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Abstract

1A principal challenge in modelling granular media is to connect the macro-

scopic deformation of the aggregate of grains with the average deformation of a

small number of individual grains. We used in previous research the two-scale

geometry of structured deformations (g,G) and the theory of elastic bodies un-

dergoing disarrangements (non-smooth submacroscopic geometrical changes)to

obtain an algebraic tensorial consistency relation between the macroscopic de-

formation F = gradg and the grain deformation G, as well as an accommoda-

tion inequality detF ≥ detG > 0 that guarantees that the aggregate provides

enough room at each point for the deformation of the grains. These two rela-

tions determine all of the disarrangement phases G corresponding to a given F .

We use the term stable disarrangement phase to denote a grain deformation G
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that minimizes the stored energy density for the aggregate ψ(G′) among all the

disarrangement phases G′ corresponding to F .

In this article we determine for a model aggregate and for two familiar families of

macroscopic deformation – simple shearing and uniform expansion/contraction

– all of the stable disarrangement phases of the model aggregate, as well as the

corresponding connections between aggregate deformation and grain deforma-

tion. We showed in an earlier article that each stable disarrangement phase of

this model aggregate cannot support tensile tractions, and our present, more

detailed, results for simple shearing and for uniform expansion/contraction con-

firm that no-tension property of stable disarrangement phases for the model

granular medium.

1 Introduction

A principal challenge in modelling multiscale phenomena in continua is that of

describing the coupling between macroscopically observed geometrical changes

and submacroscopically occurring geometrical changes. In this article we study

in the setting of the multiscale geometry of structured deformations [1] the

manner in which the macroscopic deformation of an aggregate of small elastic

bodies that constitute a granular medium can be related to the submacroscopic

deformation of the pieces of the aggregate. (Here, we use the terms ”elastic

aggregate” and ”granular medium” synonymously.) Structured deformations

provide an appropriate setting, because they entail purely geometrical fields g

and G that distinguish between the macroscopic deformation of a continuum

and the smooth geometrical changes that occur at submacroscopic length scales.

In the case of elastic aggregates, we may think of the point mapping g as provid-

ing the macroscopic geometrical changes of the aggregate, as a whole, and we

may think of the tensor field G as providing a measure of the average geomet-
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rical changes of individual pieces (or grains) of the aggregate. The theory of

structured deformations then justifies calling the field M = ∇g−G the deforma-

tion due to disarrangements, i.e., due to submacroscopic slips and separations

among the pieces of the aggregate. We emphasize in this paper the case in

which the aggregate undergoes a given, homogeneous deformation g with gradi-

ent ∇g = F = const. while all of the pieces of the aggregate undergo a sequence

of piecewise homogeneous deformations whose gradients, when averaged over

small subbodies, converge to the constant tensor field G.

A previously formulated theory [2] of elastic bodies undergoing disarrange-

ments provides the consistency relation

DGΨ(G,M)(FT −GT ) +DMΨ(G,M)FT = 0,

a tensorial relation involving the fields F = ∇g, G, M = F − G as well

as the partial derivatives DGΨ and DMΨ of the Helmholtz free energy re-

sponse Ψ of the body. The theory [2] also provides the accommodation in-

equality, 0 < detG ≤ detF , that guarantees that the macroscopic deforma-

tion F provides enough volume to accommodate the submacroscopic geometri-

cal changes associated with G. Together the consistency relation and accom-

modation inequality determine which tensors G are compatible with a given

macroscopic deformation gradient F . In [3], [20] we restricted attention to

the case of purely dissipative disarrangements for which Ψ does not depend

upon the disarrangement tensor M , so that the consistency relation reduces to

DΨ(G)(FT − GT ) = 0. In this context, we defined in [20] a disarrangement

phase corresponding to F to be a tensor G that satisfies both the consistency

relation and the accommodation inequality for the given F . Examples that

we give in this paper and have given elsewhere [2], [3], [20] show that typically

there are multiple disarrangement phases corresponding to a given macroscopic
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deformation gradient F , and it is important to single out those disarrangement

phases that are energetically favorable. Accordingly, we defined in [20] a sta-

ble disarrangement phase corresponding to F to be a disarrangement phase G

corresponding to F that minimizes the Helmholtz free energy among all disar-

rangement phases corresponding to F . Our specific goals in this paper for a

familiar two-parameter class of free energy responses Ψαβ are:

• to determine all of the stable disarrangement phases corresponding to

homogeneous expansions/contractions,

• to determine all of the stable disarrangement phases corresponding to

simple shear,

• to describe in each of the two bullets above the relationship between the

macroscopic deformation F = ∇g of the aggregate and the deformation

G of the pieces of the aggregate.

e

T

T0

� e

T

� e0

Figure 1: Standard phases and disarrangement phases.

We illustrate now by means of two idealized, one-dimensional, isothermal

stress-extension curves the idea of a disarrangement phase and compare it with
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the familiar notion of ”phase of an elastic body”. For the left-hand curve

in Figure 1, the stress T is a (single-valued) function of the extension e with

the property that, for some values of stress, there are more than one value of

extension that produce that stress. For example, the stress T0 can be achieved

at three different values of the extension, and it is customary to refer to the three

values of e corresponding to T0 as phases of the elastic continuum corresponding

to the stress T0. In this standard notion of phase, different phases may be

distinguished by differences in the macroscopic deformation of the body, and an

important goal in the study of phases for continua is that of providing contexts

in which coexistent phases, even fine mixtures of such phases, can be described

and simulated.

By contrast, the stress-extension curve on the right of the figure does not

provide a single stress value T for each extension e, and we may fix the exten-

sion at the value e0 and consider the three values of stress compatible with e0

as corresponding to distinct phases of the material. Clearly, the macroscopic

extension of the body cannot be used to distinguish among these phases, and it

is natural to explore the possibility that disarrangements, i.e., non-smooth ge-

ometrical changes at submacroscopic length scales, may be used to distinguish

among these phases. For both notions of ”phase” illustrated here, one typically

encounters a multiplicity of possible phases available to a given material, and an

appropriate selection principle in the form of a stability criterion is required in

order to narrow the list of competing phases. Our notion of stable disarrange-

ment phase embodies this idea, is in accord with a notion of ”submacroscopically

stable equilibria of elastic bodies” introduced in [3], and is studied here in a fully

three dimensional context for aggregates of elastic bodies.

In Section 2 we review the aspects of structured deformations and of the

field theory ”elasticity with disarrangements” [2] required for the present study.
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The constitutive properties of the elastic aggregates are specified by means of

the free energy response function Ψ, which is assumed not to depend upon the

disarrangement tensor M = F − G, so that the disarrangements for the ag-

gregates under considerationd do not result in the storage of energy and may

be described as ”purely dissipative.” The field relations, including the consis-

tency relation and the accommodation inequality, are given at the beginning

of Section 2, and in Remark 1 we use the consistency relation to provide an

inequality relating the energy when G = F to that when G differs from F by

a rank-one tensor. In Section 2.1 we recall from [20] the definition of ”disar-

rangement phase corresponding to F” as well as the notion of ”compact phase”

(disarrangement-free phase) and, for a slightly less general class of aggregates,

the notion of ”loose phases” (stress-free phases) of an aggregate. In the compact

phase, the disarrangement tensor M vanishes, so that the pieces of the aggregate

deform precisely as the aggregate through the macroscopic deformation gradi-

ent, i.e., G = F = ∇g. In the loose phases, the pieces of the aggregate achieve a

stress-free, energy minimizing state of deformation in which G is a scalar times

an arbitrary rotation tensor. The accommodation inequality shows that loose

phases can only be present when the volume change detF of the macroscopic

deformation is sufficiently large.

The notion of a ”stable disarrangement phase” as an energy-minimizing

disarrangement phase [20] is reviewed in Section 2.2, and the notions of compact

phase and loose phases are reexamined in light of this notion of material stability.

Because for a broad class of free energies disarrangements of rank one cannot

increase the free energy, the class of macroscopic deformations for which the

compact phase is a stable disarrangement phase may be viewed as being rather

limited.

Section 2.3 provides a review from earlier studies [20], [7], [3] of the two-
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parameter class of free energy response functions Ψαβ ( with α and β ”elastic

constants” ) widely studied in the literature (see, for example, [19], Section

4.10). In Section 2.4 we record, for a given but arbitrary deformation gradient

F , the complete catalog obtained in [20] of solutions of the consistency relation

when Ψ = Ψαβ . These solutions G naturally form four categories: ”compact,”

”plane-stress,” ”uniaxial stress.” and ”stress-free,” the last three categories are

identified according to the nature of the stress response S that is calculated for

each category of solutions. Because the consistency relation can be written

in the tensorial form SMT = 0, the disarrangement tensors M = F − G for

these categories turn out to have ranks 0, at most 1, at most 2, and at most 3,

respectively.

In Section 2.5 we describe a procedure for finding the stable disarrangement

phases corresponding to an arbitrary macroscopic deformation gradient F . For

the free energy response Ψαβ , we carry out in Sections 3 this procedure in detail

for the one parameter family F = λ1/2I of uniform expansions/contractions,

and in Section 4 for the one-parameter family F = I + µa⊗ b of simple shears.

We obtain a complete list in Section 3 of the stable disarrangement phases

corresponding to F = λ1/2I , and in Section 4.5 a complete list of the stable

disarrangement phases corresponding to F = I +µa⊗ b, conveniently described

in terms of the maximum principal stretch λ := 1 + (µ2 + |µ| (µ2 + 4)1/2)/2 > 1

for µ 6= 0. The availability of these lists in the cases of expansion or contraction

and in the case of simple shear provides detailed and specific insights into the

dependence of G upon F when G is a stable disarrangement phase, and provides

in Figures 2 and 5 partitions of the λ − r plane into regions in each of which

only one stable disarrangement phase (or, perhaps, only one class of equivalent

phases) may arise. Figures 2 and 5 are counterparts of phase diagrams familiar

in the study of standard phases of elastic bodies. For the stable disarrangement
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phases identified in Section 4.5 we are able to determine in Section 4.6 detailed

connections between, on the one hand, the principal stretches and directions for

F and, on the other, the principal stretches and directions for G. (The stable

disarrangement phases found in Section 3 consist only of the compact phase

and the loose phase for which the nature of G and its relationship to F were

provided already in Section 2.1.)

The explicit results that we obtain here show that, for the two classes of

macroscopic deformation gradients F studied in Sections 3 and 4, the stable dis-

arrangement phases corresponding to F never result in tensile tractions within

the body. These conclusions confirm the result established in Part II of [20] for

arbitrary F : stable disarrangement phases associated with Ψαβ cannot support

tensile tractions. This property comes into play in Sections 3 and 4 where,

for each given value of the ratio r = α/β, there is a particular value λ̂(r) of

the stretch parameter λ at which one of the principal stresses arising for the

compact phase passes from negative values through zero to positive values as λ

increases through λ̂(r), and stability of the compact phase thereby is lost. This

loss of stability of the compact phase occurs in spite of the fact that the free

energy Ψαβ is smooth and rank-one convex. In particular, Ψαβ satisfies the

Legendre-Hadamard condition and, hence, does not admit material instabilities

associated with loss of ellipticity ([13],[14], [16], [17], [18]).

We note that, for the stable plane-stress phase corresponding to the simple

shear F = I + µa ⊗ b, the free energy depends only upon the elastic constants

α and β and not upon the amount of macroshear µ. This fluid-like behavior

stands in contrast to the solid-like dependence of the free energy upon µ for

the compact phase, and this result is in agreement with the observed ability of

aggregates to exhibit both solid-like and fluid-like behavior [7], [8], [9], [10].

Our detailed results also include information about disarrangement phases
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that lose the competition for the status of minima of the energy. Although

energetically less favorable than their stable competitors, these unstable but in

some cases energetically stationary disarrangement phases will play a role in

the solution of boundary-value problems in the statics of elastic aggregates. In

particular, boundary tractions computed from stresses arising in stable disar-

rangement phases may not agree with prescribed boundary tractions, as is the

case for the loose phase in the presence of non-zero prescribed boundary trac-

tions, thereby necessitating the formation of zones of unstable disarrangement

phases near the boundary.

2 Summary of concepts and results from earlier

studies

The multiscale geometry provided by structured deformations [1] has been ap-

plied [7] to describe moving phase interfaces in a granular medium composed of

small elastic bodies that can deform individually in a manner that differs from

the macroscopic deformation of the continuum. In [20] we specialized that de-

scription to a body that does not evolve in time, so that geometrical changes of

the granular medium may be described by structured deformations (g,G). Each

such structured deformation provides the macroscopic deformation g : B −→ E

mapping points X in the body B injectively into Euclidean space E as well as the

deformation without disarrangements G : B −→ Lin mapping points X in the

body into second-order tensors G (X) that describe the deformation of pieces

of the granular medium. The definition of structured deformation includes the

requirement that the fields g and G satisfy the accommodation inequality [1] at
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each point X in the body:

0 < m < detG(X) ≤ det∇g(X). (1)

Here, m is a positive number that does not depend upon X, ∇g is the classical

derivative of the macroscopic deformation, and det denotes the determinant.

This inequality reflects the idea that the macroscopic deformation should pro-

vide enough room to accommodate all of the pieces of the aggregate without

causing interpenetration of matter.

The ability of the pieces of the aggregate to deform differently from the

aggregate, itself, gives rise to slips and separations among the individual pieces—

called disarrangements. The accomodation inequality (1) can be used to prove

the Approximation Theorem [1]: there exists a sequence n 7−→ fn of injective,

piecewise-smooth mappings of the body into Euclidean space such that

g = lim
n−→∞

fn and G = lim
n−→∞

∇fn (2)

where for present purposes the sense of convergence in the two limits need

not be made explicit. Thus G, as a limit of classical derivatives, reflects at

the macrolevel the smooth deformation away from any submacroscopic sites of

disarrangements associated with the piecewise smooth approximates fn. In

addition, it has been shown [1], [11] that the tensor field

M = ∇g −G (3)

captures the average of the submacroscopic separations and slips embodied in

the jumps of the approximates fn, and we are justified in calling M the defor-

mation due to disarrangements. The piecewise smooth approximations fn may
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be viewed as snapshots of the deforming aggregate taken with magnification

sufficient to reveal the individual pieces of the aggregate.

We note that general elastic bodies undergoing disarrangements can store

energy through both the deformation without disarrangements G and the defor-

mation due to disarrangements M [2]. In order to specialize to the situation in

which the slips and separations between pieces of the aggregate are purely dis-

sipative, i.e., do not themselves contribute to the stored energy, it was assumed

in [7] that the Helmholtz free energy field ψ for the aggregate is determined

entirely by the deformation without disarrangements G, which at each point X

in the reference configuration amounts to the relation:

ψ(X) = Ψ(G(X)) (4)

where Ψ is a smooth constitutive function, and ψ(X) is the free energy per unit

volume in the reference configuration. The constitutive equation (4) for an

aggregate undergoing purely dissipative disarrangements can be derived from

the assumption that (i) the energy associated with the piecewise smooth ap-

proximations fn has no interfacial term and that (ii) the convergence in (2) is

essentially uniform and Ψ is continuous. (See [12], Part Two, Section 2 for

the supporting mathematical reasoning). This amounts to assuming that each

piece of the aggregate is an elastic body with energy density response Ψ and

that no energy is stored when pieces of the aggregate rotate, separate, or slide

relative to one another.

The general field equations for elastic bodies undergoing disarrangements [2]

reduce in the present, statical context and in the presence of purely dissipative

disarrangements to the system

divDΨ(G) + b = 0 (5)
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DΨ(G)(∇g −G)T = 0 (6)

0 < detG ≤ det∇g (7)

in which (5) is the equation of balance of forces, (6) is a tensorial equation

called the consistency relation that reflects the fact the the stress tensor in a

continuum undergoing disarrangements has both an additive and a multiplica-

tive decomposition (see the appendix in Part II of [20] and [2] for details), and

(7) is a weakened version of the accommodation inequality (1). Here, DΨ(G)

denotes the derivative of the response function Ψ. Because of the definition (3)

of the disarrangement tensor M , the system (5) - (7) amounts to thirteen scalar

relations to determine the twelve scalar fields that characterize g and G. The

stress tensor S in the reference configuration is determined in the present case

of purely dissipative disarrangements through the stress relation

S = DΨ (8)

and this relation then permits one to impose boundary conditions of place

and/or of traction in connection with the system (5) - (7). (As in the context

of classical, non-linear elasticity, the assumption that the free energy response

function Ψ is frame indifferent implies that balance of angular momentum is

satisfied.)

The significance of the consistency relation (6) in the present study is under-

scored by the following result [20] which shows that, under mild assumptions

on the free energy response function Ψ, rank-one disarrangements associated

with a structured deformation (g,G) that satisfies the consistency relation (6)

generally decrease the free energy from its value for the corresponding (classical)

structured deformation (g,∇g).

Remark 1 Assume that the free energy response function Ψ not only is smooth
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but also is rank-one convex, i.e., for all tensors A and vectors a and b such that

both detA and det(A+ a⊗ b) are positive, there holds

DΨ(A) · (a⊗ b) ≤ Ψ(A+ a⊗ b)−Ψ(A). (9)

Let (g,G) a structured deformation and X a point in the body be given such that

the disarrangement tensor M(X) = ∇g(X)−G(X) has rank one and such that

the consistency relation (6) is satisfied. It follows that the free energy density

Ψ(G(X)) at X for the structured deformation (g,G) is no greater than the free

energy density Ψ(∇g(X)) at X for the classical deformation (g,∇g) :

Ψ(G(X)) ≤ Ψ(∇g(X)). (10)

2.1 Disarrangement phases

Among the field relations (5) - (7) above, we focus attention on the consis-

tency relation (6) that, at each point X in the body, requires that the deforma-

tion without disarrangements G(X) and the macroscopic deformation gradient

F (X) := ∇g(X) satisfy

DΨ(G(X))(F (X)T −G(X)T ) = 0, (11)

and on the accommodation inequality (7)

0 < detG(X) ≤ detF (X). (12)

If we consider a given material point X and omit from our notation the depen-

dence upon X, then these relations amount to the following pair of requirements
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to be satisfied by tensors F and G:

DΨ(G)(FT −GT ) = 0 and 0 < detG ≤ detF . (13)

For a given tensor F , we call a tensor G that satisfies both relations in (13)

a disarrangement phase corresponding to F for the aggregate [20]. Once the

tensor F is given, each disarrangement phase G corresponding to F may be

thought of as a state of deformation in which the aggregate itself undergoes

the homogeneous deformation X 7−→ X0 + F (X −X0) and in which each piece

undergoes the homogeneous deformation X 7−→ X0 +G(X −X0).

For every choice of free energy response function Ψ and for every choice

of macroscopic deformation gradient F , the choice G = F satisfies both the

relations in (13), and we call the resulting disarrangement phase G = F the

compact phase corresponding to F [7]. In the compact phase, M is zero, so

that there are no disarrangements, and each piece of the aggregate deforms in

the same way as the aggregate itself.

For a second example of disarrangement phases, we showed [7] that, for a

broad class of isotropic free energy response functions Ψ satisfying standard

semiconvexity and growth properties, there exists a positive number ςmin such

that Ψ attains an absolute minimum at each tensor ςminR with R a rotation ten-

sor. Consequently, DΨ(ςminR) = 0 so that for every choice of F the consistency

relation (13)1 is satisfied with G = ςminR. In order that the the accommodation

inequality (13)2 also be satisfied for this choice of G, we must have

ς3min ≤ detF . (14)

Therefore, if F satisfies (14), then for each rotation tensor R, the tensor G =

ςminR is a disarrangement phase corresponding to F . Because DΨ(ςminR) = 0
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each piece of the aggregate is stress-free in such a phase. Consequently, this

disarrangement phase describes the aggregate in a state in which the macro-

scopic deformation provides via the inequality (14) enough room for each piece

of the aggregate to deform into a stress-free configuration in which all the prin-

cipal stretches are equal to ςmin and to rotate via R. Thus, each piece of the

aggregate in this phase is completely relaxed, and we call ςminR the loose phase

corresponding to F and R.

2.2 Stable disarrangement phases

The examples available in the literature [2], [3], [7], [20] show that, given the

free-energy response function Ψ and the macroscopic deformation gradient F ,

there are many disarrangement phases corresponding to F . The multiplicity of

disarrangement phases G corresponding to a given F appearing in the different

contexts suggested additional conditions for selecting preferred disarrangement

phases.

In the present context of statics, an appropriate notion of stability was in-

troduced in [20]: for a given macroscopic deformation gradient F , a tensor

G is called a stable disarrangement phase corresponding to F if, not only is G

a disarrangement phase corresponding to F , but also G delivers the minimum

energy density Ψ(G′) among all disarrangement phases G′ corresponding to F .

Thus, each stable disarrangement phase G corresponding to F is a solution to

the minimization problem :

min
G′

Ψ(G′) subject to 0 < detG′ ≤ detF and DΨ(G′)(FT −G′T ) = 0.

(15)

For example, in the context for the notion of ”loose phase” described in the

previous section, for each rotation R and each tensor F satisfying (14), the

tensor ςminR is a stable disarrangement phase corresponding to F , because
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G′ = ςminR is an absolute minimizer of the free energy response function and

satisfies both relations in (15). Of course, if the tensor F does not satisfy

the inequality (14), then there is no loose phase corresponding to F and R,

no matter what the choice of rotation tensor R. Turning to the notion of

”compact phase,” we note that, while the tensor G = F always is available as

the compact phase corresponding to F , this compact phase need not be a stable

disarrangement phase corresponding to F , since G = F need not minimize the

energy among disarrangement phases G′ corresponding to F and, therefore,

need not be a solution of the problem (15). Thus, for arbitrary macroscopic

deformation gradients F , the compact phase corresponding to F always competes

for the status of a stable disarrangement phase but need not win that status.

By contrast, only for F satisfying ς3min ≤ detF is the loose phase ςminR a

competitor; however, when it does compete, the loose phase always achieves the

status of stable disarrangement phase.

Remark 1 and the notion of stable disarrangement phases corresponding to

F now tell us: if the compact phase for F is a stable disarrangement phase

corresponding to F , then so are all disarrangement phases G for F having F−G

of rank one.

2.3 A model free energy Ψαβ

In order to illustrate the richness of possibilities for disarrangement phases of

elastic aggregates we chose in [7] and in [20] a specific free energy response

function that appears widely in the literature. We let α and β be positive

numbers and consider henceforth a granular medium whose free energy response

function is

Ψαβ(G) =
1

2
α(detG)−2 +

1

2
βtr(GGT ) =

1

2
β(

r

detBG
+ trBG) (16)
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where BG := GGT is a Cauchy-Green tensor corresponding to G and r := α/β.

Here, the numbers α and β represent ”elastic constants” for the pieces of the

aggregate, and they determine the stress response in the reference configuration

through the relation

β−1S = β−1DΨαβ(G) = − r

(detG)2
G−T +G. (17)

It is easy to verify from the previous two relations that not only is the free energy

Ψαβ rank-one convex (9), but also is strictly rank-one convex, in the sense that

equality holds in (9) if and only if a = 0 or b = 0. Rank-one convexity of Ψαβ

along with its smoothness imply [19] that Ψαβ satisfies the Legendre-Hadamard

condition: for all G with detG > 0 and for all c, d ∈ V

D2Ψαβ(G)c⊗ d · c⊗ d ≥ 0. (18)

Consequently, the lack of stability for any of the particular disarrangement

phases considered in the sequel cannot be attributed to failure of the Legendre-

Hadamard condition (18).

We note for this model aggregate that DΨαβ(G) = 0 if and only if

r

(detG)2
G−T = G.

Writing G = VGRG in its polar decomposition (with VG symmetric and positive

definite and RG a rotation) this relation becomes V 2
G = r(detVG)−2I, with I

the identity tensor, so that VG =
√
r(detVG)−1I. Taking the determinant of

both sides tells us that detVG = r3/8 . Therefore, VG = r1/8I, and we may

conclude:

DΨαβ(G) = 0 if and only if G = r1/8R for some rotation R. (19)
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Thus, the only candidates for stationary points for the free energy response are

G = r1/8R with R a rotation, and the free energy (16) at such points is given

by

2

β
Ψαβ(r1/8R) =

r

r3/4
+ tr(r1/4I) = 4r1/4. (20)

The growth properties of Ψαβ as detG tends to zero and as tr(GGT ) tends to

infinity tell us that 2
βΨαβ attains the absolute minimum value 4r1/4 at precisely

the points G = r1/8R with R a rotation. From the discussion preceding (14)

we conclude that for this free energy, ζmin = r1/8. Consequently, for each

macroscopic deformation gradient F satisfying

r3/8 = det(r1/8R) ≤ detF (21)

the tensors G = r1/8R are the loose phases corresponding to F . In fact, for

every macroscopic deformation field g that satisfies r3/8 ≤ det∇g(X) for all

X in the body, and for every choice of rotation field X 7−→ Q(X) on the body,

the structured deformation (g, r1/8Q) has the property that, at every point X

in the body, G(X) is a loose phase corresponding to ∇g(X). Moreover, this

family of structured deformations includes all possibilities for achieving loose

phases in the aggregate. The fact that the field G need not itself be a gradient

tells us that the rotation field Q can vary from point to point. Therefore, the

loose phases can support a texturing at the length scale of the individual pieces

of the aggregate.

For each macroscopic deformation gradient F , the compact phase G = F

corresponding to F yields the stress in the reference configuration S satisfying

β−1S = F − r

(detF )2
F−T (22)
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as well as the stress in the deformed configuration T satisfying

β−1(detF )T = β−1SFT = FFT − r(det(FFT ))−1I

= BF − r(detBF )−1I, (23)

with BF = FFT .

2.4 General solutions of the consistency relation associ-

ated with Ψαβ

With a view toward determining the stable disarrangement phases of the model

granular medium, we determined in [20] all of the solutions of the consistency

relation (13)1, which here, by (22), is equivalent to

(G− r

(detG)2
G−T )(FT −GT ) = 0. (24)

Specifically, we let F be given and seek all solutions G with detG > 0 of (24),

without for the moment taking into account satisfaction of the accommodation

inequality (13)2. Using again the polar decomposition G = VGRG and the

Cauchy-Green tensor BG = GGT = V 2
G, we may write (24) in the equivalent

form

(VG −
r

(detVG)2
V −1G )(RGF

T − VG) = 0

or, by multiplying the last relation on the left by VG, in the form

(BG −
r

detBG
I)(RGF

T − VG) = 0. (25)
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2.4.1 The case G = F (compact phase)

We first consider the case G = F (considered above in the discussion of the

compact phase corresponding to F ), so that the expression RGF
T − VG equals

RFF
T − VF = 0. Consequently, the consistency relation (25) is satisfied in

this case, and we have the following expressions for the Cauchy stress T =

(detF )−1DΨαβ(G)FT and for the free energy Ψαβ(G):

β−1(detF )T = FFT − r

(detF )2
I (26)

2β−1Ψαβ(G) =
r

(detF )2
+ tr(FFT ) (27)

Of course, in this case the accommodation inequality (13)2 is satisfied with

equality.

2.4.2 The case G 6= F (non-compact phases)

We assume now that G 6= F and note from (25) that the range of RGF
T − VG

then contains non-zero elements and, hence, the nullspace of BG− r
detBG

I is non-

trivial. Consequently, the number r/detBG must be one of the eigenvalues λG1 ,

λG2 , λG3 of BG, say (without loss of generality) λG1 and, since detBG = λG1 λ
G
2 λ

G
3 ,

we have

(λG1 )2λG2 λ
G
3 = r. (28)

At this point we invoke the Spectral Theorem to represent VG and BG = V 2
G in

terms of an orthonormal basis eG1 , eG2 , eG3 of eigenvectors corresponding to the

eigenvalues λG1 , λG2 , λG3 of BG :

BG =

3∑
i=1

λGi e
G
i ⊗ eGi and VG =

3∑
i=1

(λGi )1/2eGi ⊗ eGi . (29)
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We assume without loss of generality that eG1 = eG2 × eG3 , and, substituting

these expressions for BG and VG into (25), taking into account (28), and using

I =
3∑
i=1

eGi ⊗ eGi we find that the consistency relation is equivalent to to the

system of vector relations

(λGi − λG1 )(FRTG − (λGi )1/2I)eGi = 0 for i = 2, 3, (30)

The case (λG1 )2λG2 λ
G
3 = r and λGi 6= λG1 for i = 2, 3 (”plane-stress”) In

view of (30) we conclude in this case that the consistency relation is equivalent

to the relations

RTGe
G
i = (λGi )1/2F−1eGi for i = 2, 3. (31)

In [20] we established the following characterization of solutions of the consis-

tency relation (31) in the present case:

Remark 2 Let orthogonal unit vectors e and f and a linear mapping F with

detF > 0 be given satisfying

F−1e · F−1f = 0, r1/2
∣∣F−1e∣∣3 ∣∣F−1f ∣∣ 6= 1, r1/2

∣∣F−1e∣∣ ∣∣F−1f ∣∣3 6= 1. (32)

Then the tensor

G = r1/4
∣∣F−1e∣∣1/2 ∣∣F−1f ∣∣1/2 (e× f)⊗ (

F−1e
|F−1e| ×

F−1f
|F−1f | ) +

+
∣∣F−1e∣∣−1 e⊗ F−1e

|F−1e| +
∣∣F−1f ∣∣−1 f ⊗ F−1f

|F−1f | (33)

is a solution of the consistency relation (31), and the solution (33) equals F if
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and only if

BF (e× f) =
r

detBF
e× f. (34)

Moreover, every solution G 6= F of the consistency relation (31) in the case

λGi 6= λG1 for i = 2, 3 is of the form (33) for some choice of the orthogonal unit

vectors e and f satisfying (32), and this formula for G implies that

VG = r1/4
∣∣F−1e∣∣1/2 ∣∣F−1f ∣∣1/2 (e× f)⊗ (e× f) +

+
∣∣F−1e∣∣−1 e⊗ e+

∣∣F−1f ∣∣−1 f ⊗ f, (35)

RG = (e× f)⊗ (
F−1e
|F−1e| ×

F−1f
|F−1f | ) +

+e⊗ F−1e
|F−1e| + f ⊗ F−1f

|F−1f | , (36)

detG = r1/4
∣∣F−1e∣∣−1/2 ∣∣F−1f ∣∣−1/2 . (37)

In addition, if T = (detF )−1DΨαβ(G)FT is the Cauchy stress, then

β−1(detF )T =
∣∣F−1e∣∣−2 (1− r1/2

∣∣F−1e∣∣3 ∣∣F−1f ∣∣) e⊗ e+

+
∣∣F−1f ∣∣−2 (1− r1/2

∣∣F−1e∣∣ ∣∣F−1f ∣∣3) f ⊗ f, (38)

and the free energy Ψαβ(G) is given by

2

β
Ψαβ(G) = 2r1/2

∣∣F−1e∣∣ ∣∣F−1f ∣∣+
∣∣F−1e∣∣−2 +

∣∣F−1f ∣∣−2 . (39)

The formula (38) for the Cauchy stress implies that the traction T (e × f)

on a plane with normal e × f is zero and that every traction vector Tn lies in

the plane determined by e and f . Moreover, both Te and Tf are non-zero. It

is then appropriate to use the attribute plane-stress to describe the solutions
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G in (33) of the consistency relation in the present case λGi 6= λG1 for i = 2, 3,

and we use the term plane-stress disarrangement phases corresponding to F in

referring to such tensors G that also satisfy the accommodation inequality (7)

in the form 0 < detG ≤ detF :

0 < r1/4
∣∣F−1e∣∣−1/2 ∣∣F−1f ∣∣−1/2 ≤ detF. (40)

The case (λG1 )2λG2 λ
G
3 = r and λG2 = λG1 , λ

G
3 6= λG1 (”uniaxial stress”)

From (30) we have in this case that the consistency relation is equivalent to the

single condition

RTGe
G
3 = (λG3 )1/2F−1eG3 , (41)

and the solutions of the consistency relation in this form were characterized in

[20] as follows:

Remark 3 Let a unit vector e, a proper orthogonal tensor R, and a linear

mapping F with detF > 0 be given satisfying

RT e =
F−1e
|F−1e| and r1/8

∣∣F−1e∣∣ 6= 1. (42)

Then the tensor G given by

G = r1/6
∣∣F−1e∣∣1/3 (I − e⊗ e)R+

∣∣F−1e∣∣−1 e⊗ F−1e
|F−1e| (43)

is a solution of the consistency relation (30) for the case (λG1 )2λG2 λ
G
3 = r and

λG2 = λG1 , λG3 6= λG1 . The solution G in (43) equals F if and only if RF = R
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and, for all vectors v perpendicular to e,

BF v =
r

detBF
v. (44)

Moreover, every solution of the consistency relation for this case is of the form

(43) with R and e satisfying (42), and the following relations hold:

VG = r1/6
∣∣F−1e∣∣1/3 (I − e⊗ e) +

∣∣F−1e∣∣−1 e⊗ e (45)

RG = R (46)

detG = detVG = r1/3
∣∣F−1e∣∣−1/3 (47)

In addition, if T = (detF )−1DΨαβ(G)FT is the Cauchy stress, then

β−1(detF )T =
1− r1/3

∣∣F−1e∣∣8/3
|F−1e|2

e⊗ e, (48)

and the free energy Ψαβ(G) is given by

2

β
Ψαβ(G) = 3r1/3

∣∣F−1e∣∣2/3 +
∣∣F−1e∣∣−2 . (49)

The formula (48) and the restriction (42) show that the state of stress in

the deformed configuration of the aggregate is uniaxial and non-zero for every

solution G of the consistency relation in the present case (λG1 )2λG2 λ
G
3 = r and

λG2 = λG1 , λG3 6= λG1 . It is then appropriate to use the attribute uniaxial

stress to describe the solutions G and the term uniaxial stress disarrangement

phases corresponding to F in referring to such tensors G that also satisfy the

accommodation inequality (15)2 in the form:

0 < r1/3
∣∣F−1e∣∣−1/3 ≤ detF. (50)
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The case (λG1 )2λG2 λ
G
3 = r and λG1 = λG2 = λG3 (”zero stress”/loose phase)

The relation (28) immediately yields λG1 = λG2 = λG3 = r1/4, so that

BG = r1/4I and G = r1/8R, (51)

with no restriction on the rotation R = RG imposed by the consistency relation.

Of course, in this case we also have

detG = r3/8, (52)

and we note that this case recovers precisely those tensors G identified the

previous section that render Ψαβ a minimum and that enter into the description

of the loose phase. We have from those considerations

T = 0 and 2β−1Ψαβ(G) = 4r1/4, (53)

and the accommodation inequality (15)2 takes the form

r3/8 ≤ detF. (54)

2.5 The determination of stable disarrangement phases

associated with Ψαβ corresponding to arbitrary F

For a given macroscopic deformation tensor F , our goal is to compare the en-

ergies Ψαβ(G) for the disarrangement phases G corresponding to F listed in

the catalog of disarrangment phases in the previous subsection and to find the

minimum energy among them. To this end one in turn may restrict Ψαβ to

disarrangement phases G within each of the four categories identified in the pre-
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vious subsection and determine within each category all the candidates G for

minima of the restriction of Ψαβ . Comparison among all four categories of the

values Ψαβ(G) so determined within each category will identify the minimum

energy among all disarrangement phases. In particular, if Ψαβ restricted to each

category attains a minimum, one may compare the four intracategory minima

to select the catalog minimum as well as the corresponding stable disarrange-

ment phase(s) corresponding to F . For the compact phase, the intracategory

minimization is trivial, because there is only one disarrangement phase in that

category. For the loose phase, there may be no disarrangement phases or there

may be many for the given F . In the latter case, all provide the same free

energy density. Hence, the determination of intracategory minimizers for the

compact and loose phases requires no effort.

Within the category ”uniaxial stress”, the free energy appears as a function

of one unit vector e subject to the constraints provided by the accommoda-

tion inequality and the relations (42). Standard elementary methods apply

readily to identify stationary values of the free energy and corresponding candi-

dates for minimizing vectors e, and, hence candidates for stable disarragement

phase G. In the ”plane stress” category of disarrangement phases, the free

energy is a function of two orthogonal unit vectors e and f subject to satisfac-

tion of the accommodation inequality as well as the constraints (32). Again,

standard optimization methods apply in order to identify candidates for stable

disarrangement phases.

Here, we consider two simple but useful families of macroscopic deforma-

tions: (1) uniform expansions or contractions, and (2) simple shears. In the

next sections we will determine for every tensor F in each family the stable

disarrangement phases corresponding to F .
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3 Stable disarrangement phases associated with

Ψαβ corresponding to F = λ1/2I

For each positive number λ we consider the tensor F = λ1/2I representing,

for λ > 1, the gradient of a uniform expansion about a given point and, for

λ < 1, the gradient of a uniform contraction. The disarrangement phases listed

below are obtained by substitution of F = λ1/2I into each of the categories of

disarrangement phases for general F obtained earlier.

Compact disarrangement phase when F = λ1/2I

G = λ1/2I

λ3/2 = λ3/2 (accommodation inequality)

2

β
Ψαβ(G) = rλ−3 + 3λ

1

β
T = λ−1/2(1− rλ−4)I

M = 0

Plane-stress disarrangement phases when F = λ1/2I

G = r1/4λ−1/2(e× f)⊗ (e× f) + λ1/2(I − (e× f)⊗ (e× f))

r1/4 ≤ λ (accommodation inequality)

2

β
Ψαβ(G) = 2r1/2λ−1 + 2λ,

1

β
T = λ−1/2(1− r1/2λ−2)(I − (e× f)⊗ (e× f)),

M = λ1/2(1− r1/4λ−1)(e× f)⊗ (e× f)

r1/4 6= λ.
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Uniaxial stress disarrangement phases when F = λ1/2I

G =
{
r1/6λ−1/6I + λ1/2

(
1− r1/6λ−2/3

)
e⊗ e

}
R

r1/4 ≤ λ (accommodation inequality)

2

β
Ψαβ(G) = 3r1/3λ−1/3 + λ,

1

β
T = λ−1/2(1− r1/3λ−4/3)e⊗ e,

M = (λ1/2I − r1/6λ−1/6R) (I − e⊗ e)

Re = e, r1/4 6= λ.

Loose disarrangement phases when F = λ1/2I

G = r1/8R

r1/4 ≤ λ (accommodation inequality)

2

β
Ψαβ(G) = 4r1/4

T = 0

M = λ1/2I − r1/8R

For all but the compact phase, the accommodation inequality takes the form

r1/4 ≤ λ and implies that the compact phase is the only competitor for stability

when λ < r1/4. Consequently, the compact phase G = λ1/2I is the only

stable disarrangement phase corresponding to F = λ1/2I when the extension

parameter λ lies in the interval (0, r1/4). For r1/4 = λ only the loose phase
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G = r1/8RG and the compact phase G = F compete, and they yield the same

value 4r1/4 of 2
βΨαβ . Therefore, both the loose phase G = r1/8RG and the

compact phase G = F are stable disarrangement phases for F = λ1/2I when

r1/4 = λ . For λ in the interval (r1/4,∞) all four categories of phases compete

for stability. The relation (19) shows that, in the loose phase G = r1/8RG, and

in the loose phase alone, 2
βΨαβ attains its minimum value 4r1/4, so that only

the loose phase G = r1/8R is a stable disarrangement phase corresponding to

F = λ1/2I for λ in the interval (r1/4,∞). Figure 2 shows in the λ−r plane the

stable disarrangement phases that are available corresponding to the uniform

expansion/contraction F = λ1/2I. While we have considered until now the

ratio r = α/β as fixed, we can view the different values of r depicted in the

figure as accessible via changes in the temperature (provided by the dependence

of the elastic constants α and β on temperature), or accessible via replacement

of a given material with response Ψαβ by another with response Ψα′,β′ with

α′/β′ 6= α/β.

r

compact phase

loose phase

λ = r1/4

λ

Figure 2: Stable disarrangement phases for F = λ1/2I
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We note that on the curve λ = r1/4 the two stable disarrangement phases

(the compact and the loose phases) not only have the same free energy density

2βr1/4 = 2α1/4β3/4 but also both have the same stress T = 0. However, when

λ = r1/4 and R 6= I , the disarrangement tensors M = 0 in the compact phase

and M = λ1/2I − r1/8R = r1/8(I − R) in the loose phase are different, so that

one cannot simply coalesce the two stable phases into one on the curve λ = r1/4.

For a given r > 0, when the extension parameter λ lies in the interval (0, r1/4)

in which the compact phase is stable, then the stress T = βλ−1/2(1−rλ−4)I is

compressive, i.e., Tn · n < 0 for every vector n. Alternatively, when the exten-

sion parameter λ lies in the interval (r1/4,∞) in which the loose phase is stable,

then stress T vanishes. Consequently, for the stable disarrangement phases

corresponding to F = λ1/2I , the stress either is compressive or vanishes. Con-

sequently, the stress response under uniform expansions and contractions within

the stable disarrangement phases is a non-linear analogue of a ”no-tension” ma-

terial response [4], [5], [6].

At the present stage of our research we view the profile of stable disarrange-

ment phases provided in Figure 2 as a statical landscape of preferred structured

deformations available to the material as it expands or contracts. While it is

tempting to do so, we do not at this time view the profile of stable disarrange-

ment phases as a guide to the time evolution of changes of state as the expansion

parameter λ varies with the ratio r fixed (or, alternatively, as the temperature

varies with λ fixed). Further studies of the evolution of elastic aggregates in

the present framework are required to determine whether or not the profile of

stable disarrangement phases also provides a guide to behavior in environments

that vary with time.
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4 Stable disarrangement phases associated with

Ψαβ corresponding to F = I + µa⊗ b

In this section we consider the family of simple shears generated by fixing a pair

a and b of orthogonal unit vectors that determine the plane of shearing and, for

each real number µ, by taking

F = I + µa⊗ b. (55)

We then have

BF = FFT = (I + µa⊗ b)(I + µa⊗ b)T

= I + µ(a⊗ b+ b⊗ a) + µ2a⊗ a, (56)

whose eigenvalues are the number 1 together with largest principal stretch λ

and its reciprocal:

λ : = 1 +
µ2 + |µ| (µ2 + 4)1/2

2
≥ 1,

λ−1 = 1 +
µ2 − |µ| (µ2 + 4)1/2

2
≤ 1, (57)

Since the amount of shear µ can be recovered from the formula

µ = ±(λ+ λ−1 − 2)1/2 = ±|λ− 1|
λ1/2

,

it is convenient to use the largest principal stretch λ ≥ 1 to parameterize the

family of simple shears. In particular, for λ > 1 the principal directions of
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stretch eF1 , eF2 ,and eF3 corresponding, respectively, to λ > 1 > λ−1 are given by

eF1 =
λ1/2

(λ+ 1)1/2
a+

1

(λ+ 1)1/2
b,

eF2 = a× b

eF3 = − 1

(λ+ 1)1/2
a+

λ1/2

(λ+ 1)1/2
b, (58)

and we restrict our attention henceforth to the non-trival case λ > 1. Conse-

quently, we can write

BF = λeF1 ⊗ eF1 + eF2 ⊗ eF2 + λ−1eF3 ⊗ eF3 (59)

detF = detBF = 1, trBF = λ+ λ−1 + 1 (60)

F = VFRF = (λ1/2eF1 ⊗ eF1 + eF2 ⊗ eF2 + λ−1/2eF3 ⊗ eF3 )RF , (61)

keeping in mind that eF1 , eF2 , and eF3 depend upon λ according to (58). A simple

computation yields expressions for VF and RF in terms of the original shearing

vectors a and b and the principal stretch λ:

VF =
λ2 + 1

λ1/2(λ+ 1)
a⊗ a+

2λ1/2

λ+ 1
b⊗ b+

λ− 1

λ+ 1
(a⊗ b+ b⊗ a) +

+(a× b)⊗ (a× b) (62)

RF =
2λ1/2

λ+ 1
(a⊗ a+ b⊗ b) +

λ− 1

λ+ 1
(a⊗ b− b⊗ a) +

+(a× b)⊗ (a× b). (63)

In particular, the tensor RF is a rotation about a×b by an angle θF determined

by

cos θF =
2λ1/2

λ+ 1
, sin θF =

λ− 1

λ+ 1
. (64)
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Moreover, we have for i = 1, 2, 3:

B−1F eGi · eGi =
(
λ−1eF1 ⊗ eF1 + eF2 ⊗ eF2 + λeF3 ⊗ eF3

)
eGi · eGi

= λ−1(eF1 · eGi )2 + (eF2 · eGi )2 + λ(eF3 · eGi )2, (65)

and this quadratic form will determine the nature of the stable disarrangement

phases corresponding to simple shear.

4.1 Candidate for stability for the compact phase when

F = I + µa⊗ b

For the compact phase corresponding to F = I + µa⊗ b, the results for general

F in Section 2 yield the following information:

G = F = I + µa⊗ b

1 = 1 (Accomodation Inequality)

2

β
Ψαβ(G) = r + 1 + λ+ λ−1

1

β
T = (λ− r)eF1 ⊗ eF1 + (1− r)eF2 ⊗ eF2 + (λ−1 − r)eF3 ⊗ eF3

M = 0

In particular, there is only one compact disarrangement phase G = I + µa ⊗ b

corresponding to F = I + µa ⊗ b and, hence, only one competitor for stability

for the given value of shear µ. Moreover, the compact phase arises no matter

what the values of λ > 1 and r > 0, in contrast to the candidates for stability

among plane-stress phases identified in the next subsection.
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4.2 Candidates for stability among plane-stress disarrange-

ment phases when F = I + µa⊗ b

The description of plane-stress disarrangement phases G for general F in Re-

mark 2 includes the formula (39) for Ψαβ(G) in the plane-stress category as well

as restrictions on the vectors e and f in that formula that determine G via (43).

According to our discussion of stable disarrangement phases in Section 2, we

can find candidates for stable plane-stress disarrangement phases by minimizing

the function

(e, f) 7−→ H(e, f) = 2r1/2
∣∣F−1e∣∣ ∣∣F−1f ∣∣+

∣∣F−1e∣∣−2 +
∣∣F−1f ∣∣−2 (66)

subject to the constraints

e · e = f · f = 1, e · f = 0, F−1e · F−1f = 0 (67)

r1/2 ≤
∣∣F−1e∣∣ ∣∣F−1f ∣∣ (68)

1 6= r1/2
∣∣F−1e∣∣3 ∣∣F−1f ∣∣ (69)

1 6= r1/2
∣∣F−1e∣∣ ∣∣F−1f ∣∣3 . (70)

Here, because F = I+µa⊗b, the number detF = 1 no longer appears explicitly

in the accommodation inequality (68).

The detailed steps in the solution of this minimization problem are pro-

vided in the appendix, and they permit us to compare the energies among all

of the stationary plane-stress disarrangement phases G identified in that ap-

pendix. These comparisons are numerous, but elementary, and we include here

only the conclusions obtained. Because different stationary phases arise in dif-

ferent regions of the λ − r plane, the results of these comparisons are best

viewed graphically in Figure 3. In three of the regions appearing in the figure,
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a formula for the minimum (normalized) energy 2β−1Ψαβ for stationary plane-

stress phases is displayed, while in the region above the line r = λ no minimum

is recorded, because no stationary, plane-stress disarrangement phases arise for

this region. (The appearance twice of the minimum value 2r + 1 + r−1 is an

indication that its set of competitors in the region λ−1 < r < 1 is different from

the set of competitors in the region 1 ≤ r ≤ λ.) The lack of dependence upon

λ of the energy for these minima may be interpreted here as a decoupling of the

energy stored in each piece of the aggregate from the amount of macroscopic

shear experienced by the aggregate. It is interesting to note that, although the

minimum values of energy in these plane-stress phases do not depend upon the

stretch λ, other characteristics of these phases such as the stress may depend

upon not only λ but also on the principal directions of stretch for G, as we

shall subsequently illustrate. Employing the notation introduced at the be-

ginning of the appendix, we note for future reference that the minimum value

2r + 1 + r−1 in the region λ−1 < r ≤ λ arises from the case: r = xy and τ = 0,

(ς + 1)r − x−1 = 0, and (ς + 1)r − r−1x 6= 0, when x = 1, while the mini-

mum value 2r1/2 + 2 for the region 0 < r ≤ λ−1 arises from the case: r < xy,

x = y = 1, τ 6= 0.

4.3 Candidates for stability among uniaxial stress disar-

rangement phases when F = I + µa⊗ b

The description of plane-stress disarrangement phases G for general F in Re-

mark 3 provides among other things the formula (49) for the free energy in the

uniaxial stress category along with the restrictions (42) on the rotation tensor

R and the unit vector e that appear in the representation formula (43) for G.

The first step in our procedure for determining stable disarrangement phases G
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Figure 3: Minima of energy for plane-stress phases (simple shear).

as described in Section 2 leads us here to minimize the function J defined by

e 7−→ J(e) = 3r1/3(B−1F e · e)1/3 + (B−1F e · e)−1 (71)

subject to the constraints

e · e = 1, r2 ≤ B−1F e · e, r1/4B−1F e · e 6= 1. (72)

Here, we have used the fact that detF = 1 in writing the accommodation

inequality in the form (72)2. Because the rotation tensor R does not affect

the value of the free energy, the restriction on R contained in (42) need not be

considered here. In the remainder of this subsection we provide candidates for

minimizers of the function J subject to the given constraints.
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4.3.1 Case r2 = B−1F e · e

In this case, the function J can only take on the value 3r1/3r2/3+r−2 = 3r+r−2,

and the restriction r1/4B−1F e · e 6= 1 reduces to r 6= 1. The fact that e is a unit

vector in the present case implies the additional inequality constraints

λ−1 ≤ r2 ≤ λ. (73)

4.3.2 Case r2 < B−1F e · e

We can find all the candidates e for minimizers of J by finding the stationary

points of the function

e 7−→ Ξ(e) = 3r1/3(B−1F e · e)1/3 + (B−1F e · e)−1 + ξ(e · e− 1) (74)

i.e., vectors e that satisfy the constraints (72)1,2,3,, the second with strict in-

equality, as well as the stationarity condition

0 = DeΞ(e) = (r1/3(B−1F e · e)−2/3 − (B−1F e · e)−2)2B−1F e+ 2ξe.

The constraint (72)3 implies that the coefficient of 2B−1F e does not vanish, and

we conclude that the stationarity condition is equivalent to the requirement that

e be an eigenvector of B−1F . The three cases that then arise are listed in the

table below:

e B−1F e · e r2 < B−1F e · e r1/4B−1F e · e 6= 1 J(e)

eF1 λ−1 r < λ−1/2 r 6= λ4 3r1/3λ−1/3 + λ

eF2 1 r < 1 r 6= 1 3r1/3 + 1

eF3 λ r < λ1/2 r 6= λ−4 3r1/3λ1/3 + λ−1

At this point, we are in a position to compare the energies among all of the
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stationary uniaxial stress disarrangement phases G identified above. Again, we

include here only the conclusions obtained through this comparison, and we view

the results graphically in Figure 4. In three of the four regions depicted in the

figure, a formula for the minimum (normalized) energy 2β−1Ψαβ for that region

is given (within the category of uniaxial stress phases). No formula is given for

the region above the curve r = λ1/2, because there are no stationary phases in

this category that arise in this region. (The appearance of the minimum value

1 + 3r1/3 twice indicates that its set of competitors in the region 0 < r < λ−1/2

is different from the set of competitors in the region λ−1/2 ≤ r < 1.) We note

for future reference that the minimum value 3r+ r−2 in the region 1 ≤ r ≤ λ1/2

arises in the case r2 = B−1F e ·e, while the minimum value 1+3r1/3 in the region

0 < r < 1 arises in the case r2 < B−1F e · e, e = eF2 .
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Figure 4: Minima of energy for uniaxial stress (simple shear).
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4.4 Candidates for stability for the loose phases when F =

I + µa⊗ b

Finally, the catalog of disarrangement phases under the category of loose phases

yields the familiar formulas (with detF = 1):

G = r1/8RG

r ≤ 1

2

β
Ψαβ(G) = 4r1/4,

where RG is an arbitrary rotation. Every such disarrangement phase G corre-

sponds to the same (global minimizing) value of the energy.

4.5 Stable disarrangement phases for simple shear

The intracategory minima for 2β−1Ψαβ just obtained for the case of simple

shear provide disarrangement phases for different categories that compete for

the status of stable disarrangement phases in simple shear. From the candidates

for stability obtained for the four categories in the previous subsections, we have

the following regions in the quadrant λ > 1, r > 0 and intercategory competitors

for stability:

• In the strip λ > 1, 0 < r < 1 the compact phase minimum r+ 1 +λ+λ−1,

the plane-stress minimum 2r1/2+2, the uniaxial stress minimum 3r1/3+1,

and the loose phase minimum 4r1/4 all compete.

• In the region λ > 1, 1 < r < λ1/2 the compact phase minimum r + 1 +

λ + λ−1, the plane-stress minium 2r + 1 + r−1, and the uniaxial stress

minimum 3r + r−2 compete.
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• In the region λ > 1, λ1/2 < r < λ the compact phase minimum r + 1 +

λ+ λ−1 and the plane-stress minium 2r + 1 + r−1 compete.

• In the region λ > 1, λ < r only the compact phase minimum r+1+λ+λ−1

competes.

We undertake here the comparisons of the minima above in each region

above, starting with the region listed last.

• For λ > 1, λ < r, only the compact phase competes, so that the compact

phase corresponding to F = I +µa⊗ b is the stable disarrangement phase

in this region.

• For λ > 1, λ1/2 < r < λ, we note that the normalized energy minimum

2β−1Ψcomp
αβ := r+1+λ+λ−1 for the compact phase and the corresponding

energy minimum 2β−1Ψplane
αβ := 2r+ 1 + r−1 for the plane-stress category

of phases can be compared by comparing λ + λ−1 and r + r−1 on the

given region. When λ = r > 1, these two expressions are equal, and,

because d
dλ (λ + λ−1) = 1 − λ−2 > 0, it follows that λ + λ−1 > r + r−1

for λ > r, and, therefore, Ψcomp
αβ > Ψplane

αβ on the given region. Because

only the compact phase and the plane-stress phase compete in this region,

we conclude that the plane-stress phases G that produce the normalized

energy 2β−1Ψplane
αβ := 2r + 1 + r−1 correspond to stable disarrangement

phases for simple shear on the present region.

• For the region λ > 1, 1 < r < λ1/2, the argument just given shows that

Ψcomp
αβ > Ψplane

αβ on the present region, as well, because the inequalities

1 < r < λ1/2 imply the inequalities 1 < r < λ employed in the previous

region. The comparision of 2β−1Ψuniax
αβ := 3r + r−2 and 2β−1Ψplane

αβ =

2r+ 1 + r−1 amounts to comparing r+ r−2 and 1 + r−1, and it is easy to

show that, for r > 1, r + r−2 > 1 + r−1, so that Ψuniax
αβ > Ψplane

αβ on the
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present region. (Actually, an elementary argument allows us to conclude

that

Ψcomp
αβ > Ψuniax

αβ > Ψplane
αβ

on this region.) Therefore, the plane-stress disarrangement phases G that

produce the normalized energy 2β−1Ψplane
αβ := 2r+1+r−1 also corresponds

to a stable disarrangement phase for simple shear on the region λ > 1, 1 <

r < λ1/2.

• For λ > 1, 0 < r < 1 we repeatedly use the arithmetic-geometric mean

inequality

p1 + · · ·+ pk ≥ k(p1 · · · pk)1/k

for various values of the positive integer k and the positive numbers

p1, . . . , pk to conclude that

r + 1 + λ+ λ−1 ≥ 2r1/2 + 2

= r1/2 + r1/2 + 1 + 1 ≥ 3r1/3 + 1

= r1/3 + r1/3 + r1/3 + 1 ≥ 4r1/4,

and, therefore, that on λ > 1, 0 < r < 1 there holds

Ψcomp
αβ > Ψplane

αβ > Ψuniax
αβ > Ψloose

αβ .

Consequently, loose disarrangement phases provide stable disarrangement

phases in simple shear in this region.

The arguments above show that, for simple shear, in the only region λ >

1, 0 < r < 1 where loose disarrangement phases can compete, they are necessar-

ily stable, in agreement with the general conclusion drawn in Section 2. Our
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arguments also show that the compact phase competes in all cases, again in

agreement with Section 2. However, for simple shear, we can conclude from

above that the compact phase in every region provides the largest energy among

the competing phases and that the only region where the compact phase is a

stable disarrangement phase is the one in which it is the sole competitor for

stability. The stable phases for simple shear that we have determined above

as well as their regions of stability are depicted in Figure 5. The tables below

r
compact

plane-stress

loose

λ

r = λ

r = 1

λ = 1

Figure 5: Stable phases for simple shear.

display these stable disarrangement phases for F = I + µa⊗ b, including infor-

mation tabulated earlier for all disarrangement phases and refined here through

our subsequent analysis. As in (57), we have λ = 1 + µ2+|µ|(µ2+4)1/2

2 ; moreover,

the principal directions for F are given by (58), and the principal directions for

G in the plane-stress category are restricted as indicated:
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Category Stable phase(s) G Principal directions of G

Compact F eFi , i = 1, 2, 3

Plane-stress (75) e = ±eF2 , f = cos θeF1 + sin θeF3 ,±eF2 ×f

Loose r1/8R all directions

Category Stability region Energy 2β−1Ψαβ Stress β−1T

Compact 1 < λ, λ < r r + 1 + λ+ λ−1 FFT−rI

Plane-stress 1 < λ, 1 < r < λ 2r + 1 + r−1 (1− r)e⊗ e+ (r
−1−r)f ⊗ f

Loose λ ≥ 1, 0 < r < 1 4r1/4 0

The entry ”Stable phase(s) G” for the plane-stress category is the following

expression:

G = r1/2(e× f)⊗ (
F−1e
|F−1e| ×

F−1f
|F−1f | ) +

+e⊗ F−1e
|F−1e| + r−1/2f ⊗ F−1f

|F−1f | , (75)

and, in the entry ”Principal directions of G” for the plane-stress category, the

angle θ is restricted through the relation

cos2 θ =
λ(λ− r)
λ2 − 1

. (76)

The information in Figure 5 and in the tables provides a landscape of the stable

disarrangement phases available in simple shear. In the compact phase, because

G = F , the deformation without disarrangement G that identifies the phase is

completely specified once F is given. In the loose phases, G is the scalar r1/8

multiplied by an arbitrary rotation R. In the plane-stress phase, , the stable

disarrangement phaseG is completely determined by the four vectors e, f , F−1e,

and F−1f , with e and f given in the table. Consequently, apart from a choice of
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sign for e and choices of signs in solving the relations cos2 θ =λ(λ−r)
λ2−1 for cos θ and

sin2 θ =λr−1
λ2−1 for sin θ, the stable plane-stress phase G is completely determined

by F = I+µa⊗b. The rotation RG corresponding to this stable disarrangement

phase is given in Remark 2, and the principal stretches ofBG = GGT are λG1 = r,

λG2 = 1, and λG3 = r−1.

In the compact phase, the Cauchy stress T has principal stresses β(λ − r),

β(1− r), β(λ−1 − r) , so that, in the region of stability for the compact phase,

the principal stresses are all negative and vary with the stretch λ. In the stable,

plane stress phase, the formula in the table gives the Cauchy stress T as a linear

combination of the dyads e⊗ e and f ⊗ f in which only the dyad f ⊗ f varies

with the stretch λ. The principal stresses for this stable disarrangement phase

are 0, β(1− r) and β(r−1− r), the latter two of which are negative in the region

of stability for this disarrangement phase and do not vary with λ. In the

loose phase, the stress vanishes as do all the principal stresses. Thus, for all of

the stable disarrangement phases, the non-zero principal stresses are negative

in the region of stability. In the two regions where the compact phase is not a

stable disarrangement phase, the stable phase is such that one principal stress

vanishes or all three principal stresses vanish, and all of the principal stresses

are independent of the stretch λ. We conclude that the requirement of stability

for a disarrangement phase in the case of simple shear entails all of the pieces

of the aggregate to be subject to no tensile tractions, i.e., Tn ·n ≤ 0 for all unit

vectors n, and stability for the compact disarrangement phase is characterized

by the condition: Tn · n < 0 for all unit vectors n. Consequently, the stable

disarrangement phases in simple shear for an aggregate with the energy Ψαβ

display the characteristics of a ”no-tension or masonry-like material with non-

linear elastic response” (see [4], [5], [6] for studies of no-tension/masonry-like

materials with linear elastic response).
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4.6 Shapes and orientations of deformed pieces of the ag-

gregate in stable phases for simple shear

We recall that for every structured deformation, the Approximation Theorem

permits us to identify the deformation without disarrangements G as the con-

tribution at the macrolevel of submacroscopic deformations without disarrange-

ments. A form of this identification relation that is useful here is the formula

(see [1]):

G(X) = lim
ε−→0

lim
n−→∞

∫
B(X,ε)

∇fn(Y )dVY

volB(X, ε)

We can think of the size of the pieces of the aggregate going to zero as the index

n tends to infinity, so that, in the context of aggregates, G(X) represents the

average deformation

∫
B(X,ε)

∇fn(Y )dVY

volB(X,ε) of pieces of the aggregate within a ball

of radius ε, computed in the limit as the size of the pieces tends to zero and,

subsequently, as ε tends to zero.

We describe here the geometry of the deformed pieces of the aggregate in

terms of the principal stretches of G for each stable disarrangement phase in

simple shear. The following table displays these principal stretches along with

their effect on a unit sphere:

Stable phase Principal stretches of G Image of unit sphere under G

Compact λ1/2, 1, λ−1/2 ellipsoid; shape depends on λ

Plane-stress r1/2, 1, r−1/2 ellipsoid; shape independent of λ

Loose r1/8, r1/8, r1/8 sphere; size independent of λ

The table shows that the only stable phase in which the shape of deformed

pieces of the aggregate depends upon the macroshear λ is the compact phase.

Of course, in this phase G = F , and we cannot distinguish the geometrical

changes in the pieces of the aggregate from those in the aggregate, itself. In
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the loose phases of the aggregate, the deformation without disarrangement G

causes changes in the pieces of the aggregate that, on average, take the unit

sphere into a sphere of radius r1/8, independent of the macroshear λ. All

vectors are principal directions of G for these loose phases, so that the principal

directions also are independent of λ. By contrast, in each stable, plane-stress

phase the deformation of the pieces of the aggregate, on average, takes the unit

sphere into an ellipsoid with semiaxes of length r1/2, 1, r−1/2. The amount

of macroshear λ of the aggregate does not influence the deformed shape of the

pieces.

From the results obtained in the appendix, we must keep in mind that the

principal directions f and e× f of G in the stable plane-stress phase do depend

in a non-trivial way on the macroshear through the principal directions

eG3 = f = cos θeF1 + sin θeF3 ,with θ satisfying (76)

eG1 = ±eF2 × f = ±(sin θeF1 − cos θeF3 ). (77)

When λ = r the relation (76) yields cos2 θ = 0, and we obtain

eG3 | λ=r = ±eF3

eG1 | λ=r = ±eF1

and we conclude that the principal directions of F and of G coincide when λ = r.

As λ 7−→ ∞ the relation (76) yields cos2 θ −→ 1, and we obtain

eG3 | λ−→∞ = ±eF1

eG1 | λ−→∞ = ∓eF3

and this tells us that, in the limit as the stretch λ tends to ∞, the principal
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directions of G in the plane of shearing are again principal directions of F ,

but corresponding to different amounts of stretch. These results tell us that

the orientations of the deformed pieces of the aggregate as they appear in the

stable, plane-stress phase when λ = r are the same as the orientation of the

principal directions of the simple shear F . For values of stretch λ greater

than r the orientation of the deformed pieces in the plane of shearing is rotated

with respect to the principal directions of F by an angle that tends to ±π/2 as

the stretch increases without bound. In otherwords, while the shapes of the

pieces of the aggregate do not vary with the macrostretch λ, their orientations

relative to the principal directions of F in the stable plane-stress phase for large

macroshears λ are rotated in the plane of shearing by an amount that tends to

±π/2 (see Figure 6).

eF3 = eG3

eF1 = eG1
λ = r λ > r

λ → ∞

eF3
eG3 eG1

eF1

eF1

eG1 = eF3

eG3 = −eF1

Figure 6: Relative orientation of principal axis of G and F .
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5 Appendix: Details of the analysis of plane-

stress disarrangement phases when F = I +

µa⊗ b

We devote this appendix to the details of the analysis of the minimization

problem (66) - (70) which we restate here for convenience: minimize the function

(e, f) 7−→ H(e, f) = 2r1/2
∣∣F−1e∣∣ ∣∣F−1f ∣∣+

∣∣F−1e∣∣−2 +
∣∣F−1f ∣∣−2 (78)

subject to the constraints

e · e = f · f = 1, e · f = 0, F−1e · F−1f = 0 (79)

r1/2 ≤
∣∣F−1e∣∣ ∣∣F−1f ∣∣ (80)

1 6= r1/2
∣∣F−1e∣∣3 ∣∣F−1f ∣∣ (81)

1 6= r1/2
∣∣F−1e∣∣ ∣∣F−1f ∣∣3 . (82)

If we ignore for the moment the last two constraints, (81) and (82), then the

set of pairs (e, f) satisfying the remaining constraints forms a closed, bounded

subset of V × V. If this set is not empty, i.e., if the constraints (79) and (80)

admit at least one pair (e, f), we may conclude that the continuous function

(e, f) 7−→ H(e, f) in (78) attains a minimum on that set. Of course, we must

check a posteriori that such a minimum complies with the last two constraints

(81) and (82). It is convenient in solving this constrained minimization problem

to use the notation and identities

x := B−1F e · e =
∣∣F−1e∣∣2 , y := B−1F f · f =

∣∣F−1f ∣∣2 (83)

F−1e · F−1f = B−1F e · f = e ·B−1F f (84)
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which allow us to write the partial derivatives DeH(e, f) and DfH(e, f) in the

concise forms

DeH(e, f) = 2(r1/2x3/2y1/2 − 1)x−2B−1F e

DfH(e, f) = 2(r1/2y3/2x1/2 − 1)y−2B−1F f. (85)

According to the constraints (81) and (82), the coefficients of the vectors B−1F e

and B−1F f on the right-hand sides of (85) are non-zero and, therefore, the

partial derivatives, themselves, are non-zero vectors.

5.1 Case: r1/2 < |F−1e| |F−1f | (⇐⇒ r < xy)

In view of (83) the accommodation inequality (80) may be written in this case

as r ≤ xy, and, in seeking candidates for minimizers of H in (78), we may first

impose this constraint on e and f as the strict inequality

r < xy. (86)

Consequently, for this case we may limit the constraints on e and f to the four

scalar constraints contained in the relations (79). For F = I+µa⊗b and µ 6= 0

(or, equivalently, λ > 1), these constraints are independent, and we therefore

may use the method of Lagrange multipliers to identify stationary points of the

function H restricted to the constraint set defined by (79). Accordingly, we

seek stationary points of the function Φ on V × V defined by

Φ(e, f) = H(e, f) + ξ(e · e− 1) + η(f · f − 1) + 2σe · f + 2τB−1F e · f, (87)
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i.e., we seek vectors e and f as well as scalars ξ, η, σ, and τ such that not only

are the constraints (79) but also the stationarity conditions

DeΦ(e, f) = DfΦ(e, f) = 0 (88)

are satisfied. Differentiation of (87) and use of the formulas (85) as well as the

constraints (79) yield

(r1/2x3/2y1/2 − 1)x−2B−1F e+ τB−1F f = (r1/2x3/2y1/2 − 1)x−1e− σf

τB−1F e+ (r1/2x1/2y3/2 − 1)y−2B−1F f = −σe+ (r1/2x1/2y3/2 − 1)y−1f

σ = −τx = −τy, (89)

and, in particular, there holds: τ(x− y) = 0. There arise also formulas for the

multipliers ξ and η in terms of x, y, and r that we need not record here.

5.1.1 Case: r1/2 <
∣∣F−1e∣∣ ∣∣F−1f ∣∣ and τ = 0.

As we observed above, r1/2x3/2y1/2 − 1 6= 0 and r1/2x1/2y3/2 − 1 6= 0, and the

condition τ = 0 along with (89) yield the simple relations:

B−1F e = xe and B−1F f = yf. (90)

Hence, the only candidates (e, f) for stationarity of Φ here are orthogonal pairs

of unit eigenvectors of B−1F , all of which are generated from the following table
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(using symmetries in H to obtain all possibilites from those in the table):

e f x y xy > r rx3y 6= 1 rxy3 6= 1 H(e, f)

eF1 eF2 λ−1 1 r−1 > λ r 6= λ3 r 6= λ 2r1/2λ−1/2 + 1 + λ

eF1 eF3 λ−1 λ 1 > r r 6= λ2 r 6= λ−2 2r1/2 + λ−1 + λ

eF2 eF3 1 λ λ > r r 6= λ−1 r 6= λ−3 2r1/2λ1/2 + 1 + λ−1

(91)

We note that the constraint (79)4 is satisfied in all of these cases, because e and

f are orthogonal.

5.1.2 Case: r1/2 <
∣∣F−1e∣∣ ∣∣F−1f ∣∣ and τ 6= 0.

Because τ(x−y) = 0 and τ 6= 0, we have in this case x = y, which implies r < x2,

and some straightforward calculations show that the relations (89) reduce to

(
τ − (r1/2x2 − 1)2

τx2

)
(B−1F e− xe) = 0(

τ − (r1/2x2 − 1)2

τx2

)
(B−1F f − xf) = 0. (92)

We observe that the scalar factor that appears on the left-hand side of both of

these relations must be zero. Otherwise, both e and f would be eigenvectors of

B−1F corresponding to the same eigenvalue x. Because e and f are orthogonal

and the eigenspaces of B−1F for a simple shear are one-dimensional, this cannot

occur. Consequently, we have in the present case

τ2 =
(r1/2x2 − 1)2

x2
, (93)

and we note that this formula is consistent with the case requirement τ 6= 0 by

virtue of (81). Thus, the present case requires that at most one of e and f are

eigenvectors of B−1F .
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We first consider the case where exactly one of e and f is an eigenvector

of B−1F . Since B−1F e · e = x = y = B−1F f · f , the only possible eigenvalue of

B−1F that can arise corresponding to e or f is the intermediate eigenvalue 1 with

eigenvector ±eF2 . For definiteness, if B−1F e = e, then x = 1 = y and

e = ±eF2 and f = XeF1 + ZeF3 with XZ 6= 0. (94)

Moreover, since f is a unit vector and B−1F e · e = 1 = B−1F f · f , we have

X2 + Z2 = 1 and λ−1X2 + λZ2 = 1, (95)

and these relations tell us that X = ±( λ
λ+1 )1/2 and Z = ±( 1

λ+1 )1/2, with all

four combinations of sign choices permissible. Thus, in the present case, if

e = ±eF2 , then f = ±( λ
λ+1 )1/2eF1 ± ( 1

λ+1 )1/2eF3 , and we have

H(e, f) = 2r1/2 + 2. (96)

The relations (81) and (82) in this case both reduce to r 6= 1, and the accom-

modation inequality becomes r < 1.

We consider now the alternative case where neither e nor f is an eigenvector

of B−1F . Because B−1F e · f = e · f = 0 and B−1F e × e 6= 0, the unit vector f is

given by

f =
B−1F e× e∣∣B−1F e× e

∣∣ , (97)

so that we may use this formula to compute B−1F f · f in terms of B−1F e, BF e,

and e as follows. First we note from (97) that

B−1F f · f =
B−1F (B−1F e× e)∣∣B−1F e× e

∣∣ · B
−1
F e× e∣∣B−1F e× e

∣∣
=

∣∣B−1F e× e
∣∣−2B−1F (B−1F e× e) · (B−1F e× e). (98)
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B−1F is symmetric with determinant 1, and we may write

B−1F (B−1F e× e) = (BFB
−1
F )e×BF e = e×BF e.

Consequently, B−1F (B−1F e× e) · (B−1F e× e) is of the form

(u× v) · (w × z) = (u · w)(v · z)− (u · z)(w · v),

with u = e, v = BF e, w = B−1F e, and z = e, and, recalling that x = B−1F e · e,

we have

B−1F (B−1F e× e) · (B−1F e× e) = (e ·B−1F e)(BF e · e)− (e · e)(B−1F e ·BF e)

= x(BF e · e)− 1 (99)

We also have

∣∣B−1F e× e
∣∣−2 = (

∣∣B−1F e× e
∣∣2)−1

= (
∣∣B−1F e

∣∣2 |e|2 − (B−1F e · e)2)−1

= (
∣∣B−1F e

∣∣2 − x2)−1 (100)

and, by (98), (99), and (100) we conclude that

x = y = B−1F f · f

=
x(BF e · e)− 1∣∣B−1F e

∣∣2 − x2 .
We have thus shown that x = B−1F e · e is a root of the cubic equation

x3 + (BF e · e−
∣∣B−1F e

∣∣2)x− 1 = 0. (101)
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Writing e = XeF1 + Y eF2 + ZeF3 with X2 + Y 2 + Z2 = 1, we note that

x = B−1F e · e = λ−1X2 + Y 2 + λZ2

= 1 + (λ− 1)(Z2 − λ−1X2), (102)

BF e · e = λX2 + Y 2 + λ−1Z2

= 1 + (λ− 1)(X2 − λ−1Z2), (103)

∣∣B−1F e
∣∣2 = (λ−1X)2 + Y 2 + (λZ)2

= 1 + (λ2 − 1)(Z2 − λ−2X2), (104)

and a short calculation using (102) - (104) shows that the coefficient of x in

(101) is given by

BF e · e−
∣∣B−1F e

∣∣2 = λ−1(λ3 − 1)(λ−1X2 − Z2) = (λ+ 1 + λ−1)(1− x).

Consequently, the cubic equation for x becomes

0 = x3 − (λ+ 1 + λ−1)x2 + (λ+ 1 + λ−1)x− 1

= (x− 1)(x− λ)(x− λ−1).

The roots x = B−1F e · e = λ and x = B−1F e · e = λ−1 are ruled out, for then e

would be an eigenvector of B−1F , contradicting the specification of the present

case. We conclude that x = y = 1, so that e and f must be perpendicular

vectors that are not eigenvectors of B−1F and that both lie on the intersection

of the unit sphere {v ∈ V | v · v = 1 } and the ellipsoid
{
v ∈ V | B−1F v · v = 1

}
.

Because x = y = 1, the condition that e and f not be eigenvectors of B−1F
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then is equivalent to the conditons e 6= ±eF2 and f 6= ±eF2 .

In summary, the case r1/2 <
∣∣F−1e∣∣ ∣∣F−1f ∣∣ and τ 6= 0 (=⇒ r < x2), with

neither e nor f eigenvectors of B−1F , necessitates that x = y = B−1F e · e =

B−1F f · f = 1 and, by (102), that

e = XeF1 + Y eF2 + ZeF3 with X2 = λZ2 and X2 + Y 2 + Z2 = 1. (105)

Moreover, the formula (97) then determines the vector f in terms of B−1F and e.

It remains to show that these necessary conditions on e and on f for stationarity

of H actually can be satisfied. To this end, we use (105) to conclude that

e = σ1λ
1/2ZeF1 + σ2(1− (1 + λ)Z2)1/2eF2 + ZeF3 (106)

with |σ1| =|σ2| = 1 and with

0 < |Z| < (1 + λ)−1/2, (107)

and the relation (97) then yields the formula

f =
Z

|Z| (λ+ 1)1/2

{
σ2λ

1/2(1− (1 + λ)Z2)1/2eF1 − σ1(λ+ 1)ZeF2 +

+σ1σ2(1− (1 + λ)Z2)1/2eF3

}
. (108)

It can easily be verified that the vectors e and f in (106) and (108) satisfy the

constraints (79) - (82), provided that r < 1. The free energy H(e, f) is given

again by the formula (96).
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5.2 Case: r1/2 = |F−1e| |F−1f | (⇐⇒ r = xy)

We treat the relation r = xy that defines the present case as a constraint to be

appended to the previous ones (79) - (82), and, accordingly, we seek stationary

pairs (e, f) for the function Π defined by

Π(e, f) : = Φ(e, f) + ς ((B−1F e · e)(B−1F f · f)− r)

= H(e, f) + ξ(e · e− 1) + η (f · f − 1) + 2σe · f +

+2τB−1F e · f + ς ((B−1F e · e)(B−1F f · f)− r), (109)

with H the energy defined in (78). The constraints and the condition that the

derivatives of Π vanish yield the relations

((ς + 1)rx− 1)x−2B−1F e+ τB−1F f = ((ς + 1)r − x−1)e− σf

τB−1F e+ ((ς + 1)x− r−2x2)B−1F f = −σe+ ((ς + 1)r − r−1x)f

σ = −τx = −τy = −τrx−1. (110)

(The multipliers ξ and η were expressed in terms of r, x, and ζ and then were

eliminated from further consideration in the course of deriving these relations.)

5.2.1 Case: r = xy and τ 6= 0.

For this case the equation (110)3 tells us that x = y = r1/2, and elementary

but lengthy algebraic manipulations show that there is no value of r that makes

x = y = r1/2 consistent with the full set of constraints (79) - (82). Consequently,

the case r = xy and τ 6= 0 cannot occur.
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5.2.2 Case: r = xy and τ = 0.

The stationarity conditions (110) with τ = 0 tell us that σ = 0, and multiplica-

tion of the first by x2 and the second by r/x yields

((ς + 1)r − x−1)(B−1F e− xe) = 0

((ς + 1)r − r−1x)(B−1F f − rx−1f) = 0. (111)

We analyze these stationarity conditions according to whether or not each of

the two scalar coefficients (ς + 1)r − x−1 and (ς + 1)r − r−1x appearing in the

left-hand members vanishes.

Case: r = xy and τ = 0 and (ς + 1)r − x−1 = (ς + 1)r − r−1x = 0 Here

we conclude that x = r1/2 = rx−1 = y, and, as stated in the case: r = xy and

τ 6= 0, these relations are not consistent with the full set of constraints.

Case: r = xy and τ = 0 and ((ς + 1)r − x−1)((ς + 1)r − r−1x) 6= 0 For this

case, both of the coefficients appearing in (111) are non-zero, and we conclude

that e and f are eigenvectors of B−1F corresponding to eigenvalues x and rx−1,

respectively. Because F is a simple shear and e · f = 0, the two eigenvaules

must be distinct, x 6= rx−1, and only the following three possibilities can

occur (omitting duplications due to the symmetry of the present conditions

with respect to e and f and with respect to x and y):

x e y = rx−1 f H(e, f) rx3y 6= 1, rxy3 6= 1

1 eF2 λ = r eF3 2λ+ 1 + λ−1 r 6= 1

1 eF2 λ−1 = r eF1 2λ−1 + 1 + λ r 6= 1

λ eF3 λ−1 = rλ−1 eF1 2 + λ−1 + λ 1 = r 6= λ−2, 1 = r 6= λ2
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The disarrangement phases G given via (33) for each of the three possibilities

in this table are candidates for stable disarrangement phases in simple shear.

Case: r = xy and τ = 0, (ς+1)r−x−1 = 0, and (ς+1)r−r−1x 6= 0. In this

case, x−1 6= r−1x which is equivalent to y = x−1r 6= x. By (111), B−1F e = xe,

and, therefore, x ∈
{
λ, 1, λ−1

}
. We consider in detail the case x = 1 for which,

necessarily, e = ±eF2 , and we carry out the analysis for e = +eF2 . Because

e · f = 0, there is a number θ ∈ [0, 2π) such that f = cos θeF1 + sin θeF3 , and we

have not only B−1F e · f = 0, but also

r = rx−1 = y = B−1F f · f = λ−1 cos2 θ + λ(1− cos2 θ)

which yields the formula

cos2 θ =
λ(λ− r)
λ2 − 1

. (112)

Since 0 ≤ cos2 θ ≤ 1 and 1 < λ, the fraction on the right-hand side of (112) lies

in the closed interval [0, 1], and we conclude that

λ ≥ r and λ ≥ r−1. (113)

Because x = 1 and y = r, the formula (78) tells us that H(e, f) = 2r+ 1 + r−1.

In the present case the restrictions rx3y 6= 1, rxy3 6= 1 both become r 6= 1.

The case x = λ and the case x = λ−1 are treated in a similar manner, and

we collect the conclusions in the three cases in the following tables:

x e y f H(e, f)

1 ±eF2 r cos θeF1 + sin θeF3 , cos2 θ =λ(λ−r)
λ2−1 2r + 1 + r−1

λ−1 ±eF1 λr cos θeF2 + sin θeF3 , cos2 θ =λ(1−r)
λ−1 2r + λ+ λ−1r−1

λ ±eF3 rλ−1 cos θeF1 + sin θeF2 , cos2 θ =λ−r
λ−1 2r + λ−1+λr−1
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x Constraints

1 r 6= 1, λ ≥ r, λ ≥ r−1

λ−1 r ≤ 1, r−1≤ λ, r 6= λ−1/2, r 6= λ−1

λ 1 ≤ r ≤ λ, r 6= λ−1/2, r 6= λ−2

The disarrangement phases G given via (33) for each of the three possibilities in

this table are also candidates for stable disarrangement phases in simple shear.

Case: r = xy and τ = 0, (ς + 1)r−x−1 6= 0, and (ς + 1)r− r−1x) = 0. This

case amounts to interchanging the roles of x and of y and, consequently, those of

e and f in the previous case. These interchanges yield no new candidates G for

stable disarrangement phases, because the formula (33) for G and the formula

(78) for H(e, f) are symmetric with respect to interchange of e and f.
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