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Abstract. We study some properties of solutions to a quasistatic evolution problem for

perfectly plastic plates, that has been recently derived from three-dimensional Prandtl-
Reuss plasticity. We prove that the stress tensor has locally square-integrable first deriva-

tives with respect to the space variables. We also exhibit an example showing that the

model under consideration has in general a genuinely three-dimensional nature and can-
not be reduced to a two-dimensional setting.

1. Introduction

In this paper we continue the study of the quasistatic evolution model for perfectly plastic
plates, that has been derived in [5] starting from three-dimensional Prandtl-Reuss plasticity.

Under suitable regularity assumptions for the applied body forces, we prove W 1,2
loc regularity

of the stress with respect to the space variables.
Let ω be a bounded domain in R2 with a C2 boundary. The set Ω := ω×(− 1

2 ,
1
2 ) represents

the reference configuration of a three-dimensional plate. The current configuration of the
plate at time t is described by a triple (u(t), e(t), p(t)), where u(t) is the displacement, e(t)
is the elastic strain tensor, and p(t) is the plastic strain tensor, satisfying the following
conditions:

(sf1) kinematic admissibility: Eu(t) = e(t) + p(t) in Ω, u(t) = w(t) on Γd, and ei3(t) =
pi3(t) = 0 in Ω for i = 1, 2, 3.

Here Eu(t) denotes the infinitesimal strain tensor, given by the symmetric part of Du(t),
while w(t) is a prescribed boundary condition on Γd := γd×(− 1

2 ,
1
2 ), γd being a subset

of ∂ω. These conditions imply that u(t) is a Kirchhoff-Love displacement, that is, the ver-
tical displacement u3(t) is independent of the out-of-plane variable x3 and the horizontal
displacement takes the form

uα(t, x) = ūα(t, x′)− x3∂αu3(t, x′) for x = (x′, x3) ∈ Ω, α = 1, 2. (1.1)

In particular,

(Eu)αβ(t, x) = (Eū)αβ(t, x′)− x3∂
2
αβu3(t, x′) for x = (x′, x3) ∈ Ω, α, β = 1, 2.

From a mechanical point of view this structure guarantees that straight fibers that are normal
to the mid-surface of the plate in the reference configuration, stay straight and normal after
the deformation, within the first order (see, e.g., [3]).

Condition (sf1) does not imply, in general, that e(t) and p(t) are affine with respect
to x3. However, one can prove (Proposition 3.1) that e(t) and p(t) admit the following
decomposition:

e(t, x) = ē(t, x′) + x3ê(t, x
′) + e⊥(t, x), p(t, x) = p̄(t, x′) + x3p̂(t, x

′)− e⊥(t, x),

where the zero-th order moments ē(t) and p̄(t) satisfy

Eū(t) = ē(t) + p̄(t) in ω
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while the first order moments ê(t) and p̂(t) are such that

−D2u3(t) = ê(t) + p̂(t) in ω.

In the above identities and in the following we identify e(t), p(t), and their moments with
functions taking values in M2×2

sym, since their third row and column are zero by condition (sf1).
The strong formulation of the quasistatic evolution problem on a time interval [0, T ]

consists in finding u(t), e(t), and p(t) such that for every t ∈ [0, T ] equation (sf1) is satisfied,
together with the following conditions:

(sf2) constitutive equation: σ(t) = Cre(t) in Ω, where Cr is the elasticity tensor;

(sf3) equilibrium: −divx′ σ̄(t) = f(t) and −divx′divx′ σ̂(t) = g(t) in ω, together with suit-
able Neumann boundary conditions on ∂ω \ γd;

(sf4) stress constraint: σ(t) ∈ Kr, where Kr is a given convex and compact set, represent-
ing the set of admissible stresses;

(sf5) flow rule: ṗ(t) = 0 if σ(t) ∈ intKr, while ṗ(t) belongs to the normal cone to Kr at
σ(t) if σ(t) ∈ ∂Kr.

Here f(t) : ω → R2 and g(t) : ω → R represent the applied body forces at time t, while
σ̄(t) := Cr ē(t) and σ̂(t) := Cr ê(t) are the stretching and bending components of the stress,
respectively. Condition (sf5) can also be written in the equivalent form:

(sf5′) maximum dissipation principle: Hr(ṗ(t)) = σ(t) : ṗ(t), where Hr is the support func-
tion of Kr, i.e., Hr(p) := sup{σ : p : σ ∈ Kr},

or alternatively,

(sf5′′) maximum plastic work condition: (θ − σ(t)) : ṗ(t) ≤ 0 for every θ ∈ Kr.

In [5] this model has been rigorously justified via Γ-convergence techniques, starting from
the three-dimensional Prandtl-Reuss quasistatic evolution model. In other words the system
(sf1)–(sf5) describes (up to a suitable scaling) the asymptotic behaviour of the quasistatic
evolutions in a three-dimensional plate, when the plate thickness approaches zero.

We note that the equilibrium conditions are purely two-dimensional, while the stress
constraint and the flow rule (which are the main ingredients of the plastic reponse) involve
the whole stress σ(t), whose dependence on the thickness variable x3 may be not trivial
(because of the component σ⊥(t) := Cre⊥(t)). Thus, the problem has in general a genuinely
three-dimensional nature and differs from the classical two-dimensional plastic plate model
that has been extensively studied in the literature [2, 6, 9, 10]. This comparison is discussed
in the last section of the paper, where an explicit solution to (sf1)–(sf5) is shown for a specific
choice of data.

Existence of a solution to (sf1)–(sf5) can be proved by setting the problem within the
variational framework for rate-independent processes, developed in [14]. This accounts to
approximating the problem by time discretization: the interval [0, T ] is subdivided into k
subintervals by means of points

0 = t0k < t1k < · · · < tk−1
k < tkk = T ,

and the approximate solution uik, eik, pik at time tik is defined by induction as a minimizer
of the energy functional

1

2

∫
Ω

Cre : e dx+

∫
Ω

Hr(p− pi−1
k ) dx− 〈L(tik), u〉 (1.2)

among all triples (u, e, p) that are kinematically admissible at time tik, where

〈L(t), u〉 :=

∫
ω

f(t) · ū dx′ − 1

12

∫
ω

g(t)u3 dx
′.

Because of the linear growth of Hr, the energy functional in (1.2) is not coercive in any
Sobolev norm. The natural setting for a weak formulation is the space BD(Ω) of functions
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with bounded deformation in Ω for the displacement u(t) and the space Mb(Ω ∪ Γd;M2×2
sym)

of bounded Borel measures on Ω ∪ Γd for the plastic strain p(t). This is also natural from
a mechanical point of view, because it is well known that in the absence of hardening
displacements may develop jump discontinuities along so-called slip surfaces, on which plastic
strain concentrates.

Since p(t) ∈Mb(Ω ∪ Γd;M2×2
sym), the functional∫

Ω

Hr(p(t)) dx

has to be interpreted according to the theory of convex functions of measures, developed in
[12, 15] (see also Section 2), as

Hr(p(t)) :=

∫
Ω∪Γd

Hr

( dp(t)
d|p(t)|

)
d|p(t)|,

where dp(t)/d|p(t)| is the Radon-Nicodym derivative of p(t) with respect to its total variation
|p(t)|. Moreover, the boundary condition is relaxed by requiring that

p(t) = (w(t)− u(t))� ν∂ΩH2 on Γd, (1.3)

where � denotes the symmetrized tensor product and H2 is the two-dimensional Hausdorff
measure. The mechanical interpretation of (1.3) is that u(t) may not attain the boundary
condition: in this case a plastic slip is developed along Γd, whose amount is proportional to
the difference between the prescribed boundary value and the actual value.

Combining these remarks with the kinematic admissibility condition (sf1), we see that
u(t) is a Kirchhoff-Love displacement in BD(Ω), that is, u3(t) belongs to the space BH(ω)
of functions with bounded Hessian in ω and the averaged tangential displacement ū(t) in
(1.1) belongs to BD(ω). Therefore, ū(t) may exhibit jump discontinuities, while, because of
the embedding of BH(ω) into C(ω), the normal displacement u3(t) is continuous, but its
gradient may have jump discontinuities. Since the dependence of u on x3 is affine, we can
conclude that slip surfaces are vertical surfaces whose projection on ω is the union of the
jump set of ū and the jump set of ∇u3.

Moreover, writing condition (1.3) in terms of moments yields

p̄(t) = (w̄(t)− ū(t))� ν∂ωH1 on γd,

u3(t) = w3(t), p̂(t) = (∇u3(t)−∇w3(t))� ν∂ωH1 on γd.

In this setting the flow rule is proved to hold in the form

Hr(ṗ(t)) = 〈σ(t), ṗ(t)〉,

where the product at the right-hand side is meant in the sense of the stress-strain duality
introduced in [5] (see also Section 3).

In this paper we focus on the spatial regularity of the stress component σ(t) for solutions
of the quasistatic evolution problem (sf1)–(sf5) in its weak formulation. We restrict to the
case where the yield criterion in the fully three-dimensional Prandtl-Reuss problem is that
of von Mises, often used for metals (see [13]). In other words, the set of admissible stresses
for the fully three-dimensional Prandtl-Reuss problem is a cylinder Bα0

+RI3×3, where Bα0

is a ball of radius α0 in the space of trace-free M3×3
sym matrices and I3×3 is the identity matrix

in M3×3
sym. By the characterization in [5] this implies that the set Kr is an ellipsoid of the

form

Kr = {ξ ∈M2×2
sym : |ξ|r ≤ α0},

where

|ξ|2r :=
1

6
(ξ11 + ξ22)2 +

1

2
(ξ11 − ξ22)2 + 2ξ2

12 = |ξ|2 − 1

3
(tr ξ)2.

Our main result is that for the solutions of the quasistatic evolution problem under consid-
eration the stress component is locally W 1,2 with respect to space variables (Theorem 4.6).
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More precisely, we show that for every open set ω′ compactly contained in ω there exists a
positive constant C1(ω′) such that

sup
t∈[0,T ]

‖Dασ(t)‖L2(ω′×(− 1
2 ,

1
2 );M2×2

sym) ≤ C1(ω′) for α = 1, 2 (1.4)

and for every open set Ω′ compactly contained in Ω there exists a positive constant C2(Ω′)
such that

sup
t∈[0,T ]

‖D3σ(t)‖L2(Ω′;M2×2
sym) ≤ C2(Ω′). (1.5)

This implies in particular that both the stretching component σ̄ and the bending component
σ̂ are in L∞(0, T ;W 1,2

loc (ω;M2×2
sym)), while σ⊥ ∈ L∞(0, T ;W 1,2

loc (Ω;M2×2
sym)).

Local regularity of stresses in the fully three-dimensional Prandtl-Reuss plasticity has
been proved in [1, 8], see also [11] for a recent global regularity result for the stress velocity.
For the classical two-dimensional plastic plate model local regularity has been established in
[10], using different techniques and assuming Kr to be a ball, Cr to be the identity tensor,
and γd = ∂ω.

The strategy of our proof is inspired by that of [1]. We consider an equivalent formulation
of problem (sf1)–(sf5) in terms of a parabolic variational inequality for the stress variable
and we construct some approximating problems of Norton-Hoff type, where the constraint
(sf4) is replaced by a penalization term. These approximating problems involve a monotone
differential equation in the stress variable; the displacement and the plastic strain are then
indirectly recovered a posteriori. We first establish regularity for the approximating prob-
lems with uniform estimates with respect to the approximation parameter and then prove
convergence to the parabolic variational inequality formulation.

The main novelty with respect to [1] is that in the approximating model the equilibrium
equations are expressed in terms of the moments σ̄ and σ̂, while the nonlinearity in the
monotone operator involve the whole stress σ. For this reason we obtain a slightly better
regularity of the stress with respect to the in-plane variables: the regularity estimate (1.4)
is indeed global in the out-of-plane direction x3, whereas (1.5) is local with respect to both
in-plane and out-of-plane variables. In particular, we observe that (1.4) cannot be deduced
from the regularity estimates in [1] for the fully three-dimensional Prandtl-Reuss problem,
using the convergence result of [5]; indeed, the estimates of [1] (whose dependence on the
domain should be explicited if one wished to pass to the limit as the thickness of the plate
tends to zero) are local in all directions.

The plan of the paper is as follows. In Section 2 we recall some mathematical preliminaries.
The setting of the problem is detailed in Section 3. The existence and regularity results are
the subject of Section 4. In Section 5 an explicit example is discussed.

2. Mathematical preliminaries

In this section we recall some notions from measure theory that we will use throughout
the article.

Measures. Given a Borel set B ⊂ Rn and a finite dimensional Hilbert space X, Mb(B;X)
denotes the space of all bounded Borel measures on B with values in X, endowed with the
norm ‖µ‖Mb

:= |µ|(B), where |µ| ∈ Mb(B;R) is the variation of the measure µ. If µ is
absolutely continuous with respect to the Lebesgue measure Ln, we always identify µ with
its density with respect to Ln, which is a function in L1(B;X).

If the relative topology of B is locally compact, by Riesz representation Theorem the space
Mb(B;X) can be identified with the dual of C0(B;X), which is the space of all continuous
functions ϕ : B → X such that the set {|ϕ| ≥ δ} is compact for every δ > 0. The weak*
topology on Mb(B;X) is defined using this duality.

Convex functions of measures. For every µ ∈ Mb(B;X) let dµ/d|µ| be the Radon-
Nicodym derivative of µ with respect to its variation |µ|. Let H : X → [0,+∞) be a convex
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and positively one-homogeneous function such that

αH |ξ| ≤ H(ξ) ≤ βH |ξ| for every ξ ∈ X,

where αH and βH are two constants, with 0 < αH ≤ βH . According to the theory of con-
vex functions of measures, developed in [12], we introduce the nonnegative Radon measure
H(µ) ∈Mb(B) defined by

H(µ)(A) :=

∫
A

H
( dµ
d|µ|

)
d|µ|

for every Borel set A ⊂ B. We also consider the functional H : Mb(B;X) → [0,+∞)
defined by

H(µ) := H(µ)(B) =

∫
B

H
( dµ
d|µ|

)
d|µ|

for every µ ∈ Mb(B;X). One can prove that H(µ) coincides with the measure studied in
[15, Chapter II, Section 4]. Hence,

H(µ) = sup
{∫

B

ϕ : dµ : ϕ ∈ C0(B;X), ϕ(x) ∈ K for every x ∈ B
}
, (2.1)

where K := ∂H(0) is the subdifferential of H at 0. Moreover, H is lower semicontinuous on
Mb(B;X) with respect to weak* convergence.

Functions with bounded deformation. Let U be an open set of Rn. The space BD(U)
of functions with bounded deformation is the space of all functions u ∈ L1(U ;Rn) whose
symmetric gradient Eu := symDu (in the sense of distributions) belongs to Mb(U ;Mn×n

sym ).
It is easy to see that BD(U) is a Banach space endowed with the norm

‖u‖BD := ‖u‖L1 + ‖Eu‖Mb
.

We say that a sequence (uk) converges to u weakly* in BD(U) if uk ⇀ u weakly in L1(U ;Rn)
and Euk ⇀ Eu weakly* in Mb(U ;Mn×n

sym ). Every bounded sequence in BD(U) has a weakly*
converging subsequence. If U is bounded and has a Lipschitz boundary, BD(U) can be
embedded into Ln/(n−1)(U ;Rn) and every function u ∈ BD(U) has a trace, still denoted
by u, which belongs to L1(∂U ;Rn). Moreover, if Γ is a nonempty open subset of ∂U , there
exists a constant C > 0, depending on U and Γ, such that

‖u‖L1(Ω) ≤ C‖u‖L1(Γ) + C‖Eu‖Mb
(2.2)

(see [15, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the
space BD(U) we refer to [15].

Functions with bounded Hessian. The space BH(U) of functions with bounded Hessian
is the space of all functions u ∈W 1,1(U) whose Hessian D2u (in the sense of distributions)
belongs to Mb(U ;Mn×n

sym ). It is easy to see that BH(U) is a Banach space endowed with the
norm

‖u‖BH := ‖u‖L1 + ‖∇u‖L1 + ‖D2u‖Mb
.

If U has the cone property, then BH(U) coincides with the space of functions in L1(U)
whose Hessian belongs to Mb(U ;Mn×n

sym ). If U is bounded and has a Lipschitz boundary,

BH(U) can be embedded into W 1,n/(n−1)(U). If U is bounded and has a C2 boundary, then
for every function u ∈ BH(U) one can define the traces of u and of ∇u, still denoted by u
and ∇u; they satisfy u ∈W 1,1(∂U), ∇u ∈ L1(∂U ;Rn), and ∂u

∂τ = ∇u · τ in L1(∂U), where τ

is any tangent vector to ∂U . If, in addition, n = 2, then BH(U) embeds into C(U), which is
the space of all continuous functions on U . For the general properties of the space BH(U)
we refer to [7].

Notation. The symmetrized tensor product a� b of two vectors a, b ∈ Rn is the symmetric
matrix with entries (aibj + ajbi)/2. The brackets 〈·, ·〉 denote the duality pairing between
conjugate Lp spaces, as well as between other pairs of spaces, according to the context.
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3. Setting of the problem

Throughout the paper Ω is an open subset of R3 of the form Ω = ω × (− 1
2 ,

1
2 ), where

ω is a bounded and connected open set of R2 with a C2 boundary. We suppose that the
boundary ∂ω is partitioned into two disjoint open subsets γd, γn and their common boundary
∂b∂ωγd = ∂b∂ωγn (topological notions refer here to the relative topology of ∂ω). We assume
that γd 6= ∅ and that ∂b∂ωγd is made of two points in ∂ω. The outer unit normal to ∂ω is
denoted by ν∂ω and the outer unit normal to ∂Ω by ν∂Ω. Moreover, we set Γd := γd×(− 1

2 ,
1
2 ).

The elasticity tensor and its inverse. Let Cr be the elasticity tensor, considered as a
symmetric positive definite linear operator Cr : M2×2

sym →M2×2
sym and let Ar : M2×2

sym →M2×2
sym

be its inverse Ar := C−1
r . It follows that there exist two constants αA and βA, with 0 < αA ≤

βA, such that

αA|ξ|2 ≤ 1
2Arξ : ξ ≤ βA|ξ|2 for every ξ ∈M2×2

sym. (3.1)

These inequalities imply

|Arξ| ≤ 2βA|ξ| for every ξ ∈M2×2
sym. (3.2)

The set of admissible stresses. Let Kr be a closed convex set of M2×2
sym such that there

exist two constants αH and βH , with 0 < αH ≤ βH , such that

{ξ ∈M2×2
sym : |ξ| ≤ αH} ⊂ Kr ⊂ {ξ ∈M2×2

sym : |ξ| ≤ βH}.

The boundary of Kr is interpreted as the yield surface. We define the set

Kr(Ω) := {σ ∈ L2(Ω;M2×2
sym) : σ(x) ∈ Kr for a.e. x ∈ Ω}.

The plastic dissipation potential is given by the support function Hr : M2×2
sym → [0,+∞) of

Kr, defined as

Hr(ξ) := sup
σ∈Kr

σ : ξ for every ξ ∈M2×2
sym.

It follows that Hr is a convex and positively one-homogeneous function such that

αH |ξ| ≤ Hr(ξ) ≤ βH |ξ| for every ξ ∈M2×2
sym. (3.3)

In particular, Hr satisfies the triangle inequality

Hr(ξ + ζ) ≤ Hr(ξ) +Hr(ζ) for every ξ, ζ ∈M2×2
sym. (3.4)

In [5] it is proved that, if K ⊂M3×3
sym is the convex set of admissible stresses for the three-

dimensional Prandtl-Reuss plasticity problem, then Kr can be characterized as follows:

ξ ∈ Kr ⇔

ξ11 ξ12 0
ξ12 ξ22 0
0 0 0

− 1

3
(tr ξ) I3×3 ∈ K. (3.5)

Thus, in particular, if

K =
{
ξ ∈M3×3

sym :
∣∣ξ − 1

3
(tr ξ) I3×3

∣∣ ≤ α0

}
for some α0 > 0, then (3.5) implies that

Kr = {ξ ∈M2×2
sym : |ξ|r ≤ α0} (3.6)

and

Hr(ξ) = α0

∣∣ξ + (tr ξ)I2×2

∣∣
r

for every ξ ∈M2×2
sym,

where

|ξ|2r :=
1

6
(ξ11 + ξ22)2 +

1

2
(ξ11 − ξ22)2 + 2ξ2

12 = |ξ|2 − 1

3
(tr ξ)2. (3.7)
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Zero-th and first order moments. For f ∈ L2(Ω;M2×2
sym) we denote by f̄ , f̂ ∈ L2(ω;M2×2

sym)

and by f⊥ ∈ L2(Ω;M2×2
sym) the following orthogonal components (in the sense of L2(Ω;M2×2

sym))
of f :

f̄(x′) :=

∫ 1
2

− 1
2

f(x′, x3) dx3, f̂(x′) := 12

∫ 1
2

− 1
2

x3f(x′, x3) dx3

for a.e. x′ ∈ ω, and

f⊥(x) := f(x)− f̄(x′)− x3f̂(x′)

for a.e. x ∈ Ω. The component f̄ is called the zero-th order moment of f , while f̂ is called
the first order moment of f .

Analogously, if q ∈ Mb(Ω ∪ Γd;M2×2
sym), the zero-th order moment of q is the measure

q̄ ∈Mb(ω ∪ γd;M2×2
sym) defined by∫

ω∪γd
ϕ : dq̄ :=

∫
Ω∪Γd

ϕ : dq

for every ϕ ∈ C0(ω ∪ γd;M2×2
sym), while the first order moment of q is the measure q̂ ∈

Mb(ω ∪ γd;M2×2
sym) defined by ∫

ω∪γd
ϕ : dq̂ := 12

∫
Ω∪Γd

x3ϕ : dq

for every ϕ ∈ C0(ω∪γd;M2×2
sym). We also define q⊥ ∈Mb(Ω∪Γd;M2×2

sym) as the measure given
by

q⊥ := q − q̄ ⊗ L1 − q̂ ⊗ x3L1,

where the symbol ⊗ denotes the usual product of measures.

Kirchhoff-Love admissible triples. We introduce the set of Kirchhoff-Love displacements,
defined as

KL(Ω) :=
{
u ∈ BD(Ω) : (Eu)i3 = 0 for i = 1, 2, 3

}
.

We note that u ∈ KL(Ω) if and only if u3 ∈ BH(ω) and there exists ū ∈ BD(ω) such that

uα = ūα − x3∂αu3, α = 1, 2. (3.8)

In particular, if u ∈ KL(Ω), then Eu can be identified with a 2× 2 matrix and (Eu)αβ =
(Eū)αβ − x3∂

2
αβu3 for α, β = 1, 2. If, in addition, u ∈ W 1,p(Ω;R3), then ū ∈ W 1,p(ω;R2)

and u3 ∈W 2,p(ω). We call ū, u3 the Kirchhoff-Love components of u.
For every w ∈ W 1,2(Ω;R3) ∩KL(Ω) we define the class AKL(w) of Kirchhoff-Love ad-

missible triples for the boundary datum w as the set of all triples (u, e, p) ∈ KL(Ω) ×
L2(Ω;M3×3

sym)×Mb(Ω ∪ Γd;M3×3
sym) satisfying

Eu = e+ p in Ω, p = (w − u)� ν∂ΩH2 on Γd,

ei3 = 0 in Ω, pi3 = 0 in Ω ∪ Γd, i = 1, 2, 3,

where H2 is the two-dimensional Hausdorff measure. Note that the space{
ξ ∈M3×3

sym : ξi3 = 0 for i = 1, 2, 3
}

is canonically isomorphic to M2×2
sym. Therefore, in the following, given a triple (u, e, p) ∈

AKL(w) we will systematically identify e with a function in L2(Ω;M2×2
sym) and p with a

measure in Mb(Ω ∪ Γd;M2×2
sym). Note also that the class AKL(w) is always nonempty as it

contains the triple (w,Ew, 0).
Let (u, e, p) ∈ AKL(w). By definition u is a Kirchhoff-Love displacement, hence u3 ∈

BH(ω) and uα, α = 1, 2, is affine in the x3 variable (see (3.8)). In general, one cannot
conclude that e and p are affine in x3, too. However, some conditions on the structure of e
and p can be deduced.
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Proposition 3.1. Let w ∈ W 1,2(Ω;R3) ∩KL(Ω) and (u, e, p) ∈ KL(Ω) × L2(Ω;M2×2
sym) ×

Mb(Ω ∪ Γd;M2×2
sym). Let ū ∈ BD(ω), u3 ∈ BH(ω), and w̄ ∈ W 1,2(ω;R2), w3 ∈ W 2,2(ω)

be the Kirchhoff-Love components of u and w, respectively. Finally, let ē, ê ∈ L2(ω;M2×2
sym),

e⊥ ∈ L2(Ω;M2×2
sym), p̄, p̂ ∈Mb(ω∪γd;M2×2

sym), and p⊥ ∈Mb(Ω∪Γd;M2×2
sym) be the moments of

e and p. Then (u, e, p) ∈ AKL(w) if and only if the following three conditions are satisfied:

(i) Eū = ē+ p̄ in ω and p̄ = (w̄ − ū)� ν∂ωH1 on γd;

(ii) D2u3 = −(ê+ p̂) in ω, u3 = w3 on γd, and p̂ = (∇u3 −∇w3)� ν∂ωH1 on γd;

(iii) p⊥ = −e⊥ in Ω and p⊥ = 0 on Γd,

where H1 is the one-dimensional Hausdorff measure.

Spaces of stresses. We will also use the set

Σ(Ω) := {σ ∈ L2(Ω;M2×2
sym) : divx′ σ̄ ∈ L2(ω;R2), divx′divx′ σ̂ ∈ L2(ω)},

where σ̄, σ̂ ∈ L2(ω;M2×2
sym) are the zero-th and first order moments of σ.

For every σ ∈ Σ(Ω) we can define the trace [σ̄ν∂ω] ∈ H− 1
2 (∂ω;R2) of its zero-th order

moment σ̄ through the formula

〈[σ̄ν∂ω], ϕ〉 :=

∫
ω

divx′ σ̄ ·ϕdx′ +
∫
ω

σ̄ :Eϕdx′ (3.9)

for every ϕ ∈ W 1,2(ω;R2). Note that, if σ ∈ Σ(Ω) ∩ L∞(Ω;M2×2
sym), then σ̄ ∈ L∞(ω;M2×2

sym)

and equation (3.9) makes sense for every ϕ ∈W 1,1(ω;R2) (since by Sobolev embedding any
such ϕ belongs to L2(ω;R2)), so that [σ̄ν∂ω] can be identified in this case with an element
of L∞(∂ω;R2).

We can also give a meaning to the traces of the first order moments of elements in Σ(Ω).

More precisely, for every σ ∈ Σ(Ω) there exist b0(σ̂) ∈ H− 3
2 (∂ω) and b1(σ̂) ∈ H− 1

2 (∂ω) such
that

−〈b0(σ̂), ψ〉+
〈
b1(σ̂),

∂ψ

∂ν∂ω

〉
=

∫
ω

σ̂ :D2ψ dx′ −
∫
ω

ψ divx′divx′ σ̂ dx
′ (3.10)

for every ψ ∈W 2,2(ω). Moreover, if σ̂ ∈ C2(ω;M2×2
sym), then

b0(σ̂) = divx′ σ̂ · ν∂ω +
∂

∂τ∂ω
(σ̂ν∂ω · τ∂ω),

b1(σ̂) = σ̂ν∂ω · ν∂ω,
where τ∂ω is the tangent vector to ∂ω (see, e.g., [6, Théorème 2.1]). Note that, if σ ∈
Σ(Ω) ∩ L∞(Ω;M2×2

sym), then σ̂ ∈ L∞(Ω;M2×2
sym) and the right-hand side of (3.10) makes

sense for every ψ ∈ W 2,1(ω), so that b0(σ̂) can be identified in this case with an element
of (T (W 2,1(ω)))′, the dual of the space of traces of W 2,1(ω) functions, and b1(σ̂) with an
element of L∞(∂ω) (see [6, Théorèm 2.3]).

For h ∈ H− 1
2 (∂ω;R2) and m = (m0,m1) ∈ H− 3

2 (∂ω) ×H− 1
2 (∂ω) we define Θ(γn, h,m)

as the class of all σ ∈ Σ(Ω) such that

〈[σ̄ν∂ω]− h, ϕ〉 = 0 (3.11)

for every ϕ ∈ H 1
2 (∂ω;R2) satisfying ϕ = 0 on γd, and

〈b0(σ̂)−m0, ψ0〉 = 〈b1(σ̂)−m1, ψ1〉 = 0 (3.12)

for every ψ0 ∈ H
3
2 (∂ω) satisfying ψ0 = 0 on γd and every ψ1 ∈ H

1
2 (∂ω) satisfying ψ1 = 0

on γd.
In the next proposition we prove the closure of the class Θ(γn, h,m) with respect to weak

convergence.

Proposition 3.2. Let h ∈ H− 1
2 (∂ω;R2) and let m = (m0,m1) ∈ H− 3

2 (∂ω) × H− 1
2 (∂ω).

Let (σk)k be a sequence in Θ(γn, h,m) such that σk ⇀ σ weakly in L2(Ω;M2×2
sym), divx′ σ̄

k ⇀

f weakly in L2(ω;R2), and divx′divx′ σ̂
k ⇀ g weakly in L2(ω), as k → ∞. Then σ ∈

Θ(γn, h,m) and divx′ σ̄ = f , divx′divx′ σ̂ = g in ω.
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Proof. It is immediate to see that σ ∈ Σ(Ω) and divx′ σ̄ = f , divx′divx′ σ̂ = g in ω. Passing

to the limit in (3.9), we deduce that [σ̄kν∂ω] ⇀ [σ̄ν∂ω] weakly in H−
1
2 (∂ω;R2). Therefore,

(3.11) is satisfied.

For every ψ0 ∈ H
3
2 (∂ω) we can construct ψ ∈ W 2,2(ω) such that ψ = ψ0 on ∂ω and

∂ψ/∂ν∂ω = 0 on ∂ω. Passing to the limit in (3.10) with this choice of ψ, we obtain

〈b0(σ̂k), ψ0〉 → 〈b0(σ̂), ψ0〉

for every ψ0 ∈ H
3
2 (∂ω). Arguing analogously, we can prove that

〈b1(σ̂k), ψ1〉 → 〈b1(σ̂), ψ1〉

for every ψ1 ∈ H
1
2 (∂ω). Therefore, (3.12) is satisfied. �

We also have the following characterization.

Proposition 3.3. Let σ ∈ L2(Ω;M2×2
sym). Then∫

Ω

σ :Ev dx = 0 (3.13)

for every v ∈W 1,2(Ω;R3)∩KL(Ω) such that v = 0 on Γd if and only if σ ∈ Θ(γn, 0, 0) and
divx′ σ̄ = 0, divx′divx′ σ̂ = 0 in ω.

Proof. Since ∫
Ω

σ :Ev dx =

∫
ω

σ̄ :Ev̄ dx′ − 1

12

∫
ω

σ̂ :D2v3 dx
′

for every v ∈ W 1,2(Ω;R3) ∩ KL(Ω), condition (3.13) is equivalent to the two following
conditions:

(a) for every ϕ ∈W 1,2(ω;R2) with ϕ = 0 on γd∫
ω

σ̄ :Eϕdx′ = 0;

(b) for every ψ ∈W 2,2(ω) with ψ = 0 and ∇ψ = 0 on γd∫
ω

σ̂ :D2ψ dx′ = 0.

By (3.9) condition (a) is equivalent to divx′ σ̄ = 0 in ω and 〈[σ̄ν∂ω], ϕ〉 = 0 for every

ϕ ∈ H 1
2 (∂ω;R2) satisfying ϕ = 0 on γd. Similarly, by (3.10) condition (b) is equivalent to

divx′divx′ σ̂ = 0 in ω and

〈b0(σ̂), ψ〉 −
〈
b1(σ̂),

∂ψ

∂ν∂ω

〉
= 0 (3.14)

for every ψ ∈ W 2,2(ω) with ψ = 0 and ∇ψ = 0 on γd. Since for every ψ0 ∈ H
3
2 (∂ω) there

exists ψ ∈ W 2,2(ω) such that ψ = ψ0 and ∂ψ/∂ν∂ω = 0 on ∂ω and for every ψ1 ∈ H
1
2 (∂ω)

there exists ψ ∈ W 2,2(ω) such that ψ = 0 and ∂ψ/∂ν∂ω = ψ1 on ∂ω, condition (3.14) is in
turn equivalent to

〈b0(σ̂), ψ0〉 = 〈b1(σ̂), ψ1〉 = 0

for every ψ0 ∈ H
3
2 (∂ω) satisfying ψ0 = 0 on γd and every ψ1 ∈ H

1
2 (∂ω) satisfying ψ1 = 0

on γd. �

Remark 3.4. Let σ ∈ Θ(γn, 0, 0) ∩ Lp(Ω;M2×2
sym) for some 2 ≤ p ≤ ∞. Then∫

Ω

σ :Ev dx = −
∫
ω

divx′ σ̄ · v̄ dx′ +
1

12

∫
ω

v3 divx′divx′ σ̂ dx
′ (3.15)

for every v ∈ W 1,p′(Ω;R3) ∩ KL(Ω) such that v = 0 on Γd, where p′ is the conjugate
exponent of p. Note that the right-hand side is well defined for such a regularity of v, since
v̄ ∈ L2(ω;R2) and v3 ∈W 1,2(ω) by Sobolev embedding.
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Equation (3.15) clearly holds for every v ∈ W 1,2(Ω;R3) ∩KL(Ω) such that v = 0 on Γd
by the definition of Θ(γn, 0, 0) and can be extended to functions v of W 1,p′ regularity by
approximation (see, e.g., [5, Lemma 7.10]).

Stress-strain duality. In the following we will consider the space ΠΓd(Ω) of admissible
plastic strains, defined as the class of all p ∈ Mb(Ω ∪ Γd;M2×2

sym) for which there exist u ∈
BD(Ω), e ∈ L2(Ω;M2×2

sym), and w ∈ W 1,2(Ω;R3) ∩ KL(Ω) such that (u, e, p) ∈ AKL(w).

Following [5, Section 7.1], for every p ∈ ΠΓd(Ω) and σ ∈ Σ(Ω) ∩ L∞(Ω;M2×2
sym) we can give

a meaning to the product [σ : p] as a measure in Mb(Ω ∪ Γd). We refer to [5, Section 7.1]
for the precise definition and the main properties of this duality product. Here we just note
that, if σ ∈ Σ(Ω) ∩ L∞(Ω;M2×2

sym) is such that σ̄, σ̂ ∈ C(ω;M2×2
sym), then∫

Ω∪Γd

ϕd[σ : p] =

∫
ω∪γd

ϕσ̄ : dp̄+
1

12

∫
ω∪γd

ϕσ̂ : dp̂+

∫
Ω

ϕσ⊥ : p⊥ dx

for every ϕ ∈ C(ω). The last integral makes sense since p⊥ ∈ L2(Ω;M2×2
sym) by Proposi-

tion 3.1-(iii).
For every p ∈ ΠΓd(Ω) and σ ∈ Σ(Ω)∩L∞(Ω;M2×2

sym) the duality product 〈σ, p〉 is defined as

〈σ, p〉 := [σ : p](Ω ∪ Γd).

Using this notion of duality, a variant of equality (2.1) can be proved. More precisely, by [5,
Proposition 7.8] we have that for every p ∈ ΠΓd(Ω)

Hr(p) = sup{〈σ, p〉 : σ ∈ Σ(Ω) ∩ Kr(Ω)}. (3.16)

Moreover, the following integration by parts formula holds.

Proposition 3.5. Let σ ∈ Σ(Ω)∩L∞(Ω;M2×2
sym), w ∈W 1,2(Ω;R2)∩KL(Ω), and (u, e, p) ∈

AKL(w). Then∫
Ω∪Γd

ϕd[σ : p] +

∫
Ω

ϕσ : (e− Ew) dx

= −
∫
ω

σ̄ :
(
∇ϕ� (ū− w̄)

)
dx′ −

∫
ω

divx′ σ̄ ·ϕ (ū− w̄) dx′ +

∫
γn

[σ̄ν∂ω] ·ϕ (ū− w̄) dH1

+
1

12

∫
ω

σ̂ : (u3 − w3)D2ϕdx′ +
1

6

∫
ω

σ̂ :
(
∇ϕ� (∇u3 −∇w3)

)
dx′

− 1

12

∫
ω

(u3 − w3)ϕdivx′divx′ σ̂ dx
′ +

1

12
〈b0(σ̂), ϕ(u3 − w3)〉

− 1

12

∫
γn

b1(σ̂)
∂
(
ϕ(u3 − w3)

)
∂ν∂ω

dH1 (3.17)

for every ϕ ∈ C2(ω).

Proof. Note that the duality product on the right-hand side of (3.17) is well defined since
T (W 2,1(ω)) = T (BH(ω)) (see, e.g., [7, Section 2]). For the proof we refer to [5, Proposi-
tions 7.2 and 7.6]. �

4. The quasistatic evolution problem: regularity

In this section we describe the quasistatic evolution problem and prove local regularity
of the stress. The data of the problem are the prescribed boundary displacement and the
applied forces. More precisely, for every t ∈ [0, T ] we prescribe a boundary displacement
w(t) ∈ KL(Ω)∩W 1,2(Ω;R3) on Γd. We assume that t 7→ w(t) is a W 1,2 map from [0, T ] into
W 1,2(Ω;R3). For every t ∈ [0, T ] we consider a body force (f(t), g(t)) ∈ L2(ω;R2) × L2(ω)
and surface forces h(t) ∈ L∞(∂ω;R2) and m(t) = (m0(t),m1(t)) ∈ (T (W 2,1(ω))′×L∞(∂ω).
We assume that t 7→ (f(t), g(t)), t 7→ h(t), and t 7→ m(t) are W 1,2 maps from [0, T ] into their
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respective spaces. Moreover, the following uniform safe-load condition is assumed: there exist
a map % ∈W 1,2(0, T ;L∞(Ω;M2×2

sym)) and a constant α1 > 0 such that for every t ∈ [0, T ]

−divx′ %̄(t) = f(t), −divx′divx′ %̂(t) = g(t) in ω,

%(t) ∈ Θ(γn, h(t),m(t)),
(4.1)

and

%(t, x) + ξ ∈ Kr (4.2)

for a.e. x ∈ Ω and every ξ ∈M2×2
sym with |ξ|r ≤ α1.

Definition 4.1. Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] intoBD(Ω)×L2(Ω;M2×2
sym)

×Mb(Ω∪Γd;M2×2
sym) and let σ(t) := Cre(t). We say that t 7→ (u(t), e(t), p(t)) is a quasistatic

evolution if the following three conditions are satisfied:

(qs1) regularity: t 7→ (u(t), e(t), p(t)) is absolutely continuous;

(qs2) equilibrium: for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ AKL(w(t)),

σ(t) ∈ Kr(Ω) ∩Θ(γn, h(t),m(t)),

−divx′ σ̄(t) = f(t), −divx′divx′ σ̂(t) = g(t) in ω;

(qs3) flow rule: for a.e. t ∈ [0, T ] there holds

Hr(ṗ(t)) = 〈σ(t), ṗ(t)〉.

We observe that by (3.16) the flow rule is equivalent to the following maximum plastic
work condition: for a.e. t ∈ [0, T ]

〈ϑ− σ(t), ṗ(t)〉 ≤ 0 (4.3)

for every ϑ ∈ Kr(Ω) ∩ Σ(Ω).
In [5] existence of a quasistatic evolution is proved assuming the body and surface forces to

be zero. Under the assumptions (4.1)–(4.2), existence of a quasistatic evolution in presence of
applied forces can be proved by applying the abstract method for rate-independent processes
[14], namely by discretizing time and by solving suitable incremental minimum problems.
This method leads to a weaker notion of quasistatic evolution, which can be proved to be
equivalent to that of Definition 4.1 arguing as in [4, Sections 5 and 6].

In this paper we focus on the spatial regularity for quasistatic evolutions in case of smooth
applied forces, under the additional assumption that the set Kr of admissible stresses is of
the form (3.6)–(3.7). We note that | · |r is an anisotropic norm on M2×2

sym satisfying

1√
3
|ξ| ≤ |ξ|r ≤ |ξ| for every ξ ∈M2×2

sym. (4.4)

We also consider the inner product associated with this norm:

(ξ, ζ)r := ξ : ζ − 1

3
tr ξ tr ζ for every ξ, ζ ∈M2×2

sym.

We now introduce some approximating problems of (qs1)–(qs3). Let N ∈ N, N ≥ 4 be a
fixed parameter. We consider the function φN : M2×2

sym → [0,+∞) defined by

φN (ξ) :=
1

NαN−1
0

|ξ|Nr for every ξ ∈M2×2
sym.

The function φN is clearly convex and continuously differentiable with differential

DφN (ξ) =
1

αN−1
0

|ξ|N−2
r

(
ξ − 1

3
(tr ξ) I2×2

)
for every ξ ∈M2×2

sym.

Moreover, we have that

DφN (ξ) : ξ =
1

αN−1
0

|ξ|Nr for every ξ ∈M2×2
sym. (4.5)
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Through φN we define some approximating problems of Norton-Hoff type, for which
existence of solutions is proved in the following theorem.

Theorem 4.2. Let Kr be of the form (3.6)– (3.7). Let w ∈ W 1,2(0, T ;W 1,2(Ω;R3) ∩
KL(Ω)), f ∈ W 1,2(0, T ;L2(ω;R2)), g ∈ W 1,2(0, T ;L2(ω)), h ∈ W 1,2(0, T ;L∞(∂ω;R2)),
and m ∈ W 1,2(0, T ; (T (W 2,1(ω))′ × L∞(∂ω)). Assume conditions (4.1) and (4.2) with
% ∈W 1,∞(0, T ;L∞(Ω;M2×2

sym)). Let σ0 ∈ L∞(Ω;M2×2
sym) be such that

−divx′ σ̄0 = f(0), −divx′divx′ σ̂0 = g(0) in ω,

σ0 ∈ Kr(Ω) ∩Θ(γn, h(0),m(0)).

Then for every N ∈ N, N ≥ 4, the problem
Arσ̇(t) +DφN (σ(t)) = Ev(t) in Ω,

−divx′ σ̄(t) = f(t), −divx′divx′ σ̂(t) = g(t) in ω,

σ(t) ∈ Θ(γn, h(t),m(t)),

v(t) = ẇ(t) on Γd,

(4.6)

has one and only one solution (σN , vN ) with

σN ∈W 1,2(0, T ;L2(Ω;M2×2
sym)) ∩ L∞(0, T ;LN (Ω;M2×2

sym)),

vN ∈ LN/(N−1)(0, T ;W 1,N/(N−1)(Ω;R2) ∩KL(Ω))

and satisfying σN (0) = σ0.
Moreover, the following estimates hold:

sup
t∈[0,T ]

‖σN (t)‖L2 ≤ C,
∫ T

0

‖σ̇N (t)‖2L2 dt ≤ C, (4.7)

sup
t∈[0,T ]

∫
Ω

|σN (t)|Nr dx ≤ CNαN−1
0 ,

∫ T

0

∫
Ω

|σN (t)|Nr dx dt ≤ CαN−1
0 , (4.8)

and
‖vN‖L2(0,T ;BD(Ω)) ≤ C, (4.9)

where C is a constant independent of N .

Proof. Let us fix N ∈ N, N ≥ 4. For every λ > 0 we introduce the functions ψλ : M2×2
sym →

[0,+∞) defined by

ψλ(ξ) :=
1

NαN−1
0

(|ξ|Nr ∧λN ) +
1

2αN−1
0

λN−2(|ξ|2r − λ2)+

for every ξ ∈M2×2
sym. Note that ψλ is strictly convex and C1. Moreover, we have that

Dψλ(ξ) =
1

αN−1
0

(|ξ|N−2
r ∧λN−2)

(
ξ − 1

3
(tr ξ) I2×2

)
for every ξ ∈M2×2

sym, hence

Dψλ(ξ) : ζ =
1

αN−1
0

(
|ξ|N−2
r ∧λN−2

)
(ξ, ζ)r, (4.10)

|Dψλ(ξ)|N/(N−1) ≤ 1

α0
Dψλ(ξ) : ξ, (4.11)

for every ξ, ζ ∈ M2×2
sym. Finally, we observe that the functions Dψλ are Lipschitz continuous

on M2×2
sym with

|D2ψλ(ξ)| ≤ N + 1

αN−1
0

λN−2 (4.12)

for a.e. ξ ∈M2×2
sym.

Lemma 4.3 below guarantees that for every λ > 0 there exists a unique pair

(σλ, vλ) ∈W 1,2(0, T ;L2(Ω;M2×2
sym))× L2(0, T ;W 1,2(Ω;R3) ∩KL(Ω))
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satisfying 

Arσ̇λ(t) +Dψλ(σλ(t)) = Evλ(t) in Ω,

−divx′ σ̄
λ(t) = f(t), −divx′divx′ σ̂

λ(t) = g(t) in ω,

σλ(t) ∈ Θ(γn, h(t),m(t)),

vλ(t) = ẇ(t) on Γd,

σλ(0) = σ0.

(4.13)

We now want to pass to the limit in (4.13), as λ→ +∞. This will provide us with a solution
to problem (4.6). In the following estimates we will stress the dependence of the involved
constants on the parameters λ and N . Unless otherwise stated, C denotes a positive constant
independent of λ and N .

Multiplying the first equation in (4.13) by σλ(t)− %(t) and integrating over Ω yield

〈Arσ̇λ(t), σλ(t)− %(t)〉+ 〈Dψλ(σλ(t)), σλ(t)− %(t)〉 = 〈Eẇ(t), σλ(t)− %(t)〉, (4.14)

where the brackets 〈·, ·〉 denote the scalar product in L2(Ω;M2×2
sym) and we used that

〈Evλ(t), σλ(t)− %(t)〉 = 〈Eẇ(t), σλ(t)− %(t)〉

by Proposition 3.3 and (4.1). Integrating with respect to time, (4.14) implies that

1

2
〈Ar
(
σλ(t)− %(t)

)
, σλ(t)− %(t)〉+

∫ t

0

〈Dψλ(σλ(s)), σλ(s)− %(s)〉 ds

=
1

2
〈Ar
(
σ0 − %(0)

)
, σ0 − %(0)〉+

∫ t

0

〈Eẇ(s)− Ar%̇(s), σλ(s)− %(s)〉 ds. (4.15)

Since ψλ is convex, we have(
Dψλ(ξ)−Dψλ(ζ)

)
: (ξ − ζ) ≥ 0 for every ξ, ζ ∈M2×2

sym. (4.16)

Therefore, we infer

1

2
〈Ar
(
σλ(t)− %(t)

)
, σλ(t)− %(t)〉

≤ 1

2
〈Ar
(
σ0 − %(0)

)
, σ0 − %(0)〉+

∫ t

0

〈Eẇ(s)− Ar%̇(s)−Dψλ(%(s)), σλ(s)− %(s)〉 ds.

Note that, by (4.2), the term Dψλ(%(s)) is uniformly bounded independently of λ and N
for λ ≥ α0. Thus, by Cauchy’s inequality and (3.1) we deduce

sup
t∈[0,T ]

‖σλ(t)‖L2 ≤ C and

∫ T

0

〈Dψλ(σλ(t)), σλ(t)− %(t)〉 dt ≤ C. (4.17)

From the second estimate above and (4.10) it follows

1

αN−1
0

∫ T

0

∫
Ω

(
|σλ(t)|N−1

r ∧λN−2|σλ(t)|r
) (
|σλ(t)|r − |%(t)|r

)
dx dt ≤ C. (4.18)

Let now Aλ(t) := {x ∈ Ω : |σλ(t)|r ≥ α0}. Condition (4.2) guarantees that |σλ(t)|r −
|%(t)|r ≥ α1 on Aλ(t), thus, since the integrand is uniformly bounded from below on Ω\Aλ(t),
we have

α1

αN−1
0

∫ T

0

∫
Aλ(t)

(
|σλ(t)|N−1

r ∧λN−2|σλ(t)|r
)
dx dt ≤ C.

Combining this inequality with (4.18) and the fact that |%(t)|r ≤ α0, we obtain

1

αN−1
0

∫ T

0

∫
Aλ(t)

(
|σλ(t)|Nr ∧λN−2|σλ(t)|2r

)
dx dt ≤ C.
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By definition of Aλ(t) the integrand is clearly bounded on the complement of Aλ(t); thus,
we conclude that

1

αN−1
0

∫ T

0

∫
Ω

(
|σλ(t)|Nr ∧λN−2|σλ(t)|2r

)
dx dt ≤ C. (4.19)

We now derive a bound on σ̇λ. We test the first equation in (4.13) with σ̇λ(t)− %̇(t):

〈Arσ̇λ(t), σ̇λ(t)− %̇(t)〉+ 〈Dψλ(σλ(t)), σ̇λ(t)− %̇(t)〉 = 〈Eẇ(t), σ̇λ(t)− %̇(t)〉.

Integrating with respect to time, we obtain∫ t

0

〈Ar(σ̇λ(s)− %̇(s)), σ̇λ(s)− %̇(s)〉 ds+

∫
Ω

ψλ(σλ(t)) dx

=

∫
Ω

ψλ(σ0) dx+

∫ t

0

〈Dψλ(σλ(s)), %̇(s)〉 ds+

∫ t

0

〈Eẇ(s)− Ar%̇(s), σ̇λ(s)− %̇(s)〉 ds.

(4.20)

Note that, since σ0 ∈ Kr a.e. in Ω, for λ ≥ α0 the first term on the right-hand side is
uniformly bounded independently of λ and N . Moreover, from (4.10) and (4.11) it follows
immediately that∫

Ω

|Dψλ(σλ(t))|N/(N−1) dx ≤ 1

αN0

∫
Ω

(|σλ(t)|Nr ∧λN−2|σλ(t)|2r) dx,

so that (4.19) implies that the sequence
(
Dψλ(σλ)

)
is uniformly bounded with respect

to λ in LN/(N−1)(0, T ;LN/(N−1)(Ω;M2×2
sym)). This fact, together with the assumption that

%̇ ∈ L∞((0, T )×Ω;M2×2
sym), guarantees that the second term on the right-hand side of (4.20)

is uniformly bounded, as well. Thus, by Cauchy’s inequality we have∫ T

0

‖σ̇λ(t)‖2L2 dt ≤ C and sup
t∈[0,T ]

∫
Ω

ψλ(σλ(t)) dx ≤ C. (4.21)

By Ascoli-Arzelà Theorem we deduce from the first estimates in (4.17) and (4.21) that
there esists a subsequence (not relabelled) and a function σN ∈ W 1,2(0, T ;L2(Ω;M2×2

sym))
such that

σλ(t) ⇀ σN (t) weakly in L2(Ω;M2×2
sym), (4.22)

as λ→ +∞, for every t ∈ [0, T ] and

σλ ⇀ σN weakly in W 1,2(0, T ;L2(Ω;M2×2
sym)), (4.23)

as λ → +∞. By (4.22) it is clear that σN (0) = σ0 and, in view of Proposition 3.2, that
−divx′ σ̄

N (t) = f(t), −divx′divx′ σ̂
N (t) = g(t) in ω, and σN (t) ∈ Θ(γn, h(t),m(t)) for every

t ∈ [0, T ].
Setting τλ(t) := χ{|σλ(t)|r≤λ}σ

λ(t), the second estimate in (4.21) yields

sup
t∈[0,T ]

∫
Ω

|τλ(t)|Nr dx ≤ CNαN−1
0 , (4.24)

while by (4.19) we have ∫ T

0

∫
Ω

|σλ(t)− τλ(t)|2r dx ≤ C
αN−1

0

λN−2
. (4.25)

Therefore, σλ−τλ → 0 strongly in L2(0, T ;L2(Ω;M2×2
sym)), as λ→ +∞. Together with (4.24)

and (4.23), this implies that σN ∈ L∞(0, T ;LN (Ω;M2×2
sym)), the first inequality in (4.8) is

satisfied, and

τλ ⇀ σN weakly∗ in L∞(0, T ;LN (Ω;M2×2
sym)), (4.26)

as λ→ +∞. Moreover, by (4.19) we deduce the second inequality in (4.8).
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Finally, the uniform bound of
(
Dψλ(σλ)

)
in LN/(N−1)(0, T ;LN/(N−1)(Ω;M2×2

sym)) with
respect to λ implies that, up to subsequences,

Dψλ(σλ) ⇀ γN weakly in LN/(N−1)(0, T ;LN/(N−1)(Ω;M2×2
sym)), (4.27)

as λ→∞, for some function γN ∈ LN/(N−1)(0, T ;LN/(N−1)(Ω;M2×2
sym)).

We now want to prove that γN = DφN (σN ). To this purpose we proceed as follows. We
multiply the first equation in (4.13) by σN (t)− %(t). Integration in space and time yields∫ T

0

〈Arσ̇λ(t), σN (t)−%(t)〉 dt+
∫ T

0

〈Dψλ(σλ(t)), σN (t)−%(t)〉 dt =

∫ T

0

〈Eẇ(t), σN (t)−%(t)〉 dt.

Passing to the limit as λ→ +∞, we deduce∫ T

0

〈Arσ̇N (t), σN (t)− %(t)〉 dt+

∫ T

0

〈γN (t), σN (t)− %(t)〉 dt =

∫ T

0

〈Eẇ(t), σN (t)− %(t)〉 dt.

(4.28)
We now go back to identity (4.15) for t = T and observe that by (4.23) the right-hand side
of (4.15) converges, as λ→ +∞, to

1

2
〈Ar
(
σ0 − %(0)

)
, σ0 − %(0)〉+

∫ T

0

〈Eẇ(s)− Ar%̇(s), σN (s)− %(s)〉 ds.

Thus, we deduce

lim sup
λ→+∞

∫ T

0

〈Dψλ(σλ(s)), σλ(s)− %(s)〉 ds

≤ 1

2
〈Ar
(
σ0 − %(0)

)
, σ0 − %(0)〉 − lim inf

λ→+∞

1

2
〈Ar
(
σλ(T )− %(T )

)
, σλ(T )− %(T )〉

+

∫ T

0

〈Eẇ(s)− Ar%̇(s), σN (s)− %(s)〉 ds.

On the other hand, by (4.22) we obtain

− lim inf
λ→+∞

1

2
〈Ar
(
σλ(T )− %(T )

)
, σλ(T )− %(T )〉

≤ −1

2
〈Ar
(
σN (T )− %(T )

)
, σN (T )− %(T )〉

= −1

2
〈Ar
(
σ0 − %(0)

)
, σ0 − %(0)〉 −

∫ T

0

〈Ar
(
σ̇N (s)− %̇(s)

)
, σN (s)− %(s)〉 ds

Combining the two previous inequalities with (4.28), we conclude that

lim sup
λ→+∞

∫ T

0

〈Dψλ(σλ(s)), σλ(s)− %(s)〉 ds

≤ −
∫ T

0

〈Arσ̇N (s), σN (s)− %(s)〉 ds+

∫ T

0

〈Eẇ(s), σN (s)− %(s)〉 dt

=

∫ T

0

〈γN (s), σN (s)− %(s)〉 ds. (4.29)

Let now τ ∈ L∞((0, T )× Ω;M2×2
sym). By (4.16) we have∫ T

0

〈Dψλ(σλ(t))−Dψλ(τ(t)), σλ(t)− τ(t)〉 dt ≥ 0,

hence, using the fact that Dψλ(τ(t)) = DφN (τ(t)) for λ > ‖τ‖L∞ ,

lim inf
λ→+∞

∫ T

0

〈Dψλ(σλ(t)), σλ(t)〉 dt ≥
∫ T

0

〈γN (t), τ(t)〉 dt+

∫ T

0

〈DφN (τ(t)), σN (t)− τ(t)〉 dt.
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Combining this inequality with (4.29), we conclude that∫ T

0

〈γN (t)−DφN (τ(t)), σN (t)− τ(t)〉 dt ≥ 0

for every τ ∈ L∞((0, T )× Ω;M2×2
sym), hence γN (t) = DφN (σN (t)).

Finally, we establish some compactness for the sequence (vλ). From the first equation
in (4.13), combined with (4.21) and (4.27), it follows that the sequence (vλ) is uniformly
bounded in LN/(N−1)(0, T ;W 1,N/(N−1)(Ω;R3)), hence

vλ ⇀ vN weakly in LN/(N−1)(0, T ;W 1,N/(N−1)(Ω;R3)),

for some vN ∈ LN/(N−1)(0, T ;W 1,N/(N−1)(Ω;R3) ∩ KL(Ω)). It is easy to check that vN

satisfies the boundary condition on Γd. This allows us to pass to the limit in the first
equation of (4.13) and thus establish the existence of a solution to (4.6).

It remains to prove (4.9). This will follow from the first equation in (4.6) and from (4.7),
once we show that (DφN (σN )) is bounded in L2(0, T ;L1(Ω;M2×2

sym)). Multiplying the first

equation in (4.6) by σN (t) − %(t), integrating over Ω, and using the first estimate in (4.7)
yield

〈DφN (σN (t)), σN (t)− %(t)〉 ≤ C
(
‖Eẇ(t)‖L2 + ‖σ̇N (t)‖L2

)
for a.e. t ∈ [0, T ]. On the other hand, setting AN (t) := {x ∈ Ω : |σN (t)|r ≥ α0} and using
(4.2) and the expression of DφN , we have∫

AN (t)

DφN (σN (t)) :
(
σN (t)− %(t)

)
dx ≥ α1

∫
AN (t)

|DφN (σN (t))| dx,

while∫
Ω\AN (t)

DφN (σN (t)) :
(
σN (t)− %(t)

)
dx ≥ −

∫
Ω\AN (t)

|DφN (σN (t))| |%(t)| dx ≥ −Cα0.

Therefore, we have

α1

∫
AN (t)

|DφN (σN (t))| dx ≤ C
(
‖Eẇ(t)‖L2 + ‖σ̇N (t)‖L2 + 1

)
.

Since |DφN (σN (t))| ≤ 1 on Ω \AN (t), we conclude that∫
Ω

|DφN (σN (t))| dx ≤ C
(
‖Eẇ(t)‖L2 + ‖σ̇N (t)‖L2 + 1

)
,

thus, the second inequality in (4.7) implies that the sequence (DφN (σN )) is bounded in
L2(0, T ;L1(Ω;M2×2

sym)), as claimed.

We now prove uniqueness of solutions. Let (σN , vN ) and (τN , uN ) be solutions of (4.6)
with the same initial datum σN (0) = τN (0) = σ0. We test the first equation in (4.6) for
(σN , vN ) and (τN , uN ) with σN − τN and take the difference:

〈Ar(σ̇N (t)− τ̇N (t)), σN (t)− τN (t)〉+ 〈DφN (σN (t))−DφN (τN (t)), σN (t)− τN (t)〉
= 〈EvN − EuN , σN (t)− τN (t)〉.

Integrating by parts the right-hand side and using the convexity of φN yield

〈Ar(σ̇N (t)− τ̇N (t)), σN (t)− τN (t)〉 ≤ 0.

Owing to the initial condition, this implies

1

2
〈Ar(σN (t)− τN (t)), σN (t)− τN (t)〉 ≤ 0,

hence σN (t) = τN (t) for every t ∈ [0, T ]. From the first equation in (4.6) we deduce that
EvN (t) = EuN (t), hence by the boundary condition on Γd we conclude that vN (t) = uN (t)
for every t ∈ [0, T ]. �

We now prove two lemmas, that were used in the proof of Theorem 4.2.
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Lemma 4.3. Let w ∈ W 1,2(0, T ;W 1,2(Ω;R3) ∩ KL(Ω)), f ∈ W 1,2(0, T ;L2(ω;R2)), g ∈
W 1,2(0, T ;L2(ω)), h ∈ W 1,2(0, T ;H−

1
2 (ω;R2)), and m ∈ W 1,2(0, T ;H−

1
2 (ω) × H− 3

2 (ω)).
Assume (4.1) with % ∈ W 1,2(0, T ;L2(Ω;M2×2

sym)). Let σ0 ∈ Θ(γn, h(0),m(0)) be such that

−divx′ σ̄0 = f(0), −divx′divx′ σ̂0 = g(0) in ω. Finally, let Ψ : M2×2
sym → M2×2

sym be a Lipschitz
continuous function. Then the problem

Arσ̇(t) + Ψ(σ(t)) = Ev(t) in Ω,

−divx′ σ̄(t) = f(t), −divx′divx′ σ̂(t) = g(t) in ω,

σ(t) ∈ Θ(γn, h(t),m(t)),

v(t) = ẇ(t) on Γd,

σ(0) = σ0

(4.30)

has a unique solution (σ, v) ∈W 1,2(0, T ;L2(Ω;M2×2
sym))× L2(0, T ;W 1,2(Ω;R3) ∩KL(Ω)).

Proof. On L2(Ω;M2×2
sym) we consider the scalar product

〈σ, τ〉Ar := 〈Arσ, τ〉 for every σ, τ ∈ L2(Ω;M2×2
sym), (4.31)

which is topologically equivalent to the standard scalar product owing to (3.1). We introduce
the set

Σ∗ := {σ ∈ Θ(γn, 0, 0) : divx′ σ̄ = 0, divx′divx′ σ̂ = 0 in ω},
which is a closed subspace of L2(Ω;M2×2

sym), and we denote the projection onto Σ∗ with
respect to the scalar product (4.31) by P∗.

We consider the following problem: to find θ ∈W 1,2(0, T ; Σ∗) such that{
θ̇(t) + P∗

(
A−1
r Ψ(θ(t) + %(t))

)
= P∗

(
A−1
r Eẇ(t)− %̇(t)

)
in Σ∗,

θ(0) = σ0 − %(0).
(4.32)

Let

Λ : [0, T ]× Σ∗ → Σ∗ : (t, θ) 7→ P∗
(
A−1
r Ψ(θ + %(t))

)
− P∗

(
A−1
r Eẇ(t)− %̇(t)

)
.

Since Λ(t, ·) is Lipschitz continuous for a.e. t ∈ [0, T ] and Λ(·, θ) ∈ L2(0, T ; Σ∗) for every
θ ∈ Σ∗, existence and uniqueness of solutions to problem (4.32) follow from the Cauchy-
Lipschitz Theorem. Now, the first equation in (4.32) implies that

〈θ̇(t), τ〉Ar + 〈A−1
r Ψ(θ(t) + %(t)), τ〉Ar = 〈A−1

r Eẇ(t)− %̇(t), τ〉Ar
for every τ ∈ Σ∗, that is,

〈Ar θ̇(t), τ〉+ 〈Ψ(θ(t) + %(t)), τ〉 = 〈Eẇ(t)− Ar%̇(t), τ〉

for every τ ∈ Σ∗. By Lemma 4.4 below for a.e. t ∈ [0, T ] there exists z(t) ∈ W 1,2(Ω;R3) ∩
KL(Ω) such that z(t) = 0 on Γd and

Ar θ̇(t) + Ψ(θ(t) + %(t))− Eẇ(t) + Ar%̇(t) = Ez(t).

We set σ(t) := θ(t)+%(t) and v(t) := z(t)+ẇ(t). We observe that v ∈ L2(0, T ;W 1,2(Ω;R3)∩
KL(Ω)) by construction. Thus, we have found a pair (σ, v) satisfying (4.30).

On the other hand, if (σ, v) is a solution to (4.30), then θ(t) := σ(t)− %(t) satisfies (4.32)
and is therefore uniquely determined. Uniqueness of v follows from Lemma 4.4. �

Lemma 4.4. Let σ ∈ L2(Ω;M2×2
sym) be such that∫

Ω

σ : τ dx = 0 for every τ ∈ Σ∗, (4.33)

where Σ∗ := {τ ∈ Θ(γn, 0, 0) : divx′ τ̄ = 0, divx′divx′ τ̂ = 0 in ω}. Then there exists a
unique function u ∈W 1,2(Ω;R3) ∩KL(Ω) such that u = 0 on Γd and σ = Eu in Ω.
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Proof. We consider the set

E0 :=
{
Ev : v ∈W 1,2(Ω;R3) ∩KL(Ω), v = 0 on Γd

}
,

which is a closed subspace of L2(Ω;M2×2
sym), owing to Korn-Poincaré inequality. Let P0 be

the orthogonal projection onto E0 and let Eu := P0(σ). By definition u satisfies∫
Ω

Eu :Ev dx =

∫
Ω

σ :Ev dx (4.34)

for every v ∈W 1,2(Ω;R3) ∩KL(Ω) with v = 0 on Γd.
We now set θ := σ − Eu. From (4.34) it follows that∫

Ω

θ :Ev dx = 0

for every v ∈ W 1,2(Ω;R3) ∩KL(Ω) with v = 0 on Γd. By Proposition 3.3 we deduce that
θ ∈ Σ∗. On the other hand, since u = 0 on Γd, integration by parts yields∫

Ω

Eu : τ dx = 0

for every τ ∈ Σ∗. Therefore, we have by (4.33) that∫
Ω

θ : τ dx = 0 for every τ ∈ Σ∗.

We conclude that θ = 0, hence σ = Eu.
Uniqueness of u is straightforward. �

We now prove additional regularity of σN .

Proposition 4.5. In addition to the assumptions of Theorem 4.2, suppose that σ0 ∈
W 1,2(Ω;M2×2

sym) and that

divx′ %̄ ∈ L∞(0, T ;W 2,2(Ω;R2)), divx′divx′ %̂ ∈ L∞(0, T ;W 1,2(Ω)). (4.35)

For every N ∈ N, N ≥ 4, let σN be the stress component of the solution of (4.6). Then the
following estimates are satisfied:

• for every open set ω′ compactly contained in ω there exists a constant C1(ω′) > 0,
depending on ω′ but independent of N , such that for α = 1, 2

sup
t∈[0,T ]

‖Dασ
N (t)‖L2(ω′×(− 1

2 ,
1
2 );M2×2

sym) ≤ C1; (4.36)

• for every open set Ω′ compactly contained in Ω there exists a constant C2(Ω′) > 0,
depending on Ω′ but independent of N , such that

sup
t∈[0,T ]

‖D3σ
N (t)‖L2(Ω′;M2×2

sym) ≤ C2. (4.37)

Proof. Let N ∈ N, N ≥ 4. We first prove higher regularity for σλ, where σλ are the approx-
imating solutions constructed in the proof of Theorem 4.2.

For i = 1, 2, 3 let Dh
i be the difference quotient operator defined by

Dh
i τ(x) =

1

h
(τ(x+ hei)− τ(x))

for every function τ : R3 →M2×2
sym.

Let α = 1, 2 and let ϕ ∈ C∞c (ω). Multiplying the first equation in (4.13) by the term
D−hα (ϕ2Dh

ασ
λ(t)), we obtain

〈ϕ2ArDh
ασ̇

λ(t), Dh
ασ

λ(t)〉+ 〈ϕ2Dh
α

(
Dψλ(σλ(t))

)
, Dh

ασ
λ(t)〉 = 〈ϕ2Dh

αEv
λ(t), Dh

ασ
λ(t)〉.
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Integrating this equation with respect to time and using (3.1), we deduce

αA

∫
Ω

ϕ2|Dh
ασ

λ(t)|2 dx− βA
∫

Ω

ϕ2|Dh
ασ0|2 dx

+

∫ t

0

∫
Ω

∫ 1

0

ϕ2D2ψλ(σλ(s) + rhDh
ασ

λ(s))Dh
ασ

λ(s) :Dh
ασ

λ(s) dr dx ds

≤
∫ t

0

〈ϕ2Dh
αEv

λ(s), Dh
ασ

λ(s)〉 ds. (4.38)

Note that in the third integral on the left-hand side we used the chain rule, which holds
since Dψλ is a composition of smooth functions with a truncation.

Let us focus on the right-hand side of (4.38). We express it in terms of the Kirchhoff-
Love components of vλ and use integration by parts, together with the fact that divx′ σ̄

λ(t) =
divx′ %̄(t) and divx′divx′ σ̂

λ(t) = divx′divx′ %̂(t) in ω. By the first equation in (4.13) we deduce
that for a.e. t ∈ [0, T ] we have

〈ϕ2Dh
αEv

λ(t), Dh
ασ

λ(t)〉

= − 2
∑
β,γ

∫
Ω

∫ 1

0

Dβϕ
2(x′) (Arσ̇λ +Dψλ(σλ))αγ(t, x+ rheα)Dh

ασ
λ
βγ(t, x) dr dx

+
∑
β,γ

∫
Ω

∫ 1

0

vλα(t, x+ rheα)D−hα D2
βγϕ

2(x′)σλβγ(t, x) dr dx

+
∑
β,γ

∫
Ω

∫ 1

0

∫ 1

0

(Arσ̇λ +Dψλ(σλ))αα(t, x+ (r − r̃)heα)D2
βγϕ

2(x′)σλβγ(t, x) dr̃ dr dx

−
∑
β,γ

∫
ω

∫ 1

0

v̄λα(t, x+ rheα)Dβϕ
2(x′)Dh

αDγ %̄βγ(t, x) dr dx

− 1

12

∑
β,γ

∫
ω

∫ 1

0

Dαv
λ
3 (t, x+ rheα)ϕ2(x′)Dh

αD
2
βγ %̂βγ(t, x) dr dx

+
∑
β,γ

〈D−hα ϕ2 v̄λγ (t), Dh
αDβ %̄βγ(t)〉+

∑
β,γ

〈ϕ2v̄λγ (t), D−hα Dh
αDβ %̄βγ(t)〉. (4.39)

We now combine (4.38) and (4.39). From the definition of ψλ we deduce the following
estimate:

D2ψλ(ξ) ζ : ζ ≥ 1

αN−1
0

(
|ξ|N−2
r ∧ λN−2

)
|ζ|2r (4.40)

for a.e. ξ ∈ M2×2
sym and every ζ ∈ M2×2

sym. In particular, this implies that the third term
on the left-hand side of (4.38) is non negative. Moreover, using the inequality |Dψλ(ξ)| ≤

1
αN−1

0

λN−2|ξ| for every ξ ∈M2×2
sym, we obtain

αA

∫
Ω

ϕ2|Dh
ασ

λ(t)|2 dx− βA
∫

Ω

ϕ2|Dh
ασ0|2 dx

≤ C

∫ t

0

(
‖ϕDh

ασ
λ(s)‖L2 + ‖σλ(s)‖L2

)(
‖σ̇λ(s)‖L2 +

λN−2

αN−1
0

‖σλ(s)‖L2

)
ds

+ C

∫ t

0

‖vλ(s)‖L2

(
‖σλ(s)‖L2 + 1

)
ds,

where we used (4.35). Since σλ ∈W 1,2(0, T ;L2(Ω;R3)) and vλ ∈ L2(0, T ;W 1,2(Ω;R3)), the
previous inequality implies that Dασ

λ ∈ L2
loc(ω× [− 1

2 ,
1
2 ];M2×2

sym) for α = 1, 2. Therefore, we
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can pass to the limit in (4.38)–(4.39), as h→ 0, and, using also (4.40), we obtain

αA

∫
Ω

ϕ2|Dασ
λ(t)|2 dx+

1

αN−1
0

∫ t

0

∫
Ω

ϕ2
(
|σλ(s)|N−2

r ∧ λN−2
)
|Dασ

λ(s)|2r dx ds

≤ βA

∫
Ω

ϕ2|Dασ0|2 dx− 2
∑
β,γ

∫ t

0

∫
Ω

Dβϕ
2 (Arσ̇λ(s) +Dψλ(σλ(s)))αγ Dασ

λ
βγ(s) dx ds

+
∑
β,γ

∫ t

0

∫
Ω

(Arσ̇λ(s) +Dψλ(σλ(s)))ααD
2
βγϕ

2 σλβγ(s) dx ds

+
∑
β,γ

∫ t

0

∫
Ω

vλα(s)D3
αβγϕ

2 σλβγ(s) dx ds−
∑
β,γ

∫ t

0

∫
ω

v̄λα(s)Dβϕ
2D2

αγ %̄βγ(s) dx ds

− 1

12

∑
β,γ

∫ t

0

∫
ω

Dαv
λ
3 (s)ϕ2D3

αβγ %̂βγ(s) dx ds

+
∑
β,γ

〈Dαϕ
2 v̄λγ (t), D2

αβ %̄βγ(t)〉+
∑
β,γ

〈ϕ2v̄λγ (t), D3
ααβ %̄βγ(t)〉. (4.41)

From this inequality we will deduce a uniform bound for (Dασ
λ) with respect to λ. We

consider the second term on the right-hand side of (4.41). Using the expression of Dψλ, we
have∫ t

0

∫
Ω

∣∣Dβϕ
2(Arσ̇λ(s) +Dψλ(σλ(s)))αγ Dασ

λ
βγ(s)

∣∣ dx ds
≤ C

∫ t

0

‖ϕDασ
λ(s)‖L2‖σ̇λ(s)‖L2 ds

+
C

αN−1
0

∫ t

0

∫
Ω

(
|σλ(s)|N−2

r ∧ λN−2
)
|σλ(s)|r |ϕDασ

λ(s)| dx ds

≤ C
(∫ t

0

‖ϕDασ
λ(s)‖2L2 ds

) 1
2

+
C

α
N−1

2
0

(∫ t

0

‖
(
|σλ(s)|N−2

r ∧ λN−2
)1/2

ϕDασ
λ(s)‖2L2 ds

) 1
2

,

where we have used (4.21) and (4.19).
Analogously, the third term on the right-hand side of (4.41) can be estimated as follows:∫ t

0

∫
Ω

|D2
βγϕ

2 (Arσ̇λ(s) +Dψλ(σλ(s)))αα σ
λ
βγ(s)| dx ds

≤ C

∫ t

0

‖σλ(s)‖L2‖σ̇λ(s)‖L2 ds+
C

αN−1
0

∫ t

0

∫
Ω

(
|σλ(s)|N−2

r ∧ λN−2
)
|σλ(s)|2r dx ds,

where the right-hand side is uniformly bounded with respect to λ, owing to (4.17), (4.21),
and (4.19).

As for the remaining terms on the right-hand side of (4.41), we recall that (vλ) is uniformly
bounded in LN/(N−1)(0, T ;W 1,N/(N−1)(Ω;R3)), with respect to λ. Since vλ is a Kirchhoff-
Love displacement for every λ, this implies that the sequence (v̄λ) is uniformly bounded
in LN/(N−1)(0, T ;W 1,N/(N−1)(ω;R2)), while the sequence of vertical displacements (vλ3 ) is
uniformly bounded in LN/(N−1)(0, T ;W 2,N/(N−1)(ω)). By Sobolev embedding we have that
(v̄λ) is uniformly bounded in LN/(N−1)(0, T ;L2(ω;R2)) and (vλ3 ) is uniformly bounded in
LN/(N−1)(0, T ;W 1,2(ω)). Therefore, by (4.17)∣∣∣ ∫ t

0

∫
Ω

D3
αβγϕ

2 vλα(s)σλβγ(s) dx ds
∣∣∣

≤ C
∫ t

0

‖v̄λ(s)‖L2 ‖σ̄λ(s)‖L2 ds+ C

∫ t

0

‖Dαv
λ
3 (s)‖L2 ‖σ̂λ(s)‖L2 ds ≤ CN ,
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where the last constant depends on N via the Sobolev embedding constants. The remaining
terms in (4.41) can be estimated in a similar way, using the assumptions (4.35) on %.

Combining all these estimates with (4.41), we conclude that for every open set ω′ com-
pactly contained in ω and for α = 1, 2 the sequence (Dασ

λ) is uniformly bounded in
L∞(0, T ;L2(ω′ × (− 1

2 ,
1
2 );M2×2

sym)), with respect to λ. By (4.23) this implies that Dασ
N

belongs to L∞(0, T ;L2(ω′ × (− 1
2 ,

1
2 );M2×2

sym)) for α = 1, 2.

To conclude the proof of (4.36), it remains to show that the norm of Dασ
N in the space

L∞(0, T ;L2(ω′× (− 1
2 ,

1
2 );M2×2

sym)) is uniformly bounded with respect to N . To this purpose,
arguing exactly as in the proof of (4.41), we obtain

αA

∫
Ω

ϕ2|Dασ
N (t)|2 dx+

∫ t

0

∫
Ω

ϕ2D2φN (σN (s))Dασ
N (s) :Dασ

N (s) dx ds

≤ βA

∫
Ω

ϕ2|Dασ0|2 dx− 2
∑
β,γ

∫ t

0

∫
Ω

Dβϕ
2 (Arσ̇N (s) +DφN (σN (s)))αγ Dασ

N
βγ(s) dx ds

+
∑
β,γ

∫ t

0

∫
Ω

(Arσ̇N (s) +DφN (σN (s)))ααD
2
βγϕ

2 σNβγ(s) dx ds

+
∑
β,γ

∫ t

0

∫
Ω

vNα (s)D3
αβγϕ

2 σNβγ(s) dx ds−
∑
β,γ

∫ t

0

∫
ω

v̄Nα (s)Dβϕ
2D2

αγ %̄βγ(s) dx ds

− 1

12

∑
β,γ

∫ t

0

∫
ω

Dαv
N
3 (s)ϕ2D3

αβγ %̂βγ(s) dx ds

+
∑
β,γ

〈Dαϕ
2 v̄Nγ (t), D2

αβ %̄βγ(t)〉+
∑
β,γ

〈ϕ2v̄Nγ (t), D3
ααβ %̄βγ(t)〉. (4.42)

We note that the second term on the left-hand side of (4.42) satisfies the following coercivity
inequality:

D2φN (σN (s))Dασ
N (s) :Dασ

N (s) ≥ 1

αN−1
0

|σN (s)|N−2
r |Dασ

N (s)|2r.

As for the right-hand side of (4.42), using the expression of DφN , we have∫ t

0

∫
Ω

∣∣Dβϕ
2(Arσ̇N (s) +DφN (σN (s)))αγ Dασ

N
βγ(s)

∣∣ dx ds
≤ C

∫ t

0

‖ϕDασ
N (s)‖L2 ‖σ̇N (s)‖L2 ds+

C

αN−1
0

∫ t

0

∫
Ω

|σN (s)|N−1
r |ϕDασ

N (s)| dx ds

≤ C
(∫ t

0

‖ϕDασ
N (s)‖2L2 ds

) 1
2

+
C

α
N−1

2
0

(∫ t

0

‖|σN (s)|
N−2

2
r ϕDασ

N (s)‖2L2 ds
) 1

2

,

where we have used (4.7) and (4.8). Analogously, the third term on the right-hand side of
(4.42) can be estimated as follows:∫ t

0

∫
Ω

|D2
βγϕ

2 (Arσ̇N (s) +DφN (σN (s)))αα σ
N
βγ(s)| dx ds

≤ C

∫ t

0

‖σN (s)‖L2 ‖σ̇N (s)‖L2 ds+
C

αN−1
0

∫ t

0

∫
Ω

|σN (s)|Nr dx ds,

where the right-hand side is uniformly bounded with respect to N , owing to (4.7) and (4.8).
As for the remaining terms on the right-hand side of (4.41), we observe that, in view of (4.9),
the sequence (vN ) is uniformly bounded in L2(0, T ;BD(Ω)). Since vN is a Kirchhoff-Love
displacement, this implies that (v̄N ) is uniformly bounded in L2(0, T ;BD(ω)) and (vN3 ) is
uniformly bounded in L2(0, T ;BH(ω)). By Sobolev embedding (v̄N ) is uniformly bounded
in L2(0, T ;L2(ω;R2)) and (vN3 ) is uniformly bounded in L2(0, T ;W 1,2(ω)). Therefore, we
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have ∫ t

0

∫
Ω

|D3
αβγϕ

2 vNα (s)σNβγ(s)| dx ds ≤ C
∫ t

0

‖vN (s)‖L2 ‖σN (s)‖L2 ds,

which is uniformly bounded with respect to N by (4.7) and (4.9). The remaining terms in
(4.42) can be estimated similarly.

Combining these estimates with (4.42), we conclude that (4.36) is satisfied.
We now prove higher regularity with respect to x3. Let ϕ ∈ C∞c (Ω). Multiplying the first

equation in (4.6) by D−h3 (ϕ2Dh
3σ

N (t)), we obtain

〈ϕ2ArDh
3 σ̇

N (t), Dh
3σ

N (t)〉+ 〈ϕ2Dh
3

(
DφN (σN (t))

)
, Dh

3σ
N (t)〉 = −〈ϕ2D2vN3 (t), Dh

3σ
N (t)〉.

Integrating this equation with respect to time and using (3.1), we deduce

αA

∫
Ω

ϕ2|Dh
3σ

N (t)|2 dx− βA
∫

Ω

ϕ2|Dh
3σ0|2 dx

+

∫ t

0

∫
Ω

∫ 1

0

ϕ2D2φN (σN (s) + rhDh
3σ

N (s))Dh
3σ

N (s) :Dh
3σ

N (s) dr dx ds

≤ −
∫ t

0

〈ϕ2D2vN3 (s), Dh
3σ

N (s)〉 ds. (4.43)

By integration by parts the right-hand side can be written as

−
∫ t

0

〈ϕ2D2vN3 (s), Dh
3σ

N (s)〉 ds

= −
∫ t

0

〈D−h3 (ϕ2)∇vN3 (s),divx′σ
N (s)〉 ds+

∫ t

0

〈D−h3 (∇x′ϕ2)�∇vN3 (s), σN (s)〉 ds.

Combining the first estimate in (4.7), (4.36), and the uniform bound of (vN3 ) in the space
L2(0, T ;W 1,2(ω)), we deduce that the right-hand side of (4.43) is uniformly bounded with
respect to h and N . Moreover, since φN is convex, the last term on the left-hand side of
(4.43) is non-negative. Therefore, we have

αA

∫
Ω

ϕ2|Dh
3σ

N (t)|2 dx ≤ βA
∫

Ω

ϕ2|Dh
3σ0|2 dx+ C, (4.44)

where the constant C is independent of h andN . Using the assumptions on σ0, this inequality
implies that D3σ

N ∈ L∞(0, T ;L2
loc(Ω;M2×2

sym)) for every N . Therefore, we can pass to the
limit in (4.44), as h→ 0, and we obtain

αA

∫
Ω

ϕ2|D3σ
N (t)|2 dx ≤ βA

∫
Ω

ϕ2|D3σ0|2 dx+ C,

where the constant C is independent of N . This completes the proof of (4.37) and of the
proposition. �

We are now in a position to prove the main result of the paper, namely higher regularity
for the stress component of the quasistatic evolutions. This will be established by showing
convergence of the solutions to the Norton-Hoff problems (4.6) to a solution of the quasistatic
evolution problem. As a by-product, we also prove existence of solutions to (qs1)–(qs3), under
the assumptions (3.6)–(3.7) on the set Kr of admissible stresses.

Theorem 4.6. Let the assumptions of Theorem 4.2 be satisfied with σ0 = Cre0, where
(u0, e0, p0) ∈ AKL(w(0)). Then there exists a solution

(u, e, p) ∈W 1,2(0, T ;BD(Ω)×L2(Ω;M2×2
sym)×Mb(Ω ∪ Γd;M2×2

sym))

of the quasistatic evolution problem (qs1)–(qs3) with (u(0), e(0), p(0)) = (u0, e0, p0). The
stress component σ(t) := Cre(t) is unique and, under the assumptions of Proposition 4.5, it
satisfies the following estimates:
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• for every open set ω′ compactly contained in ω there exists a constant C1(ω′) > 0
such that for α = 1, 2

sup
t∈[0,T ]

‖Dασ(t)‖L2(ω′×(− 1
2 ,

1
2 );M2×2

sym) ≤ C1; (4.45)

• for every open set Ω′ compactly contained in Ω there exists a constant C2(Ω′) > 0
such that

sup
t∈[0,T ]

‖D3σ(t)‖L2(Ω′;M2×2
sym) ≤ C2. (4.46)

Proof. By applying Ascoli-Arzelà Theorem we deduce from (4.7) that there exists σ ∈
W 1,2(0, T ;L2(Ω;M2×2

sym)) such that, up to subsequences,

σN (t) ⇀ σ(t) weakly in L2(Ω;M2×2
sym), (4.47)

as N →∞, for every t ∈ [0, T ] and

σN ⇀ σ weakly in W 1,2(0, T ;L2(Ω;M2×2
sym)), (4.48)

as N → ∞. By (4.47) it is clear that σ(0) = σ0 and, in view of Proposition 3.2, that
−divx′ σ̄(t) = f(t), −divx′divx′ σ̂(t) = g(t) in ω, and σ(t) ∈ Θ(γn, h(t),m(t)) for every
t ∈ [0, T ]. From Proposition 4.5 and (4.48) it follows that (4.45) and (4.46) are satisfied.
Passing to the limit in the first inequality of (4.8), as N →∞, we deduce that σ(t) ∈ Kr(Ω)
for every t ∈ [0, T ].

We now set

uN (t) := u0 +

∫ t

0

vN (s) ds for every t ∈ [0, T ].

By (4.9) the sequences (uN ) and (u̇N ) are uniformly bounded in L2(0, T ;BD(Ω)). Thus,
there exists u ∈ W 1,2(0, T ;BD(Ω)) such that, up to subsequences, uN ⇀ u and u̇N ⇀ u̇
weakly∗ in L2(0, T ;BD(Ω)), as N →∞. In particular, using the Kirchhoff-Love structure,

v̄N = ˙̄uN ⇀ ˙̄u weakly in L2(0, T ;L2(ω;R2)),

vN3 = u̇N3 ⇀ u̇3 weakly in L2(0, T ;W 1,2(ω)),
(4.49)

as N →∞.
We define e(t) := Arσ(t) and p(t) := Eu(t) − e(t) in Ω, p(t) := (w(t) − u(t)) � ν∂ΩH2

on Γd. It is thus clear that (u(t), e(t), p(t)) ∈ AKL(w(t)).
It remains to prove that the flow rule is satisfied. To this purpose, we will show that (4.3)

holds. Let θ ∈ W 1,2(0, T ;L2(Ω;M2×2
sym)) ∩ L∞(0, T ;LN (Ω;M2×2

sym)) and let ϕ ∈ C2(ω) with

ϕ ≥ 0. Multiplying the first equation in (4.6) by ϕ (θ(t)− σN (t)), we obtain

〈Arσ̇N (t) +DφN (σN (t))− EvN (t), ϕ (θ(t)− σN (t))〉 = 0.

Using the convexity of φN , this equality can be interpreted as the following minimality
condition:

〈Arσ̇N (t)− EvN (t), ϕ σN (t)〉+

∫
Ω

ϕφN (σN (t)) dx

≤ 〈Arσ̇N (t)− EvN (t), ϕ θ(t)〉+

∫
Ω

ϕφN (θ(t)) dx. (4.50)

We now choose θ = σ and ϕ ≡ 1, and integrate the inequality with respect to time on a
time interval [0, t1]. Using Remark 3.4 and the fact that φN ≥ 0, we obtain

1

2
〈Ar
(
σN (t1)− σ(t1)

)
, σN (t1)− σ(t1)〉 ≤

∫ t1

0

〈σN (t)− σ(t), Eẇ(t)− Arσ̇(t)〉 dt

+

∫ t1

0

∫
Ω

φN (σ(t)) dx dt,
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hence, by the coercivity (3.1) of Ar we deduce

αA‖σN (t1)− σ(t1)‖2L2 ≤
∫ t1

0

〈σN (t)− σ(t), Eẇ(t)− Arσ̇(t)〉 dt+

∫ t1

0

∫
Ω

φN (σ(t)) dx dt.

Since σ(t) ∈ Kr(Ω) for every t ∈ [0, T ], the last term in the previous expression tends to
zero, as N →∞. Together with (4.47) and the first estimate in (4.7), this implies that

σN → σ strongly in L∞(0, T ;L2(Ω;M2×2
sym)), (4.51)

as N →∞.
We now go back to equation (4.50), where we choose θ ∈ Kr(Ω) ∩ Σ(Ω) independent of

time and ϕ ∈ C2(ω), ϕ ≥ 0, with ϕ = 0 in a neighbourhood of γn. Since ϕ(vN (t)− ẇ(t)) = 0
on ∂ω × (− 1

2 ,
1
2 ), integration by parts yields

〈EvN (t), ϕ (σN (t)− θ)〉 = 〈Eẇ(t), ϕ (σN (t)− θ)〉

+

∫
ω

ϕ (v̄N (t)− ˙̄w(t)) · (f(t) + divx′ θ̄) dx
′ −
∫
ω

∇ϕ� (v̄N (t)− ˙̄w(t)) : (σ̄N (t)− θ̄) dx′

+
1

12

∫
ω

ϕ (vN3 (t)− ẇ3(t))(g(t)+divx′divx′ θ̂) dx
′+

1

12

∫
ω

(vN3 (t)− ẇ3(t))D2ϕ : (σ̂N (t)− θ̂) dx′

+
1

6

∫
ω

∇ϕ� (∇vN3 (t)−∇ẇ3(t)) : (σ̂N (t)− θ̂) dx′. (4.52)

We use this expression in (4.50), integrate with respect to time on an arbitrary time interval
[t1, t2], and observe that the established convergences (4.48), (4.49), and (4.51) are enough
to pass to the limit, as N →∞. In this way we deduce∫ t2

t1

〈Arσ̇(t)− Eẇ(t), ϕ (σ(t)− θ)〉 dt

≤
∫ t2

t1

∫
ω

ϕ ( ˙̄u(t)− ˙̄w(t)) · (f(t) + divx′ θ̄) dx
′ dt

−
∫ t2

t1

∫
ω

∇ϕ� ( ˙̄u(t)− ˙̄w(t)) : (σ̄(t)− θ̄) dx′ dt

+
1

12

∫ t2

t1

∫
ω

ϕ (u̇3(t)− ẇ3(t))(g(t) + divx′divx′ θ̂) dx
′ dt

+
1

12

∫ t2

t1

∫
ω

(u̇3(t)− ẇ3(t))D2ϕ : (σ̂(t)− θ̂) dx′ dt

+
1

6

∫ t2

t1

∫
ω

∇ϕ� (∇u̇3(t)−∇ẇ3(t)) : (σ̂(t)− θ̂) dx′ dt.

By the integration by parts formula (3.17) this is equivalent to∫ t2

t1

∫
Ω∪Γd

ϕd[(θ − σ(t)) : ṗ(t)] dt ≤ 0 (4.53)

for every θ ∈ Kr(Ω) ∩ Σ(Ω) and every ϕ ∈ C2(ω), ϕ ≥ 0, with ϕ = 0 in a neighbourhood
of γn. For every δ > 0 let now ϕδ ∈ C2(ω) be such that 0 ≤ ϕδ ≤ 1, ϕδ = 0 on the set
{x′ ∈ ω : dist(x′, γn) < δ}, and ϕδ = 1 on the set {x′ ∈ ω : dist(x′, γn) > 2δ}. Using ϕδ as
test function in (4.53) and sending δ to zero, we obtain∫ t2

t1

〈θ − σ(t), ṗ(t)〉 dt ≤ 0.

Since the time interval [t1, t2] is arbitrary, this is equivalent to the flow rule in the form (4.3).
�
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5. An example

In this section we show an explicit example of quasistatic evolution where the stress
component σ⊥ is different from zero.

We assume that the three-dimensional elasticity tensor C is isotropic, that is, of the form

Cξ := 2µ ξ + λ(tr ξ)I3×3

for some λ, µ satisfying µ > 0, λ + µ ≥ 0, and every ξ ∈ M3×3
sym. From the results of [5,

Subsection 3.2] it follows that the elasticity tensor of the reduced problem takes the form

Crξ = 2µ ξ +
2λµ

λ+ 2µ
(tr ξ)I2×2

for every ξ ∈M2×2
sym. We also assume that Kr is of the form (3.6)–(3.7). Finally we consider

the boundary condition

w(t, x) :=

 −tx1x3

−tx2x3
t
2 (x2

1 + x2
2)

 ,

for t ∈ [0, T ], prescribed on the whole lateral boundary ∂ω×(− 1
2 ,

1
2 ); hence, γd = ∂ω and

γn = ∅. We assume the body forces to be zero, that is, f(t) = 0 and g(t) = 0. We consider
as initial datum (u0, e0, p0) = (0, 0, 0).

Let now

t0 :=

√
3

2

λ+ 2µ

µ(3λ+ 2µ)
α0.

For t ≤ t0 we define

u(t, x) := w(t, x), e(t, x) = −tx3I2×2, p(t, x) := 0

for every t ∈ [0, T ] and x ∈ Ω. For t > t0 we define

u(t, x) := w(t, x), e(t, x) =


t0
2 I2×2 for x3 < − t02t ,

−tx3I2×2 for |x3| ≤ t0
2t ,

− t02 I2×2 for x3 >
t0
2t ,

p(t, x) := Eu(t, x)− e(t, x).

We claim that t 7→ (u(t), e(t), p(t)) is a quasistatic evolution, that is, satisfies conditions
(qs1)–(qs3) in Definition 4.1.

It is easy to see that t 7→ (u(t), e(t), p(t)) is absolutely continuous, that is, condition (qs1)
holds. Clearly (u(t), e(t), p(t)) belongs to AKL(w(t)) for every t ∈ [0, T ]. Setting σ(t, x) :=
Cre(t, x), we have that

σ(t, x) = −2µ
3λ+ 2µ

λ+ 2µ
tx3I2×2

for t ≤ t0, while

σ(t, x) =



µ
3λ+ 2µ

λ+ 2µ
t0I2×2 for x3 < − t02t ,

−2µ
3λ+ 2µ

λ+ 2µ
tx3I2×2 for |x3| ≤ t0

2t ,

−µ3λ+ 2µ

λ+ 2µ
t0I2×2 for x3 >

t0
2t

for t > t0. Using this expression and the definition of p, it is easy to check that also conditions
(qs2) and (qs3) are satisfied. Thus, t 7→ (u(t), e(t), p(t)) is a quasistatic evolution.

Note that σ̄(t) = 0 for every t ∈ [0, T ]. For t ≤ t0 we have σ(t) = x3σ̂(t), while for t > t0
we have σ(t) = x3σ̂(t) + σ⊥(t) with σ⊥(t) 6= 0. Since the stress component is unique by
Theorem 4.6, this is the expression of the stress for any solution to the quasistatic evolution
problem with this choice of the data.

This example shows that the problem has a genuinely three-dimensional nature. Since
the location of the plastic zone (that is, the region where the stress is on the yield surface)
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depends on the thickness variable x3, reducing the problem to a two-dimensional setting
is not possible. In particular, applying the classical plastic plate model to this set of data
would mean to look for a solution that is linear with respect to x3 both on e and p, and
thus would lead to a wrong description of the plastic response.

We also point out that this example is a counterexample to the result of [5, Proposi-
tion 7.17], which is therefore false. It is in fact not true, in general, that if σ ∈ Kr a.e. in Ω,
then σ̂ ∈ Kr a.e. in ω.
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