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ABSTRACT. It is shown that the isoperimetric deficit of a convex polygon P admits
a lower bound in terms of the variance of the radii of P, the area of P, and the
variance of the barycentric angles of P. The proof involves circulant matrix theory
and a Taylor expansion of the deficit on a compact manifold.

1. INTRODUCTION

The polygonal isoperimetric inequality states that if n > 3 and P is an n-gon with
area |P| and perimeter L(P), then the deficit is nonnegative,

§(P) := L2(P) — 4ntan ~|P| > 0,
n

and uniquely minimized when P is convex and regular. A sharp stability result for this
classical inequality has recently been obtained in [IN15] via a novel approach involving
a functional minimization problem on a compact manifold and the spectral theory for
circulant matrices. The heart of the matter is a quantitative polygonal isoperimetric
inequality for convex polygons which states that

(1.1) 0i(P) + o7 (P) S 0(P),
where 02(P) is the variance of the side lengths of P and ¢?(P) is the variance of its
radii (i.e. the distances between the vertices and their barycenter).

The starting point of the proof is the following inequality [FRS85, pg. 35] which

holds for any n-gon:
(1.2) 8n? sin® zaf(P) <nS(P)— 4ntan E|P|,
n n

where S(P) is the sum of the squares of the side lengths of P. Since n?c%(P) =
nS(P) — L*(P), it follows that (1.2) is equivalent to

(1.3) 8n?sin? = 62(P) < §(P) + n2o?(P).
n

In order to establish (|1.1]), it is shown in [IN15] that

(1.4) 02(P) S 0(P)

s
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whenever P is a convex n-gon; thereafter, a more general stability result (e.g. valid for
simple n-gons) is deduced via a version of the Erdés-Nagy theorem which states that
a polygon may be convexified in a finite number of “fips” while keeping the perimeter
invariant. The method of proof of given in [FRS85] is based on a polygonal
Fourier decomposition, whereas the technique in [IN15] is based on a Taylor expansion
of the deficit (in a suitable sense). It is natural to wonder whether one can directly
deduce via the method in [IN15] without relying on [FRS85]. A positive answer
is given in this paper. In fact, a new inequality is established which combined with
(1.4) improves (L.1)).

Let 02(P) denote the variance of the barycentric angles of P (i.e. the angles generated
by the vertices and barycenter of the set of vertices of P, see . Then the following
is true.

Theorem 1.1. Let n > 3 and P be a convex n-gon. There exists ¢, > 0 such that
¢n 0(P) > a7(P) + | Ploz(P),
and the exponent on the deficit is sharp.

This result directly combines with ((1.4) and yields:

Corollary 1.2. Let n > 3 and P be a convex n-gon. There exists ¢, > 0 such that

cn 6(P) > 02(P) + o(P) + |P|o2(P).

Remark 1.3. The theorem holds for a more general class of polygons. The only re-
quirement in the proof is that the barycentric angles of P sum to 2.

Remark 1.4. An inequality of the form
02(P) < ¢,0(P)

a

cannot hold in general. One can see this by a simple scaling consideration: let P be a
convex polygon and P, be the convex polygon obtained by dilating the radii of P by
a > 0. Then §(P,) = a?§(P), but o2(P,) = o2(P).

Quantitative polygonal isoperimetric inequalities turn out to be useful tools in geo-
metric problems. For instance was recently utilized in [CM14] to improve a result
of Hales which showed up in his proof of the honeycomb conjecture [Hal01]. This was
achieved by showing that the notion of asymmetry in directly controls the Haus-
dorff distance between P and a specific regular polygon. Moreover, [IN15] has also
been employed in [CNT15|] to prove a quantitative version of a Faber-Krahn inequality
for the Cheeger constant of n-gons obtained in [BE15]. Related stability results for
the isotropic, anisotropic, and relative isoperimetric inequalities have been obtained in
[EMPOS, [EMP10L [FT13], respectively.
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2. PRELIMINARIES

Let n > 3 and P C R? be an n-gon generated by the set of vertices { Ay, Ay, ..., A,} C
R? whose center of mass O is taken to be the origin. For i € {1,2,...,n}, the i-th side
length of P, denoted by [; := A;A;11, is the length of the vector A; A;,1 which connects
A; to A;iq, where A; = A; if and only if ¢ = j (mod n); with this notation in mind,
{r; == OA;}, is the set of radii. Furthermore, z; is the angle between the vectors

OA; and OA;;; and the set {x;} ; comprises the barycentric angles of P.

The circulant matrix method introduced in [IN15] is based on the idea that a large
class of polygons can be viewed as points in R?" satisfying some constraints. More
precisely, consider

Me={(@r) e R w20, @1), @), @3) hold},

where

(2.1) z": x; = 2,
=1

(2 S r—n
=1

n i—1
> 1 cos (Z xk> =0,
i=1

(2.3) n iy
> risin (Z xk) =0.
i=1 k=1

Note that M is a compact 2n — 4 dimensional manifold and each point (z;r) € M
represents a polygon centered at the origin with barycentric angles x and radii r;
therefore, it is appropriate to name such objects polygonal manifolds. Indeed, a point
O is the barycenter of the set of vertices of P if and only if

S04 0,
i=1
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N — —_— —_—
which is equivalent to saying that the projections of " OA; onto OA; and OA;+ van-
i=1
ish; in other words, (x;r) satisfies . Furthermore, is satisfied by all convex
polygons (also many nonconvex ones) and is a convenient technical assumption
which derives from scaling considerations. Note that the convex regular n-gon corre-
sponds to the point (x,;r,) = (27”, ce 27”; e 1). With this in mind, the variance of

the interior angles and radii of P are represented, respectively, by the quantities

n

2
1 1 [
2 2. - 2
O-a(P>_O-a(x7r) _ﬁzxz _ﬁ (;xl> s

i=1

1 < ()
2 — 2( ) — 2
0:(P) =o:(x;r) :== - ;1 i (;1 7“7;) :

Moreover, in (z;7) coordinates, the deficit is given by the formula

n n

2
1/2 m :
O(P)=46(z;r) = (Z (T?_H + rig — 27417 COS :131) ) — 2ntan - Z 7Ty SIN X5,

=1 i=1
3. PROOF OF THEOREM [I.1]

By a simple reduction argument, it suffices to prove the inequality on M: let P be
a convex n-gon and note that it is represented by (z;7r) € R?", where z € R" denotes
its interior angles and r € R” its radii. Convexity implies (2.1]), and follows from
the definition of barycenter. If
n
Z =8 #n,
i=1

consider (by a slight abuse of notation) the polygon Py = (z; %r) obtained by scaling
the radii of P. Evidently ¢%(P,) = o2(P), |Ps| = (n/s)?|P|, 02(P,) = (n/s)*c2(P),
§(P;) = (n/s)?6(P). Hence if the inequality stated in the theorem holds for P, € M,
then it also holds for P. Now let

¢(a;r) : =n*(|Plog + 07)

n n n

= %(gririﬂsinxi) (nZ:CZQ - (Z%)Q) +ni7”i2 - (Z”)Q’

=1 =1 1= =1
and note that it suffices to show
(3.1) P(x;r) < ¢ 6(w;r)

for all (x;r) € M. The polygonal isoperimetric inequality implies d(x;r) > 0 for every
(x;r) € M with §(x;r) = 0 if and only if (x;r) = 2, := (x.; 7). Since M is compact



and 0 is continuous it follows that for u > 0,

inf 0>0,
M\Bu ()

and so (3.1) follows easily on M \ B, (z.). Thus it suffices to prove (3.1 for some
neighborhood B, of the point z,. Direct calculations imply (recall that the notation is
periodic mod n)

(3.2) D¢(2) := (Da@(2:), Drp(2:)) = 0,
Jn(n—=1)sin%E, k=1,
Do 9(z2) = { —nsin2, k£,
)2(n-1), k=1,
Dyl = { i,

and D, ,,¢(z) = 0. Thus by letting ® := D?¢(z,) it follows that

nsin 2ZC  O0pun
*= ( O 20 )

where 0,,%,, 1S the n X n zero matrix and

nxn

Moreover, D§(z,) is given by

Dy, 0(z) = 2ntan T,
D, 6(z.) = 0;

hence, implies
<D5(z*), (x — ;1 — 7"*)> = <DI(5(z*), x — .21:*> + <Dr(5(z*), r— r*>

n

(3.3) :2nmng§:@,-@gg:o.

Since ¢(z,) = d(z) = 0, by utilizing (3.2)), (3.3), and performing a Taylor expansion,

it follows that for z close enough to z,,
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8(2) =5 (D0(2)(z — ), (2 = =)

£330 Dbl - 02 + 0.2z — 2z — )= — 2

and
5(2) =5{D%5(z)(z — 7). (2 — 22)

1 2n

+ 8 Z Dijid((1 — 7o)z + 722) (2 — 24)i(2 — 24) (2 — 2k,

i,J,k=1

for some 6., 7. € (0,1). Furthermore, since in a neighborhood of z,, ¢ and § are C3
and M is compact, there exists C' > 0 such that

2n
Y Digd((1 = 02)z +60.2)(2 — 2)i(z — 2);(2 — z)i| < Clz = 2P,

i k=1

6

2n
D Dipd((1 = 0:)2 + 0:2)(2 — 2.)i(z — 2.);(2 — 28| < Clz — 2%,

i k=1

for z € M sufficiently close to z,. Thus there exists C' > 0 for which

1
6

(3.4) ) = 502000 = 20, (2 = 2)| < s = .,

1
2
in a neighborhood of z,. In particular, there exists n = n(n) > 0 such that

(3.5) '6(2) (D*6(2,) (2 — 2,), (2 — z*)>‘ < Oz — 2%,

1
(3.6) 6(2) < SlI®lhlz — 2 + Clz — 2.
for all z € B, (z,). By the results of [IN15| §3.6 ], it follows that
inf (D*§(z)w,w) =: 0 > Oﬂ

weSH

n fact, something stronger is proved: namely that infy,es,, (D?*f(2:)w,w) =: o > 0 where f is an
explicit function for which D2 f < D?§. This is achieved via the spectral theory for circulant matrices
and an analysis involving the tangent space of M at z, and the identification of a suitable coordinate
system in which calculations can be performed efficiently. The barycentric condition built into
the definition of M comes up in this analysis.
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where ‘H is the tangent space of M at z, and Sy is the unit sphere in H with center
2,. Moreover by continuity there exists a neighborhood U C R?" of Sy such that

(D*§(z)w, w) > g,

for all w € U. Note that === € U for z € M sufficiently close to z,. Hence there

fo—z]

exists p = p(n, o) € (0,7n] such that
(D?3(2)(z = 2.), (z = 2.)) 2 Z |z = 2P

for 2 € B,(z.). In particular, for fi := min{y, g} and z € By(z.),

—_

0(2) = H(D*0(2)(2 — 2), (2 = 2));
thus, recalling ,

8(2) < (11l + 22 — 2 D02z — 2, (2 = 22) < ad2),

where ¢, := 2||®||, + 2. To achieve the second part of the theorem, it suffices to
prove the existence of ¢ > 0 such that

(3.7) (@ (z37), (7)) = el (zs7)[7,

for

(1) € 2 := {(m;r): sz =0, Zri:()}.

Indeed, if (3.7) holds, let w : [0,00] — [0,00] be any modulus of continuity (i.e.
w(0+) = 0) such that

¢(z) < caw(8(2)).
Then for z € M close to z,, (3.5) implies
§(2) < colz — 2%,
for some ¢y > 0. Moreover, z — z, € Z since z € M, and by combining (3.4) with (3.7))
it follows that
(3.8) §(2) < colz — z? < er(®(2 — 2,), (2 — 2.)) < c20(2) < éw((2)),

for some ¢ > 0 provided z is close to z,; however, since 6(z) — 0 as z — z, and 6(z) > 0

for z # z,., (3.8) leads to a contradiction if

t
lim inf w = 0.
t—0t
Thus the liminf is strictly greater than zero and this implies w is at most linear at

zero. To verify (3.7), note first that C is a real, symmetric, circulant matrix generated
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by the vector (n —1,—1,...,—1). A calculation shows that the eigenvalues of C, say
Ak, are given by

(3.9) Ao =0 and Ak =n fork=1,...,n—1.

Moreover, let vy := (1,...,1), and for [ € {1,..., 5]} define

( 2l 47rl 27l(n — 1))
vg—1 := | 1,cos —,cos —, ..., cos —— | ,
n n n
( 2rl . 4wl . 27ml(n — 1))
vgp := | 0,sin —,sin —, ..., 8in —— | .
n n n

One can readily check that vy is an eigenvector of C corresponding to the eigenvalue
)\%1, and that the set {vg,v1,...,v,-1} forms a real orthogonal basis of R" (see e.g.
Proposition 2.1 in [INT5]). For k = 1,2,...,n, define b, := (v;_1;0,...,0) € R* and
b :=(0,...,0;v5_p_1) €ER* for k=n+1,...,2n. Since the set {b;}3", forms a real
orthogonal basis of R?", given (z;r) € R?*" there exist unique coefficients oy, € R such
that

2n
T’) = Z Oékbk.
k=1

Thus, by utilizing (3.9) it follows that

2n
(@(x57), (7)) = > ko (Bby, by
kk'=1
k=n+1
=n 81n—2ak\bk\2+2n Z az|bgl?.
k=n-+2

Furthermore, if (z;r) € Z,

a1: |b1|2 Z:I:Z—O

((@7),bosr) N .
R R P



hence,

n 2n
21
CI) . . — 2 . 2b 2 2 2b 2
(P (z;7), (x;7)) =n sm—n g az|bel® + 2n E o | bk

k=1 k=n+1

2n
> ZnZ g |b)?,
k=1

and this concludes the proof.
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