin

with the result for the energy.

Proposition 4.13. Let Eσ2N and Ẽσ2N be as defined in (4.1) and (4.118) respectively. It holds
that

Eσ2N . Ẽσ2N + Eσ2N (Eσ2N + F2N ) . (4.120)

Proof. We compactly write

X2N =
∥∥∇̄4N−2G1

∥∥2

1
+
∥∥∇̄4N−2G2

∥∥2

0
+
∥∥∇̄4N−2
∗ G3

∥∥2

1/2
+
∥∥∇̄4N−1
∗ G4

∥∥2

1/2
. (4.121)

We first estimate ∂jt u for j = 0, . . . , 2N − 1. The key is to use the elliptic regularity theory
of the following two-phase Lamé system derived from (4.28):

−µ∆u− (µ/3 + µ′)∇ div u = G2 − ρ̄∂tu− ρ̄∇ (h′(ρ̄)q) in Ω

−S(u)e3 = (−P ′(ρ̄)q + ρ1gη+ − σ+∆∗η+)e3 +G3
+ on Σ+

− JS(u)K e3 = (JP ′(ρ̄)qK + Jρ̄K gη− + σ−∆∗η−)e3 −G3
− on Σ−

JuK = 0 on Σ−

u− = 0 on Σb.

(4.122)

We let j = 0, . . . , 2N−1 and then apply ∂jt to the problem (4.122) and use the elliptic estimates
of Lemma A.5 with r = 4N − 2j ≥ 2, by (4.121) and the trace theory to obtain∥∥∥∂jt u∥∥∥2

4N−2j
.
∥∥∥∂jtG2

∥∥∥2

4N−2j−2
+
∥∥∥∂j+1

t u
∥∥∥2

4N−2j−2
+
∥∥∥∂jt q∥∥∥2

4N−2j−1
+
∥∥∥∂jt q∥∥∥2

H4N−2j−3/2(Σ)

+
∥∥∥∂jt η∥∥∥2

4N−2j−3/2
+ σ2

∥∥∥∂jt η∥∥∥2

4N−2j+1/2
+
∥∥∥∂jtG3

∥∥∥2

4N−2j−3/2

.
∥∥∥∂j+1

t u
∥∥∥2

4N−2(j+1)
+ Ẽσ2N + X2N . (4.123)

Using a simple induction based on the estimate (4.123), utilizing the
∥∥∂2N

t u
∥∥2

0
estimate contained

in Ẽσ2N for the base case, we easily deduce that for j = 0, . . . , 2N ,∥∥∥∂jt u∥∥∥2

4N−2j
. Ẽσ2N + X2N . (4.124)

We then estimate ∂jt q and ∂jt η for j = 1, . . . , 2N to get an improvement. By the first equation
of (4.28), using the estimates (4.124) and (4.121), we have that for j = 1, . . . , 2N ,∥∥∥∂jt q∥∥∥2

4N−2j+1
.
∥∥∥∂j−1

t u
∥∥∥2

4N−2j+2
+
∥∥∥∂j−1

t G1
∥∥∥2

4N−2j+1

=
∥∥∥∂j−1

t u
∥∥∥2

4N−2(j−1)
+
∥∥∥∂j−1

t G1
∥∥∥2

4N−2(j−1)−1
. Ẽσ2N + X2N . (4.125)
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Now by the kinematic boundary condition

∂tη = u3 +G4 on Σ, (4.126)

we have that for j = 1, . . . , 2N , by the trace theory, (4.124) and (4.121),∥∥∥∂jt η∥∥∥2

4N−2j+3/2
≤
∥∥∥∂j−1

t u3

∥∥∥2

H4N−2j+3/2(Σ)
+
∥∥∥∂j−1

t G4
∥∥∥2

4N−2j+3/2

.
∥∥∥∂j−1

t u
∥∥∥2

4N−2(j−1)
+
∥∥∥∂j−1

t G4
∥∥∥2

4N−2(j−1)−1/2
. Ẽσ2N + X2N . (4.127)

Summing the estimates (4.124), (4.125) and (4.127), we conclude that

Eσ2N . Ẽσ2N + X2N . (4.128)

Using the estimate (4.37) of Lemma 4.4 to bound X2N . Eσ2N (Eσ2N + F2N ), we then obtain
(4.120) from (4.128). �

Next we consider a similar result for the dissipation.

Proposition 4.14. Let Dσ2N and D̄2N be as defined in (4.2) and (4.98) respectively. It holds
that

Dσ2N . D̄2N + Eσ2N (Dσ2N + Eσ2N + F2N ) . (4.129)

Proof. We compactly write

Y2N =
∥∥∇̄4N−1G1

∥∥2

0
+
∥∥∇̄4N−2∂tG

1
∥∥2

0
+
∥∥∇̄4N−1
∗ G3

∥∥2

1/2

+
∥∥∇̄4N−1
∗ G4

∥∥2

1/2
+
∥∥∇̄4N−2∂tG

4
∥∥2

1/2
+ σ2

∥∥∇4N
∗ G4

∥∥2

1/2
.

(4.130)

We now estimate the remaining parts of D̄2N not contained in Dσ2N . We divide the proof into
several steps.

Step 1 – ∂jt q estimates
We first notice that by the first equation of (4.28),

‖∂tq‖24N−1 ≤ ‖u‖
2
4N +

∥∥G1
∥∥2

4N−1
. D̄2N + Y2N , (4.131)

and for 2 ≤ j ≤ 2N + 1,∥∥∥∂jt q∥∥∥2

4N−2j+2
≤
∥∥∥∂j−1

t u
∥∥∥2

4N−2j+3
+
∥∥∥∂j−1

t G1
∥∥∥2

4N−2j+2

≤
∥∥∥∂j−1

t u
∥∥∥2

4N−2j+3
+
∥∥∥∂j−1

t G1
∥∥∥2

4N−2j+2
. D̄2N + Y2N . (4.132)

Step 2 – ∂jt η estimates

We now derive estimates for time derivatives of η. For the term ∂jt η for j ≥ 2 we use the
kinematic boundary condition

∂tη = u3 +G4 on Σ. (4.133)

Indeed, for j = 2, . . . , 2N + 1 trace theory and (4.130) imply that∥∥∥∂jt η∥∥∥2

4N−2j+5/2
.
∥∥∥∂j−1

t u3

∥∥∥2

H4N−2j+5/2(Σ)
+
∥∥∥∂j−1

t G4
∥∥∥2

4N−2j+5/2

.
∥∥∥∂j−1

t u
∥∥∥2

4N−2(j−1)+1
+
∥∥∥∂j−1

t G4
∥∥∥2

4N−2(j−1)+1/2
. D̄2N + Y2N . (4.134)

For the term ∂tη, we again use (4.133), trace theory, and (4.130) to find

σ2 ‖∂tη‖24N+1/2 + ‖∂tη‖24N−1/2 . (1 + σ2) ‖u3‖2H4N+1/2(Σ) + σ2
∥∥G4

∥∥2

4N+1/2
+
∥∥G4

∥∥2

4N−1/2

. ‖u‖24N+1 + Y2N . D̄2N + Y2N . (4.135)

Step 3 – ∇∗η estimates
In this step we use instead the dynamic boundary condition

−σ+∆∗η+ + ρ1gη+ = P ′+(ρ1)q+ − 2µ+∂3u3,+ − µ′+ div u+ −G3
3,+ on Σ+ (4.136)
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and

−σ−∆∗η− = −
q
P ′(ρ̄)q

y
+ 2 Jµ∂3u3K +

q
µ′ div u

y
−G3

3,− + Jρ̄K gη− on Σ−. (4.137)

Notice that at this point we do not have any bound of q on the boundary Σ, but we have
bounded ∇(h′(ρ̄)q) in Ω. As such, we first apply ∇∗ to (4.136) and (4.137) and then we employ
the standard elliptic theory. This, trace theory, and (4.130) then provide the estimate

σ2 ‖∇∗η‖24N+1/2 + ‖∇∗η+‖24N−3/2

.
∥∥∇∗(h′(ρ̄)q)

∥∥2

H4N−3/2(Σ)
+ ‖∇∗∇u‖2H4N−3/2(Σ) +

∥∥∇∗G3
3

∥∥2

4N−3/2
+ ‖∇∗η−‖24N−3/2

.
∥∥∇(h′(ρ̄)q)

∥∥2

4N−1
+ ‖u‖24N+1 +

∥∥G3
∥∥2

4N−1/2
+ ‖η−‖24N−1/2

. D̄2N + Y2N + ‖η−‖24N−1/2 . (4.138)

Consequently, summing the estimates (4.131), (4.132), (4.134), (4.135) and (4.138), we con-
clude

Dσ2N . D̄2N + Y2N + ‖η−‖24N−1/2 . (4.139)

Using the estimate (4.38) of Lemma 4.4 to bound Y2N . Eσ2N (Eσ2N + F2N ), we then obtain
(4.129) from (4.139). �

Finally we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. By the estimates (4.120) of Proposition 4.13 and the estimates (4.129)
of Proposition 4.14, we can improve the inequality (4.119) to be

Eσ2N (t) + F2N (t) +

∫ t

0
Dσ2Nds ≤CεEσ2N (0) + F2N (0) + Cε

∫ t

0

√
Eσ2N (Dσ2N + Eσ2N + F2N ) ds

+ ε

∫ t

0
(Eσ2N + F2N ) ds+ Cε

∫ t

0
‖η−‖24N−1/2 ds. (4.140)

Sobolev interpolation on Σ allows us to bound

Cε ‖η−‖24N−1/2 ≤ ε ‖η−‖
2
4N + Cε ‖η−‖20 ≤ εE

σ
2N + Cε ‖η−‖20 . (4.141)

We can thus refine the inequality (4.119) to be (4.5). �

5. Nonlinear instability

5.1. Restated estimates. In the following, we take λ = Λ defined by (2.34) when σ− > 0,
while we take λ = Λ∗ defined by (2.35) when σ− = 0. In each case, we have that Λ

2 < λ ≤ Λ.
We define the norm |||·|||00 appearing in Theorem 1.2 by

|||(q, u, η)|||00 :=
√
Eσ2N + F2N (5.1)

for an integer N ≥ 3, where Eσ2N and F2N are given by (4.1) and (4.3). For notational conve-
nience, we denote

U := (q, u, η). (5.2)

We now restate the main results of the previous Sections in our new notation.

Proposition 5.1. Let the norm |||·|||00 be given by (5.1). Then we have the following.

(1) There is a growing mode U? := (q?, u?, η?) satisfying
∥∥η?−∥∥0

= 1, |||U?|||00 = C1 < ∞,

and eλtU? is the solution to (2.1).
(2) Suppose that U(t) is the solution to (4.28). There exists a small constant δ such that if
|||U(t)|||00 ≤ δ for all t ∈ [0, T ], then there exists Cδ > 0 so that the following inequality
holds for t ∈ [0, T ]:

|||U(t)|||200 ≤ Cδ |||U(0)|||200 +
λ

2

∫ t

0
|||U(s)|||200 ds

+ Cδ

∫ t

0
|||U(s)|||300 ds+ Cδ

∫ t

0
‖η−(s)‖20 ds. (5.3)
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(3) There exists C2 > 0 so that

‖η−(t)− ιeλtη?−‖0 ≤ C2e
Λt |||U(0)− ιU?|||00 + C2

∫ t

0
|||U(s)|||200 ds

+ C2

√∫ t

0
e2Λ(t−s) |||U(s)|||200 |||U(s)− ιeλtU?|||00 ds. (5.4)

Proof. Statement 1 follows from Theorem 2.7. Statement 2 follows from the estimates (4.5)
of Theorem 4.1 by taking ε = λ/2 and then taking δ sufficiently small to absorb the term√
Eσ2NDσ2N on the right hand side by the dissipation.

We now prove Statement 3 by using Theorem 3.3. We observe that U(t) − ιeλtU? solve the
problem (3.1) with initial data U(0)− ιU? and the force terms Gi given by (4.29)–(4.36). Then
Statement 3 follows from (3.20) by noticing that

EG =
∥∥G1

∥∥2

1
+
∥∥∂tG2

∥∥2

0
+
∥∥∂tG3

∥∥2

0
+
∥∥G4

∥∥2

2
. |||U |||400 . (5.5)

We thus conclude the proposition. �

5.2. Local well-posedness. Thus far we have not elaborated on the local well-posedness the-
ory for our problem that we developed in our companion paper [10]. In the result we will refer
to the “necessary compatibility conditions” required for the local well-posedness in our energy
spaces. These are cumbersome to write out explicitly, and we refer to [10] for the explicit
statement.

Theorem 5.2. Suppose that the initial data U(0) satisfies the necessary compatibility condi-
tions. There exist δ0, T > 0 so that if

|||U(0)|||00 < δ0, (5.6)

then there exists a unique solution U(t) to (4.28) on [0, T ] that satisfies the estimate

|||U(t)|||00 .
√

1 + T |||U(0)|||00 (5.7)

for all t ∈ [0, T ].

Proof. The theorem can be deduced readily from Theorem 2.1 of [10]. Indeed, Theorem 2.1
of [10] is stated in more general form, where we only require ‖η0‖4N−1/2 to be small and no

smallness condition is imposed on u0 or q0. We record this version of local well-posedness so
that it can be adapted directly in our instability analysis. �

5.3. Data analysis. In order to prove our nonlinear instability result, we want to use the linear
growing mode in Proposition 5.1 to construct small initial data for the nonlinear problem (4.28).
Since we are involved in the higher-order regularity context, we cannot simply set the initial
data for the nonlinear problem to be a small constant times the linear growing modes. The
reason for this is that the initial data for the nonlinear problem must satisfy certain nonlinear
compatibility conditions in order for us to guarantee local existence in the space corresponding
to norm |||·|||00, which the linear growing mode solutions do not satisfy.

To get around this obstacle, we note that the nonlinear problem is slightly perturbed from
the linearized problem and so their compatibility conditions for the small initial data should
be close to each other. We are able to produce a curve of small initial data satisfying the
compatibility conditions for the nonlinear problem which are close to the linear growing modes.

Proposition 5.3. Let U? be the linear growing mode stated in Proposition 5.1. Then there
exists a number ι0 > 0 and a family of initial data

U ι0 = ιU? + ι2Ũ(ι) (5.8)

for ι ∈ [0, ι0) so that the followings hold.
1. U ι0 satisfy the nonlinear compatibility conditions required by Theorem 5.2 for a solution to

the nonlinear problem (4.28) to exist in the norm |||·|||00.
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2. There exist C3, C4 > 0 independent of ι so that∣∣∣∣∣∣∣∣∣Ũ(ι)
∣∣∣∣∣∣∣∣∣

00
≤ C3 (5.9)

and
|||U ι0|||

2
00 ≤ C4ι

2. (5.10)

Proof. See the abstract argument before Lemma 5.3 of [9]. �

5.4. Proof of Theorem 1.2. With Propositions 5.1, Theorem 5.2 and Proposition 5.3 in hand,
we can now present the

Proof of Theorem 1.2. Recall the notation (5.2). First, we restrict to 0 < ι < ι0 ≤ θ0, where ι0
is as small as in Proposition 5.3 and the value of θ0 is sufficiently small to be determined later.
For 0 < ι ≤ ι0, we let U ι0 be the initial data given in Proposition 5.3. By further restricting ι
we may use (5.10) to verify that (5.6) holds, which then allows us to use Theorem 5.2 to find
U ι(t), solutions to the system (4.28) with

U ι|t=0 = U ι0 = ιU? + ι2Ũ(ι). (5.11)

Fix δ > 0 as small as in Proposition 5.1, and let Cδ > 0 be the constant appearing in
Proposition 5.1 for this fixed choice of δ. We then define δ̃ = min{δ, λ

2Cδ
}. Denote

T ∗ = sup
{
s : |||U ι(t)|||00 ≤ δ̃, for 0 ≤ t ≤ s

}
(5.12)

and

T ∗∗ = sup
{
s :
∥∥ηι−(t)

∥∥
0
≤ 2ιeλt, for 0 ≤ t ≤ s

}
. (5.13)

With ι0 small enough, (5.10) and (5.7) guarantee that T ∗ and T ∗∗ > 0. Recall that T ι is defined
by (1.35). Then for all t ≤ min{T ι, T ∗, T ∗∗}, we deduce from the estimate (5.3) of Proposition
5.1, the definitions of T ∗ and T ∗∗, and (5.10) that

|||U ι(t)|||200 ≤ Cδ |||U
ι
0|||

2
00 +

λ

2

∫ t

0
|||U ι(s)|||200 ds

+ Cδ

∫ t

0
|||U ι(s)|||300 ds+ Cδ

∫ t

0

∥∥ηι−(s)
∥∥2

0
ds

≤
(
λ

2
+ δ̃Cδ

)∫ t

0
|||U ι(s)|||200 ds+ CδC4ι

2 +
Cδ(2ι)

2

2λ
e2λt

≤ λ
∫ t

0
|||U ι(s)|||200 ds+ C5ι

2e2λt.

(5.14)

for some constant C5 > 0 independent of ι. We may view (5.14) as a differential inequality.
Then Gronwall’s lemma implies that

|||U ι(t)|||200 ≤ C5ι
2e2λt + C5ι

2eλt
∫ t

0
λeλs ds

≤ C5ι
2e2λt + C5ι

2e2λt = 2C5ι
2e2λt.

(5.15)

We then deduce from Proposition 5.1 and (5.15) that

‖η−(t)− ιeλtη?−‖0 ≤ C2e
Λt
∣∣∣∣∣∣∣∣∣ι2Ũ(ι)

∣∣∣∣∣∣∣∣∣
00

+ C2

∫ t

0
|||U ι(s)|||200 ds

+ C2

√∫ t

0
e2Λ(t−s) |||U ι(s)|||200 |||U ι(s)− ιeλsU?|||00 ds

≤ C2C3e
Λtι2 + C2

∫ t

0
2C5ι

2e2λs + C2

√∫ t

0
e2Λ(t−s)2C5ι2e2λs(

√
2C5ιeλs + C1ιeλs)ds

≤ C6e
Λtι2 + C6ι

2e2λt + C6ι
3
2 e

3
2
λt ≤ 2C6ι

2e2λt + C6ι
3
2 e

3
2
λt. (5.16)



38 JUHI JANG, IAN TICE, AND YANJIN WANG

Here we have used the fact that Λ < 2λ.
Now we claim that

T ι = min{T ι, T ∗, T ∗∗} (5.17)

by fixing θ0 small enough, namely, setting

θ0 = min

{
δ̃

2
√

2C5
,

1

8C6
,

1

16C2
6

}
. (5.18)

Indeed, if T ∗ = min{T ι, T ∗, T ∗∗}, then by (5.15), we have

|||U ι(T ∗)|||00 ≤
√

2C5ιe
λT ∗ ≤

√
2C5ιe

λT ι =
√

2C5θ0 ≤
δ̃

2
< δ̃, (5.19)

which contradicts to the definition of T ∗. If T ∗∗ = min{T ι, T ∗, T ∗∗}, then by (5.16) and the
fact that Λ/2 < λ ≤ Λ, we have that∥∥ηι−(T ∗∗)

∥∥
0
≤ ιeλT ∗∗

∥∥η?−∥∥0
+ ‖ηι−(T ∗∗)− ιeλT ∗∗η?−‖0

≤ ιeλT ∗∗
∥∥η?−∥∥0

+ 2C6ι
2e2λT ∗∗ + C6ι

3
2 e

3
2
λt

≤ ιeλT ∗∗(1 + 2C6ιe
λT ι + C6

√
ιe

1
2
λT ι)

≤ ιeλT ∗∗(1 + 2C6θ0 + C6

√
θ0) < 2ιeλT

∗∗
,

(5.20)

which contradicts to the definition of T ∗∗. Hence (5.17) must hold, proving the claim.
Now we use (5.16) again to find that∥∥ηι−(T ι)

∥∥
0
≥ ιeλT ι

∥∥η?−∥∥0
− ‖ηι−(T ι)− ιeλT ιη?−‖0

≥ ιeλT ι − 2C6ι
2e2λT ι − C6ι

3
2 e

3
2
λt

≥ θ0 − 2C6θ
2
0 − C6θ

3
2
0 ≥

θ0

2
.

(5.21)

This completes the proof of Theorem 1.2. �

Appendix A. Analytic tools

A.1. Poisson extensions. We will now define the appropriate Poisson integrals that allow us
to extend η±, defined on the surfaces Σ±, to functions defined on Ω, with “good” boundedness.

Suppose that Σ+ = T2×{j}, where T2 := (2πL1T)×(2πL2T). We define the Poisson integral
in T2 × (−∞, j) by

P−,1f(x) =
∑

ξ∈(L−1
1 Z)×(L−1

2 Z)

eiξ·x
′

2π
√
L1L2

e|ξ|(x3−j)f̂(ξ), (A.1)

where for ξ ∈ (L−1
1 Z)× (L−1

2 Z) we have written

f̂(ξ) =

∫
T2

f(x′)
e−iξ·x

′

2π
√
L1L2

dx′. (A.2)

Here “−” stands for extending downward and “j” stands for extending at x3 = j, etc. It is
well-known that P−,j : Hs(Σ+)→ Hs+1/2(T2× (−∞, j)) is a bounded linear operator for s > 0.
However, if restricted to the domain Ω, we can have the following improvements.

Lemma A.1. Let P−,jf be the Poisson integral of a function f that is either in Ḣq(Σ+) or

Ḣq−1/2(Σ+) for q ∈ N = {0, 1, 2, . . . }, where we have written Ḣs(Σ+) for the homogeneous
Sobolev space of order s. Then

‖∇qP−,jf‖0 . ‖f‖
2
Ḣq−1/2(T2)

and ‖∇qP−,jf‖0 . ‖f‖
2
Ḣq(T2)

. (A.3)

Proof. See Lemma A.3 of [7]. �
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We extend η+ to be defined on Ω by

η̄+(x′, x3) = P+η+(x′, x3) := P−,jη+(x′, x3), for x3 ≤ j. (A.4)

Then Lemma A.1 implies in particular that if η+ ∈ Hs−1/2(Σ+) for s ≥ 0, then η̄+ ∈ Hs(Ω).
Similarly, for Σ− = T2 × {0} we define the Poisson integral in T2 × (−∞, 0) by

P−,0f(x) =
∑

ξ∈(L−1
1 Z)×(L−1

2 Z)

eiξ·x
′

2π
√
L1L2

e|ξ|x3 f̂(ξ). (A.5)

It is clear that P−,0 has the same regularity properties as P−,j . This allows us to extend η− to
be defined on Ω−. However, we do not extend η− to the upper domain Ω+ by the reflection
since this will result in the discontinuity of the partial derivatives in x3 of the extension. For
our purposes, we instead to do the extension through the following. Let 0 < λ0 < λ1 < · · · <
λm < ∞ for m ∈ N and define the (m + 1) × (m + 1) Vandermonde matrix V (λ0, λ1, . . . , λm)
by V (λ0, λ1, . . . , λm)ij = (−λj)i for i, j = 0, . . . ,m. It is well-known that the Vandermonde
matrices are invertible, so we are free to let α = (α0, α1, . . . , αm)T be the solution to

V (λ0, λ1, . . . , λm)α = qm, qm = (1, 1, . . . , 1)T . (A.6)

Now we define the specialized Poisson integral in T2 × (0,∞) by

P+,0f(x) =
∑

ξ∈(L−1
1 Z)×(L−1

2 Z)

eiξ·x
′

2π
√
L1L2

m∑
j=0

αje
−|ξ|λjx3 f̂(ξ). (A.7)

It is easy to check that, due to (A.6), ∂l3P+,0f(x′, 0) = ∂l3P−,0f(x′, 0) for all 0 ≤ l ≤ m and
hence

∂αP+,0f(x′, 0) = ∂αP−,0f(x′, 0), ∀α ∈ N3 with 0 ≤ |α| ≤ m. (A.8)

These facts allow us to extend η− to be defined on Ω by

η̄−(x′, x3) = P−η−(x′, x3) :=

{
P+,0η−(x′, x3), x3 > 0
P−,0η−(x′, x3), x3 ≤ 0.

(A.9)

It is clear now that if η− ∈ Hs−1/2(Σ−) for 0 ≤ s ≤ m, then η̄− ∈ Hs(Ω). Since we will only
work with s lying in a finite interval, we may assume that m is sufficiently large in (A.6) for
η̄− ∈ Hs(Ω) for all s in the interval.

A.2. Estimates of Sobolev norms. We will need some estimates of the product of functions
in Sobolev spaces.

Lemma A.2. Let U denote a domain either of the form Ω± or of the form Σ±.

(1) Let 0 ≤ r ≤ s1 ≤ s2 be such that s1 > n/2. Let f ∈ Hs1(U), g ∈ Hs2(U). Then
fg ∈ Hr(U) and

‖fg‖Hr . ‖f‖Hs1 ‖g‖Hs2 . (A.10)

(2) Let 0 ≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ Hs1(U), g ∈ Hs2(U). Then
fg ∈ Hr(U) and

‖fg‖Hr . ‖f‖Hs1 ‖g‖Hs2 . (A.11)

Proof. These results are standard and may be derived, for example, by use of the Fourier
characterization of the Hs spaces and extensions. �
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A.3. Coefficient estimates. Here we are concerned with how the size of η can control the
“geometric” terms that appear in the equations.

Lemma A.3. There exists a universal 0 < δ < 1 so that if ‖η‖25/2 ≤ δ, then

‖J − 1‖L∞(Ω) + ‖A‖L∞(Ω) + ‖B‖L∞(Ω) ≤
1

2
,

‖N − 1‖L∞(Γ) + ‖K − 1‖L∞(Γ) ≤
1

2
, and

‖K‖L∞(Ω) + ‖A‖L∞(Ω) . 1.

(A.12)

Also, the map Θ defined by (1.18) is a diffeomorphism.

Proof. The estimate (A.12) is guaranteed by Lemma 2.4 of [7]. �

A.4. Korn inequality. Consider the following operators acting on functions u:

Du = ∇u+∇uT and D0u = Du− 2 div u

3
I,

or in components

Duij = ∂iuj + ∂jui and D0uij = ∂iuj + ∂jui −
2∂kuk

3
δij .

Note that tr(D0u) = 0. As such, the operator D0 is referred to as the “deviatoric part of the
symmetric gradient.”

Now we record a version of Korn’s inequality involving only the deviatoric part, D0, that we
will use for layered domains Ω±.

Proposition A.4. There exists a constant C > 0 so that

‖u‖21 ≤ C
∥∥D0u

∥∥2

0
(A.13)

for all u ∈ H1(Ω) with JuK = 0 along Σ and u− = 0 on Σb.

Proof. We refer to Proposition A.8 of [11]. �

A.5. Elliptic estimates. Here we consider the two-phase elliptic problem

−µ∆u− (µ/3 + µ′)∇ div u = F 2 in Ω

−S(u+)e3 = F 3
+ on Σ+

− JS(u)K e3 = −F 3
− on Σ−

JuK = 0 on Σ−

u− = 0 on Σb.

(A.14)

We have the following elliptic regularity result.

Lemma A.5. Let r ≥ 2. If F 2 ∈ Hr−2(Ω), F 3 ∈ Hr−3/2(Σ), then the problem (A.14) admits a
unique strong solution u ∈ Hr(Ω). Moreover,

‖u‖r .
∥∥F 2

∥∥
r−2

+
∥∥F 3

∥∥
r−3/2

. (A.15)

Proof. We refer to [19, Theorem 3.1] for the case of two-phase Stokes problem, but the proof is
the same here. It follows by making use of the flatness of the boundaries Σ± and applying the
standard classical one-phase elliptic theory with Dirichlet boundary condition. �

We let G denote a horizontal periodic slab with its boundary ∂G (not necessarily flat) consist-
ing of two smooth pieces. We shall recall the classical regularity theory for the Stokes problem
with Dirichlet boundary conditions on ∂G,

−µ∆u+∇p = f in G

div u = h in G

u = ϕ on ∂G.

(A.16)

The following records the regularity theory for this problem.
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Lemma A.6. Let r ≥ 2. If f ∈ Hr−2(G), h ∈ Hr−1(G), ϕ ∈ Hr−1/2(∂G) be given such that∫
G
h =

∫
∂G
ϕ · ν, (A.17)

then there exists unique u ∈ Hr(G), p ∈ Hr−1(G)(up to constants) solving (A.16). Moreover,

‖u‖Hr(G) + ‖∇p‖Hr−2(G) . ‖f‖Hr−2(G) + ‖h‖Hr−1(G) + ‖ϕ‖Hr−1/2(∂G) . (A.18)

Proof. See [13]. �
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