MULTISCALE HOMOGENIZATION IN KIRCHHOFEFE’S
NONLINEAR PLATE THEORY

LAURA BUFFORD, ELISA DAVOLI, AND IRENE FONSECA

AssTracT. The interplay between multiscale homogenization and di-
mension reduction for nonlinear elastic thin plates is analyzed in the
case in which the scaling of the energy corresponds to Kirchhoff’s non-
linear bending theory for plates. Different limit models are deduced
depending on the relative ratio between the thickness parameter h and
the two homogenization scales € and £2.

1. INTRODUCTION

The search for lower dimensional models describing thin three-dimensional struc-
tures is a classical problem in mechanics of materials. Since the early '90s it has
been tackled successfully by means of variational tecniques, and starting from the
seminal papers [T}, [8 [0, [I8] hierarchies of limit models have been deduced by T'-
convergence, depending on the scaling of the elastic energy with respect to the
thickness parameter.

The first homogenization results in nonlinear elasticity have been proved in [6]
and [20]. In these two papers, A. Braides and S. Miiller assume p-growth of a
stored energy density W that oscillates periodically in the in-plane direction. They
show that as the periodicity scale goes to zero, the elastic energy W converges
to a homogenized energy, whose density is obtained by means of an infinite-cell
homogenization formula.

In [4, [7] the authors treat simultaneously homogenization and dimension reduc-
tion for thin plates, in the membrane regime and under p-growth assumptions of
the stored energy density. More recently, in [I7], [24], and [27] models for homog-
enized plates have been derived under physical growth conditions for the energy
density. We briefly describe these results.

Let

Qo= w x (=51

be the reference configuration of a nonlinearly elastic thin plate, where w is a
bounded domain in R?, and h > 0 is the thickness parameter. Assume that the
physical structure of the plate is such that an in-plane homogeneity scale £(h) arises,
where {h} and {e(h)} are monotone decreasing sequences of positive numbers,
h — 0, and e(h) = 0 as h — 0. In [I7], 24, 27] the rescaled nonlinear elastic energy
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associated to a deformation v € W2(€2;,;R3) is given by

ho 1 !
" (v) = h/QhW<6(h)’VU(x)> dx,
where 2’ := (21, 22) € w, and the stored energy density W is periodic in its first
argument and satisfies the commonly adopted assumptions in nonlinear elasticity, as
well as a nondegeneracy condition in a neighborhood of the set of proper rotations.
In [24] the authors focus on the scaling of the energy corresponding to Von
Kérmén plate theory, that is they consider deformations v" € W12(Q;;R?) such

that .
Th (’U L)
lim sup
h—0 ht
Under the assumption that the limit

< +o00.

= lim —
R’ e(h)
exists, different homogenized limit models are identified, depending on the value of
SIS [0, +OO].
A parallel analysis is carried in [I7], where the scaling of the energy associated
to Kirchhoff’s plate theory is studied, i.e., the deformations under consideration

satisfy
By h
lim sup LA
h—0 h?
In this situation a lack of compactness occurs when v; = 0 (the periodicity scale
tends to zero much more slowly than the thickness parameter). A partial solution
to this problem, in the case in which

< +00.

V2 1= = +00,

o ilzlg%) e2(h)
is proposed in [27], by means of a careful application of Friesecke, James and
Miiller’s quantitative rigidity estimate, and a construction of piecewise constant
rotations (see [8, Theorem 4.1] and [9, Theorem 6] and [27, Lemma 3.11]). The
analysis of simultaneous homogenization and dimension reduction for Kirchhoff’s
plate theory in the remaining regimes is still an open problem.

In this paper we deduce a multiscale version of the results in [I7] and [27]. We
focus on the scaling of the energy which corresponds to Kirchhoff’s plate theory,
and we assume that the plate undergoes the action of two homogeneity scales - a
coarser one and a finer one - i.e., the rescaled nonlinear elastic energy is given by

1 ! x’
Thw) = 7/ W(—,i,Vv T )da:
R S EP TR
for every deformation v € W12(Qy;R3), where the stored energy density W is
periodic in its first two arguments and, again, satisfies the usual assumptions in
nonlinear elasticity, as well as the nondegeneracy condition (see Section [2]) adopted
in [17, 24, 27]. We consider sequences of deformations {v/"} C W12(Qy; R?) verify-

ng
: J" (")
lim sup
h—0 h?

< 400, (1.1)
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and we seek to identify the effective energy associated to the rescaled elastic energies

h/, h
{%} for different values of 7; and =9, i.e. depending on the interaction of the

homogeneity scales with the thickness parameter.

As in [I7], a sequence of deformations satisfying (1.1)) converges, up to the ex-
traction of a subsequence, to a limit deformation u € W1?2(w;R3) satisfying the
isometric constraint

Oz u(a’) - Op,u(a’) = 0q,3 forae 2’ cw, a,fe{l,2}. (1.2)

We will prove that the effective energy is given by

-7 u . .
£ (u) = {112 fw Dyom (IT4(2")) dx’  if u satisfies (1.2)),

400 otherwise,

where II* is the second fundamental form associated to u (see (£.4)), and 2;.
is a quadratic from dependent on the value of 77, with explicit characterization
provided in (5.2)—(5.4). To be precise, our main result is the following.

Theorem 1.1. Let v; € [0,+00] and let v = +oo. Let {v"} € W2(Qy;R3)
be a sequence of deformations satisfying the uniform energy estimate . There
exists a map u € W22(w;R3) verifying such that, up to the extraction of a
(not relabeled) subsequence, there holds

v (2, has) — ][ v"(2' has)de — u  strongly in L?(Q1;R?),
Q4

Viuv'(@!, has) = (V'uln,)  strongly in L?(Qy; M3*3),
with
Ny (") = O, u(z") A Op,u(x’)  for ace. 2’ €w,

and

TN e
hin—ig)lf 02 > EM (u). (1.3)

Moreover, for everyu € W22(w;R?) satisfying (1.2)), there exists a sequence {v"} C
W12(Qp; R3) such that

h(yh
1imsupj w?) < EM(u). (1.4)
h—0 h?

We remark that our main theorem is consistent with the results proved in [17]
and [27]. Indeed, in the presence of a single homogeneity scale, it follows directly
from (5.2)-(5.4) that 2, reduces to the effective energy identified in [17] and
[27] for v1 € (0,4+00] and 77 = 0, respectively. The main difference with respect
to [17] and [27] is in the structure of the homogenized energy density 2., which
is obtained by means of a double pointwise minimization, first with respect to the
faster periodicity scale, and then with respect to the slower one and the x3 variable

(sec (53 E-1).

The quadratic behavior of the energy density around the set of proper rotations
together with the linearization occurring due to the high scalings of the elastic
energy yield a convex behavior for the homogenization problem, so that, despite
the nonlinearity of the three-dimensional energies, the effective energy does not have
an infinite-cell structure, in contrast with [20]. The main techniques for the proof
of the liminf inequality are the notion of multiscale convergence introduced in
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[3], and its adaptation to dimension reduction (see [22]). The proof of the limsup
inequality follows that of [I7, Theorem 2.4].

The crucial part of the paper is the characterization of the three-scale limit of
the sequence of linearized elastic stresses (see Section [4)). We deal with sequences
having unbounded L? norms but whose oscillations on the scale € or €2 are uniformly
controlled. As in [I7, Lemmas 3.6-3.8], to enhance their multiple-scales oscillatory
behavior we work with suitable oscillatory test functions having vanishing average
in their periodicity cell.

The presence of three scales increases the technicality of the problem in all scal-
ing regimes. For v; € (0, +00], Friesecke, James and Miiller’s rigidity estimate (8]
Theorem 4.1]) leads us to work with sequences of rotations that are piecewise con-
stant on cubes of size £(h) with centers in €(h)Z?. However, in order to identify the
three-scale limit of the linearized stresses, we must consider sequences oscillating
on a scale £2(h). This problem is solved in Step 1 of the proof of Theorem |4.1
by subdividing the cubes of size £2(h), with centers in £2(h)Z?, into “good cubes”
lying completely within a bigger cube of size £(h) and center in e(h)Z? and “bad
cubes”, and by showing that the measure of the intersection between w and the set
of “bad cubes” converges to zero faster than or comparable to e(h), as h — 0.

The opposite problem arises in the case in which v; = 0. By Friesecke, James and
Miiller’s rigidity estimate ([8, Theorem 4.1]), it is natural to work with sequences
of piecewise constant rotations which are constant on cubes of size £2(h) having
centers in the grid ¢2(h)Z?2, whereas in order to identify the limit multiscale stress
we need to deal with oscillating test functions with vanishing averages on a scale
e(h). The identification of “good cubes” and “bad cubes” of size £2(h) is thus not
helpful in this latter framework as the contribution of the oscillating test functions
on cubes of size £2(h) is not negligible anymore. Therefore, we are only able to
perform an identification of the multiscale limit in the case v, = +00, extending to
the multiscale setting the results in [27]. The identification of the effective energy
in the case in which 47 = 0 and 2 € [0, 400) remains an open question.

The paper is organized as follows: in Section [2] we set the problem and introduce
the assumptions on the energy density. In Section |3| we recall a few compactness
results and the definition and some properties of multiscale convergence. Sections
M and [l are devoted to the identification of the limit linearized stress and to the
proof of the liminf inequality . In Section @We show the optimality of the lower
bound deduced in Section [5, and we exhibit a recovery sequence satisfying .

1.1. Notation. In what follows, Q := ( — %, %)2 denotes the unit cube in R?
centered at the origin and with sides parallel to the coordinate axes. We will write

a point = € R? as
x = (2/,23), where z’ € R? and z3 € R,

and we will use the notation V'’ to denote the gradient with respect to z’. For
every r € R, [r] is its greatest integer part. With a slight abuse of notation, for
every o' € R?, [2'] and |2’| are the points in R? whose coordinates are given by
the greatest and least integer parts of the coordinates of z’, respectively. Given a
map ¢ € WH2(R?), (y - V')¢(a') stands for

(y-V)o(2') = 1100, 6(2") + y20s,6(a")  for ace. 2’ € R? and y € Q.
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We write (V)¢ to indicate the map
(V) Eo(a!) i= (—0py 0, 0p, ¢)  for ace. z’ € R,

We denote by M"™*™ the set of matrices with n rows and m columns and by
SO(3) the set of proper rotations, that is

SO3) :={ReM*>3: RTR=1d and det R = 1}.

Given a matrix M € M3*3, M’ stands for the 3 x 2 submatrix of M given by its
first two columns. For every M € M"™*" sym M is the the n x n symmetrized
matrix defined as

M+ MT
sym M = %
Whenever a map v € L2, C, -, is Q-periodic, that is

v(lx+e) =v(z) i=1,2,

for a.e. © € R?, where {e1, 3} is the othonormal canonical basis of R?, we write v €
L2, C,, -+, respectively. We implicitly identify the spaces L*(Q) and L2, (R?).
We denote the Lebesgue measure of a measurable set A C RY by |A].

We adopt the convention that C' designates a generic constant, whose value may
change from expression to expression in the same formula.

2. SETTING OF THE PROBLEM

Let w C R? be a bounded Lipschitz domain whose boundary is piecewise C.
This regularity assumption is only needed in Section [6] while the results in Sections
continue to hold for every bounded Lipschitz domain w C R%2. We assume that

the set
_h ﬁ)
272
is the reference configuration of a nonlinearly elastic thin plate. In the sequel,
{h} and {e(h)} are monotone decreasing sequences of positive numbers, h — 0,

g(h) — 0 as h — 0, such that the following limits exist

Qp i =w x (

d = lim ——
e 2= 2y
with 41,72 € [0, +00]. There are five possible regimes: 1,72 = +00; 0 < 71 < 00
and v = 400; 71 =0 and 75 = +o0; 71 =0 and 0 < v < +00; 1 = 0 and 72 = 0.
We focus here on the first three regimes, that is on the cases in which vy, = 4-o00.
For every deformation v € W12(Qy,; R3), we consider its rescaled elastic energy

he oy 1 A
J"(v) = . /Qh W(s(h)’ 52(h),Vv(a:)) dz,

where W : R? x R? x M?*3 — [0, +00) represents the stored energy density of
the plate, and (y, z, F') — W (y, z, F') is measurable and Q-periodic in its first two
variables, i.e., with respect to y and z. We also assume that for a.e. y and z, the
map W (y, z,-) is continuous and satisfies the following assumptions:
(H1) W(y, 2, RF) = W (y,z2,F) for every F € M3*3 and for all R € SO(3) (frame

indifference),
(H2) W (y, z, F) > C, dist*(F; SO(3)) for every F € M3*3 (nondegeneracy),
(H3) there exists & > 0 such that W(y, z, F) < Codist*(F; SO(3)) for every F €

M3*3 with dist(F; SO(3)) < 6,

=1
G e(h)
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(H4) limyg)—o W(y’z’ldﬁgl)z_g(y’z’@ = 0, where 2(y,z,) is a quadratic form on
MIB3*3,

By assumptions (H1)-(H4) we obtain the following lemma, which guarantees the
continuity of the quadratic map 2 introduced in (H4).

Lemma 2.1. Let W : R? x R? x M3*3 — [0,+00) satisfy (H1)-(H4) and let
2 :R? x R? x M®*3 — [0, +00) be defined as in (Hj). Then,
(i) 2(y, z,-) is continuous for a.e. y,z € R?,
(ii) 2(-,-, F) is Q x Q-periodic and measurable for every F € M3*3,
(iii) for a.e. y,z € R?, the map 2(y, z,-) is quadratic on M3X3, and satisfies

sym ’
1
SlsvmF[? < 2(y, 2 F) = 2(y, 2 symF) < ClsymP?

for all F € M?*3, and some C > 0. In addition, there exists a monotone
function

r: [0,400) — [0, +00],
such that r(6) — 0 as § — 0, and
(W(y,2,1d+ F) = 2(y, 2, F)| < |[F[r(|F|)
for all F € M3*3, for a.e. y,z € R2.

We refer to [23] Lemma 2.7] and to [24] Lemma 4.1] for a proof of Lemma
in the case in which 2 is independent of z. The proof in the our setting is a
straightforward adaptation.

As it is usual in dimension reduction analysis, we perform a change of variables in
order to reformulate the problem on a domain independent of the varying thickness

parameter. We set
Q::lewX(*l l)

272

and we consider the change of variables " : Q@ — Q", defined as
YM(z) = (2, has) for every x € Q.

To every deformation v € W2(€,; R3) we associate a function u € W12(Q;R3),
defined as u := v o ¥, whose elastic energy is given by

£(u) = ") = |

Q

z/ '

)’ Wh), th(x)) dz,

W
where
1o Ous ()
Viu(z) := (V u(m)|T> for a.e. z € Q.

In this paper we focus on the asymptotic behavior of sequences of deformations
{uh} € WH2(Qy,; R?) satisfying the uniform energy estimate

/ !/
EMuh) = /Q W(%, %,thh(:c)) dx < Ch? for every h > 0. (2.1)
We remark that in the case in which W is independent of y and z, such scalings of
the energy lead to Kirchhoff’s nonlinear plate theory, which was rigorously justified
by means of I'—convergence tecniques in the seminal paper [§].
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3. COMPACTNESS RESULTS AND MULTISCALE CONVERGENCE

In this section we present a few preliminary results which will allow us to deduce
compactness for sequences of deformations satisfying the uniform energy estimate

&1).

We first recall [8 Theorem 4.1], which provides a characterization of limits of
deformations whose scaled gradients are uniformly close in the L?-norm to the set
of proper rotations.

Theorem 3.1. Let {u"} ¢ WH2(;R3) be such that

1
lim sup ﬁ/ dist?(Vyu"(x), SO(3)) dx < +oc. (3.1)
h—0 Q

Then, there exists a map u € W22(w;R3) such that, up to the extraction of a (not
relabeled) subsequence,

ul — f uP(x)de — u  strongly in L*(Q;R?)
Q

Viu — (V'ulny)  strongly in L*(€;M>*3),
with
Oz u(x') - Opyu(a’) = 0ap forae ' ew, a,fe{l,2} (3.2)
and
Ny (") = O, u(z") A Opyu(x’)  for ace. 2’ € w. (3.3)

A crucial point in the proof of the liminf inequality (I.3)(see Sections [4| and
b)) is to approximate the scaled gradients of deformations with uniformly small
energies, by sequences of maps which are either piecewise constant on cubes of
size comparable to the homogenization parameters with values in the set of proper
rotations, or have Sobolev regularity and are close in the L%-norm to piecewise
constant rotations. The following lemma has been stated in [27, Lemma 3.3], and
its proof follows by combining [0 Theorem 6] with the argument in [8, Proof of
Theorem 4.1, and Section 3]. We remark that the additional regularity of the limit
deformation u in Theorem [3:1]is a consequence of Lemma [3.2] and in particular of
the approximation of scaled gradients by W12 maps.

Lemma 3.2. Let yg € (0,1] and let h,d > 0 be such that
h 1
Y < - < —.
)
There exists a constant C, depending only on w and ~yy, such that for every u €
Wh2(w;R3) there exists a map R : w — SO(3) piecewise constant on each cube
x+0Y, with x € 572, and there exists R € WH2(w; M3*3) such that
[Vhu — R||2L2(Q;M3><3) + IR - RH%Q(W;M3X3) + thV/RH%Q(w;M3X3><M3X3)
S C||dist(th; SO(3))||L2(Q)
Moreover, for every & € R? satisfying
|€loo := max{[¢ - e1],]€ - e2[} < h,
and for every w' C w, with dist(w’,0w) > Ch, there holds
||R(£UI) - R(x’ + £)||L2(w’;M3><3) < C’HdiSt(V;{LL; SO(?)))HLz(Q).
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We now recall the definitions of “2-scale convergence” and “3-scale convergence”.
For a detailed treatment of two-scale convergence we refer to, e.g., [2, 19, 2I]. The
main results on multiscale convergence may be found in [3] [B] [10, 11].

Definition 3.3. Let D be an open set in RY and let YV be the unit cube in RY,
N
N ._ 11
Yo = (‘ 2 5)
Let u € L2(DxY™N) and {u”} € L?(D). We say that {u"} converges weakly 2-scale

2—
to uin L2(D x YY), and we write u" it

[ @e(e )= [ [ temete.nanae

for every ¢ € C°(D; Cper(YN)).

Let u € L2(D x YN x YV) and {u"} € L?(D). We say that {u"} converges

weakly 3-scale to u in LQ(D x YN x YN and we write u" = u, if

/Duh(ﬁ)go(&,f), g%//w/ W€, (€., N) A\ di d

for every ¢ € C>(D; C’per(YN x YNVY)

We say that {u"} converges stmngly 3-scale to uin L?(D x YN x YN), and we
b3
write u” —» u, if

h 3—s
u" — u weakly 3-scale

and
||Uh||L2(D) — Hu||L2(D><YN><YN)~

In order to simplify the statement of Theorem and its proof, we introduce
the definition of “dr-3-scale convergence” (dimension reduction three-scale conver-
gence), i.e., 3-scale convergence adapted to dimension reduction, inspired by S.
Neukamm’s 2-scale convergence adapted to dimension reduction (see [22]).

Definition 3.4. Let v € L?(Q x Q x Q) and {u"} € L*(Q). We say that {u"}
dr—3—s
h

converges weakly dr-3-scale to u in L*( x Q x Q), and we write u" — w, if

/Quh(x)<p(:c,(;];),€f(;l)) d:c%/Q/Q/Qu(x,y,z)cp(:c,y,z)dzdydx

for every ¢ € C°(£2; Cper (@ X Q)).

Remark 3.5. We point out that “dr-3-scale convergence” is just a particular case
of classical 3-scale convergence. Indeed, what sets apart “dr-3-scale convergence”
from the classical 3-scale convergence is solely the fact that the test functions in
Definition depend on z3 but oscillate only in the cross-section w. In particular,
if {u} € L?(Q2) and

h dr—3—s
u" — wu weakly dr 3 scale

then {u”"} is bounded in L2(Q2). Therefore, by [3, Theorem 1.1] there exists ¢ €

L2(Q x (@ x (—1,1)) x (@ x (—31,1))) such that, up to the extraction of a (not

relabeled) subsequence,
3—
uh X ¢ weakly 3-scale
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that is u” weakly 3-scale converge to & in L2( x (@ x (—3,3)) x (@ x (=3, 1))
(in the sense of classical 3-scale convergence). Hence, the “dr-3-scale limit” w and

the “classical 3-scale limit” ¢ are related by

11
2 2

u(z,y,z) = / . / . &(x,y,2z,m,7)dndr for ae. x €w and y,z € Q.
2772

We now state a theorem regarding the characterization of limits of scaled gra-
dients in the multiscale setting adapted to dimension reduction. We omit its proof
as it is a simple generalization of the arguments in [22] Theorem 6.3.3].

Theorem 3.6. Let u, {u"} C WH2(Q) be such that
u —~u weakly in WH3(Q).

and
limsup/ |Viu!(x)]? do < oo.
h—0 Q
Then w is independent of xs. Moreover, there exist uy € L*(€; Wi (Q)), ug €

L2(Qx Q;WEE(Q)), and w € L? (w x Q@ x Q;WH2( — £,1)) such that, up to the
extraction of a (not relabeled) subsequence,

h dr—3—s ,
Viu — (V u+ Vyul + V,uo

3x3ﬁ) weakly dr-3-scale.

Moreover,
(1) if 1 =v2 =400 (ie. e(h) << h), then Oy, = 0,,u =0, fori=1,2;
(i) if 0 <y < 400 and v = 400 (i.e. e(h) ~ h), then
_ Uy
u=—;
g

1
(i) if 1 =0 and y2 = +oo (ie. h << e(h) << h2), then
Oz,u1 =0 and 0,u=0,i=1,2.

In the last part of this section we collect some properties of sequences having
unbounded L? norms but whose oscillations on the scale € or €2 are uniformly con-
trolled. Arguing as in [I7, Lemmas 3.6-3.8], we highlight the multi-scale oscillatory
behavior of our sequences by testing them against products of maps with compact
support and oscillatory functions with vanishing average in their periodicity cell.
In the proof of Theorem we refer to [I7, Proposition 3.2] and [27), Proposition
3.2], so for simplicity we introduce the notation needed in those papers.

Definition 3.7. Let f € L*(w x Q) be such that
/ fy)dy=0 ae. inw.
Q

We write
osc,Y -~

M= f
if

tim [ 5o () s = [ [ Ftiet ot dpas

for every ¢ € C2°(w) and g € C3e,(Q), with [, g(y) dy = 0.
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Let {f"} ¢ L?(w) and let fe L?(w x Q x Q) be such that
/ f(~,~,z) dz=0 ae. inwxQ.
Q

We write

osc,Z =
—_

fh
if
/

. / ;) T ' ’_ F / /
ti [ 7t “)e () o' = /M/Q/Qf@c 2l ) (2) dz dy da
for every ¢ € C2°(w; Cper(Q)) and ¢ € Cpe(Q), with [, ¢(2) dz = 0.

per

Remark 3.8. As a direct consequence of the definition of multiscale convergence
and density arguments, if {f"} C L?(w), then
h 2—s
f*— f weakly 2-scale

if and only if

osc,Y

@) " ) - /Q f.y) dy.
Analogously,
20 F weakly 3-scale
if and only if
fi) L - /Q F,y.2) de.

We recall finally [I7, Lemma 3.7 and Lemma 3.8].
Lemma 3.9. Let {f"} € L=(w) and f° € L>=(w) be such that
50 weakly-* in L°°(w).

Assume that f' are constant on each cube Q(e(h)z,e(h)), with z € Z2. If f° €
Wh2(w), then

fh osc,Y

e(h)
Lemma 3.10. Let {f"} ¢ W'?(w), f° € W'3(w), and ¢ € L?(w; W32(Q)) be
such that

—(y- V") f°.

= % weakly in W2 (w),
and
v’ fh B V' 0+ Vy¢ weakly 2-scale,
with fQ é(x',y)dy =0 for a.e. ¥’ € w. Then,

h Y
UGN

=)
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4. IDENTIFICATION OF THE LIMIT STRESSES

Due to the linearized behavior of the nonlinear elastic energy around the set of
proper rotations, a key point in the proof of the liminf inequality is to establish
a characterization of the weak limit, in the sense of 3-scale-dr convergence, of the
sequence of linearized elastic stresses

ph._ V (VpuM) TV puh — Id

h
We introduce the following classes of functions:
[ {U € L2(Q x Q x Q; M>3) - (4.1)

there exists ¢; € L? (w; W1’2(( — %, %), Wgéf(Q;R?’)))
and ¢g € L*(Q x Q; W2 (Q; R?))

per

such that U = sym (qubl 6$3¢1) + sym(VZ¢>2|0)},
71
Carootoo 1= {U € L2(Q x Q x Q; M>3) : (4.2)

there exists d € L*((;R?), ¢y € L?(; Wgéf(Q;R:g))
and ¢z € L*(Q x Q; Wi (Q;R?))

per

such that U = sym(V,é:|d) + sym(Vz¢2|O)},

and
Coroe = {U € L2(Q x Q x Q; M3*?) ; (4.3)
there exists € € LQ(Q; WSé%(Q;RQ)), 7€ Lg(w; Wg;j(Q)),

g € L2(QxY),i=1,2,3, and ¢ € L*(Q x Q; W'2(Q;R?)) such that

per

V€ + $3vg2ﬂ7 g1

U= sym( g )+ sym(vz¢|0)}-
g1 92 g3

We now state the main result of this section.

Theorem 4.1. Let v, € [0,+00] and 72 = +oo. Let {u"} C WH2(Q;R3)
be a sequence of deformations satisfying (3.1) and converging to a deformation
u in the sense of Theorem . Then there exist E € L*( x Q x Q;M2X3),

B € L*(w;M?**?), and U € C., 400, such that, up to the extraction of a (not
relabeled) subsequence,

h dr—3—s
E" — FE  weakly dr-3-scale,
where
_( zsI*(2’) +sym B(z') 0
E({E7y72)—< 0 O )+U($7y72),
for almost every (x,y,z) € Q x Q x Q, with
a5(2") = =05 gu(a) - nu(2) for a, f = 1,2, (4.4)

and nq, (z') = Oru(z’) A dqu(a’) for every &' € w.
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Proof. Let {u”} be as in the statement of the theorem. By Theorem [3.1] the map
u € W22(w;R3) is an isometry, and

Vyu' = (V'uln,) strongly in L?(€; M3*3). (4.5)

For simplicity, we subdivide the proof into three cases, corresponding to the three
regimes 0 < 73 < 400, 71 = 400, and v; = 0, and each case will be treated in
multiple steps.

Case 1: 0 <y < 400 and 7y, = +00.

Applying Lemma with §(h) = e(h), we construct two sequences {R"} C
L>®(w; SO(3)) and {R"} € Wh2(w; M3*3) such that R" is piecewise constant on
every cube of the form Q(e(h)z,e(h)), with 2z € Z?, and

IVhu" — R 2 (quoxa) + IR" = R [Z2 (ngox9) (4.6)
+ B2V R 3 2 g xs spsxsy < Clldist(Viu'; SO(3)) 720
By and , there holds
Viyu" — R =0 strongly in L?(€; M3*3),
R — R" 0 strongly in L?(Q;M3*3),

and {R"} is bounded in W12 (w; M3*3). Therefore, by (4.5) and the uniform bound-
edness of the sequence {R"} in L°°(w;M3*3), and in particular in L?(w; M3*3),

R" - R strongly in L?(w;M?3*3), R =* R weakly* in L™ (w; M?*3),

(4.7)
and
R" ~ R weakly in Wb2(w; M>*3), (4.8)
where
R := (V'uln,). (4.9)

In order to identify the multiscale limit of the linearized stresses, we argue as in
[17, Proof of Proposition 3.2], and we introduce the scaled linearized strains

(RMTVpul — Id

3 .
By (3.1) and (4.6) the sequence {G"} is uniformly bounded in L?(£2;M3*3). By
standard properties of 3-scale convergence (see [3, Theorem 2.4]) there exists G €
L2(2xQxQ; M>3*3) such that, up to the extraction of a (not relabeled) subsequence,

Gh .= (4.10)

B 378
G" — G weakly 3-scale. (4.11)
By the identity

\JUd+hF)T(Id + hF) = Id + hsym F + O(k?),
and observing that

o VIVut)IVuh —Id - \/(Id + hGM)T(Id + hG") — Id

h h ’
there holds
E =symG. (4.12)
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By (4.11)), it follows that

2—s

Gh — | G(z,y,2z)dz weakly 2-scale.
Q
Therefore, by ﬂ]jl, Proposition 3.2] there exist B € L?(w;M?*2?) and ¢, €
LQ(w;Wl’Q(( ) Wgef(Q;R?’))) such that
s [ Gy 0t (113)
u / /
_ ( x3I*(2') + sym B(z’) 0 )+sym V,é1(z,y) 05 01(,y)
0 0 !

for a.e. x € Qand y € Y. Thus, by (4.12) and (4.13) to complete the proof we only
need to prove that

sym Gz, y, =) — sym / Gz, y,€) dE = sym (V.o (z,, 2)|0) (4.14)

for some ¢ € L?(2 x Q; W2 (Q; R?)).
Set

1
2

a(z') = / ) ul(z',x3) des  for ae. 2’ € w (4.15)
2

and define r" € W12(Q; R3) as
uh(z) = @"(z') + haxsR" (' )es + hr' (2, z3)  for ae. z € Q. (4.16)

We remark that .

2 hi, ./ d _

(@ ws) das =0, (4.17)
-3
and

thh — Rh B v/—h _ (Rh)/ (Rh _ Rh)
h N ( h h
We first notice that by , (4.6)), 7 and -, the sequence {r"}
is uniformly bounded in W12(Q;R?). Hence by Theorem 3.6} . (ii) there exist
r € Wh2(w;R3), ¢1 € L?(w; Wh2((— 4, 1); Wgef(Q,R?’))) and ¢y € L2(Q x Q;
W12(Q;R3)) such that, up to the extraction of a (not relabeled) subsequence,

per

+ fgv/Rhegl 63) + Vhrh. (418)

dr—3—s

Vart =" (V4 Yy + Ve

ng/)l) weakly dr-3-scale. (4.19)

By (3.1) and (4.6)), and since R" does not depend on x3, {W} is bounded
in L?(w; M?*2). Therefore by [3, Theorem 2.4] there exists V € L?(wx Q x Q; M3*2)
such that, up to the extraction of a (not relabeled) subsequence,

I=h _ Rh /I 3_g
M — V'  weakly 3-scale. 4.20
h

Case 1, Step 1: Characterization of V.
In view of (4.14)), we provide a characterization of

Vial,y,z) - /Q V(a!,y, ) de.
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We claim that there exists v € L*(w x Q; W2 (Q; R?)) such that

Vi(x',y,z) f/ V(x',y,€)dé = Voo(2',y,2) forae. 2’ €w, and y,2 € Q.
Q

(4.21)
Arguing as in [I'7, Proof of Proposition 3.2], we first notice that by [3, Lemma 3.7]
to prove it is enough to show that

/// x»yv@—/ V(fc’,y,ﬁ)dé) (V) e(2)e( y) dz dy da’ = 0 (4.22)

for every ¢ € CL(Q;R?) and ¢ € CX(w;C2(Q)). Fix ¢ € CL.(Q;R?) and
Y € O (w; Cpe(Q)). We set

() = 82(}1)%0(8;2]1)) for every 2’ € w.
Then,
[EEE o
Tagh (! !
_ /w V“T(x) (V) (o %) da’
= [T @) [ (o, )
/e h ' , , @ ’

TR e (0 ) - et )| o

The first term in the right-hand side of (4.23) is equal to zero, due to the definition
of (V/)*+. Therefore we obtain

/ T 9o i ol i) 8 21
/w V(e [¢<52x(h))®(V/)jw(xl’a(xh))}
- 5(fil)/wV'uh(a:’) : [(’0(5;27}1)) ® (V');w(x’,;—h))]

By (4.6), the regularity of the test functions, and since v = +o00, we get

!/ /

EQ(h) I=h( ./ < L r L /
h /qu () : [(p(%)éé(v )Iw(x’g(h))} dx’ — 0, (4.25)
while by (4.5), (4.9), and the regularity of the test functions,

/ /

lim g(lj‘)/v'-h( oF [@(%) ®(v');¢(x',$)]dz' (4.26)

/ / / R’ ® (V) ¢(a',y)) dz dy dz' =0,

where the latter equahty is due to the periodicity of ¢ with respect to the y variable.
Combining (4.23)), (4.24), (4.25) and (4.26)), we conclude that

Jim | w : (V’)Lga(é:;i/h))z/}(x @) dz’ = 0. (4.27)
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In view of (4.20]), and since

[ (] vimod) : (97 e dzdyds’ =0
wJIRJIQ Q
by the periodicity of ¢, (4.22)) will be established once we show that

lim W(Rh)h/(x/) L (V) <52(h))w(x/’sff/o) da' = 0. (4.28)

In order to prove (4.28), we adapt [I7, Lemma 3.8] to our framework.

Since ¥ € C2°(w; Cpe,(Q)) and h — 0, we can assume, without loss of generality,

that for h small enough
dist(supp ©; dw x Q) > (1 + 71)]1.
We define
7 = {z €Z%: Q(e(h)z,e(h)) x Q Nsupp ey # @},
and
Q- = U Q(s(h)z,s(h))
ZELE

Since 0 < 1 < +o0, for h small enough we have v/2¢(h) < i—’f, so that

dist(Q.; Ow) > (1 + %)h —V2e(h) > (1 + i)h.

gt
We subdivide

Qur 1= { QRN 2()) = A € 2% and Q2 (W)X, () N Q- # 0}

into two subsets:
(a) “good cubes of size £2(h)”, i.e., those which are entirely contained in a cube

of size (h) belonging to Q., and where (R")" is hence constant,
(b) “bad cubes of size £2(h)”, i.e., those intersecting more than one element of

Q--

o
i\

—
"bad" cube

|

"good" cube
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We observe that, as v, = +00,
dist(Q.2; dw) > dist(Qe; dw) — V2e2(h) > h (4.29)

for h small enough, and
|w]

75 < C
#2 = Camy

(4.30)

Moreover, if z € Z¢, A € Z?, and

2(h)X € Q(e(h)z,e(h) — %(h)),
then Q(e2(h)\,e2(h)) is a “good cube”, therefore the boundary layer of
Q(e(h)z,e(h)), that could possibly mtersect “bad cubes” (see Fig 1) has measure
given by

Q(e(h)z,(h))| = |Q(e(h)z,e(h) —€(h))| = e(h)* = (e(h) —e(h)?)* = 2¢(h)* —e(h)".

Vo

Fig 1. The layer Q(s(h)z,e(h)) \ Q(e(h)z,e(h) — *(h))
By (4.30)) we conclude that the sum of all areas of “bad cubes” intersecting Q. is
bounded from above by
|w]

e2(h)

(2e3(h) — *(h)) < Ce(h). (4.31)
We define the sets
Z5 = {)\ €723z € T¢ st. Q(eX(h)A, e2(h)) C Q(e(h)z,e(h))},
and
€ ._ 2. 2 2 €
- {)\ €72 : Q(e(h)*)\e2(h) N Q. # 0 and A ¢ Zg}
(where ‘g’ and ‘b’ stand for “good” and “bad”, respectively). We rewrite (4.28) as

(R") () o ' , ,
-2 /Q<s2<h>x,52(h)> P )Lw(fﬁ(h))w(x ’ E(h)) e

AEZ

/

MY (! p x’ , X ,
" Z /Q(SQ(h)A,EQ(h)) (R)# HV )Lw<62(h))w<x ’ @) dz’.

AEZE
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Since the maps {(R")'} are piecewise constant on “good cubes”, by the period-
icity of ¢ we have

Ry (! , 2! ) 2 /
/wm)h() (v )l‘p<g2(h))w(x %) de (4.32)
- / (B ()
xez: JaEmaem) b
) e(5) (¢(m Ef,;)) w(sz(h))\,e(h))\)> da’
R (@)
+A§Z:g/;(€2(h)>v€2(h)) h
e () (9 ) v @A)
(RY(@)  opr (@ N ,
+ = /Q(Ez(h)w(h)) (v >ﬂo(€2(h))w<s (W)X, e(h)A) da’.

We claim that

’?L%‘ 2 /Q<ez<h>x82(h)) (Rh)% : (VI)L“D( - )w(g(h)/\’g(hﬂ) da’| = 0.

Aezs

Indeed, by the periodicity of ¢,

X
(Ve dx' =0 for every \ € Z,
/Q<s2<h>x,sz(h>> (52(’1))

and we have

(RMY () ., ' , /
gz:s /Q<€2<h>xe?<h>> W )l‘p(sQ(h))w(g (h)Aaf(h)A) da
_ / (Rh)/(l‘/) _ (Rh)/(Ez(h))\)
AEZE Q(e2(h)\,e2(h)) h

: (V’)lap(sji/h))w(sz(h))\75(h))\) dz'.

Therefore, by Holder’s inequality,

h\/ 7 2
‘ Z /Q( 2(h)X,e2(h)) &h() : (Vl)l@(%>w(52(h))‘75(h))\> dx’ (4.34)
AEZ], g €
Sg |(Rh)l(l’/)7(Rh)/(€2(h))\)|dl‘/
Unezg Q(e?(M)Ae2(h)

1
O =
< ﬁ‘ Unezg Q(€2(h))\7€2(h))‘ IR (2) — (Rh)/(52(h)/\)||LQ(UAEzZQ(ez(h)A,EQ(h)))-

Every cube Q(?(h)\,€2(h)) in the previous sum intersects at most four elements
of Q- (see Fig 2). For every A € Zg, let Q(e(h)z},¢), i = 1,---,4, be such cubes,
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where
#{z)i=1,---,4} < 4.

7

Without loss of generality, for every A € Zj we can assume that

2 (M)A € Q(e(h)zy,e(h)),

so that
I((RM)(z") — (RM)(€2(R)A)]| =0 a.e. in Q(e(h)z},e(h)).
Hence,
Rh/x/ _Rh/ 2h)\2dx'
A%s-/Q(EQ(h))\,az(h))K )'(@') = (B") (" (h)A)]
Rh’x/ _ Rh/ Qh)\ de,.
/\gzjsz 1/ (e2(h)X,e2(h))NQ(e(h) 2} E(h))|( )' (@) = (B*)(e°(h)A)]

Since the maps {R"} are piecewise constant on each set
Q2 (M)A, €% (h) N Q(e(h)z', (),
there holds
(R (2) = (R (€2 ()N = [(R")'(2') — (R")'(a' + €)|
for some & € {&e?(h)ey, £e%(h)eq, £e?(h)e; & e2(h)ea}.

Fig 2. For every X € Zg, the cube Q(2(h)\, £%(h)) intersects at most four element of Q..

Therefore, by (4.29) and Lemma and since 71 € (0,400), we have

/ (RY(@) = (RY GNP (139)
xeze J QA n)

< C|dist(Vau"; SO(3))[|72(0

Combining (3.1)), (4.31)), (4.34), and (4.35), we finally get the inequality
5 (RYY@)  nr (@ N ,
— (V)7 P(2(h)N, e(h)A) dz

~/Q(52(h))\,s2(h)) h ) (sQ(h)) ( (R)A, &(h) )

AEZE
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O l
< | Unez; QEMA(0)| [dist(Tau"s SOB)) 120y
1
< O Urez; QEMAEM)|* < CVEm),
and this concludes the proof of (4.33)).
Estimates (4.32)) and (4.33) yield
: (R")' (@) one (2 ;o /
dm | (V) <p<52(h))w(x’a(h)>dx
R/ (!
Y (R (')
"0 oy TR A P
. L ! / L/ _ 2 !
(g ) (45 ) — A )N ) o
h\/ (!
Y ()
hﬁOAe(ZaUZE) Q(e2(h)A,e2(h)) h
1
d 2 / 2 /
(V)2 (>)(/0 D-(2 (WA + t(a! — (M) dt ) d,
where ¢.(z) : ( = z° ) for every 2’ € w. Therefore, by the periodicity of ¢
: (Rh) ('T) . L .Z‘/ / xl /
fim [ S (e (g ) (s ) (4.36)
. e2(h
—im| > =R (RY(): (V)
AE(Z;UZ;) Q(e2(h)Ae2(h))
o' —e(h)A Yo 2 )2 (2" — 2 (h)A) /
(6%))(/0 V' (2 (M)A + (2! — 2(h)N)) - Wdt) dz'|.
Changing coordinates in (4.36]) we get
. (R")' (@) one, (% ;@ /
i | (V) “0(;;2(h))w(x’@> de (4.37)
= lim )~ M/(Rh)’(sz(h)z+52(h)>\)
h—0 h Q
AE(ZEUZS)
(V) Ep(2) / V' b (e2(h)A + te?(h)2) dt~z) dz
1 e(h) oy 2
—,ygg[ > 5 [eyEmermy
AE(ZFULS)

1

: (V’)J‘go(z)< /0 (Vo (2 (M)A + te2(h)2) — V' (2(R)N)) dt - z) dz
6
+ > E(if)/Q(Rh)’(az(h)z—&-sz(h))\)

AE(ZFUZE)
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S (V) Eo(2) (Ve (€2(R)N) - 2) dz] .
‘We notice that

> EG(Th) /Q (R™Y(€2(h)z + €2(h)N) (4.38)

Xe(ZgUZE)

lim
h—0

: (V’)J‘go(z)(/o (Vg (e2(R)A + te?(h)z) — V’gbe(sZ(h)A))dt) ~zdz] =0.

Indeed, since [[(V)2¢. || oo wx @maaxsy < %, we have

S [ e+ 2y

AE(ZFUZS)

1
H(V) () ( / (V6. (2 (WA + t22(R)2) = V6. (2 (X)) dt - =) d=

6
<ot 5 Y20z 4 O Pl )zl 0=

NE(ZGUZE)
ef(h) By 2 2
<C— > |((R")(€2(h)z + €2 (h)\)| dz
re(zzuze) @
e2(h e2(h
SyeaL / B @) da' < 0P (B s sy
re(zguzg) Y QA (WAe2 ()
which converges to zero by (4.7) and because vy, = +00.
By (4.38)), estimate (4.37) simplifies as
: (R")' (=) one (2 ;@ ,
Ag%/w h (V) 90(52(h)>w($ ’ 5(h)> de (4.39)
T S L / (R (2(h)z + £2(h)N)
h—0 h Q
NE(ZVZ)

(V) 0(2)(VVe(2()A) - 2) dz

e (h) /Q((Rh)/(62(h)z +e2(M)A) — (RM) (2 (h)N))

1m A

L\e(zguzg)
(VD o(2) (V' de (E2(R)N) - 2) dz

We observe that

|3 = (R Eme+ 200 — (RN (a0

h—0 [
AE(ZFULE)
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(V) o(2) (V6 (2()A) - 2) d=

Lo REMP3) and [[(V/) el Lo wxq) < %, recalling the def-
1n1t10n of the sets Zj and Zg, and applying Holder’s inequality, (3.1)), , and
, we obtain

E6(Th) / ((Rh)/(52(h)z +€2(h))\) _ (Rh)/(€2(h))\))
Q

Indeed, since ¢ € C}

AE(ZEUZS)

(V) 0(2)(V/e(2(h)A) - 2) dz

SC<€5(h) Z / I(RMY (€2(h)z + €2(h)A) — (RM) (€2(R)N)| d

h
€(Z5ULs)
h

I At 9 x/
Z /‘?(82(h)A.s2(h)) [(RY)(2") = (B (e7(h)A)] d

AEZE

Ce(h

w\w

1
< )‘ Unez; QA 2(W)|” [[dist(Vau"; SO(3))ll () < Celh)?.

Collecting (4.39)) and (4.40), we deduce that

CRYE) e N

%;“%WT'(VW(EQ(MW(“m)dI (4.41)

Sgim | S S R0 (7 T 00N ) |
AE(ZZVZ5)

Since 0 < 7, < 400 and 7, = +00, by (4.7) we have

(RM) (@) + (V') () (V' ¢e(a”) - 2) da’ dz
PA2(h)

82;;0 [ [
(e (e ) ol ) e
- i// / R(2'): (V) (=) (Vy(a',y) - 2) dzdy da’ = 0,

by the periodicity of ¢ with respect to y. We observe that if A € Z{, then

f (B @) (V)0 (V6.(w') - 2) d’
Q(e*(h)A,e2(h))

— (RM) (M) - f (V) () (Ve (o) - 2) e,

Q(e2(h)A,e2(h))
and we obtain

lim
h—0

ﬂT]w / (Rh)/(52(h))\) : (V/)L@(Z)(V/¢g(€2(h)A) 2)d»
Q

L\e(zguz;)
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- h)/(l'/)
quze Q(e2(R)A, aZ(h))
(V) () (Ve(2)) - 2) da dz}
. eb(h) o
=lm | 2 (B0
V) e(z V/EQh)‘* V¢ z| dz
/Q< Fo(2)] (7o) ]é( ey, T ) ]
6
t2 E;(lh)/(RhY( 2)A) = (V) o(2) (Ve (2(R)N) - 2) dz
AEZ}
/ ][ Rh)/(x/) . (v/)J_SO(Z)(VIQSs(x/) Z) d(E/dZ‘|
AeZE R)A,e2(h))

By the regularity of ¢ and v, and the boundedness of {R"} in L™ (w;M3*3),

> #mh)’(g(h)k) (4.42)
)\EZE'
: / (V') e(2) (V’ebs(e?(h)A)— ][ V' (2) dw’) 21 dz
Q Q(e2(h)\e2(h))
<= / V6. (2(h)\) — V' ()] da’
)\GZE Q(e2(h)\,e2(h))
<ct AU )HV2¢E||L°° (wx@dzx3) < C 2}(Lh)

which converges to zero, because 72 = +00. On the other hand,

Z st(Lh) /Q

AEZE

(R (2(h)A) : (V) p(2)(V/ he(€2(R)N) - 2) dz (4.43)

- ][ (R")'(2") « (V) () (Ve (a') - 2) dw’} dz
Q(sz(h)/\ £2(h)

—y / BY (£2(h)A)

NEZ}

(Ve[ (Voin - f

Q(e2(h)A.e2(h))

/ ][ (R")(2(WA) — (R") (")
/\67115 Q(e2(h), 82(h))

(VD e(2) (Ve (2) - 2) da’ dz.
Therefore, arguing as in (4.42), the first term on the right hand side of (4.43)
2
is bounded by C’#, whereas by (4.31) and the boundedness of {R"} in

V' e () dx') . z] dz
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L (w; MPXP),
gz:g EGf(Lh) /Q]€2(62(h))\,52(h))((Rh),(€2(h)>\) — (BY'(@) (4.44)
(V) 0(2) (Ve (a) - 2) da’ dz
= C# / [(RM) () — (R")(*(h) )] da’
eze JQE A ()
§052@7

which converges to zero as v = +00.

Combining (4.41)—(4.44) we conclude that
, (BM)'(=") oL ( b N
}1bl—>mo w h V) @(82(h))w(9& ’ s(h)) da” = 0. (4.45)
By (L20), (L27), and (I15), we obtain
L L] (e [ Vi) @) e pdsdyar =0,
w Z

for all ¢ € C}..(Q;R?) and ¢ € O (w; Cp,(Q)).
This completes the proof of (4.21)).

Case 1, Step 2: Characterization of the limit linearized strain G.
In order to identify the multiscale limit of the sequence of linearized strains G,
by (4.12)), (4.14), (4.18)—(4.20) we now characterize the weak 3-scale limits of the
sequences {x3V’'R"e3} and {%(Rheg — Rle3)}.

By and [3, Theorem 1.2] there exist S € L*(w; Wki(Q;M?**%)) and T €
L2 (w x Q; WL2(Q; M3*3)) such that

per

~, 3—s
V'R" —~V'R+V,S+V.T weakly 3-scale, (4.46)
where fQ S(z',y)dy = 0 for a.e. o’ € w, and fQ T(2',y,2)dz = 0 for a.e. 2’ € w,
and y € Y. By (3.1) and (4.6)), there exists w € L?(w x @ x @Q;R?) such that
1 -~ 3—s
E(Rheg — R'e3) — w  weakly 3-scale

and hence,

—_

—(R"e3 — Re3) — wy weakly in L?(w;R?)

>

where

wola') = / / w(@y, =) dy dz,
QJQ

for a.e. ' € w. We claim that
1 - 3— 1 -VR(z'
MM%H@)iwmﬁ+%ﬂ%m%+@ifm%, (4.47)
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weakly 3-scale. We first remark that the same argument as in the proof of (4.28))
yields

Ri;leg Oi\z 0.
Moreover, since 71 € (0,4+00), by (4.7), Lemmas and there holds

Rtey oseY  (y-V')Res
h "M

and ~
Rh€3 Oi,y 563
h o
where in the latter property we used the fact that fQ V.T(z',y,z)dz = 0 for a.e.

2z’ € wand y € Y by periodicity, and fQ S(z',y)dy =0 for a.e. ' € w. Therefore,
by Remark to prove (4.47)) we only need to show that
Rheg oi\Z
h
To this purpose, fix ¢ € Ce,(Q), with fQ ¢(z)dz =0, and ¥ € C°(Q; Cre,(Q)),

and let g € C?(Q) be the unique periodic solution to

{AM@=¢@)

(4.48)

fQ g(z)dz = 0.
Set
5 ')—52(11)( i ) for every o’ € (4.49)
g (z') = g =20 or every 1’ € w, :
so that
. 1 x
Agé(z') = %‘P(%) for every 2’ € w. (4.50)

By (4.49) and (4.50)), and for ¢ € {1, 2,3}, we obtain
Rh3($,) ' / ' /
his\ ) =~ V4

/w h “”(62 h)>¢($ ’ a(h)) v
) [ 4

(
= /wR%(x')Ags(z’)w(z’,Ex )da:’.

(h)
Integrating by parts, we have
Rl (') ' , ,
/w v (am) e ) (4.51)
— 52(h) ! / / 5 ’ ’ ZC/ ,
-y WVthg( ) V(Q ($)¢($,E(h)>)dx
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B h;h) /wé%(xl)ga(x 2 (o' )
Since V'’ (gs( ) (., )) € L™ (w; R?),
i S0 [ Rl (g @) e =0,

where we used the fact that 75 = +00, and similarly,

tim S [ o) (59 9000 (+

xl ) !/ / Jj/ /
Ay ) dz’' = 0.
) e (e ) ) do
(4.53)
Regarding the third term in the right-hand side of (4.51)), we write

) [ B 295 ) 9y (s o) + 20 ) i, V) (o, S5

(4.54)

Rly(2")V'g 5;@) -vyw(x',ﬁ) da’
h (2)g (52.%('h)>(dlvyv w)(xl,jT)) dz’.

By the regularlty of g and 1,

e(h)
h

=2

/

x/
V’g(‘g‘z(h)) V(e (h)) — Vg(2)V,b(a’,y)  strongly 3-scale.
Therefore, by (4.8 ., and since 0 < 3 < +00 and v, = +00, we obtain

,HO[ /R V' 9 (x ’)-Vyw(xﬂgzc};)) (4.55)

/

+2¢° (2" (divy, Vr1p) (:c', E?h) )} dx/}

= jl/W/Q/QRig(aj’)Vg(z).Vyw(m/7y) iz dy d’ = 0,

where the last equality is due to the periodicity of ¢ in the y variable.
Again by the regularity of g and 1,

! 3—s

g(%)Ayzp (ml’ ;7@) — g(2)Ayy(a’,y) strongly 3-scale,

hence, by (4.8)), and since 0 < v, < 400 and ¥ € C°(w; Cpe,(Q)), the fourth term
in the right-hand side of (4.51] u ) satisfies

sy [

///RZS VA (2, y) dz dy da’ = 0,

Claim (4.48), and thus ([£.47), follow now by combining (4.51)) with (£.52)(4.56).




26 L. BUFFORD, E. DAVOLI, AND I. FONSECA

Case 1, Step 3: Characterization of E.
By (4.7)), and by collecting (4.18)), (4.19), (4.20), (4.46), and (4.47), we deduce the
characterization

R(I/)G(.’L‘, Y, Z) = (vlr(xl) + Vv(ﬁl (.Z‘, y) + Vzé?(xa Y, Z)‘%(r%s(il (l‘, y))

+ 23 (V'R(x’)eg +V, S y)es + V. T(2, vy, Z)€3|0)

for a.e. x € Q and y, 2 € Q, where r € Wh2(w; R?), ¢y € L2 (w; WH2((—1, 1);
WIAQRY), wo € D@k, S € LwWRQMY), V e L{u'x Q x
Q; M3¥2), dy € L2(QxQ; WE2(Q; R?)), and T € L2(wx Q; WL2(Q; M3*3)). There-

per per
fore, by (£21)

SyIIlG(I,y,Z)/QSyHlG(fE,y,f)dg

= sym

R (Vi w2) = [ Vi2)+ edato v 2)0)

+ z3R(2)T (VZT(x’, Y, z)es ‘0)

= sym

R(x,)T (VZ’U(.TI, Y, Z) + szisz(za Y, Z) + xgva($,, Y, 2)63‘0>] 5

where Tes, 0 € L?(w x Q; W12(Q;R?)). The thesis follows now by ([{.12), (£.13),
and by setting

¢o = R (v + dy + x3Te3).
fora.e. x € Q, and y,z € Q.

Case 2: v; = 400 and 2 = +o00.
The proof is very similar to the first case where 0 < y; < +00. We only outline the
main modifications.

Arguing as in [I7, Proof of Proposition 3.2], in order to construct the sequence

{R"}, we apply Lemma with

8(h) = (2[6(’2)] + 1)s(h).

This way,
h 1

lim o = =
B0 8(h) 2
and the maps R" are piecewise constant on cubes of the form Q(5(h)z,d(h)), with

z € Z2. In particular, since {%} is a sequence of odd integers, by Lemma

the maps R" are piecewise constant on cubes of the form Q(e(h)z,e(h)) with

z € 7%, and ([4.6) holds true. Defining {r"} as in (4.16]), we obtain equality (4.18].
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By Theorem [3 i), there exist r € Wh2(w; R?), ¢, € L2( Wi 2(Q;R?)), by €
L2(Q x Q; Wi 2(Q;]R?’)), and ¢ € L?(w; WH2(( = 3, 1);R?)) such that

per

h dr—3—s , ~ ~ .

Vipr®  — (V'r+ Vo1 4+ V.¢2|05,6) weakly dr-3-scale. (4.57)
Moreover, (4.13) now becomes
sym /QG(%y,f) dg

_ ( $3Hu<;1;/) —BSym B((E/) 8 ) + Syl’H(Vy(,bl (x,y)

0r,)

for a.e. € Q and y € Y, where B € L?(w; M?*2). Arguing as in Step 1-Step 3 of
Case 1, we obtain the characterization

E(z,y,2) = ( el ) BSYmB(m/) 8 >

+sym(Vyoi(z, y)|d(2)) + sym (Vg2 (2, y, 2)|0),

with d := 0,6 € L2 R?), ¢y € L2( WL2(Q;R?)), and ¢ € L2 x Q;
Woit(Q;R?)).

Case 3: v; =0 and 2 = +o00.

We apply Lemma with

h 2
3(h) == (2[%] +1)2(n),
and by Lemma [7.1] and Remark [7.2] we construct
{R"} € L®(w; SO(3)) and {R"} ¢ Wh2(w;M3*3),

satisfying , and with R" piecewise constant on every cube of the form
Q(e2(h)\, e (h)), with \ € Z2.

Arguing as in Case 1, we obtain the convergence properties in and ( .,
and the identification of FE reduces to ebtabhshlng a characterlzatlon of the weak
3-scale limit G of the sequence {G"} defined in (4.10). In view of [27, Proposition
3.2], there exist B € L?(w;M?*?), ¢ € L2(€); Wplcf(Q;RQ)), n e L*(w; W22(Q; R?)),
and g; € L*(Q x Y), i = 1,2,3, such that

/Ex Y, 2 dz—sym/Gx Y, 2 (4.58)
_ ( x3I1%(x’) + sym B(z') 0 )
0 0
symV,&(z,y) + 23Vin(z',y)  g1(x,y)
+ ( 92(z,y) >
a(z,y) g2(z,y) 93(z,y)

for a.e. # € Q and y € Y. We consider the maps {@"} and {r"}, defined in

(4.15)) and (4.16]), and the decomposition in (4.18). By Theorem (iii) there exist
maps 1 € W (w;R?), ¢1 € L (w; Wi (QsR?)), d2 € L*(Q x Q; Wécf(Q;RB)% and

per
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¢ L*(wxQ;Wh2((—1,1);R3)) such that

dr—3—s N ~ _
Vir" = (V'r + Vo1 + V.02]0s,¢) weakly dr-3-scale.

Defining V as in (4.20]), we need to identify the quantity

V(' y, 2 /V:vy,

Case 3, Step 1: Characterization of V
We claim that

Vi(x', y,2) — / V(x',y,2)dz = V(' y, 2) (4.59)
Q

for a.e. 2’ € w, and y, z € Q, for some v € L*(w x Q; WL (Q;R?)).
As in Case 1-Step 1, by [3, Lemma 3.7] and by a density argument, to prove

(4.59) it is enough to show that

/w /Q /Q (Vi y,2) = /Q V(2! y,2)dz) : (V') (2)8(y)y(a") dzdy da’ = 0

(4.60)
for every p € per(Q R3), ¢ € per(Q) and ¢ € C°(w). Without loss of generality,
we may assume in addition that [, ¢(2) dz = 0.

Fix ¢ € per(Q,Rg) o€ per(Q) z/J € C®(w), and set

/ /

() == 62(11)(;5(8(%]1))@(5;&@) for every a’ € R?.

‘We notice that

! ! ! !
T

NL e(ot 1 z r 1 55
_ 4.61
(V)7e(@) =V <’0<52(h))¢<€(h))+8(h><p<52(h))®v ¢<E(h)) (4.61)
for every x’ € R2. Integrating by parts, in view of the definition of V+ we have

th

L a( ) d(E _ /th . a / ®(VI)LQZJ(1'/)d£L'/

e ]gh)/vh"’( )-¢(%)¢(Ez(h>) & (V) i)

(h)
Therefore, by (4.6) and since 5 = 400, we obtain
lim th Vet (2)eb (') da’ = 0.
h—0

By the regularity of ¢ and ®,

/ / s

¢(%)Vl<ﬂ<€;§7h)) 3—> (y)V+p(z) strongly 3-scale

and
/ / —s

<p<€2i7h)> @ v%(jh)) 3 o(z) @ V4e(y)  strongly 3-scale.

By the definition of V (see (4.20]), (4.61)), and since R" does not depend on x3, we
deduce that

ﬁh _ h\/
tim [ L (9 e ot (4.62)
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- / /Q /Q V(@' y,2) s VEp(2)é(y)b(a’) dz dy da'.

In view of (4.62)), (4.60) reduces to showing that

h\/ !
%iir%)/w (B 2( ) S (VYR (2 (') da’ = 0. (4.63)
Defining
77 = {7 QAN () Nsupp s # 0},
we obtain

(R") (") (o , ! N
| () (0 e (i e (4.64)

= LR M)

DN/

: /62(52(h)>\,52(h)) (¢(€(fh))w($,) B gZ’(E(h))‘)@b(*fz(h)>\)) (V')Lap(gf(h)) da’,

where we used the fact that
A

xr ~
(V’)lcp( ) dx’ =0 for every \ € Z°
/Q(a%h)ww)) e?(h)

by the periodicity of ¢. The regularity of ¢, ¢ and v yields

/

67 )P ) — SR

6(

/Odi[w A+t - = (W) )V (2 (WA + (o’ — 2(R)N) | at
v

th h)/\>)¢(52(h)>\ + (@ — £2(h)N))

(7 h§h )]
+/0 ¢<5(h))\+t< ?h) —e(h)A ))V’u)(aQ(h))\—l—t(m’—52(11))\))
(2 — 52(h)x)] dt.
Therefore can be rewritten as

/

/w(Rh)h/(I/) :¢<€:(Ef/l))(V/)J_<p<€;(jh))w(x/)dx/ (4.65)
— 5 SRy EmN

AeZe
!

: /Q(sz(h)/\,EZ(h))(V/)l(p(ng(h)) { /0 {v/(b(g(h))\ + t(% — E(h))\))

Y(E2(M)A + ' — 2(h)N)) - (Wﬂ dt} dz’
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£ SR )
ez

/ /

| /Q(s%h)xezw))(V/)l(p(;éh)) { /0 {(b(E(h)A - t(% N f(h))‘»

V(e (h)A+ t(2' — 2 (R)N)) - (2 — EQ(h))\)} dt} da’.

The first term in the right-hand side of (4.65) can be furtherly decomposed as
follows:

b @Y (466)

! !/

x L .
| /Q<e2<h>x,e2<h>>Wl)ﬂo(éz(h)) { /0 [v ¢(5(h)A N t(% - 5(h)A))

, x' —e2(h)A ,
w(sQ(h))\th(o:st(h))\))( 0 )}dt}dx

= 20 S ey

PNVA

Z‘/Q/O1 [V’¢(€(h)>\+t6(h)z) Z]w(52(h)>\+t€2(h)z)(vl)l(p(z) di-d»
_ 55](7lh) Z (Rh)/(€2(h))\)

\EZE

: L /U [V’¢(€(h)/\) . Z] (1/1(52(h)>\ + tgz(h)z) — 1/}(52(h)>\))(vl)l<p(z) dtd»
i;f) > (B (E(h)N)

\EZE

1
: /Q { /0 [(V’d)(s(h))\ +te(h)z) — V’(b(s(h)/\)) . z]

P2 (M)A + te2(h)2) (V) Fo(2) dt} dz

e%(h) N . ' ' (e . NLo(s >
+ 2R <h>A>./Q/O [V6(=(h)A) - 2] (2N (V') () dit .

PNVA

In view of the regularity of the maps ¢, ¢, and 9, and the boundedness of {R"}
in L>°(w; M3*3), the first term in the right-hand side of (4.66) is estimated from
above as

85
WS e (4.6)

\EZE
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// [V'é(e(h)A) - 2] (Y(e* (M)A + te®(h)z) — (2 (R)N)) (V') Fp(z) dt dz

W [ IV 6EHNITYl s~ (7002l

A€Ze
e*(h)
<(C——=
= h )
using the fact that #7¢ = 0(64(h)) (see (4.30)), which converges to zero because
= +00.
Similarly, the second term in the right-hand side of (4.66) is bounded by
5(h)
W Do IR" / 1(V")2 0]l oo (wimaz) 19| oo () (V') 0 (2) |dz (4.68)
AEZE
e?(h)
<C——+=
— h )

and hence it converges to zero, as vy, = 400.
The third term in the right-hand side of (4.66)) is furtherly decomposed into

5 1
# > (B (EM)N) /Q/ [V'$(em) - 2] (> (N (V) p(z) di d= (4.69)

\eZe

_ ](lh) ST (R (2(h)N) :/

\EZe Q

(V) ()] [V o)A p(E(h)N)

/

- ]i?(a?(h)/\e 2(h)) v/(z)<€(xh)>w(x/)dx/} Z} =
Z f@(e?(h)x 62(h))/ 1

\eZs
. L / T . / /
(V) ~e(2) {V ¢(—( )> z}w(:z: )dzdx'.
We first study the second term in the right-hand side of (4 - We add and subtract

the function 1% ,

Z ]€2(e2(h)/\a h))/ (R)'( V) el) [vl¢(€zch)> .Z}w(f”/)dde/

\EZE
(4.70)

and we obtain

S f [y @) - (R (@)

ot (c2(W)Ae2( h))
/

) . 2}1[1(9:')} dz da’

: (V’)Lw(Z) Yol

/ (R (o)

(V) o(2) [V’qﬁ(&_(x};)) . 2}1[1(9:') dzdz'.

PNVA
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By (4.6) and by the regularity of the test functions ¢, v, and 1), we have

Ty o @@ @) an

AEZE
(V) he(z) [V'd)(%) . Z:|'L/)($/) dz} da’
<C Hw pecampneny < €.

Hence the first term in the right-hand side of is inﬁnitesimal.

Regarding the second term in the right-hand side of , by (4.8) and [3, The-
orem 1.2], there exist S € L?(w; W22 (Q;M**?)), and T € L*(w x Q Wi2(Q;R?))
such that

-3—
V'Rh VR4 VyS+ V. T weakly 3-scale, (4.72)

Wheref S(x',y)dy = 0 for a.e. 2’ € w, ande (2',y,2)dz = 0 for ae. 2/ € w
and y € Q By Lemma [3.10] there holds

Rh osc,Y
ED
and hence
lim (Rh)/(””/)v’qs( v Jib(a)da = / (', )V b(y)b(a') do’ dy. (4.73)
oo |, e(h) =(h) oo YV y. &
Since v9 = 400, yields
(R™Y (=) (4.74)
h~>0 ot R)A,e2(h)) / {
x/

(V) (2) [V’qﬁ(%) : z} w(x')} dzdz' = 0.

Combining (4.70) with (]4.71|) and (4.74), we conclude that

fi Z][ . /{(R")’(x’) (4.75)

AEZE

(V) re(z) [V'qf)(%) . z}w(x’)} dzdx' = 0.
It remains to estimate the first term in the right-hand side of . Since
Vol - f V(L)) o
Q(e2(h)A.e2(h) e(h)
< 2(1(V')2 @ Los (@uazx2) 19| Lo () + IVl Lo iz [V 0| L= (i2) ) € (),
there holds

5
L S COUEIOPY (4.76)

\eZe

[ Ao (ToemrmeEmy
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/ ! , , 2(],
- 7[Q(62(h)>\,s2(h)) v ¢(;T))w(m ) dz ) : Z} } dz‘ < C#_

Therefore, by (4.67), (4.68), (4.69), (4.75), and (4.76)), and since 5 = 400, we
conclude that (see (4.66)))

lim {]11 > (R (2 (h)N) (4.77)
A€EZE

: /Q(sz(h)x,sz(h))(v,)L@(E;C(h)) /0 {V'cﬁ(s(h)/\ + t(% _ a(h)A))

B2 (M)A + t(z' — e2(R)N)) - (Wﬂ dt dm’} = 0.

The same argument as in the proof of (4.77)) yields also

lim {,11 S (R (2(h)N)

\eZe

/

: /Q(e%h)w(h))Wl)l(p(ﬁgzh)) /0 [¢(€(h)A * t(a?h) - 5(h)’\>)

V'p(e2 (M)A + t(a" — 2 (h)N)) - (z/ — EQ(h))\)} dt dm'} =0,

which, in turn, implies that (4.65) (and thus (4.64)) is infinitesimal as h — 0.
To complete the study of the asymptotic behavior of (4.63)), we observe that

[y [ (5%)@VL¢(£;))W”C’>CZ”' o)
2
(VA

_e(w)

R

/ (2(MAe? () (5232’1)) ®Vl¢(s?h)” (¥(a") — (2 (h)N)) da’
+ % > (B (E(R)N)

PNVA

| /Q(E?(h)A,e2(h)) {(p(a;i,h)) ® VLQS(EZL))}W’SQ@)/\) dx’.

We bound from above the first term in the right-hand side of (4.78)) by
e(h) R/ (-2
|52 D0 (R (20 (4.79)

\eZe
1, oo () © V()| ) — v @) &

< OZ ) Rt e oy 1946l ey [ i | T i
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therefore, it goes to zero due to the boundedness of {R"} in L*(w;M?3*3), the
regularity of the test functions, and the fact that v = +o0o.
Regarding the second term in (4.78]), we observe that

g})‘f(hf”/w(z%h)'(x'); K/ng(z) dz) ®VL¢<;};)>}w(m’)dm’

: [(/ng(z) dz) ®vl¢(;h))]¢(x’)dx’

—l—E(i:L)/w(}N{h)’(x’) : [(/Qgp(z) dz) ®VL¢(€Z;))}1/J(QU’)dx’} =0,
due to 7 , and because v = 400.

Therefore, and since |, 0 ¢(z) dz = 0, by changing coordinates we deduce

!/ /

3 h) 102 2 : > § /
@m0 o) e () d

Aete
(4.80)
5
N ihh) Z (R")'(2(M)A)1(£* (h)X)
Aete
: / p(z) © {VL¢(5(h)>\ +e(h)z) — VL¢,(5(h)>\)} dz| < ngi(lh).
Q

In view of and since 7, = 400, we conclude that the second term in the
right-hand side of is infinitesimal. This completes the proof of .

Case 3, Step 2: Characterization of the limit linearized strain G.

To identify E we need to characterize the weak 3-scale limit of the scaled linearized
strains G" (see (4.10)), (4.11)) and (#.12))). By this reduces to study the weak
3-scale limit of the sequence

{Rh€3 — Rheg }

h
By (4.6]) there exists w € L?(w x Q x Q;R3) such that
R" — RM) 3-s
% — w(x',y,z) weakly 3-scale.
We claim that
w(x',y,2) — / w(x',y,2)dz =0 (4.81)
Q

for a.e. 2’ € w, and y, 2 € Q.
To prove (4.81), by Remark [3.8| we have to show that

Rheg — Rh€3 Oi\Z
h
A direct application of the argument in the proof of (4.63]) yields
Rles 0s¢,Z 0
h

(4.82)
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Therefore, (4.81)) is equivalent to proving that

Rh osc,Z
R €3 0

W , (4.83)
that is, to characterize
Rh( /)' ! ' ’ /
illlg%) ¢<€Q(h))¢(€(h))1/)(w)dw
for every ¢ € O, (Q), 1/) € Coo(w), and ¢ € C35,(Q), for i = 1,2,3.
Fix p € 5o, (Q), ¥ € C°(w), ¢ € C35,(Q), and define g as the unique periodic
solution to
Ag =¢ InQ
=0 on 0Q,
and set
(') = € f "e R 4.84
g (@) =« (h)g(gQ(h)) or every =’ € (4.84)
Then . .
1 T T
Ad N — _ (! —
g(=) 52(h)@(52(h)) and Vg*(a’) Vg(a?(h))
for every x’ € R?. Integrating by parts, we obtain
Rh(xl)iS ! ! / /
/w h ¢(52(h)>¢<e(h))w(x ) de (4.85)
2(h) [ mn z
— A g A ! /
i | sy @)oo et da
52<h) 1 ph 1 et ' ’ /
52(h) ph(. ./ [Ryaw) ! / / 1
+ S8 [ RV @) Vet da
@ ph( I\ 7! &[] / ! / /
+ 24 /MR (@)aV'g* (@) (V'6) (o7 ) (e’ o'
Since v, = 400, by and by the regularity of the test functions, there holds
! Dh x, / !l
lim / V'R o (a )¢(E(h))¢(x yda' =0, (4.86)
and 20 )
. e“(h Dh (o I\ T A€ (] € ! ! ’_
lim =% /wR (2')isV'g" (z )qb(g(h)) V(') dz’ = 0. (4.87)

The third term in the right—hand side of (4.85) can be rewritten as
> / l ' / /
. — d
[ e )) (V') (S )0t da
ﬂ h / ' ! / /
- = /wR 16V'0 () V0 gy )Vl o
x

h / /
)iz — R"(2"); 3) ’ x / T ’ ’
: — da'.
/ Vg(e2(h)> w’(ah))w(x) v
Therefore, it is infinitesimal due to (4.8]), (4.82) and the fact that v2 = +oo.
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Claim (4.83)) follows now by (4.86) and (4.87).

Case 3, Step 3: Identification of E.
Performing the same computation as in Case 1, Step 3, and combining (4.59) with

(4.72)), and , we obtain
R( .’L' y Y, 2 /R LL' Y,z )

= (vz’l)(l‘ ,y,Z) +$3VZT(.’E Y, 2 )63 +V ¢2 z, Y,z )‘0)

for a.e. x € Q, and y,z € Q, where v,Te3 € L?(w x Q; W2 (Q;R?)), and by €
PO X QOB

Thus, by (.12),
E(z,y,2) - / E(a,y,2)d= = sym (V.o(x.y, 2)|0)
Q

for a.e. z € Q, and y, 2z € Q, where ¢ := RT (v + 23Te3 + (52) In view of (4.58]) we
conclude that

E(z,y,2) = ( xaIT*(2') —BsymB(gc’) 8 )

sym V,&(z,y) + z3Van(a',y)  gi(z,y)
+ < 92(z,9) ) + sym (V. é(z, y, 2)[0)
g(z,y) g2(z,y) 93(2,y)

for a.e. z € Q, and y,z € Q, where B € L?*(w;M?*?), ¢ € L?(; WL2(Q;R?)),

per

1€ L?(w; W 2(@)), 9i € L2(QxY),i=1,2,3, and ¢ € L*(Q x Q; W, ;2(Q; R?)).

per per

The the51s follows now by (4.3)). O

5. THE I'-LIMINF INEQUALITY

With the identification of the limit linearized stress obtained in Section [d] we
now find a lower bound for the effective limit energy associated to sequences of de-
formations with uniformly small three-dimensional elastic energies, satisfying (1.3).

Theorem 5.1. Let v, € [0,+00] and let 7o = +oo. Let {u} C WH2(Q;R3)
be a sequence of deformations satisfying the uniform energy estimate (2.1) and
converging to u € W2’2(w'R3) as in Theorem- Then,

h}?ﬂ?f “ 12 / Zhom (I (@) da,
where 11" is the map defined in , and
(a) if y1 =0, for every A € M2X2

sym
—0 . A+B 0
Drom(A) = 1nf{/ = Dhom <y7( Z3 A 0 ) (5.1)
(-3.3)x@
sym Vy&(x3,y) +23Vin(y)  g1(z3,y)
+ sym 92(z3,9)
91(x3,y)  g2(xs,y) 93(23,9)

€eL*((— 1, 3)sWh2(@Q:R?Y), n € WEX(Q),
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geLl*((-3,3)xQ),i=1,23, Ber;nf}

(b) if 0 <1 < 400, for every A € M2X2

sym

oL s LU3A+B 0
Zhom(A) = mf{ | @ (FF ) (5.2)
( 2’2)XQ
amg b)
gi!
W (- e 5 e
(¢) if 1 = +o0, for every A € M2
—0 : A+B 0
Do () i=int { [ Brom (1, ( (5.3)
h Uopga (07 5)

+sym(Vy¢1($3,y)ld($3))> de L (-3, 3 R%),

per sym

¢1 € L*((—1,1); W 2(Q;R?)), and B € MM}

where
Zhom (Y, C) := inf { /Q 2(y,2z,C + sym (V¢2(z)|0)) D € WS;(Q;R%} (5.4)

for a.e. y € Q, and for every C € M3X3.

Ssym
Proof. The proof is an adaptation of [I7), Proof of Theorem 2.4]. For the convenience
of the reader, we briefly sketch it in the case 0 < 1 < 400. The proof in the cases
~v1 = +oo and y; = 0 is analogous.

Without loss of generality, we can assume that fQ u”(x) dz = 0. By assumption
(H2) and by Theorem u € W22 (w;R3) is an isometry, with

ul = u  strongly in L?(Q;R?)
and
Vyu' = (V'uln,) strongly in L?(€; M3*3),

where the vector n,, is defined according to (3.2)) and (3.3). By Theorem there

exists E € L2(2x Q x Q; M3*3) such that, up to the extraction of a (not relabeled)
subsequence,

Eh L (thh)Tthh — Id d7-——3\—s
- h

E  weakly dr-3-scale,

with

sym B(z') + zsII*(z’) 0 )
0

+ sym (Vy(bl (l‘, y) 8.’1)3 ¢1 (.13, y)

) + sym (V oo,y 2 |O)
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for a.e. ' € w, and y,z € Q, where B € L?(w;M?*?), ¢1 € L*(w; W2((—3, 3);
W32(Q;R?)), and ¢ € L*(wx Q; Wp22(Q; R?)). Arguing as in [8, Proof of Theorem

6.1 (i)], by performing a Taylor expansion around the identity, and by Lemma

we deduce that
h(,h / /
T T
lim inf > lim inf

h—0  h2 h—0 Q(s(h)’SQ(h) ' )> de

///Qy,zE:ry, z))dzdy dzx.

By (5.2), (5.4]), and (5.5)), we finally conclude that
h(,h / U (ol
liminfg (u™) Z//Qhom ). sym B(z') + z3IT*(z’) 0

89:3¢1(xay)> dydx
Y

o (o

> [ B (et a) o = [

1
B Q
- 12/Qhom ) /'

6. THE I'-LIMSUP INEQUALITY: CONSTRUCTION OF THE RECOVERY SEQUENCE

Let Wé’Q(w;R‘g) be the set of all u € W??2(w;R?) satifying (3.2). Let A(w) be
the set of all u € Wx?(w;R?) N C®(w;R?) such that, for all B € C(@ s MZ%2)
with B = 0 in a neighborhood of

{z/ € w:1"*(z") =0}
(where II" is the map defined in (4.4)), there exist a € C>°(@) and g € C*(w;R?)
such that

2220 (%(2)) dz

hom

O

B =symV'g + all". (6.1)
Remark 6.1. Note that for u € Wp?(w; R?) NC(@; R?), condition (6.1)) (see [17,

Lemmas 4.3 and 4.4]), is equivalent to writing
B =sym (V'u)TV'V) (6.2)
for some V € C>°(@;R?) (see [27, Lemmas 4.3 and 4.4]).
Indeed, follows from setting
= (V'u)g + any,

and in view of the cancellations due to . In fact, by we have

(V'u)'V'u = Id

(V'u)T0,(V'u) = (V'u) T 05(V'u) = 0

(V'u)'n, = 0.
Therefore,
sym ((V/U)T(V/U)g) = sym ((V/U)T(31(V/U)9 + (V'u)org| 92(V'u)g + (V/U)azg))

=symV'g,
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and

Conversely, (6.1)) is obtained from (6.2]) defining g := (V'u)TV and a :=V - n,.

sym ((V'u)"V'(any)) = sym (V'u)" ((O1a)ny| (820)n,)) + oll*
= olI".

39

A key tool in the proof of the limsup inequality is the following lemma,
which has been proved in [I7, Lemma 4.3] (see also [14], [I5], [16], [25], and [26]).
Again, the arguments in the previous sections of this paper continue to hold if w
is a bounded Lipschitz domain. The piecewise C!-regularity of dw is necessary for
the proof of the limsup inequality (although it can be slightly relaxed as in
[15]), since it is required in order to obtain the following density result.

Lemma 6.2. The set A(w) is dense in Wé’2(w;R3) in the strong W22 topology.

Before we prove the limsup inequality (|1.4)), we state a lemma and a corollary that
guarantee the continuity of the relaxations (defined in (5.2)—(5.4))) of the quadratic

map 2 introduced in (H4). The proof of Lemma [6.3]is a combination of [I7, Proof

of Lemma 4.2], [24, Proof of Lemma 2.10] and [27, Lemma 4.2]. Corollary is a
direct consequence of Lemma [6.3

Lemma 6.3. Let 2].  and Pnom be the maps defined in (5.1)-(5.4), and let v3 =

+00.
(i)

(i)

Let 0 < v; < +00. Then for every A € M2X2 there exists a unique pair

sym

(B, ¢1) € MIR x WH((=3,5); Wi (Q:RY))

with
¢1(x3,y) dy dzz = 0,
/(—éé)xcz
such that
— B z3A+B 0
Qhom(A)_A§7é)XQQhom(ya< 0 0 )

813¢1(m3,y))>.

+ sym (Vy¢1(3337y) "
The induced mapping
A€M o (BIA),61(4)) € ME x W2 ((—4, 1) W (@ BY)

Sym sym per

18 bounded and linear.

Let oy = +00. Then for every A € M2X2 there exists a unique triple

sym
(B’d’ ¢1) € Mg;rr% X Lz((_%v %>;R3) x Lz((_%v %>;W;é$(Q;R3))
with
/ 11 ¢1($3,y) dyd$3 = Oa
(-2:2)x@
such that

—o0 A+B 0
a@hom(A) = / 11 Qhom (yv < s 0 0 )
(-2:2)x@
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+ sym (V1 (z3, y)d(a:;»,))) .

The induced mapping A € M2X2 — (B(A),d(A),$1(A)) € M2X2 x

sym sym

L2((—%,3);R%) x L2 ((—3, 3): WkZ(Q: R®)) is bounded and linear.

(iii) Let v1 = 0. Then for every A € M2X2 there exists a unique 6-tuple

sym
(B,§,m,91, 92, 93)
with B € M2, € € L*((—3,3);iWoar(@R?), n € Wi(Q), ¢ €
L?((—3.3):xQ), i =1,2,3, such that

Qhom(A) :/ 11 Qhom <y7 ( 8 0 0 )
(-33)x@

symVy&(z3,y) +23Vin(y)  gi(x3,y)
+sym ga2(w3,y)
91(x3,y)  g2(x3,9) 93(23,9)

The induced mapping

A (B(A),€(A4),n(A4),91(A), 92(A), g3(A))
from MQXQ to szxz X Lz((f%, %) R3) x Wgef(Q) X LQ((—%, %) x Q;R?) is
bounded and linear.

For a.e. y € Q and for every C € M3X3 there erists a unique ¢o €

sym

WL2(Q;R3), with fQ ¢2(2)dz =0, such that

per

a@hom(yac) = AQ (yvzac + sym (V¢2(z)|0)) .

The induced mapping
C e MY — ¢2(C) € WhI(Q;R?)
18 bounded and linear. Furthermore, the induced operator
PiI? (=5 3) % @MP?) = 12 (-1, 3) x @ Q)
defined as
P(C) == ¢2(C)  for every C € L? ((—1,3) x Q; M*>*?)

1s bounded and linear.

Corollary 6.4. Let v, € [0,+00]. The map 2,.,, is continuous, and there exist
c1(m1) € (0,+00) such that

1 _
alFP < Dpon(F) < | F?

for every F € M2X2.

sym *

(i) If 0 < 41 < +oo, then for every A € L?(w; MQYXQ) there exists a unique
riple (B, 1, 2) € L (s M22) x L2 (w3 W32 (23, 1) WE2(Q5 ) x
L2(Q x Q; W2(Q; R?)) such that

1 1
E/ﬂom d.’IJ _/Qhom xSA ))
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/ /
= Qhom (ya < $3A(x )O+ B(x ) 8 )
QAxXQ

+ sym <Vy¢1(9:,y) amsqﬁ;fz,y))) dy dx

Lo (2405

+sym (Vydh(ﬂc,y) aw3¢l($7y))

41

il
+sym (Vaa(z,y,2)|0) ) dz dy da.

(i) If v1 = 400, then for every A € Lz(w;M2X2) there exists a unique 4-tuple
(B,d,¢1,02) € L*(w;M252) x L2(R?) x L2( WE2(Q;R?)) x L2(Q x

sym

Q; WLi(Q;R?)) such that

112/’@h0m( ( d$ _/ghom $3A ))d.’l?/

= Zhom (y,< z3d(@') + B(@) 8 > sym ( y¢1(x,y)|d(1’))) dy dx
QxQ

-/ XQXQg(y,Z,(l’SA( >0 B0 ) s (9,000l
+sym (V,éa(z, 5, 2)] 0) )) dz dy dz.

(iii) If yi = 0, then for every A € L*(w;MZ72) there exists a unique 7-tuple
(B 5 , gthag?n(b) € L2( MQXZ) X ( Wp}eg(Q Rz)) X

sym
L2(Q;W22(Q)) x L*(Q x Q;R?) x L*( x Q; Wi2(Q;R?)), such that

/ Dron(A) e’ = [ B (e
[ oo (y ( v3A(2) + B(') 0 )

%0 0 0
symVy&(z,y) +23Vin(a',y)  gi(z,y)
+ sym 92(z,9)
g1(z,y)  g2(z,y) 93(z,y)

I

sym V,&(z,y) + z3Van(a',y)  gi(z,y)
+ sym 92(z,y)
91(2,y)  g2(z,y) 93(2,y)

+ sym (V ooz, y, 2 |0) ) dz dy dzx.

We now prove that the lower bound obtained in Section [5| is optimal

Theorem 6.5. Let v € [0,400]. Let 2, and Pnem be the maps defined in
(-1)-(5.4), let v € Wé’z(w;RS) and let II* be the map introduced in (4.4). Then



42 L. BUFFORD, E. DAVOLI, AND I. FONSECA

there ezists a sequence {uh} C W172(Q'R3) such that

. /

hI}rLlj(l)lp h2 =5 / 2)0(IT(2)) da’. (6.3)
Proof. The proof is an adaptation of [I7, Proof of Theorem 2.4] and [27, Proof of
Theorem 2.4]. We outline the main steps in the cases 0 < 41 < +00 and v = 0 for
the convenience of the reader. The proof in the case 73 = 400 is analogous.

Case 1: 0 <y < 400 and yp = +00.

By Lemmal6.2{and Corollarynlt is enough to prove the theorem for u € A(w). By
Corollarythere exist B € L*(w;M?*?), ¢; € L*(w; WH2((—3, 3); Wi2(Q;R?)),
(

and ¢ € L*(Q x Q; WL2(Q;R?)) such that

per

L 20 () de’

[y o (P 1)

+sym <Vy¢1(x,y) W) + sym (V o2(x,y, 2 ’O)) dzdydzx.

Since B depends linearly on II* by Lemma in particular there holds

{«’ : 1" (2') = 0} C {a' : B(a') =0}.
By Lemma we can argue by density and we can assume that B €
C*>(w;M?*2), B = 0 in a neighborhood of {z’ : II%(z') = 0}, ¢ €
C2° (w; Cm((fg,i) C®(Q;R3)), and ¢y € CX(w x Q;C™(Q;R3)). In addition,
since u € A(w), by (6.1)) there exist @ € C*°(w), and g € C*°(w;R?) such that

B =symV'g + oIl

Set
(2 1= ule!) + h{(ws + @ )mle!) + () V),
R) = (V'ula! (),
)= (o) )+,
and let

for a.e. x € Q, where

b1 = R(gbl Jr'ylarg( g )) and  ¢o := Reo.

Arguing similarly to [I7, Proof of Theorem 2.4 (upper bound)], it can be shown

that (6.3)) holds.

Case 2: 73 =0 and v, = +00.

By Lemma and Corollary it is enough to prove the theorem for u € A(w).
By Corollary there exist B € L?(w;M2X2), ¢ € L2(O;WL2(Q;R?)), n €

sym per
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L2(Q;W22(Q)), g; € L2(Q2xY), i = 1,2,3, and ¢ € L*(Q x Q; Wplef(Q;R?’))

per

such that

55 [ Bmm @) s

_/QXQXQ’@ <yz( x3H"(x’2)+ B(x') 8 )

sym Vy&(xz, y) + 23Vin(z',y) g1z, y)
+ sym 92(2,y)
gi(z,y) g2(z,y) 93(z,y)

+sym (V.p2(z,y,2)|0) ) dzdydx.

By the linear dependence of B on IT%, in particular there holds

{/ : I*(z") =0} c {2’ : B(a') =0}.
By density, we can assume that B € COO(Q M?*2), € € C°(w; C2(Q;R?)), n
C(w; C22.(Q)), and g; € C(w; C5((— 4,2) xQ)), i =1,2,3. Since u € .A( ),

per per

by (6.2) there exists a displacement V' € C*(w;R?) such that
B =sym ((V'u)'V'V).

Set
o (2) = u(a') + hsna(@’) = h(V (@) + hasp(a),
pla') = (1d = (') @ nu(@)) @1V (@) A dpu(a) + Drula’) A2V (),
R(a') = (Vu(a)|nu (@),
and let
() = o (@) = W+, S5 )

D1 x/,L’ + 19,1 x/7L'
+ he?(h)z3R(2") ' . Ei}f) E(lh) " ) Eg})
Or @' 2y ) + 2 O (7 iy

+ he(h)R(2) ( f(a:’bf};)) )
+ h? /:”j R(x/)g(x',t,(%) dthhEQ(h)R(xl)Qs(x,;(C};),E;E/h))?

for a.e. z € Q. The proof of (6.3)) is a straightforward adaptation of [27, Proof of
Theorem 2.4 (Upper bound)]. O

Proof of Theorem[I.1. Theorem [I.1]follows now by Theorem [5.I] and Theorem @

7. APPENDIX

In this section we collect a few results which played an important role in the
proof of Theorem We recall that in Case 2, we claimed that the maps R" are
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piecewise constant on cubes of the form Q(g(h)z,(h)), z € Z2. Indeed, this holds
if we show that for every z € Z?2 there exists 2’ € Z2 such that

Q(e(h)z,e(h)) € Q(6(h)2",6(h))

or, equivalently, with m := gg:; eN,

1 1 L1, 1
(z §,z+§)Cm<z 5% +§>. (7.1)

The next lemma attests that this holds provided m is odd.

Lemma 7.1. Let a € Ny. Then for every z € Z there exists z' € Z such that (7.1))
holds with m = 2a + 1.

Proof. Without loss of generality we may assume that z € Ny (the case in which
z < 0 is analogous). Solving (7.1) is equivalent to finding 2’ € Z such that

Z_%Z(ZCL_FI)Z/_ (2‘12“"1)7 (72)
. % < (2a+1)

+ (2a+1)2" + =5,
that is
> ’_
S 2z
Let n,l € Ny be such that z = n(2a+ 1) + [ and
I <2a+1. (7.4)
Then is equivalent to
{n(2a+l)+l+a> (2a+1)7, (75)
n(2a+1)+1—a < (2a+1)7.

Now, if 0 <[ < a it is enough to choose 2z’ = n. If | > a, the result follows setting
2z :=n+1. Indeed, with a+1 > r > 1 € N such that | = a + r, (7.5) simplifies as

n(2a+1)+2a+7r> (2a+1)(n+1),
n(2a+1)+r < (2a+1)(n+1),

that is

r<2a+1,
which is trivially satisfied. O

{2a+r>2a—|—1

Remark 7.2. By Lemma it follows that, setting p := 562((’1,3) and provided p is

odd, for every z € Z? there exists 2’ € Z? such that
Q(*(h)z,€*(h)) € Q(3(h)z, 8(h)).
This observation allowed us to construct the sequence {R"} in Case 3 of the proof

of Theorem [I.1]

Remark 7.3. We point out that if m is even there may be z € Z such that (7.1
fails to be true for every 2’ € Z, i.e.

( 1 +1)Z( , m ,er)
z 2,2 3 mz 2,mz 5 )
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Indeed, if m is even, then z = 3m € N and (7.2) becomes

fin-izm-y
3 1
pmt g <m2’ + 5,
which in turn is equivalent to
1 1
!/
dell+s-2- ).
2m’ 2m

This last condition leads to a contradiction as

1 1
[1—&——,2——} NZ =10 forevery m € N.
2m 2m

We conclude the Appendix with a result that played a key role in the identifica-
tion of the limit elastic stress, and in the proof of the liminf and limsup inequalities
(1.3) and (1.4). We omit its proof, as it follows by [24] Lemma 4.3].

Lemma 7.4. Let 2 :R? x R? x M3*3 — [0, +00) be such that

(i) 2(y, z,-) is continuous for a.e. y,z € R?,
(ii) 2(-,-, F) is Q x Q-periodic and measurable for every F € M3*3,
(iii) for a.e. y,z € R2, the map 2(y, z,) is quadratic on ngxn?;, and satisfies

1
5lsymF|2 < 2(y,2,F) = 2(y, z,symF) < C|symF|?

for all F € M**3, and some C > 0.
Let {E"} € L2(Q;M?*3) and E € L%(Q x Q x Q; M>*3) be such that

h dr—3—s
E" — FE  weakly dr-3-scale.

Then
x a 5
o S '
lliniglf Qg(s(h)’EQ(h)’E (:U)) d:v_/Q/Q/Qa@(y,z,E(x,y,z))dzdydm
If in addition
dr—3—s

E" " E  strongly dr-3-scale,
then

/

}llii% QQ(EZ’L),Ef(h),Eh(z)) dm—/Q/Q/Qo@(y,z,E(x,y,z))dzdydm.
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