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Abstract
The asymptotic behavior of an anisotropic Cahn-Hilliard functional with
prescribed mass and Dirichlet boundary condition is studied when the
parameter ε that determines the width of the transition layers tends to
zero. The double-well potential is assumed to be even and equal to |s−1|β
near s = 1, with 1 < β < 2. The first order term in the asymptotic
development by Γ-convergence is well-known, and is related to a suitable
anisotropic perimeter of the interface. Here it is shown that, under these
assumptions, the second order term is zero, which gives an estimate on
the rate of convergence of the minimum values.
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1 Introduction
In this paper we study the second order term in the asymptotic development by
Γ-convergence for the anisotropic Cahn-Hilliard functional (see, e.g., [20], [15],
[21], [26], [14], [6], [4])

Wε (u) :=

∫
Ω

(
W (u (x)) + ε2Φ2 (∇u (x))

)
dx , (1.1)
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where Ω is a bounded open set in Rn, n ≥ 2, with Lipschitz boundary. Here
W : R → [0,+∞) is an even function of class C1 such that W (s) = 0 if and
only if s = ±1, with W (s) = |s − 1|β near s = 1 for some 1 < β < 2, and
Φ : Rn → [0,+∞) is convex, even, and positively homogeneous of degree one.

We impose a mass constraint and a boundary condition:

u ∈ H1 (Ω) ,

∫
Ω

u (x) dx = m, and u = 1 on ∂Ω , (1.2)

where m is a prescribed constant satisfying the inequalities

− |Ω| < m < |Ω| . (1.3)

Given a sequence of functionals Fε : X → (−∞,∞] defined on a metric space
X, we write Fε

Γ→ F (0) if {Fε} Γ-converges to F (0), as ε→ 0+, with respect to
the metric topology of X. We recall the notion of asymptotic development by
Γ-convergence of order k:

Fε
Γ
= F (0) + εF (1) + · · ·+ εkF (k) + o

(
εk
)

if Fε
Γ→ F (0) and

F (i)
ε :=

F
(i−1)
ε − infX F

(i−1)

ε

Γ→ F (i) (1.4)

for i = 1, . . . , k, where F (0)
ε := Fε (see [2], [3], [8, Section 1.10]).

For the sequence of functionals (1.1) we take X := L1 (Ω) and we set
Wε (u) := +∞ if (1.2) is not satisfied. The zero order term is

W(0) (u) :=

∫
Ω

W (u (x)) dx

if the mass constraint in (1.2) is satisfied and W(0) (u) := +∞ otherwise. The
Γ-liminf inequality is a consequence of Fatou’s Lemma. The Γ-limsup inequality
is straightforward.

Note that infXW(0) = 0 and the minimizers are given by all functions of the
form uE := 1− 2χE , where E is an arbitrary measurable subset of Ω satisfying
the volume constraint

|E| = |Ω| −m
2

=: Vm , (1.5)

which is equivalent to the mass constraint in (1.2) for uE . Here, and in what
follows, χE is the characteristic function of E defined by χE := 1 on E and
χE := 0 on Ω \ E

To study the first order term for (1.1), we introduce the rescaled functionals
defined by

Fε (u) :=

∫
Ω

(
1

ε
W (u (x)) + εΦ2 (∇u (x))

)
dx

if (1.2) is satisfied. We extend Fε to L1 (Ω) by setting Fε (u) := +∞ if (1.2) is
not satisfied.
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By adapting well-known arguments developed in [4], [6], [20], [21], [26], it
can be shown (see Theorem 2.1 below) that the first order term W(1) for (1.1),
which by (1.4) coincides with the Γ-limit of {Fε}, is given by

F0 (u) := cW PΦ (E) (1.6)

if

u = uE := 1− 2χE , E ⊂ Ω , P (E) < +∞ , and |E| = Vm , (1.7)

while F0 (u) := +∞ if (1.7) is not satisfied. Here

cW := 2

∫ 1

−1

√
W (s) ds (1.8)

and PΦ is the Φ-perimeter, defined for every E ⊂ Rn with finite perimeter by

PΦ (E) :=

∫
∂∗E

Φ (νE(x)) dHn−1(x) , (1.9)

where ∂∗E is the reduced boundary of E, νE is the measure theoretic outer
unit normal of E, and Hn−1 is the (n − 1)-dimensional Hausdorff measure.
Observe that in contrast with the results in the literature just quoted, due to
the boundary condition in (1.2) in (1.6) we obtain the full Φ-perimeter of E as
opposed to the relative Φ-perimeter of E in Ω.

The main goal of this paper is to study the second order termW(2) for (1.1).
Under some additional assumptions on Ω and W (see (2.2), (2.3), (2.20), and
(2.21) in Section 2), we prove that W(2) (u) = 0 if u is a minimizer of F0 and
W(2) (u) = +∞ otherwise. The second assertion is trivial. By (1.4) the first
assertion amounts to proving the following properties:

(a) (Γ-liminf inequality) for every sequence {uε} ⊂ H1 (Ω) satisfying (1.2)
and converging strongly in L1(Ω) to a minimizer u0 of F0, we have

lim inf
ε→0+

Fε (uε)−F0 (u0)

ε
≥ 0 ; (1.10)

(b) (Γ-limsup inequality) for every minimizer u0 of F0 there exists a sequence
{uε} ⊂ H1 (Ω) converging strongly to u0 in L1(Ω), satisfying (1.2) and
such that

lim sup
ε→0+

Fε (uε)−F0 (u0)

ε
≤ 0 . (1.11)

By standard properties of Γ-convergence the inequalities (a) and (b) imply
that

minFε = minF0 + o(ε) = cW PΦ(E0) + o(ε) ,

where E0 is a minimizer of PΦ under the constraint (1.7), which gives

minWε = εcW PΦ(E0) + o(ε2) .
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A similar problem was studied in [3] for the single-well potential W (s) = s2

without imposing the mass constraint and assuming a strictly positive boundary
condition g. This forces a transition near ∂Ω and leads to a second order term
W(2) in the asymptotic expansion of the form 1

2

∫
∂Ω
g2K dHn−1, where K is the

mean curvature of ∂Ω.
We conclude by discussing our hypotheses. The assumption that W is even

is used in a crucial way to cancel many terms in the estimates due to symmetry
arguments. The hypothesis thatW (s) = |s−1|β near s = 1 for some 1 < β < 2 is
also important. Indeed, in the case β = 2 and without assuming the boundary
condition in (1.2), it can be shown that the second order term W(2) in the
asymptotic expansion may be different from zero (see [18]).

Finally, we observe that the case n = 1 is completely different, since the
minimizers of PΦ under the constraint (1.7) are intervals and so the geometry
plays no role. However, different nontrivial issues have been addressed (see, e.g.,
in [5] and [9], and also [2]).

2 Preliminaries
Let W : R → R be a double well potential of class C1 such that W ≥ 0 and
W (s) = 0 if and only if s = ±1. Assume, in addition, that

W (s) = W (−s) , (2.1)
W ′(s) > 0 for s > 1 , (2.2)
lim inf
s→+∞

W ′(s) > 0 , (2.3)

and that there exist two constants 0 < a < 1 and 1 < β < 2 such that

W (s) = |s− 1|β for 1− a ≤ s ≤ 1 + a . (2.4)

Let z be the unique global solution with values in [−1, 1] of the Cauchy
problem

z′(t) =
√
W (z(t)) , z (0) = 0 . (2.5)

A rescaled version of this function will play an important role in the construction
of the recovery sequence (see (4.3)) for the Γ-limsup inequality (1.11) . For this
reason, the function z will be called the “optimal profile” of the phase transition.

For −1 < z (t) < 1 we obtain, by integration,

t =

∫ z(t)

0

ds√
W (s)

.

It follows that z is odd and z(t) = 1 for all t ≥ τW , where

τW :=

∫ 1

0

ds√
W (s)

, (2.6)
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which is finite thanks to (2.4) since β < 2. Moreover −1 < z(t) < 1 for
−τW < t < τW .

Define
cW :=

∫ τW

−τW

(
W (z (t)) + |z′ (t)|2

)
dt . (2.7)

Note that by (2.5) we have∫ τW

−τW
W (z (t)) dt =

∫ τW

−τW
|z′ (t)|2 dt =

cW
2
, (2.8)

therefore (1.8) holds. It can be shown that for every b ≥ τW the function z is
the unique solution of the minimum problem

min
w∈H1(−b,b) , w(0)=0

∫ b

−b

(
W (w (s)) + |w′ (s)|2

)
ds = cW . (2.9)

Let Φ : Rn → R, n ≥ 2, be convex, even, and positively homogeneous of
degree one, such that

cΦ |ξ| ≤ Φ (ξ) ≤ CΦ |ξ| (2.10)

for all ξ ∈ Rn and for some CΦ ≥ cΦ > 0, where |·| is the Euclidean norm in Rn.
The polar function Φ◦ is defined by

Φ◦ (η) := sup
ξ 6=0

η · ξ
Φ (ξ)

for every η ∈ Rn. It turns out that Φ◦ is convex, even, positively homogeneous
of degree one on Rn (see [24]), and

Φ(∇Φ◦ (η)) = 1 for a.e. η ∈ Rn . (2.11)

Moreover, it satisfies the inequalities

1

CΦ
|η| ≤ Φ◦ (η) ≤ 1

cΦ
|η|

for every η ∈ Rn.
The ball with respect to the norm Φ◦ centered at x0 ∈ Rn and with radius

ρ > 0 is denoted by

BΦ◦

ρ (x0) := {x ∈ Rn : Φ◦(x− x0) < ρ} , (2.12)

Observe that ∣∣∣BΦ◦

ρ (x0)
∣∣∣ = κΦρ

n ,

PΦ

(
BΦ◦

ρ (x0)
)

= nκΦρ
n−1 , (2.13)
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where PΦ is the Φ-perimeter introduced in (1.9), and

κΦ :=
∣∣∣BΦ◦

1 (0)
∣∣∣ . (2.14)

It is easy to check (see, e.g., [1, 12]) that for every measurable function w :
[0, R]→ [0,+∞] we have∫

BΦ◦
R (x0)

w (Φ◦ (x− x0)) dx = nκΦ

∫ R

0

w (ρ) ρn−1dρ , (2.15)

Moreover, if ±w is nondecreasing and the composite function v(x) := w(Φ◦(x−
x0)) belongs to H1

(
BΦ◦

R (x0)
)
, then (see (2.11))

Φ (∇v (x)) = ±w′ (Φ◦ (x− x0)) for a.e. x ∈ BΦ◦

R (x0) . (2.16)

The geometry of the minimizers of PΦ in RN with prescribed volume V > 0
is well-known. Indeed, it was established in [12] and [13] (see also [27], [28],
[29]) that the minimum of the problem

min {PΦ (E) : E ⊂ Rn with finite perimeter, |E| = V }

is attained by all balls (2.12) centered at an arbitrary point x0 ∈ Rn and with
radius ρ > 0 chosen so that

∣∣BΦ◦

ρ (x0)
∣∣ = V . These balls are called Wulff sets for

the Φ-perimeter after the pioneering work of Wulff [30].
Let Ω be a bounded open set of Rn with Lipschitz boundary, let m ∈ R be

a constant satisfying (1.3), and let Vm be defined by (1.5).
We are interested in the minimum problem

min {PΦ (E) : E set of finite perimeter, E ⊂ Ω, |E| = Vm} . (2.17)

Let r > 0 be such that
∣∣BΦ◦

r (0)
∣∣ = Vm, that is,

r :=

(
|Ω| −m

2κΦ

)1/n
, (2.18)

which gives
m = |Ω| − 2κΦr

n = |Ω| − 2
∣∣∣BΦ◦

r (0)
∣∣∣ . (2.19)

A minimizer of (2.17) is attained at any Wulff set BΦ◦

r (x0) contained in Ω,
provided there is at least one. For this reason we assume that there exists
y0 ∈ Ω such that

BΦ◦

r (y0) ⊂ Ω . (2.20)

Our results are strongly hinged on this assumption.
We observe that there exists a Wulff set contained in Ω provided that m is

close to |Ω|, which corresponds to Vm and r sufficiently small.

6



For technical reasons, related to the proof of the Γ-limsup inequality, we
further assume that, whenever BΦ◦

r (x) ⊂ Ω for x ∈ Ω, then there exist y ∈ Ω
and δ > 0 with

BΦ◦

r (x) ⊂ BΦ◦

r+δ(y) ⊂ Ω . (2.21)

Given ε > 0, we define

Eε (u) :=

∫
Ω

(
1

ε
W (u (x)) + εΦ2 (∇u (x))

)
dx (2.22)

for u ∈ H1 (Ω). Some arguments in what follows will require a localization of
this energy, i.e., for every bounded open set A of Rn with Lipschitz boundary
and for every ε > 0, we define

Eε (u,A) :=

∫
A

(
1

ε
W (u (x)) + εΦ2 (∇u (x))

)
dx (2.23)

if u ∈ H1 (A) and Eε (u,A) := +∞ if u ∈ L1 (A) \H1 (A). Note that Eε (·,Ω) =
Eε(·) as defined in (2.22).

Consider the constrained functionals defined on L1(Ω) by

Fε (u) :=

{
Eε (u) if u satisfies (1.2),
+∞ otherwise

and

F0 (u) :=

{
cW PΦ (E) if u satisfies (1.7),
+∞ otherwise,

(2.24)

where cW is defined in (2.7). It is important to observe that in (2.24) the Φ-
perimeter PΦ (E) is defined by integrating over all the reduced boundary ∂∗E
of E and not only on Ω ∩ ∂∗E, i.e., we consider the Φ-perimeter in Rn and not
the relative Φ-perimeter in Ω.

A minimizer of F0 is a function of the form u0 = 1− 2χE0
, where E0 ⊂ Ω is

a minimizer of (2.17). Hence, E0 has the form BΦ◦

r (x0), with BΦ◦

r (x0) ⊂ Ω and
r defined by (2.18). Then (2.13) gives

PΦ (E0) = PΦ

(
BΦ◦

r (x0)
)

= nκΦr
n−1 . (2.25)

We now state the main result of this section.

Theorem 2.1 The family {Fε} Γ-converges in L1 (Ω) to F0.

If the boundary condition u = 1 on ∂Ω is omitted and PΦ (E) is replaced by
by PΦ (E,Ω) :=

∫
Ω∩∂∗E

Φ (νE) dHn−1, this result has been established in [20],
[21], [26] for the isotropic scalar-valued case, in [14] for the isotropic vector-
valued case, in [6], [23] for the anistropic, scalar-valued case, and in [4] for the
anisotropic, vector-valued case (see also [7]). In the proof below we show how
to take into account the boundary condition.
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Proof of Theorem 2.1. Similarly to (2.22) and (2.23), we localize (2.24) as

E0 (u,A) := cW PΦ (E,A)

if
u = 1− 2χE , with E ⊂ A with finite perimeter in A , (2.26)

where
PΦ (E,A) :=

∫
A∩∂∗E

Φ (νE(x)) dHn−1(x)

is the the relative Φ-perimeter of E in A. We extend E0 (·, A) to L1 (A) by
setting E0 (u,A) := +∞ if (2.26) is not satisfied. By [6, Theorem 3.5(i)] the
family {Eε (·, A)} Γ-converges in L1 (A) to E0 (·, A).

Fix a sequence εk → 0+ and define

F ′0 := Γ- lim inf
k→∞

Fεk and F ′′0 := Γ- lim sup
k→∞

Fεk .

We prove that F0 ≤ F ′0. Let u ∈ L1 (Ω) be such that F ′0 (u) < +∞. Then there
exists a sequence {uk} converging to u strongly in L1 (Ω) and such that

lim inf
k→∞

Fεk (uk) = F ′0 (u) < +∞ .

Passing to a subsequence, not relabeled, we may assume that the liminf is a
limit and that Fεk (uk) < +∞ for every k. By (1.2) we have that uk ∈ H1 (Ω),∫

Ω
uk (x) dx = m, and uk = 1 on ∂Ω. Fix a bounded open set A of Rn with

Lipschitz boundary such that Ω ⊂ A, and extend uk and u to A by setting
uk = u = 1 on A \ Ω. Then uk ∈ H1 (A) and {uk} converges to u strongly in
L1 (A). Hence, by [6, Theorem 3.5(i)],

E0 (u,A) ≤ lim
k→∞

Eεk (uk, A) < +∞ . (2.27)

Therefore, there exists a set E ⊂ A with finite perimeter such that u = 1− 2χE
in A. Since u = 1 in A \ Ω, it follows that E ⊂ Ω up to a set of measure
zero. Hence, E0 (u,A) = PΦ (E,A) = PΦ (E) = F0 (u). On the other hand,
Eεk (uk, A) = Fεk (uk), since W (uk) = W (1) = 0 and Φ2 (∇uk) = Φ2 (0) = 0 in
A \ Ω. Together with (2.27), this shows that

F0 (u) ≤ lim inf
k→∞

Fεk (uk) = F ′0 (u) .

This concludes the proof of the inequality F0 ≤ F ′0.
We now prove that F ′′0 ≤ F0. Let u ∈ L1 (Ω) be such that F0 (u) < +∞.

By (1.7) there exists a set E ⊂ Ω with finite perimeter such that u = 1− 2χE .
Since Ω has a Lipschitz boundary, there exists a sequence of sets {Ej} of finite
perimeter such that χEj → χE in L1 (Ω), PΦ (Ej) → PΦ (E), Ej ⊂⊂ Ω, and
|Ej | = |E| for every j. One way to construct {Ej} is to consider a sequence
{rj} of retractions rj : Rn → Rn of class C1 such that supp (rj − id) ⊂⊂ Rn,
rj− id→ 0 in C1

c (Rn;Rn), and rj
(
Ω
)
⊂ Ω, where id is the identity map (for the
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existence of these retractions see, e.g., [11, Proposition 1.2]). For j large enough
rj is invertible and r−1

j − id→ 0 in C1
c (Rn;Rn). It suffices to take Ej := rj (E).

Let uj := 1 − 2χEj . Since PΦ (Ej ,Ω) = PΦ (Ej), we have E0 (uj ,Ω) =
PΦ (Ej). By [6, Theorem 3.5(ii)] for every j there exists a sequence

{
ukj
}
con-

verging to uj in L1 (Ω) such that

PΦ (Ej) = E0 (uj ,Ω) = lim sup
k→∞

Eεk
(
ukj ,Ω

)
and

∫
Ω

ukj (x) dx = m. (2.28)

Since Ej ⊂⊂ Ω, the construction used in [6, Theorem 3.5(ii)] allows us to
deduce that ukj ∈ H1 (Ω) and that it is possible to assume ukj = 1 on ∂Ω.
Hence, Eεk

(
ukj ,Ω

)
= Fεk

(
ukj
)
, so that (2.28) gives

PΦ (Ej) ≥ lim sup
k→∞

Fεk
(
ukj
)
≥ F ′′0 (uj) .

Letting j → ∞ and using the lower semicontinuity of F ′′0 and the fact that
PΦ (Ej) → PΦ (E), we obtain F0 (u) = PΦ (E) ≥ F ′′0 (u), which shows that
F0 ≥ F ′′0 .

3 The Liminf Inequality
By (2.24) and (2.25), the Γ-liminf inequality (1.10) is a consequence of the
following theorem.

Theorem 3.1 Let {uε} be a sequence of functions satisfying (1.2) and converg-
ing strongly in L1(Ω) to a minimizer u0 = 1− 2χE0

of F0. Then

lim inf
ε→0+

Eε (uε)− nκΦcW r
n−1

ε
≥ 0 . (3.1)

Proof. We begin by giving an outline of the proof. The first step is to replace
uε by a minimizer ũε of an auxiliary energy where we relax the mass constraint
in (1.2) with an integral inequality. The advantage in doing this is that we can
use a truncation argument to prove that ũε ≤ 1 in Ω. This allows us to use a
convex symmetrization argument to reduce the energy by replacing ũε with a
“radial” function ŵε, i.e., a function of the form ŵε (x) = wε (Φ◦ (x)) defined on
the ball BΦ◦

R (0) with the same volume as Ω.
To be precise, ŵε is defined as a “radial” minimizer of a problem in BΦ◦

R (0)
with a suitable inequality constraint on the mass. The one-dimensional function
wε satisfies an Euler–Lagrange equation with a Lagrange multiplier λε such that
ελε → 0 as ε → 0+. The choice of the inequality constraint allows us to prove
that λε ≥ 0, which will be important in what follows.

To estimate the energy of wε it is convenient to consider the change of
variables ρ = r + εt, where r is defined in (2.18), and to introduce the function
wε (t) := wε(r + εt) for − rε ≤ t ≤ R−r

ε . Now the context of our problem has
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been reduced to a simpler one-dimensional setting. Indeed, it turns out that to
prove (3.1) it is enough to show that

lim inf
ε→0+

Hε(wε)− cW rn−1

ε
≥ 0 , (3.2)

where the functional

Hε (w) :=

∫ R−r
ε

− rε

(
W (w (t)) + |w′ (t)|2

)
(r + εt)

n−1
dt (3.3)

does not contain singular terms in ε.
The proof of (3.2) is based on several delicate estimates on wε. We first

show that wε vanishes at a point δε, with εδε → 0 as ε → 0+, and introduce
the shifted function w̌ε (t) := wε (t+ δε). Then we prove that w̌ε → z in H1

loc,
where z is the “optimal profile” introduced in (2.5), and that λε → (n − 1)cW
as ε → 0+. Next we derive some technical estimates on w̌ε using arguments
from the theory of ordinary differential equations, which rely on the fact that
w̌ε(0) = 0. These estimates allow us to show that lim infε δε ≥ 0 and to finally
prove (3.2).

We divide the proof into a series of steps.

Step 1. Here we replace uε by a minimizer ũε of an auxiliary energy where we
relax the mass constraint in (1.2) with an integral inequality.

To be precise, we introduce the functional F̃ε defined by

F̃ε (u) := Eε (u)

if
u ∈ H1 (Ω) ,

∫
Ω

u (x) dx ≤ m, and u = 1 on ∂Ω . (3.4)

We extend F̃ε to L1 (Ω) by setting F̃ε (u) := +∞ if (3.4) is not satisfied. Then,
reasoning as in Theorem 2.1, we can show that the Γ-limit of {F̃ε} is the func-
tional F̃0 defined by

F̃0 (u) := cW PΦ (E)

if

u = 1− 2χE , E ⊂ Ω , P (E) < +∞ , and
∫

Ω

u (x) dx ≤ m , (3.5)

while F̃0 (u) := +∞ if (3.5) is not satisfied.
Let ũε be a minimizer of F̃ε, whose existence can be justified by the Direct

Method of the Calculus of Variations. Then

F̃ε (ũε) ≤ Eε (uε) . (3.6)

Note that, by standard properties of Γ-convergence, we have that the sequence

{F̃ε(ũε)} is bounded (3.7)
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and {ũε} converges strongly in L1 (Ω) to u0 = 1 − 2χE0 , where E0 satisfies
PΦ(E0) ≤ PΦ(E) for every set E ⊂ Ω with finite perimeter and such that

|Ω| −m
2

≤ |E| .

We claim that
|Ω| −m

2
= |E0| . (3.8)

Since the ball BΦ◦

r (y0) introduced in (2.20) is contained in Ω and satisfies
|Ω|−m

2 =
∣∣BΦ◦

r (y0)
∣∣, we have

PΦ (E0) ≤ PΦ

(
BΦ◦

r (y0)
)
. (3.9)

Let ρ ≥ r be such that |E0| =
∣∣BΦ◦

ρ (y0)
∣∣. Then for every F ⊂ Rn with finite

perimeter and with |F | = |E0|, by the minimality of the Wulff shape in Rn (see
[12]) it follows

PΦ

(
BΦ◦

ρ (y0)
)
≤ PΦ (F ) . (3.10)

From (2.13), (3.9), and (3.10) we obtain PΦ (E0) ≤ PΦ (F ) for every F ⊂ Rn
with finite perimeter and with |F | = |E0|. Since the Wulff sets are the unique
minimizers of PΦ in Rn under the volume constraint (see [13]), there exists
x0 ∈ Ω such that E0 = BΦ◦

ρ (x0). By (2.13) and (3.9) it follows that ρ = r and
that (3.8) holds.

Next we prove that ũε ≤ 1 a.e. in Ω. Let u1 := min {ũε, 1}. Assume, by
contradiction, that |{ũε > 1}| > 0. Since W (1) = 0 and W (s) > 0 for s > 1 by
(2.2) and (2.4), we have that W (u1 (x)) ≤ W (ũε (x)) for a.e. x ∈ Ω, and the
inequality is strict for a.e. x ∈ {ũε > 1}. This implies that∫

Ω

W (u1 (x)) dx <

∫
Ω

W (ũε (x)) dx .

Since ∇u1 = ∇ũε a.e. on {ũε ≤ 1} and ∇u1 = 0 a.e. on {ũε > 1}, we have also
Φ (∇u1 (x)) ≤ Φ (∇ũε (x)) for a.e. x ∈ Ω, which implies∫

Ω

Φ2 (∇u1 (x)) dx ≤
∫

Ω

Φ2 (∇ũε (x)) dx .

Noting that u1 satisfies (3.4), the previous inequalities give F̃ε (u1) < F̃ε (ũε),
which contradicts the minimality of ũε. This proves that ũε ≤ 1 a.e. in Ω.

Step 2. In this step we use “convex” rearrangements to replace ũε by a “radial”
function ŵε, i.e., a function depending on x only through Φ◦(x).

Define ṽε := 1− ũε ∈ H1
0 (Ω) and observe that

Eε (ũε) =

∫
Ω

(
1

ε
W (1− ṽε(x)) + εΦ2 (∇ṽε (x))

)
dx .
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Since ṽε ≥ 0, we define the “convex” rearrangement v?ε of ṽε as the unique
function of the form

v?ε (x) = vε (Φ◦ (x)) , (3.11)

with vε : R+ → R+ nonincreasing and continuous from the right, and such that
|{ṽε > t}| = |{v?ε > t}| for every t > 0. It can be shown that∫

BΦ◦
R (0)

W (1− v?ε (x)) dx =

∫
Ω

W (1− ṽε(x)) dx ,

where
∣∣BΦ◦

R (0)
∣∣ = |Ω|. The Pólya-Szegö principle, which holds also for “convex”

rearrangements (see [1, Theorem 3.1]), gives v?ε ∈ H1
0

(
BΦ◦

R (0)
)
and∫

BΦ◦
R (0)

Φ2 (∇v?ε (x)) dx ≤
∫

Ω

Φ2 (∇ṽε(x)) dx .

Therefore, we deduce that

Eε(1− v?ε , BΦ◦

R (0)) ≤ F̃ε (ũε) . (3.12)

Let ŵε be a minimizer of Eε(·, BΦ◦

R (0)) among all functions u ∈ H1
(
BΦ◦

R (0)
)

satisfying ∫
BΦ◦
R (0)

u (x) dx ≤ m and u = 1 on ∂BΦ◦

R (0) .

By (3.12) we have

Eε(ŵε, BΦ◦

R (0)) ≤ Eε(1− v?ε , BΦ◦

R (0)) ≤ F̃ε (ũε) . (3.13)

Reasoning as in Step 1, with F̃ε replaced by Eε(·, BΦ◦

R (0)), we may assume
that

ŵε → 1− 2χBΦ◦
r (0) in L1

(
BΦ◦

R (0)
)
, (3.14)

where r is given by (2.18).
Using a symmetrization argument similar to the one above (see (3.11) and

(3.12)), we can assume that there exists a function wε : R+ → R+, nondecreas-
ing and continuous from the right, such that

ŵε (x) = wε (Φ◦ (x)) . (3.15)

By (2.16) and (3.11) we have Φ (∇ŵε (x)) = w′ε (Φ◦ (x)) for a.e. x ∈ BΦ◦

R (0),
and so (2.15) yields

Eε(ŵε, BΦ◦

R (0)) = nκΦ

∫ R

0

(
1

ε
W (wε(ρ)) + ε |w′ε (ρ)|2

)
ρn−1dρ . (3.16)

Step 3. In this step we prove some elementary properties of the one-dimen-
sional function wε introduced in (3.15).

12



By the minimality of ŵε, restricting our attention to functions of the form
w ◦ Φ◦ and using (2.15) and (2.16), we deduce that wε is a minimizer of

Gε (w) :=

∫ R

0

(
1

ε
W (w(ρ)) + ε |w′ (ρ)|2

)
ρn−1dρ (3.17)

among all functions w ∈ H1
loc (0, R) subject to the constraints∫ R

0

|w′(ρ)|2 ρn−1dρ < +∞, w (R) = 1, nκΦ

∫ R

0

w (ρ) ρn−1dρ ≤ m. (3.18)

Note that if w satisfies the first two conditions in (3.18) then

|w (ρ)| ≤ 1 +

∫ R

ρ

|w′ (σ)| dσ ,

hence ∣∣w (ρ) ρn−1
∣∣ ≤ ρn−1 +

∫ R

ρ

|w′ (σ)|σn−1dσ .

By Hölder’s inequality we obtain

∣∣w (ρ) ρn−1
∣∣ ≤ Rn−1 +

(
Rn

n

)1/2
(∫ R

0

|w′ (σ)|2 σn−1dσ

)1/2

,

hence
w(ρ)ρn−1 is bounded in (0, R) . (3.19)

This implies that the integral in the last inequality in (3.18) is well defined.
Reasoning by truncation as at the end of Step 1, we can prove that

wε (ρ) ≤ 1 for 0 < ρ < R . (3.20)

Using the equalities ŵε = wε ◦ Φ◦ and χBΦ◦
r (0) = χ[0,r) ◦ Φ◦, by (3.14) we

obtain that
wε → 1− 2χ[0,r) in L1 (0, R) .

Since each wε is nondecreasing, it follows that there is pointwise convergence at
every ρ, with the possible exceptions of 0 and r. In particular, we have

wε (ρ)→
{
−1 if 0 < ρ < r ,

1 if r < ρ ≤ R , (3.21)

where the case ρ = R can be obtained by (3.20). In turn, for every 0 < ρ0 < R
the sequence

{wε} is bounded in L∞([ρ0, R]) . (3.22)

Step 4. Here we derive the Euler–Lagrange equation for wε, and we prove that
the corresponding Lagrange multipliers λε satisfy

lim
ε→0+

ελε = 0 . (3.23)
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We claim that wε ∈ C2 (0, R) and satisfies the Euler–Lagrange equation

−2εw′′ε (ρ)− 2 (n− 1) ε

ρ
w′ε (ρ) +

1

ε
W ′ (wε(ρ)) = −λε ≤ 0 (3.24)

for some constant λε ≥ 0. To see this, let ϕ ∈ C∞c (0, R) be nonnegative. For
t > 0 the function wε − tϕ fulfills (3.18), and so

Gε (wε) ≤ Gε (wε − tϕ) .

Thus the derivative of the function t 7→ Gε (wε − tϕ) is greater than or equal to
0 at t = 0. This gives∫ R

0

(
1

ε
W ′ (wε(ρ))ϕ (ρ) + 2εw′ε (ρ)ϕ′ (ρ)

)
ρn−1 dρ ≤ 0 (3.25)

for all nonnegative ϕ ∈ C∞c (0, R), which shows that −2ε
(
w′ε (ρ) ρn−1

)′
+

1
εW
′ (wε(ρ)) ρn−1 is nonpositive in the sense of distributions.
On the other hand, if we consider ψ ∈ C∞c (0, R) such that

∫ R
0
ψ (ρ) ρn−1dρ =

0, then wε + tψ satisfies (3.18) for all t ∈ R, and so∫ R

0

(
1

ε
W ′ (wε(ρ))ψ (ρ) + 2εw′ε (ρ)ψ′ (ρ)

)
ρn−1 dρ = 0 (3.26)

for all ψ ∈ C∞c (0, R) with
∫ R

0
ψ (ρ) ρn−1 dρ = 0. We now use a classical argu-

ment (see, e.g., [17, Lemma 7.3]) to show that (3.26) implies that there exists a
constant λε such that

−2ε
(
w′ε (ρ) ρn−1

)′
+

1

ε
W ′ (wε (ρ)) ρn−1 = −λερn−1 (3.27)

in the sense of distributions in (0, R).
Fix ϕ1 ∈ C∞c (0, R) with

∫ R
0
ϕ1 (ρ) ρn−1 dρ = 1. Given ϕ ∈ C∞c (0, R), we

can write ϕ = cϕϕ1 + ψ, where cϕ :=
∫ R

0
ϕ (ρ) ρn−1 dρ and ψ ∈ C∞c (0, R)

satisfies
∫ R

0
ψ (ρ) ρn−1 dρ = 0. Hence, using (3.26), we obtain∫ R

0

(
1

ε
W ′ (wε(ρ))ϕ (ρ) + 2εw′ε (ρ)ϕ′ (ρ)

)
ρn−1 dρ = −λε

∫ R

0

ϕ (ρ) ρn−1 dρ ,

where

λε := −
∫ R

0

(
1

ε
W ′ (wε(ρ))ϕ1 (ρ) + 2εw′ε (ρ)ϕ′1 (ρ)

)
ρn−1 dρ . (3.28)

This concludes the proof of (3.27).
By (3.25) it follows that λε ≥ 0. Using the facts that W is of class C1 and

that wε is bounded on [ρ0, R] for every 0 < ρ0 < R by (3.19), we deduce that
wε ∈ C2 (0, R) and that (3.24) and (3.27) are satisfied pointwise.
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Next we prove (3.23). By (3.28),

ελε = −
∫ R

0

W ′ (wε(ρ))ϕ1 (ρ) ρn−1 dρ−
∫ R

0

2ε2 w′ε (ρ)ϕ′1 (ρ) ρn−1 dρ .

Since ϕ1 has compact support in (0, R), the first integral tends to zero in view
of (2.1), (2.4), (3.21), and (3.22), while the second integral goes to zero since
the sequence {ε|w′ε|2ρn−1} is bounded in L1(0, R) by (3.7), (3.13), and (3.16).
This concludes the proof of (3.23).

Step 5. Here we prove that for ε > 0 small enough

inf wε ≥ −1−
(
ελε
β

)1/(β−1)

, (3.29)

where 1 < β < 2 is the constant in (2.4).
Integrating (3.27) gives

w′ε (ρ2) ρn−1
2 − w′ε (ρ1) ρn−1

1

=
1

2ε

∫ ρ2

ρ1

(
1

ε
W ′ (wε (ρ)) ρn−1 + λερ

n−1

)
dρ (3.30)

for 0 < ρ1 ≤ ρ2 ≤ R. Since wε (ρ) ≤ 1 for every 0 < ρ ≤ R by (3.20), and
W ′ (s) < 0 for s < −1 by (2.1) and (2.2), the integral∫ R

0

(
1

ε
W ′ (wε (ρ)) ρn−1 + λερ

n−1

)
dρ

is well-defined as an element of R ∪ {−∞}. We claim that

lim
ρ→0+

w′ε (ρ) ρn−1 = 0 . (3.31)

First, we observe that the limit exists in R∪{+∞} by (3.30). If it were different
from zero, then there would exist c0 > 0 and ρ0 > 0 such that |w′ε (ρ)| ≥ c0/ρn−1

for 0 < ρ < ρ0. It would follow that∫ R

0

|w′(ρ)|2 ρn−1dρ ≥ c20
∫ ρ0

0

dρ

ρn−1
= +∞ ,

which would contradict the first inequality in (3.18) since n ≥ 2. This gives
(3.31).

To prove (3.29) we first show that

lim inf
ε→0+

inf wε ≥ −1 . (3.32)

It is enough to prove an estimate from below for those ε such that inf wε < −1.
We claim that for those ε,

lim sup
ρ→0+

(W ′ (wε (ρ)) + ελε) ≥ 0 . (3.33)
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If not, (3.30) and (3.31) imply that w′ε (ρ) ρn−1 < 0 for ρ > 0 small enough,
and this violates the fact that wε is nondecreasing. This proves (3.33), which
implies that, for inf wε < −1, we have

W ′ (inf wε) + ελε ≥ 0 , (3.34)

where W ′(−∞) denotes the limsup of W ′(s) as s→ −∞.
SinceW ′(s) < 0 for every−∞ ≤ s < −1, by (2.1), (2.2), and (2.3), inequality

(3.32) follows from (3.23).
By (2.1), (2.4), (3.32), and (3.34), if ε > 0 is small enough and inf wε < −1

we have
β (− inf wε − 1)

β−1 ≤ ελε .

This proves (3.29).

Step 6. In this step we consider the change of variables ρ = r + εt, we define
wε (t) := wε(r + εt) for − rε ≤ t ≤ R−r

ε , and we derive the one-dimensional
formulation (3.2) of the problem in terms of the new energy Hε introduced in
(3.3).

Note that wε
(
R−r
ε

)
= 1 and wε is nondecreasing. By (3.29), for ε > 0 small

enough we have

inf wε ≥ −1−
(
ελε
β

)1/(β−1)

.

In particular, using also (3.20) and (3.23), for all ε > 0 sufficiently small we get

−2 ≤ wε(t) ≤ 1 (3.35)

for all − rε ≤ t ≤
R−r
ε .

Moreover, by (3.24), wε satisfies the Euler–Lagrange equation

−2w′′ε (t)− 2 (n− 1) ε
w′ε (t)

r + εt
+W ′ (wε (t)) = −ελε ≤ 0 , (3.36)

and by (3.18), ∫ R−r
ε

− rε
wε (t) (r + εt)

n−1
dt ≤ m

nκΦε
. (3.37)

Observe that, setting

w0 (t) :=

{
−1 if t < 0 ,

1 if t > 0 ,
(3.38)

we have∫ R−r
ε

− rε
w0 (t) (r + εt)

n−1
dt =

∫ R−r
ε

0

(r + εt)
n−1

dt−
∫ 0

− rε
(r + εt)

n−1
dt

=
1

nε
[(r + εt)

n
]
R−r
ε

0 − 1

nε
[(r + εt)

n
]
0
− rε

=
1

nε
(Rn − 2rn) =

m

nκΦε
,
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where the last equality follows from (2.19), taking into account the fact that
κΦR

n =
∣∣BΦ◦

R (0)
∣∣ = |Ω|. Thus, (3.37) is equivalent to∫ R−r

ε

− rε
(wε (t)− w0 (t)) (r + εt)

n−1
dt ≤ 0 . (3.39)

The minimality of wε for Gε and a change of variables show that wε is a
minimizer of the functional Hε defined in (3.3) over all w ∈ H1

loc
(
− rε ,

R−r
ε

)
∩

H1
(
0, R−rε

)
satisfying w

(
R−r
ε

)
= 1 and∫ R−r

ε

− rε
(w (t)− w0 (t)) (r + εt)

n−1
dt ≤ 0 . (3.40)

By (3.6), (3.12), (3.13), (3.16), and (3.17) we have

Hε (wε) = Gε (wε) =
1

nκΦ
Eε(ŵε, BΦ◦

R (0)) ≤ 1

nκΦ
F̃ε (ũε) ≤

1

nκΦ
Eε (uε) .

Therefore, in order to prove (3.1) it is enough to show that (3.2) holds.

Step 7. Here we prove that the function wε obtained in the previous step
vanishes at a point δε, and that

lim
ε→0+

εδε = 0 . (3.41)

Let z be the function defined by (2.5). We claim that w = z satisfies (3.40)
for all ε > 0 sufficiently small. Since z(t) = w0(t) for |t| ≥ τW , (3.40) reduces to∫ τW

−τW
(z (t)− w0 (t)) (r + εt)

n−1
dt ≤ 0

for all ε > 0 sufficiently small, or, equivalently,∫ τW

0

(z (t)− w0 (t)) (r + εt)
n−1

dt ≤ −
∫ 0

−τW
(z (t)− w0 (t)) (r + εt)

n−1
dt .

Using the fact that z − w0 is odd, a change of variables on the right-hand side
leads to∫ τW

0

(z (t)− w0 (t)) (r + εt)
n−1

dt ≤
∫ τW

0

(z (t)− w0 (t)) (r − εt)n−1
dt ,

which follows from the fact that z (t)− w0 (t) ≤ 0 for all 0 ≤ t ≤ τW . Hence, z
satisfies (3.40) for all ε > 0 sufficiently small and so, by the minimality of wε,
we have Hε (wε) ≤ Hε (z).

Moreover, by (2.7),

Hε (z) =

∫ τW

−τW

(
W (z (t)) + |z′ (t)|2

)
(r + εt)

n−1
dt

=

∫ τW

−τW

(
W (z (t)) + |z′ (t)|2

)
rn−1 dt+O

(
ε2
)

= cW r
n−1 +O

(
ε2
)
,
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where we have used the fact∫ τW

−τW

(
W (z (t)) + |z′ (t)|2

)
t dt = 0 ,

since W is even and z is odd. It follows that

Hε (wε) ≤ Hε (z) = cW r
n−1 +O

(
ε2
)
. (3.42)

Fix 0 < r1 < r < r2 < R. Then wε(r1) → −1 and wε(r2) → 1 by (3.21),
and so wε

(
r1−r
ε

)
→ −1 and wε

(
r2−r
ε

)
→ 1 as ε→ 0+. Since wε is continuous,

for all ε sufficiently small there exists δε ∈
(
r1−r
ε , r2−rε

)
such that

wε (δε) = 0 .

Then r1 − r ≤ εδε ≤ r2 − r all ε sufficiently small. Hence,

r1 − r ≤ lim inf
ε→0+

εδε ≤ lim sup
ε→0+

εδε ≤ r2 − r .

Letting r1 → r− and r2 → r+, we conclude that (3.41) holds.

Step 8. Define

w̌ε (t) := wε (t+ δε) for − r
ε − δε ≤ t ≤

R−r
ε − δε . (3.43)

In this step we prove that

w̌ε → z strongly in H1 (−b, b) (3.44)

for every b > 0, where z is the “optimal profile” introduced in (2.5).
Fix 0 < r1 < r, r2 < R − r, and b ≥ τW , where τW is given in (2.6). By

(3.41), for all ε > 0 sufficiently small so that |δε| < min
{
r−r1
ε , R−r−r2ε

}
, by

(3.17), (3.41), and (3.42) we obtain

cW r
n−1 +O

(
ε2
)
≥ Hε (wε)

=

∫ R−r
ε −δε

− rε−δε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds

≥
∫ r2

ε

− r1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds (3.45)

≥
∫ b

−b

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds .

Fix 0 < η < r. Again by (3.41), |εs− εδε| ≤ η for all ε sufficiently small, and
so by (3.45),

cW r
n−1 + η ≥ (r − η)

n−1
∫ b

−b

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
ds .
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Since w̌ε (0) = 0, it follows that for all ε sufficiently small the sequence {w̌ε} is
bounded in H1 (−b, b), and thus, up to a subsequence not relabeled, it converges
weakly in H1 (−b, b) and uniformly to some function w̌ ∈ H1 (−b, b). It follows
by Fatou’s Lemma and the weak sequential lower semicontinuity of the L2 norm
that

cW r
n−1 + η ≥ (r − η)

n−1
lim sup
ε→0+

∫ b

−b

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
ds

≥ (r − η)
n−1

lim inf
ε→0+

∫ b

−b

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
ds (3.46)

≥ (r − η)
n−1

∫ b

−b

(
W (w̌ (s)) + |w̌′ (s)|2

)
ds .

Letting η → 0+ gives

cW ≥
∫ b

−b

(
W (w̌ (s)) + |w̌′ (s)|2

)
ds

≥ min
w∈H1(−b,b) , w(0)=0

∫ b

−b

(
W (w (s)) + |w′ (s)|2

)
ds = cW ,

where we have used (2.9). Since w̌ (0) = 0, from the uniqueness of the minimizer
it follows that w̌ = z. Hence, the entire sequence {w̌ε} weakly converges to z in
H1 (−b, b), and by (3.46),

cW = lim
ε→0+

∫ b

−b

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
ds =

∫ b

−b

(
W (z (s)) + |z′ (s)|2

)
ds ,

which implies that

lim
ε→0+

∫ b

−b
|w̌′ε (s)|2 ds =

∫ b

−b
|z′ (s)|2 ds ,

and, in turn, (3.44) holds.

Step 9. Here we prove that the sequence of Lagrange multipliers λε found in
Step 4 converges to λ0 := (n− 1)cW , where cW is defined in (2.7).

Note that a similar result was obtained in [19] in the case of a mass equality
constraint.

Since w̌ε (−τW )→ −1 and w̌ε (τW )→ 1− by (3.44), there exists a sequence
{ζε} of positive numbers converging to 0 such that 1 + w̌ε (−τW ) ≤ ζε and
1− w̌ε (τW ) ≤ ζε for every ε > 0. Then for ε > 0 small enough
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∫ τW

−τW

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds

≥ 2 (r − ετW + εδε)
n−1

∫ τW

−τW

(√
W (w̌ε (s))w̌′ε (s)

)
ds

= 2 (r − ετW + εδε)
n−1

∫ w̌ε(τW )

w̌ε(−τW )

√
W (σ) dσ

≥ 2 (r − ετW + εδε)
n−1

∫ 1

−1

√
W (σ) dσ

− 3rn−1

∫ 1

1−ζε

√
W (σ) dσ − 3rn−1

∫ −1+ζε

−1

√
W (σ) dσ .

By (2.4) we have∫ 1

1−ζε

√
W (σ) dσ =

∫ 1

1−ζε
(1− σ)

β/2
dσ =

∫ ζε

0

sβ/2 ds =
2

2 + β
ζ(2+β)/2
ε

and, similarly, ∫ −1+ζε

−1

√
W (σ) dσ =

2

2 + β
ζ(2+β)/2
ε .

In conclusion,∫ τW

−τW

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds

≥ cW rn−1 −O (ετW − εδε)−
12rn−1

2 + β
ζ(2+β)/2
ε .

Fix 0 < r1 < r < r2 < R. Using (3.45) and the previous inequality, we find that∫ r2
ε

τW

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds

+

∫ −τW
− r1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds (3.47)

≤ O
(
ε2
)

+O (ετW − εδε) +
12rn−1

2 + β
ζ(2+β)/2
ε =: ηε .

Note that, by (3.41),
lim
ε→0+

ηε = 0 . (3.48)

Fix 0 < r∗1 < r1 and 0 < r < r∗2 < r2. We claim that there exist aε ∈
(−r1/ε,−r∗1/ε) and bε ∈ (r∗2/ε, r2/ε) such that

W (w̌ε (aε)) + |w̌′ε (aε)|
2 ≤ c1εηε and W (w̌ε (bε)) + |w̌′ε (bε)|

2 ≤ cεηε (3.49)
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for some appropriate constants c1 = c1 (r∗1 , r1) > 0 and c2 = c2 (r∗2 , r2) > 0,
independent of ε. To prove the existence of aε, assume by contradiction that

W (w̌ε (s)) + |w̌′ε (s)|2 > c1εηε

for all s ∈
(
− r1ε ,−

r∗1
ε

)
. By (3.41), |εδε| ≤ 1

2 (r − r1) for all ε sufficiently small,
and so, by (3.47),

ηε ≥
∫ −τW
− r1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds

≥
∫ − r∗1ε
− r1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds

≥ c1ηε (r − r1 + εδε)
n−1

(r1 − r∗1)

≥ c1ηε
(
r − r1

2

)n−1

(r1 − r∗1) ,

which is a contradiction, provided we take

c1 >
2n−1

(r − r1)
n−1

(r1 − r∗1)
.

This proves the existence of aε. The proof of the existence of bε is similar, and
we omit it.

By (3.36), w̌ε satisfies the Euler–Lagrange equation

−2w̌′′ε (s)− 2ε (n− 1)
w̌′ε (s)

r + εs+ εδε
+W ′ (w̌ε (s)) = −ελε .

Multiplying the previous equation by w̌′ε (s) gives(
− |w̌′ε (s)|2 +W (w̌ε (s))

)′
= 2ε (n− 1)

|w̌′ε (s)|2

r + εs+ εδε
− ελεw̌′ε (s) . (3.50)

Upon integration between aε and bε we get

− |w̌′ε (bε)|
2

+W (w̌ε (bε)) + |w̌′ε (aε)|
2 −W (w̌ε (aε))

= 2ε (n− 1)

∫ bε

aε

|w̌′ε (s)|2

r + εs+ εδε
ds− ελε (w̌ε (bε)− w̌ε (aε)) .

Since aε ∈ (−r1/ε,−r∗1/ε) and bε ∈ (r∗2/ε, r2/ε) it follows from (3.21) and the
monotonicity of w̌ε that w̌ε (aε) → −1 and w̌ε (bε) → 1. Dividing the previous
identity by ε and letting ε→ 0+, by (3.49) we get

lim
ε→0+

(
2 (n− 1)

∫ bε

aε

|w̌′ε (s)|2

r + εs+ εδε
ds− λε

)
= 0 . (3.51)
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Observe that by (3.47),∫ bε

τW

|w̌′ε (s)|2

r + εs+ εδε
ds ≤ 1

(r + εδε)
n

∫ bε

τW

|w̌′ε (s)|2 (r + εs+ εδε)
n−1

ds

≤ ηε
(r + εδε)

n → 0

where the convergence to zero follows from (3.41) and (3.48). Similarly,∫ −τW
aε

|w̌′ε (s)|2

r + εs+ εδε
ds ≤ ηε

(r − r1 + εδε)
n → 0 .

These inequalities, together with (3.44) and (3.51), imply that

lim
ε→0+

λε = λ0 := 2 (n− 1)

∫ τW

−τW
|z′ (s)|2 ds = (n− 1) cW , (3.52)

where in the last equality we have used (2.8).

Step 10. We claim that there exist two constants a1 > 0 and c1 > 0 such that

w̌ε (−τW − a1ε) ≤ −1 + c1ε
1/β (3.53)

for all ε > 0 sufficiently small.
Let bε be the number given in (3.49) and let t < bε. Integrating (3.50)

between t and bε and using (3.35) and (3.52) gives

− |w̌′ε (bε)|
2

+W (w̌ε (bε)) + |w̌′ε (t)|2 −W (w̌ε (t))

= 2ε (n− 1)

∫ bε

t

|w̌′ε (s)|2

r + εs− εδε
ds− ελε (w̌ε (bε)− w̌ε (t)) ≥ −cε

for some constant c > 0 independent of ε. In view of (3.49), by taking c > 0
larger, if necessary, we have

|w̌′ε (t)|2 > W (w̌ε (t))− cε .

Since w̌ε is nondecreasing, we obtain that

w̌′ε (t) ≥
√

(W (w̌ε(t))− cε)+ .

Using the fact that W is continuous and vanishes only at s = ±1, we find a
constant µ > 0 such that

W (s) ≥ µ for − 1 + a ≤ s ≤ 1− a , (3.54)

where a is the constant in (2.4). Therefore, if cε < µ and (cε)
1/β

< a we deduce
from (2.4) that W (s) > cε for −1 + (cε)

1/β
< s ≤ 0. This implies

w̌′ε(t) ≥
√
W (w̌ε (t))− cε .
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for every − rε − δε < t ≤ 0 such that −1 + (cε)
1/β

< w̌ε (t) ≤ 0.
Since w̌ε (0) = 0, it follows upon integration

−t ≤
∫ 0

w̌ε(t)

1√
W (s)− cε

ds ≤
∫ 0

−1+(cε)1/β

1√
W (s)− cε

ds < +∞ ,

where the last inequality is a consequence of (2.4). Observe that this inequality
provides a bound on all those t such that −1 + (cε)

1/β
< w̌ε (t) ≤ 0. Therefore,

there exists a largest tε such that − rε − δε < tε < 0 and w̌ε (tε) = −1 + (cε)
1/β .

Then

−tε ≤
∫ 0

−1+(cε)1/β

1√
W (s)− cε

ds

=

∫ −1+a

−1+(cε)1/β

1√
(s+ 1)β − cε

ds+

∫ 0

−1+a

1√
W (s)− cε

ds . (3.55)

The change of variables σ := (s+ 1)
β − cε yields∫ −1+a

−1+(cε)1/β

1√
(s+ 1)β − cε

ds =
1

β

∫ aβ−cε

0

1

σ1/2 (σ + cε)
1−1/β

dσ

<
1

β

∫ aβ

0

1

σ1/2σ1−1/β
dσ =

∫ −1+a

−1

1√
W (s)

ds , (3.56)

where the last equality follows from direct computation, taking into account
(2.4).

By (3.54) there exists a constant L > 0 such that∣∣∣∣∣ 1√
W (s)− η

− 1√
W (s)

∣∣∣∣∣ ≤ Lη (3.57)

for −1 + a ≤ s ≤ 1− a and for 0 < η ≤ µ/2.
From (3.55), (3.56), and (3.57) we get

−tε ≤
∫ 0

−1

ds√
W (s)

+ Lcε = τW + Lcε ,

where the equality follows from (2.6). Since w̌ε is nondecreasing, we obtain
w̌ε (−τW − Lcε) ≤ w̌ε (tε) = −1 + (cε)

1/β , which gives (3.53) with a1 := Lc and
c1 := c1/β .

Step 11. Let 1 < α ≤ 2 be defined by

α :=
1

1
2 + |β − 3

2 |
.
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We claim there exist two constants a2 > 0 and c2 > 0 such that

w̌ε (τW + a2ε) ≥ 1− c2εα (3.58)

for all ε > 0 sufficiently small.
Since w̌ε

(
R−r
ε − δε

)
= 1, integrating (3.50) between t and R−r

ε − δε we
obtain

|w̌′ε (t)|2 −W (w̌ε (t)) + ελε (1− w̌ε (t))

=
∣∣w̌′ε (R−rε − δε)∣∣2 + 2ε (n− 1)

∫ R−r
ε −δε

t

|w̌′ε (s)|2

r + εs+ εδε
ds ≥ 0 .

Hence, by (3.52)

|w̌′ε (t)|2 ≥W (w̌ε (t))− cε (1− w̌ε (t))

for all ε > 0 sufficiently small and for some constant c > 0 independent of ε.
Since w̌ε is nondecreasing, we deduce that

w̌′ε (t) ≥
√

(Ww̌ε(t))− cε(1− w̌ε(t)))+ .

For t > 0 sufficiently small, we have that 0 ≤ w̌ε (t) < 1. Since w̌ε (0) = 0, it
follows upon integration

t ≤
∫ w̌ε(t)

0

ds√
(W (s)− cε(1− s))+

.

Let γ := min{2(β−1), 1}. Note that α = 1
β−γ . Then (W (s)− cε (1− s))+ ≥

(W (s)− cε (1− s)γ)
+ for 0 ≤ s ≤ 1, hence

t ≤
∫ w̌ε(t)

0

ds√
(W (s)− cε(1− s)γ)+

.

By (3.54) when cε ≤ µ we have W (s) − cε (1− s)γ ≥ 0 for 0 ≤ s ≤ 1 − a.
Moreover, if (cε)

α
< a we obtain W (s) = (1− s)β for 1− a ≤ s ≤ 1− (cε)

α by
(2.4).

Using the facts that w̌ε(0) = 0 and w̌ε
(
R−r
ε − δε

)
= 1, there exists 0 < tε <

R−r
ε − δε such that w̌ε (tε) = 1− (cε)

α. Then for ε sufficiently small

tε ≤
∫ 1−a

0

ds√
W (s)− cε (1− s)γ

+

∫ 1−(cε)α

1−a

ds

(1− s)γ/2
√

(1− s)β−γ − cε
. (3.59)
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Consider the change of variables σ := (1− s)β−γ − cε. Then (σ + cε)
1/(β−γ)

=
1− s, and since 2− 2β + γ ≤ 0 and β − γ ≥ 0,∫ 1−(cε)α

1−a

ds

(1− s)γ/2
√

(1− s)β−γ − cε

≤ 1

β − γ

∫ aβ−γ−cε

0

(σ + cε)
(2−2β+γ)/(2β−2γ)

σ−1/2 dσ

≤ 1

β − γ

∫ aβ−γ

0

σ(2−2β+γ)/(2β−2γ)σ−1/2 dσ

=
2

2− β
a

2−β
2 =

∫ 1

1−a

ds√
W (s)

, (3.60)

where the last inequality follows from direct computation, taking into account
(2.4).

From (3.57), (3.59), and (3.60) we obtain that for ε > 0 small enough we
have

tε ≤
∫ 1

0

ds√
W (s)

+ Lcε = τW + Lcε ,

where the equality is a consequence of (2.6). Since w̌ε is nondecreasing, it follows
that w̌ε (τW + Lcε) ≥ w̌ε (tε) = 1 − (cε)

α. This concludes the proof of (3.58)
with a2 := Lc and c2 := cα.

Step 12. Let δε be the constant introduced in Step 7 and let w0 be the function
introduced in (3.38). We claim that

lim inf
ε→0+

∫ R−r
ε

δε+τW

(wε (t)− w0 (t)) (r + εt)
n−1

dt ≥ 0 . (3.61)

Since wε is nondecreasing and wε(δε + τW + a2ε) ≥ 1 − c2εα by (3.58), we
have wε(t) ≥ 1− c2εα > 0 for every t ≥ δε + τW + a2ε. This implies that∫ R−r

ε

δε+τW

(wε (t)− w0 (t)) (r + εt)
n−1

dt =

∫ δε+τW+a2ε

δε+τW

(wε (t)− w0 (t)) (r + εt)
n−1

dt

+

∫ (δε+τW+a2ε)
+

δε+τW+a2ε

(wε (t) + 1) (r + εt)
n−1

dt+

∫ R−r
ε

(δε+τW+a2ε)
+

(wε (t)− 1) (r + εt)
n−1

dt

≥ −c2εα
∫ R−r

ε

(δε+τW )+

(r + εt)
n−1

dt+O(ε) ≥ −c2εα−1R
n − rn

n
+O(ε) , (3.62)

where we used (3.41) together with the inequality∫ δε+τW+a2ε

δε+τW

(wε (t)− w0 (t)) (r + εt)
n−1

dt ≥ −3 (r + ε(|δε|+ τW + a2ε))
n−1

a2ε ,
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which follows from (3.35).
Since α > 1, inequality (3.62) yields (3.61).

Step 13. We claim that
lim inf
ε→0+

δε ≥ 0 . (3.63)

Assume, by contradiction, that there exists a sequence εj → 0+ such that
δεj → δ0 for some δ0 satisfying −∞ ≤ δ0 < 0. This implies, in particular, that
δεj − τW < 0 for j large enough. By (3.29) it follows that∫ δεj−τW

− r
εj

(wεj (t)− w0 (t)) (r + εjt)
n−1

dt =

∫ δεj−τW

− r
εj

(wεj (t) + 1) (r + εjt)
n−1

dt

≥ −
(
εjλεj
β

)1/(β−1)
rn

n εj
= −

ε
(2−β)/(β−1)
j λ

1/(β−1)
εj rn

β1/(β−1) n
.

Since 1 < β < 2, by (3.52) we obtain

lim inf
j→∞

∫ δεj−τW

− r
εj

(
wεj (t)− w0 (t)

)
(r + εjt)

n−1
dt ≥ 0 .

This inequality, together with (3.39) and (3.61), implies that

lim sup
j→∞

∫ δεj+τW

δεj−τW

(
wεj (t)− w0 (t)

)
(r + εjt)

n−1
dt ≤ 0 .

Changing variables, we get

lim sup
j→∞

∫ τW

−τW

(
w̌εj (t)− w0

(
t+ δεj

)) (
r + εjt+ εjδεj

)n−1
dt ≤ 0 .

Since εjδεj → 0 by (3.41), we conclude that

lim sup
j→∞

∫ τW

−τW

(
w̌εj (t)− w0

(
t+ δεj

))
dt ≤ 0 . (3.64)

Using the fact that w̌εj → z strongly in H1(−τW , τW ), from the previous in-
equality we obtain ∫ τW

−τW

(
z (t)− w0

(
t+ δ̂0

))
dt ≤ 0 , (3.65)

where δ̂0 := max{δ0,−τW }. Indeed, if δ0 ≥ −τW we pass to the limit in (3.64).
If −∞ < δ0 < −τW we use also the equalities w0(t+ δ0) = w0(t+ δ̂0) = −1 for
t ∈ [−τW , τW ] in the case δ0 < −τW . The case δ0 = −∞ is similar. Since∫ τW

−τW
z (t) dt = 0 and

∫ τW

−τW
w0(t+ δ̂0) dt = 2δ̂0 ,
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from (3.65) we obtain 2δ̂0 ≥ 0, which contradicts the inequality δ0 < 0. This
completes the proof of (3.63).

Step 14. We conclude the proof of the theorem by showing that (3.2) holds.
Let a1 and a2 be the constants given in (3.57) and (3.58). By (3.3),(3.41),

and (3.43) we have

Hε(wε) ≥
∫ δε+τW+a2ε

δε−τW−a1ε

(
W (wε (t)) + |w′ε (t)|2

)
(r + εt)

n−1
dt

=

∫ τW+a2ε

−τW−a1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(r + εs+ εδε)

n−1
ds (3.66)

≥ I1
ε + εI2

ε + εδεI
3
ε + εI4

ε ,

where

I1
ε := 2rn−1

∫ τW+a2ε

−τW−a1ε

√
W (w̌ε (s)) |w̌′ε (s)| ds ,

I2
ε := (n− 1) rn−2

∫ τW+a2ε

−τW−a1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
s ds ,

I3
ε := (n− 1) rn−2

∫ τW+a2ε

−τW−a1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
ds ,

I4
ε :=

n−1∑
h=2

(
n− 1

h

)
rn−1−hεh−1Jh,ε ,

with

Jh,ε :=

∫ τW+a2ε

−τW−a1ε

(
W (w̌ε (s)) + |w̌′ε (s)|2

)
(s+ δε)

h
ds .

To estimate I1
ε we use (1.8) to write

I1
ε = 2rn−1

∫ w̌ε(τW+a2ε)

w̌ε(−τW−a1ε)

√
W (σ) dσ

= cW r
n−1 − 2rn−1

∫ w̌ε(−τW−a1ε)

−1

√
W (σ) dσ − 2rn−1

∫ 1

w̌ε(τW+a2ε)

√
W (σ) dσ . (3.67)

By (2.4) and (3.53) we have

2rn−1

∫ w̌ε(−τW−a1ε)

−1

√
W (σ) dσ ≤ 2rn−1

∫ −1+c1ε
1/β

−1

√
W (σ) dσ

= 2rn−1

∫ c1ε
1/β

0

sβ/2 ds = k1ε
(β+2)/(2β) ,
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where k1 := 4
β+2r

n−1c
(β+2)/2
1 . Similarly, by (3.58) we can find a constant k2 > 0

such that ∫ 1

w̌ε(τW+a2ε)

√
W (σ) dσ ≤ k2ε

(β+2)/(2β) ,

where we have used the fact that α > 1/β.
Therefore (3.67) gives

I1
ε ≥ cW rn−1 − k0ε

(β+2)/(2β) (3.68)

where k0 := k1 + k2.
By (2.7), (3.35), and (3.44) we have

lim
ε→0+

I2
ε = (n− 1) rn−2

∫ τW

−τW

(
W (z (s)) + |z′ (s)|2

)
s ds = 0 , (3.69)

lim
ε→0+

I3
ε = (n− 1) rn−2

∫ τW

−τW

(
W (z (s)) + |z′ (s)|2

)
ds = (n− 1) cW r

n−2, (3.70)

where to obtain the second equality in (3.69) we have used the fact that z is
odd and W is even .

Moreover, Jh,ε ≥ 0 if h is even, while if h is odd by Fatou’s Lemma, (3.44),
and (3.63) we obtain

lim inf
ε→0+

Jh,ε ≥
∫ τW

−τW

(
W (z (s)) + |z′(s)|2

)
shds = 0 ,

and the integral is zero because z is odd and W is even. Hence,

lim inf
ε→0+

I4
ε ≥ 0 . (3.71)

From (3.66) and (3.68) we obtain

Hε(wε)− cW rn−1

ε
≥ −k0ε

(2−β)/(2β) + I2
ε + δεI

3
ε + I4

ε .

Since 1 < β < 2, using (3.63), (3.69), (3.70), and (3.71) we conclude that (3.2)
holds.

4 The Limsup Inequality
In this section we prove the following theorem.

Theorem 4.1 Let E0 be a solution to the minimum problem (2.17) and let
u0 := 1 − 2χE0 . Then there exists a sequence {uε} ⊂ H1 (Ω) converging to u0

strongly in L1(Ω) and satisfying (1.2) such that

lim sup
ε→0+

Eε (uε)− nκΦcW r
n−1

ε
≤ 0 . (4.1)
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Note that by (2.25) the inequality (4.1) is equivalent to (1.11).
Proof. As observed in in Section 2, the set E0 has the form BΦ◦

r (x0), with
BΦ◦

r (x0) ⊂ Ω and r defined by (2.18). We recall that by hypothesis (2.21) there
exist y0 ∈ Ω and δ > 0 satisfying BΦ◦

r (x0) ⊂ BΦ◦

r+δ(y0) ⊂ Ω.
We claim that Φ◦ (x0 − y0) ≤ δ. If Φ◦ (x0 − y0) = 0 then the inequality is

trivial. If not, let {λk} be an increasing sequence converging to r/Φ◦ (x0 − y0).
Since x0 + λk (x0 − y0) ∈ BΦ◦

r (x0), we have x0 + λk (x0 − y0) ∈ BΦ◦

r+δ(y0), hence
(1 + λk) Φ◦ (x0 − y0) ≤ r + δ. Passing to the limit as k → +∞, we obtain
Φ◦ (x0 − y0) + r ≤ r + δ, which implies Φ◦ (x0 − y0) ≤ δ.

Since Φ◦ is convex and positively homogeneous of degree one, it is subaddi-
tive and so the previous inequality gives

BΦ◦

r+tδ(x0 + t (y0 − x0)) ⊂ BΦ◦

r+δ(y0) ⊂ Ω (4.2)

for every 0 ≤ t ≤ 1.
Let z be the function defined by (2.5). We recall that z is odd, |z(t)| ≤ 1 for

every t ∈ R, and z(t) = 1 if t ≥ τW , where τW is defined by (2.6). Let

ûε (x) := z

(
Φ◦(x− x0 − εγ (y0 − x0))− r

ε

)
for x ∈ Ω , (4.3)

where γ := τW /δ. Then ûε ∈ H1 (Ω) and ûε → u0 = 1 − 2χBΦ◦
r (x0) strongly in

L1(Ω). Since ûε = 1 on Ω\BΦ◦

r+ετW(x0 + εγ (y0 − x0)), it follows from (4.2) that
ûε = 1 on ∂Ω for ε > 0 sufficiently small.

Observe that ûε may not satisfy the mass constraint in (1.2), and so we
estimate the possible error

ωε :=

∫
Ω

ûε (x) dx−m.

Using the fact that ûε = −1 on BΦ◦

r−ετW(x0 + εγ (y0 − x0)), by (2.14) and (2.15)
we get

ωε =
∣∣∣Ω \BΦ◦

r+ετW(x0 + εγ (y0 − x0))
∣∣∣− ∣∣∣BΦ◦

r−ετW(x0 + εγ (y0 − x0))
∣∣∣

+ nκΦ

∫ r+ετW

r−ετW
z
(
ρ−r
ε

)
ρn−1dρ−m

= |Ω| −m− κΦ

(
(r + ετW )

n
+ (r − ετW )

n − nε
∫ τW

−τW
z (t) (r + εt)

n−1
dt

)
.

Since z is odd, by (2.19) there exists a constant M > 0 such that

|ωε| ≤Mε2 (4.4)

for ε > 0 sufficiently small.
We now correct ûε in order to satisfy the mass constraint in (1.2). We fix

ϕ ∈ C∞c (Rn) with support contained in BΦ◦

r/2(x0) and∫
Rn
ϕ (x) dx = 1 , (4.5)
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and we define
uε (x) := ûε (x)− ωεϕ (x) . (4.6)

Taking into account the definition of ωε, we find that by (4.5), uε satisfies
the mass constraint in (1.2). Since BΦ◦

r/2(x0) ⊂ BΦ◦

r−ετW(x0 + εγ (y0 − x0)), the
support of ϕ is contained in {ûε = −1}. Hence uε still satisfies the boundary
condition in (1.2) for ε > 0 sufficiently small, and∫

Ω

W (uε(x)) dx =

∫
{ûε 6=−1}

W (ûε(x)) dx+

∫
{ûε=−1}

W (−1− ωεϕ(x)) dx

=

∫
Ω

W (ûε(x)) dx+

∫
Ω

W (−1− ωεϕ(x)) dx ,

where the last equality follows from the fact thatW (−1) = 0. Since the supports
of ∇ûε and ∇ϕ are disjoint, the previous equality implies that

Eε (uε) = Eε (ûε) + Eε (−1− ωεϕ) . (4.7)

By (2.16), (4.3), and (4.6) we have

Φ (∇ûε (x)) =
1

ε
z′
(

Φ◦(x− x0 − εγ (y0 − x0))− r
ε

)
for a.e. x ∈ Ω. Since z(t) = ±1 for ±t ≥ τW , by (2.15) and by the equality
W (±1) = 0 we obtain

Eε (ûε) =
nκΦ

ε

∫ r+ετW

r−ετW

(
W
(
z
(
ρ−r
ε

))
+
∣∣z′ (ρ−rε )∣∣2) ρn−1dρ

= nκΦ

∫ τW

−τW

(
W (z (t)) + |z′ (t)|2

)
(r + εt)

n−1
dt (4.8)

= nκΦcW r
n−1 +O(ε2) ,

where we used the change of variables t = ρ−r
ε and (2.7), and in the last equality

we used (2.7), taking into account once again the fact that t 7→ (W (z (t)) +

|z′ (t)|2)t is odd.
On the other hand, by (2.4) and (2.10),

Eε (−1− ωεϕ) ≤ |ωε|
β

ε

∫
Ω

|ϕ|β dx+ CΦε|ωε|2
∫

Ω

|∇ϕ|2 dx . (4.9)

From (4.7), (4.8) and (4.9) we get

Eε (uε)− nκΦcW r
n−1

ε

≤ |ωε|
β

ε2

∫
Ω

|ϕ|β dx+ CΦ|ωε|2
∫

Ω

|∇ϕ|2 dx+O(ε) .

Recalling that β > 1, from (4.4) we obtain (4.1).
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