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Abstract

We establish the unexpected equality of the optimal volume density of total
flux of a linear vector field x 7−→ Mx and the least volume fraction that can
be swept out by submacroscopic switches, separations, and interpenetrations
associated with the purely submacroscopic structured deformation (i, I +M).
This equality is established first by identifying a dense set S of N×N matrices
M for which the optimal total flux density equals |trM |, the absolute value
of the trace of M . We then use known representation formulae for relaxed
energies for structured deformations to show that the desired least volume
fraction associated with (i, I + M) also equals |trM |. We also refine the
above result by showing the equality of the optimal volume density of the
positive part of the flux of x 7−→ Mx and the volume fraction swept out by
submacroscopic separations alone, with common value (trM)+. Similarly, the
optimal volume density of the negative part of the flux of x 7−→Mx and the
volume fraction swept out by submacroscopic switches and interpenetrations
are shown to have the common value (trM)−.

1 Introduction

Our goal in this article is to provide an unexpected connection between optimal
flux densities of linear vector fields and optimal amounts of submacroscopic switch-
ing, separation, and interpenetration associated with multiscale geometrical objects
called structured deformations. If M is a linear mapping on RN (or, equivalently,
an N ×N real matrix) and R is a smooth region in RN with volume |R|, then the
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divergence theorem provides the formula

1

|R|

∫
∂R

Mx · ν(x) dHN−1(x) = trM (1)

relating the outward flux of the vector field x 7−→Mx per unit volume and the trace
of the linear mapping M . Of course the right-hand side is independent of the region
R, so that the volume density of outward flux on the left-hand side is a quantity
that depends on M alone.

Here, we shall be interested in what can be said when the integrand x 7−→
Mx · ν(x) is replaced by its absolute value x 7−→ |Mx · ν(x)|, or by its positive part
x 7−→ (Mx · ν(x))+ = (|Mx · ν(x)| + Mx · ν(x))/2 , or by its negative part x 7−→
(Mx · ν(x))− = (|Mx · ν(x)| −Mx · ν(x))/2 . In each case, the integrand is non-
negative, so that no cancellations can arise in calculating the surface integral. For
example, if the outward flux field x 7−→ Mx · ν(x) is replaced by x 7−→ |Mx · ν(x)|
on the left-hand side of (1), then replacement of a region R by one with volume
as close as desired to |R| but with its surface area increased by an arbitrarily large
amount, can cause the the total flux per unit volume 1

|R|

∫
∂R
|Mx · ν(x)| dHN−1(x)

to increase without bound. Nevertheless, it is easy to show that |trM | provides
a lower bound for the total flux per unit volume as the region R is varied, and a
principal result that we prove in this article provides a definite class of regions R
and a dense set S of linear mappings M for which the lower bound |trM | is the
infimum of 1

|R|

∫
∂R
|Mx · ν(x)| dHN−1(x) over the class of regions R:

inf
R

1

|R|

∫
∂R

|Mx · ν(x)| dHN−1(x) = |trM | . (2)

It turns out that for N = 1, 2, 3, the equality (2) of the lower bound |trM | and
the infimum holds for arbitrary linear mappings M (the proof for N = 2, 3 is too
long to include in the present article, while the proof for N = 1 does not present
any difficulty and hence it is omitted), and it remains unknown to us whether this
stronger conclusion when N = 1, 2, 3 can be extended to arbitrary dimensions N .
Because of the formula (1), all of the results that we obtain for the absolute value |·|
remain true when in (2) |·| is replaced in the integrand and on the right-hand side
of (2) by the positive part (·)+ or by the negative part (·)−.

The results associated with the formula (2) are stated precisely and proved in
Section 2 of this article, and they permit us to interpret |trM | as an optimal flux
density associated with the vector field x 7−→ Mx. Our proof requires generating
lateral surfaces of optimizing regions through solutions of initial-value problems for
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the ordinary differential equation ẋ = Mx, and the stronger result available when
N = 2, 3 results from the easier bookeeping in these cases.

The remainder of this article is devoted to the application of our results on
optimal flux densities in order to obtain an explicit formula for a relaxed energy
associated with submacroscopic geometrical changes in continuous bodies. In Sec-
tion 3 we review some basic concepts from the multiscale geometry of structured
deformations (g,G) of a given region Ω [8] and summarize results on the relaxation
of energies associated with structured deformations of continua [10]. These results
address the problem of minimizing the limit inferior of an initial energy defined on
sequences n 7−→ un of approximating deformations of a continuum with un converg-
ing to g and with ∇un converging to G in approriate senses. The resulting infimum
E(g,G) is interpreted as the most economical way of deforming the region Ω via
the macroscopic deformation g in order that small pieces of the region be deformed
submacroscopically via the tensor field G. The results in [10] show that this mini-
mization problem leads, for each point x0 ∈ Ω, to the simpler problem minuEx0(u)
of minimizing a related energy over mappings u of the unit cube whose boundary
values agree with the linear mapping x 7−→ ∇g(x0)x and whose gradients ∇u on
the unit cube have average value G(x0).

We show in Section 4 that, for a particular choice of initial energy, the sim-
pler minimization problem minuEx0(u) amounts to minimization of the flux density

1
|R|

∫
∂R
|(∇g(x0)−G(x0))x · ν(x)| dHN−1(x) over sets of finite perimeter R contained

in the unit cube. Our result (2) tells us that, if a structured deformation (g,G) and
a point x0 are such that ∇g(x0) − G(x0) is in the dense set S of linear mappings,
then

inf
R

1

|R|

∫
∂R

|(∇g(x0)−G(x0))x · ν(x)| dHN−1(x) = |tr(∇g(x0)−G(x0))| .

Regularity results in [10] for the volume density of the relaxed energy imply in turn
that, for every structured deformation (g,G) and point x0, |tr(∇g(x0)−G(x0))| is
the volume density at x0 of the desired relaxed energy E(g,G).

In the last section we use results in Section 4 to provide the alternative inter-
pretation of the number |tr(∇g(x0)−G(x0))| as the least fraction of volume at x0

that can be swept out by switches, separations, and interpenetration of pieces of the
region associated with approximating deformations un for the given structured de-
formation (g,G). When |·| is replaced by the positive part (·)+ or by the negative
part (·)−, corresponding geometrical interpretations are justified on the basis of the
results in Section 4. Specifically, (tr(∇g(x0)−G(x0)))+ represents the least fraction
of volume at x0 that can be swept out by separations associated with approximating
deformations un, while (tr(∇g(x0)−G(x0)))− is the least volume fraction that can
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be swept out by switches and interpenetrations associated with the approximating
deformations un.

.

2 Optimal flux densities for linear mappings

Our principal relation for optimal flux densities involves the dense subset S of the
vector space of N ×N real matrices, RN×N , defined in the following theorem.

Theorem 1 The following sets are dense and open in RN×N :

(i) S1 = {T ∈ RN×N : T has N distinct eigenvalues};

(ii) S2 = {T ∈ RN×N : all eigenvalues of T have nonzero real part};

(iii) S = S1 ∩ S2.

Parts (i) and (ii) of the the theorem are just Theorems 1 and 3 of Section 7.3 of
[13], while part (iii) is a consequence of the Proposition contained in Section 7.3 of
[13] .

The following theorem provides in a precise manner the formula (2) for optimal
flux densities described in the introduction.

Theorem 2 Let Q := (−1/2, 1/2)N be the unit cube. Let S be as in Theorem 1, let
M0 ∈ S, and define

A := {R ⊂ Q : R is a set of finite perimeter

compactly contained in Q with |R| 6= 0}. (3)

Then

inf
R∈A

1

|R|

∫
∂R

|M0x · ν(x)| dHN−1(x) = |tr M0|,

where ν is the outward unit normal to R.

The proof requires a lemma about Jacobians. We recall that the Jacobian Jf of
a function f : Rn → Rm, with m ≥ n, is

Jf (x) :=
√

det(∇f(x)T∇f(x)),

and by the Cauchy-Binet theorem (see, for instance Evans and Gariepy [12]) the
square of the Jacobian is equal to the sum of the squares of the determinants of
each (n × n)-submatrix of the (m × n)-matrix representing ∇f(x). We note that
when n equals m the Jacobian is just the absolute value of the determinant of the
gradient.
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Lemma 1 Let A ⊂ RN−1 and I ⊂ R be bounded open sets and f : A× I → RN be
a differentiable function. For each y ∈ I, let f y : A → RN be the function defined
by f y(·) := f(·, y). Then, if Jfy 6= 0 in A we have

Jf (·, y) = Jfy(·)
∣∣∣∣ ∂f∂xN (·, y) · νy(·)

∣∣∣∣ ,
where νy is a normal to the hypersurface f y(A) in RN .

Proof. Before we start the proof we note that the gradient of f , ∇f , evaluated at
any point of A× I is a N ×N matrix, while the gradient of f y, ∇f y, evaluated at
any point of A is an N × (N − 1) matrix. Moreover, with obvious notation, we have

∇f(·, y) =

(
∇f y(·)

∣∣∣∣ ∂f∂xN (·, y)

)
.

In order to simplify the notation for the remainder of the proof, all the fields with
domain A× I are understood to be evaluated at a point of the form (·, y). Then

det∇f =
N∑
i=1

(
∂f

∂xN

)
i

(cof ∇f)Ni =
N∑
i=1

(
∂f

∂xN

)
i

(cof ∇f y)i =
∂f

∂xN
· cof ∇f y,

where (cof ∇f)Ni is equal to (−1)N+i times the determinant of the (N − 1)× (N −
1) matrix obtained by deleting the ith row and the N th column from ∇f , while
(cof ∇f y)i is equal to (−1)N+i times the determinant of the (N − 1) × (N − 1)
matrix obtained by deleting the ith row from ∇f y. Moreover we have denoted with
cof ∇f y the vector whose ith component is (cof ∇f y)i. From this last definition and
the Cauchy-Binet theorem we have

‖cof ∇f y‖ =

√√√√ N∑
i=1

(cof ∇f y)2
i = Jfy .

We now define the unit vector

νy :=
1

Jfy
cof ∇f y

so that Jf = | det∇f | = Jfy
∣∣∣ ∂f∂xN

· νy
∣∣∣. Hence, to conclude the proof it suffices to

note that for every j = 1, . . . , N − 1 we have

0 = det

(
∇f y

∣∣∣∣∂f y∂xj

)
=
∂f y

∂xj
· cof ∇f y,
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and hence νy is orthogonal to the hypersurface f y(A) in RN . 2

In the proof of Theorem 2 we shall need the definition of the exponential of a
linear operator and some of its properties. We recall that if A ∈ RN×N then the
exponential of A is the linear operator defined by

eA :=
+∞∑
k=0

Ak

k!
.

Note that since A commutes with each term of the series for etA, for any t ∈ R, we
have that

AetA = etAA. (4)

Moreover, (see Arnold [3]) we also have the following identity

det eA = etrA. (5)

The definition of the exponential of a linear operator turns out to be very important
since the unique solution of the system of ordinary differential equations{

ẋ = Ax
x(t0) = x0,

(6)

with t0 ∈ R, is
x(t) = eA(t−t0)x0. (7)

Proof of Theorem 2. Without loss of generality we assume that M0 6= 0. We
start by proving that |tr M0| is a lower bound for the infimum. This follows easily
from the divergence theorem, indeed

1

|R|

∫
∂R

|M0x · ν(x)| dHN−1(x) ≥ 1

|R|

∣∣∣∣∫
∂R

M0x · ν(x) dHN−1(x)

∣∣∣∣
=

1

|R|

∣∣∣∣∫
R

div (M0x) dLN(x)

∣∣∣∣
=

1

|R|

∣∣∣∣∫
R

tr M0 dLN
∣∣∣∣ = |tr M0|.

We now prove that |tr M0| also is an upper bound. To do this it suffices to show
that for every real number ε > 0 there exists a region R ∈ A such that

1

|R|

∫
∂R

|M0x · ν(x)| dHN−1(x) ≤ |tr M0|+ ε. (8)
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The main idea in proving (8) is to minimize the part of the boundary ∂R, of a region
R ∈ A, in which M0x has a component along the normal ν(x) of the boundary. The
regions R that we shall consider will be constructed as follows: we fix a subset B1

of a hyperplane and we follow the points of B1 along curves t 7→ x(t) with tangent
M0x(t). In this way the regions constructed have a “lateral surface” tangent to M0x
at the point x.

Indeed, we shall prove that, for any t1, t2 ∈ R, with t1 < t2, there exists a region
R ∈ A such that:

1

|R|

∫
∂R

|M0x · ν(x)| dHN−1(x) =
tr M0

e(tr M0)(t2−t1) − 1
+

tr M0

1− e−(tr M0)(t2−t1)
. (9)

Relation (8) follows directly from this equation. In fact, since M0 ∈ S we have that
tr M0 6= 0 and for tr M0 > 0 the limit for t1 → −∞ of the right hand side of (9)
is equal to tr M0 = |tr M0|, while if tr M0 < 0 the limit for t2 → +∞ of the same
quantity is −tr M0 = |tr M0|. Thus in both cases we can choose t1 and t2 in such a
way to make the right hand side of (9) less than |tr M0|+ ε.

We now verify equation (9). Let t1, t2 ∈ R, with t1 < t2 be fixed. Let x̄0, x̄1, . . . , x̄N−1

be points in Q, and let xi(t) be the unique solution of the system of ordinary equa-
tions {

ẋi = M0xi
xi(t1) = x̄i,

(10)

for every i = 0, 1, . . . , N − 1. For any vector α ∈ RN−1 with components αi ∈ [0, 1],
for i = 1, . . . , N − 1, we define the function f : [0, 1]N−1 × (t1, t2)→ RN defined by

f(α, t) := x0(t) +
N−1∑
i=1

αi(xi(t)− x0(t)). (11)

Clearly the function f depends on the chosen points x̄0, x̄1, . . . , x̄N−1.

Claim: For every ε > 0 there exist points x̄0, x̄1, . . . , x̄N−1 ∈ Q for which the function
f is injective, and ‖x̄i‖ < ε.

We postpone the proof of the claim and note that f is a solution of the following
system of ordinary differential equations and initial condition:{

ḟ = M0f

f(α, t1) = x̄0 +
∑N−1

i=1 αi(x̄i − x̄0).
(12)

Let us denote by R the image of [0, 1]N−1 × (t1, t2) under the function f and by B1

and B2, respectively, the surfaces f([0, 1]N−1, t1) and f([0, 1]N−1, t2), each of which
is contained in a hyperplanes in RN (see Figure 1). Note that by using the solution

7



[0,1]
N-1 B

1
2B

M  f

n

R

f

f(   ,t  )1a

a
0

Figure 1: The region R.

of the system (10), written in the form (7), and the property of the exponential
function given by (4) we have

ḟ(α, t) = M0f(α, t) = M0e
M0(t−t1)f(α, t1) = eM0(t−t1)M0f(α, t1)

= eM0(t−t1)ḟ(α, t1)

∂f

∂αi
(α, t) = xi(t)− x0(t) = eM0(t−t1)(x̄i − x̄0) = eM0(t−t1) ∂f

∂αi
(α, t1),

and, therefore,

(∇αf(α, t)|ḟ(α, t)) = ∇f(α, t) = eM0(t−t1)∇f(α, t1). (13)

From the equation above and (5) we find

Jf (α, t) = | det∇f(α, t)| = det eM0(t−t1)| det∇f(α, t1)| = e(tr M0)(t−t1)Jf (α, t1).
(14)

Denoting by f t1 : [0, 1]N−1 → RN the map defined by

f t1(·) := f(·, t1),

and applying Lemma 1 we obtain

Jf (α, t) = e(tr M0)(t−t1)|M0f(α, t1) · νt1|Jf t1 (α) = e(tr M0)(t−t1)|M0f
t1(α) · νt1|Jf t1 (α),

where νt1 is a normal to the hyperplane B1. Then

|R| =

∫ t2

t1

∫
[0,1]N−1

Jf (α, t) dαdt (15)

=

∫ t2

t1

e(tr M0)(t−t1) dt

∫
[0,1]N−1

|M0f
t1(α) · νt1|Jf t1 (α) dα.
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Then by the change of variables formula and by setting ν(x) = νt1 we obtain

|R| = e(tr M0)(t2−t1) − 1

tr M0

∫
B1

|M0x · ν(x)| dHN−1(x). (16)

In a similar way we can show that

|R| = 1− e−(tr M0)(t2−t1)

tr M0

∫
B2

|M0x · ν(x)| dHN−1(x). (17)

Let us denote the lateral boundary of ∂R by ∂`R, i.e., ∂`R = ∂R \ (B1 ∪B2). Then
for x(t) ∈ ∂`R we have M0x(t) · ν(x(t)) = ẋ(t) · ν(x(t)) = 0 and thus∫

∂R

|M0x · ν(x)| dHN−1(x) =

∫
B1∪B2

|M0x · ν(x)| dHN−1(x). (18)

Since tr M0 6= 0, from Eq.s (16), (17) and (18) we obtain (9).
To conclude the verification of (9) we only need to check that the region R

considered above is in the set A defined in equation (3). We first show that |R| 6= 0.
From equation (15) it suffices to show that∫

[0,1]N−1

|M0f
t1(α) · νt1|Jf t1 (α) dα 6= 0.

From (12) we have that

M0f
t1(α) · νt1 = M0x̄0 · νt1 +

N−1∑
i=1

αiM0(x̄i − x̄0) · νt1 .

The first term on the right hand side is different from zero by the choice of the
points x̄0, . . . , x̄N−1. Consequently the set of α’s in [0, 1]N−1 for which the right
hand side will vanish has null (N − 1)-Hausdorff measure. The choice of the points
x̄0, . . . , x̄N−1 also implies that Jf t1 (α) 6= 0.

Since the region [0, 1]N−1 × (t1, t2) is of finite perimeter, so also is the region
R = f([0, 1]N−1 × (t1, t2)). Indeed, this follows from the proof of the chain rule
in BV (see Ambrosio et. al. [2] proof of theorem 3.96), once we notice that f−1 is
Lipschitzian. Moreover, since

‖xi(t)‖ =
∥∥eM0(t−t1)x̄i

∥∥ ≤ e‖M0‖(t2−t1)‖x̄i‖,

for every i = 0, 1, . . . , N − 1, it is always possible to choose the points x̄i, for
i = 0, 1, . . . , N − 1, so that ‖xi(t)‖ < 1/2, for any t ∈ (t1, t2), and hence R ⊂ Q.
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It only remains to prove the claim.

Proof of the Claim.
Suppose that M0 has a real eigenvalue λ which, by hypothesis, must be non-

zero. Then there are M0-invariant subspaces S and T of RN , with S the eigenspace
corresponding to λ, such that RN = S⊕ T , see [13]. Since M0 has distinct eigenval-
ues the subspace T has dimension N − 1. Choose x̄0 ∈ S\{0} with ‖x̄0‖ < ε

2
,

so that M0x̄0 = λx̄0, and choose a basis u1, . . . uN−1 of T with ‖ui‖ < ε
2

for
i = 1, . . . , N − 1. We put x̄i = x̄0 + ui for i = 1, . . . , N − 1, and we note that
‖x̄i‖ < ε for i = 1, . . . , N − 1. Moreover, etM0x̄0 = etλx̄0 and T is etM0-invariant.
Let (t, α), (t̃, α̃) ∈ R× RN−1 be given such that f(t, α) = f(t̃, α̃), so that

etλx̄0 − et̃λx̄0 = et̃M0

N−1∑
i=1

α̃i(x̄i − x̄0)− etM0

N−1∑
i=1

αi(x̄i − x̄0). (19)

The left-hand side of this relation is in S and the right-hand side is in the comple-
mentary subspace T , because x̄i − x̄0 = ui for i = 1, . . . , N − 1. Therefore, both
sides are zero, so that (etλ − et̃λ)x0 = 0 and, therefore, since x0 6= 0, etλ = et̃λ.
Consequently, t = t̃. This relation, the vanishing of the right-hand side of (19), and
the invertibility of etM0 imply

N−1∑
i=1

(α̃i − αi)ui = 0.

The linear independence of u1, . . . uN−1 imply that α = α̃, and this completes the
proof of injectivity when M0 has a real eigenvalue.
Suppose now that M0 has no real eigenvalues. We may choose a and b in R such
that a+ bi and a− bi are eigenvalues of M0, and, since each eigenvalue has non-zero
real part and non-zero imaginary part, we may assume without loss of generality
that ab > 0. Then there are M0-invariant subspaces S1 and T of RN such that
RN = S1⊕ T , and there is a basis u0, u1 ∈ RN of S1 such that the matrix of the

restriction M0 |S1of M0 to S1, relative to this basis, is

[
a b
−b a

]
, see [13]. Choose a

basis u2, . . . , uN−1 of T and d ≥ 1 such that ‖ui‖ < ε/2d for i = 0, 1, . . . , N − 1.
We put x̄0 := du0, x̄i := x̄0 + ui for i = 1, . . . , N − 1, and note that ‖x̄i‖ < ε for
i = 0, 1, . . . , N − 1. For each τ ∈ R the M0-invariance of the subspaces S1 and T
imply that the matrix of the restriction eτM0 |S1 of eτM0 to S1, relative to the basis

u0, u1, is eaτ
[

cos bτ sin bτ
− sin bτ cos bτ

]
. Let (t, α), (t̃, α̃) ∈ R× RN−1 be given such that
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f(t, α) = f(t̃, α̃), so that

etM0(du0+α1u1)−et̃M0(du0+α̃1u1) = et̃M0

N−1∑
i=2

α̃i(x̄i−x̄0)−etM0

N−1∑
i=2

αi(x̄i−x̄0). (20)

Again, this relation implies that each side of this relation separately vanishes and,
in particular, that the matrix equation

eat
[

cos bt sin bt
− sin bt cos bt

] [
d
α1

]
= eat̃

[
cos bt̃ sin bt̃
− sin bt̃ cos bt̃

] [
d
α̃1

]
(21)

is satisfied. We shall show that, when d is chosen to be sufficiently large, the only
solution of (21) is t̃ = t and α̃1 = α1; consequently, the vanishing of the right-hand
side of (20) then implies that α̃i = αi for i = 2, . . . , N − 1. Assume without loss of
generality that at̃ ≥ at, put τ := t̃− t, and note that (21) is equivalent to

eaτ
[

cos bτ sin bτ
− sin bτ cos bτ

] [
d
α̃

]
=

[
d
α

]
(22)

where, for convenience, we have dropped the subscript 1. If sin bτ = 0, then
cos bτ = ±1 and the system becomes

eaτ cos bτ

[
d
α̃

]
=

[
d
α

]
,

which implies τ = 0 and α̃ = α. If aτ = 0 then τ = 0 and the orthogonality of the
2×2 matrix in (22) yields α̃ = α. We then consider the case aτ > 0 and sin bτ 6= 0,
which yields from (22) the formulas

α̃ =
e−aτ − cos bτ

sin bτ
d, α =

cos bτ − eaτ

sin bτ
d. (23)

If sin bτ > 0, then α /∈ [0, 1], because the numerator cos bτ − eaτ in (23) is negative
and the denominator is positive. We assume that sin bτ < 0. The formulas (23)
imply

d−2 sin2(bτ) α̃ α = −(cos bτ − 1)2 + cos bτ(eaτ + e−aτ − 2) ,

and, since eaτ + e−aτ − 2 ≥ 0, we conclude that α̃ α < 0 if cos bτ ≤ 0. Thus, the
inequality cos bτ ≤ 0 rules out solutions α̃, α , both in the interval [0, 1]. Henceforth,
we assume that sin bτ < 0 and cos bτ > 0. The solutions α and α̃ of (23) must be
in the interval [0, 1], so that

0 ≤ cos bτ − e−aτ

− sin bτ
d ≤ 1, 0 ≤ eaτ − cos bτ

− sin bτ
d ≤ 1,

11



or, equivalently,

cos bτ +
sin bτ

d
≤ e−aτ ≤ cos bτ ≤ eaτ ≤ cos bτ − sin bτ

d
. (24)

It is convenient in what follows to put x := aτ > 0 and y := bτ ∈ (3π
2
, 2π). The

inequality chain becomes

cos y +
sin y

d
≤ e−x ≤ cos y ≤ ex ≤ cos y − sin y

d
. (25)

This chain of inequalities is equivalent to

max{cos y +
sin y

d
,

1

cos y − sin y
d

} ≤ e−x ≤ cos y. (26)

However, noting that

cos y +
sin y

d
= (cos y +

sin y

d
)
cos y − sin y

d

cos y − sin y
d

=
cos2 y − ( sin y

d
)2

cos y − sin y
d

≤ 1

cos y − sin y
d

we find that (26) also is equivalent to

1

cos y − sin y
d

≤ e−x ≤ cos y. (27)

A necessary and sufficient condition that there exist x ≥ 0 and y ∈ (3π
2
, 2π) satisfying

(27) is
1

cos y − sin y
d

≤ cos y

or, equivalently, 1 ≤ cos y(cos y − sin y
d

) = 1 − sin2 y − cos y sin y
d

. This, in turn, is
equivalent to

0 ≤ − sin y(
cos y

d
+ sin y),

and the condition y ∈ (3π
2
, 2π) then yields the equivalent condition cos y

d
+ sin y ≥ 0,

i.e., tan y ≥ −1
d
. This inequality holds for all y in the interval (2π − tan−1 1

d
, 2π),

we conclude that the condition y ∈ (2π − tan−1 1
d
, 2π) is a sufficient condition that

there exists x ≥ 0 for which (25) holds; from (27) we have

− ln cos y ≤ x ≤ ln(cos y − sin y

d
). (28)

12



We conclude: necessary and sufficient conditions that there exist τ 6= 0 and α̃, α ∈
[0, 1] satisfying (22) are the existence of nd ∈ Z, yd ∈ (2π+2πnd−tan−1 1

d
, 2π+2πnd)

and xd ∈ [− ln cos yd, ln(cos yd − sin yd
d

)] such that

b

a
=
yd
xd
. (29)

In this case, τ = xd/a = yd/b, xd is positive, α̃, α are given by (23). Moreover,
because ab > 0, it follows from (29) that yd also must be positive, and we can
require that the integer nd is non-negative. We note that, as d increases, points
in the interval [2π + 2πnd − tan−1 1

d
, 2π + 2πnd] differ from 2π + 2πnd by at most

tan−1 1
d
, which tends to zero as d increases without bound; similarly, for yd ∈ (2π +

2πnd− tan−1 1
d
, 2π+2πnd), points in the interval [− ln cos yd, ln(cos yd− sin yd

d
)] differ

from 0 by an amount that tends to zero as d increases without bound. Consequently,
for each family of pairs d 7−→ (xd, yd) ∈ [− ln cos yd, ln(cos yd− sin yd

d
)]× (2π+2πnd−

tan−1 1
d
, 2π + 2πnd) with nd non-negative integers, we have

lim
d−→∞

yd
xd

= +∞. (30)

Therefore, for d sufficiently large, the condition (29) cannot be satisfied when aτ is
positive, and we conclude that τ = 0 and, as a consequence, that also α̃ = α. 2

3 Relaxed bulk and interfacial energy densities

for structured deformations

The need in continuum mechanics to deal with multiscale geometrical changes has
led Del Piero and Owen, [8], to the concept of structured deformations. Roughly
speaking we can say that a structured deformation is a triplet (κ, g,G), where the in-
jective, piecewise continuosly differentiable field g describes the macroscopic changes
in the geometry of a continuous body, G is a piecewise continuous tensor field sat-
isfying the “accommodation inequality” 0 < detG(x) ≤ det∇g(x) at each point x,
and κ is a surface-like subset of the body at which g and ∇g can have jump discon-
tinuities. Here, ∇ denotes the classical gradient operator. An interpretation of the
tensor field G is provided by the Approximation Theorem [8]: for every structured
deformation (κ, g,G) there exists a sequence n 7−→ (κn, fn) of deformations, with
fn injective and piecewise continuosly differentiable, such that

g = lim
n→∞

fn, (31)

G = lim
n→∞

∇fn, (32)
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and
κ = lim inf

n→∞
κn. (33)

In (31) and (32), the limits are taken in the sense of L∞ convergence, and in (33)
lim infn→∞ κn :=

⋃∞
n=1

⋂∞
p=n κp. Therefore, G(x) represents the local deformation at

x without including the effects of discontinuities of fn at the disarrangement sites
κn for the approximating deformations (κn, fn), and the Approximation Theorem
motivates calling the field G the deformation without disarrangements.

In order to study the energy of a structured deformation, Choksi and Fonseca [10]
were led to broaden the setting of structured deformations from piecewise smooth
fields to fields in SBV . In this setting a structured deformation is a pair (g,G)
where

g ∈ SBV (Ω;RN) and G ∈ L1(Ω;RN×N).

In this definition the set κ is identified with the jump set, S(g) of g, κ = S(g).
Using a Lusin-type result due to Alberti [1], Choksi and Fonseca [10] obtained
an analogue of the Approximation Theorem of Del Piero and Owen [8]: for each
structured deformation (g,G) there exists a sequence n 7→ fn in SBV (Ω;RN) such
that

fn → g in L1(Ω;RN) and ∇fn
∗
⇀ G in the sense of measures. (34)

Here, ∇fn denotes the absolutely continuous part of the distributional derivative of
fn. (See also [15, 4] for alternative settings for the Approximation Theorem, and
[14] for the approximation of second order structured deformations.)

For each “simple” deformation fn it is natural to consider a total energy which is
sum of a bulk term and of an interfacial term. Then, since each structured deforma-
tion is a limit of simple deformations, one might define the energy of the structured
deformation (g,G) as the limit of the sequence of energies associated to a sequence
n 7−→ fn of simple deformations whose limit is the given structured deformation
(g,G). However, since an approximating sequence is far from being unique, the en-
ergy of a structured deformation is defined by means of the energetically least costly
sequences n 7→ fn determining (g,G). This definition and the characterization of
these energies have been given in Choksi and Fonseca [10]. For further studies in one
and multidimensional settings see Del Piero [6], [7]. The following theorem is the
starting point for application of our formula for optimal flux densities to structured
deformations.

Theorem 3 Let SN−1 = {ν ∈ RN : |ν| = 1}. Let Ω be a bounded open subset of RN

and ψ : Ω× RN × SN−1 → [0,+∞) be such that
(H1) there exists a constant C > 0 such that

0 ≤ ψ(x, ξ, ν) ≤ C|ξ|

14



for all (x, ξ, ν) ∈ Ω× RN × SN−1,
(H2) for every x0 ∈ Ω and for every ε > 0 there exists a δ > 0 such that

|x− x0| < δ ⇒ |ψ(x, ξ, ν)− ψ(x0, ξ, ν)| ≤ εC|ξ|

for all (x, ξ, ν) ∈ Ω× RN × SN−1,
(H3) ψ(x, ·, ν) is positively homogeneous of degree 1:

ψ(x, tξ, ν) = tψ(x, ξ, ν)

for all t > 0 and (x, ξ, ν) ∈ Ω× RN × SN−1,
(H4) ψ is subadditive, i.e., for all ξ1, ξ2 ∈ RN and (x, ν) ∈ Ω× SN−1,

ψ(x, ξ1 + ξ2, ν) ≤ ψ(x, ξ1, ν) + ψ(x, ξ2, ν).

Then, for any p > 1, if

I(g,G) := inf
{un}
{lim inf
n→+∞

∫
S(un)∩Ω

ψ(x, [un], νun) dHN−1 : un ∈ SBV (Ω,RN),

un → g in L1(Ω,RN),∇un
∗
⇀ G,

sup
n

(
|∇un|Lp(Ω,RN×N ) + |Dun|(Ω)

)
< +∞}

we have

I(g,G) =

∫
Ω

H(x,∇g(x), G(x)) dLN +

∫
S(g)∩Ω

h(x, [g](x), νg(x)) dHN−1(x),

where

H(x0, A,B) := inf
{u}
{
∫
S(u)∩Q

ψ(x0, [u], νu) dHN−1 : u ∈ SBV (Q,RN),

u|∂Q = Ax, |∇u| ∈ Lp(Q),

∫
Q

∇u dLN = B},

and

h(x0, ξ, η) := inf
{u}
{
∫
S(u)∩Qη

ψ(x0, [u], νu) dHN−1

: u ∈ SBV (Qη,RN), u|∂Qη = uξ,η,

∫
Qη

∇u dLN = 0},

where

uξ,η(x) :=

{
0 if − 1

2
≤ x · η < 0

ξ if 0 ≤ x · η < 1
2
.

(35)

Here Q equals (−1/2, 1/2)N and Qη denotes the unit cube centered at the origin and
with two faces normal to η.
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The theorem above, with ψ independent of the variable x, is based on (2.15),
(2.16), and (a corrected version of) (2.17) in Theorem 2.17 of Choksi and Fonseca
[10], taking into account their Remark 3.3 and with their bulk energy W set equal to
zero. The dependence of ψ on x was not included in [10] but can be handled, thanks
to assumption (H2), as in Barroso et. al. [5] again taking into account Remark 3.3
of [10].

4 Relaxation of a specific interfacial energy den-

sity

Let f be a real valued function, then we denote by f+ and by f− the positive and
the negative part of f , i.e.,

f± =
|f | ± f

2
.

Our main result on structured deformations is

Theorem 4 With the notation of Theorem 3, if L : Ω → RN×N is a continuous
tensor field such that L(x) is invertible for every x ∈ Ω̄ and if the initial energy
density has the specific form

ψ(x, ξ, ν) := (ξ · L(x)ν)±,

then we have

H(x,A,B) = (L(x) · (A−B))±

h(x, ξ, ν) = (ξ · L(x)ν)±.

The proof of the Theorem will rely on the following Lemma.

Lemma 2 Under the assumptions and with the notation of Theorem 3, if L : Ω̄→
RN×N is a continuous tensor such that L(x) is invertible for every x ∈ Ω̄ and

ψ(x, ξ, ν) := |ξ · L(x)ν|,

we have

H(x,A,B) = |L(x) · (A−B)|
h(x, ξ, η) = |ξ · L(x)η|.
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Proof. It is an easy matter to check that the function ψ(x, ξ, ν) := |ξ · L(x)ν|
satisfies the assumptions of Theorem 3. We now prove the representation for H. To
show that |L(x0) · (B − A)| is a lower bound for H(x0, A,B), we note that for any
u ∈ SBV (Q,RN) we have

Du = ∇uLNbQ+ [u]⊗ νuHN−1bS(u) ∩Q,

and from the trace theorem, see Evans and Gariepy [12],

Du(Q) =

∫
∂Q

u⊗ ν dHN−1.

Hence, from the two equations above, we find∫
∂Q

u⊗ ν dHN−1 = Du(Q) =

∫
Q

∇u dLN +

∫
S(u)∩Q

[u]⊗ νu dHN−1. (36)

For given A,B ∈ RN×N and for any u ∈ SBV (Q,RN) such that u|∂Q = Ax and∫
Q
∇u dLN = B we have∫

S(u)∩Q
[u]⊗ ν dHN−1 = −

∫
Q

∇u dLN +

∫
∂Q

u⊗ ν dHN−1

= −B +

∫
Q

∇(Ax) dLN (37)

= −B + A,

and hence∫
S(u)∩Q

|[u] · L(x0)ν| dHN−1 ≥
∣∣∣∣L(x0) ·

∫
S(u)∩Q

[u]⊗ ν dHN−1

∣∣∣∣
= |L(x0) · (B − A)| .

In order to prove that |L(x0) · (B − A)| is an upper bound for H(x0, A,B), we
employ the formula for optimal flux densities in Theorem 2. Indeed, let A be the set
defined in (3) and R any region in A. For given A,B ∈ RN×N define the function,
see Figure 2,

uR(x) :=

{
Ax if x ∈ Q \R
|R|−1(B − A(1− |R|))x if x ∈ R.

It is easily checked that uR ∈ SBV (Q,RN), uR|∂Q = Ax and
∫
Q
∇uR dLN = B.

After noticing that S(uR) ⊂ ∂R and that [uR](x) = |R|−1(A − B)x, and by taking
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R

u  (x)=Ax

u  (x)=
B-(1-|R|)A

|R|
x

Q   R

R

R

Figure 2: The function uR.

uR as a test function, we conclude that

H(x0, A,B) ≤ 1

|R|

∫
∂R

|(A−B)x · L(x0)ν| dHN−1.

Since the above equation holds for any R ∈ A we have

H(x0, A,B) ≤ inf
R∈A

1

|R|

∫
∂R

|LT (x0)(A−B)x · ν| dHN−1. (38)

for every A,B ∈ RN×N .
For given A,B ∈ RN×N , let M0 := LT (x0)(A−B). For every ε > 0, let Mε ∈ S,

with S as in Theorem 1, be such that Mε → M0 as ε approaches zero. Let Cε :=
L−T (x0)Mε and Aε := Cε + B. Then Cε → A − B, and Aε → A as ε approaches
zero. Since Mε = LT (x0)(Aε −B), from (38) and Theorem 2 we deduce that

H(x0, Aε, B) ≤ inf
R∈A

1

|R|

∫
∂R

|LT (x0)(Aε −B)x · ν| dHN−1 = |tr Mε|,

and by the continuity of H with respect to the two last variables, see Prop. 5.2 of
[10], we find that

H(x0, A,B) ≤ |tr M0| = |tr (LT (x0)(A−B))|.

We now prove the representation formula for h. Let (x0, ξ, η) ∈ Q×RN × SN−1

be given. Let also {η1, η2, . . . , ηN−1, η} be an orthonormal basis of RN . For α ∈
(−1/2, 1/2) we define

Sα := {x ∈ Q̄η : x · η = α},
and, for every i = 1, . . . , N − 1,

Si+ := {x ∈ Q̄η : x · η > 0, x · ηi = 1/2}, Si− := {x ∈ Q̄η : x · η > 0, x · ηi = −1/2}.
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Then for u ∈ SBV (Qη,RN) such that u|∂Qη = uξ,η, recall definition (35) of uξ,η,
and

∫
Qη
∇u dLN = 0 we obtain, using equation (36) and the divergence theorem∫
S(u)∩Qη

|[u] · L(x0)ν| dHN−1 ≥

∣∣∣∣∣L(x0) ·
∫
S(u)∩Qη

[u]⊗ ν dHN−1

∣∣∣∣∣
≥

∣∣∣∣∣L(x0) ·

(∫
Qη

∇u dLN −
∫
∂Qη

u⊗ ν dHN−1

)∣∣∣∣∣
=

∣∣∣∣∣L(x0) ·

(
N−1∑
i=1

(∫
Si+

ξ ⊗ ηi dHN−1 −
∫
Si−

ξ ⊗ ηi dHN−1

)

+

∫
S1/2

ξ ⊗ η dHN−1

)∣∣∣∣∣
=

∣∣∣∣∣L(x0) ·

(
N−1∑
i=1

1

2

(
ξ ⊗ ηi − ξ ⊗ ηi

)
+ ξ ⊗ η

)∣∣∣∣∣
= |ξ · L(x0)η| .

The upper bound simply follows by taking uξ,η as test function. In fact

h(x0, ξ, η) ≤
∫
S(uξ,η)∩Qη

|[uξ,η] · L(x0)η| dHN−1

=

∫
S0

|ξ · L(x0)η| dHN−1 = |ξ · L(x0)η|. 2

Proof of Theorem 4. Let A,B ∈ RN×N and x0 ∈ Q be fixed. For any u ∈
SBV (Q,RN) such that u|∂Q = Ax and

∫
Q
∇u dLN = B we have, taking into ac-

count (37), that

2

∫
S(u)∩Q

([u] · L(x0)ν)± dHN−1

=

∫
S(u)∩Q

|[u] · L(x0)ν| dHN−1 ±
∫
S(u)∩Q

[u] · L(x0)ν dHN−1

=

∫
S(u)∩Q

|[u] · L(x0)ν| dHN−1 ± L(x0) · (−B + A).

Hence taking the infimum of both sides of the equation above we find

2H(x0, A,B) = |L(x0) · (A−B)| ± L(x0) · (−B + A) = 2(L(x0) · (A−B))±,

where, to evaluate the right hand side, we have used Lemma 2.
The representations for h in Theorem 4 follow in a similar manner. 2
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5 Multiscale geometrical interpretations of opti-

mal flux densities

We begin by providing geometrical interpretations for the formulas H(x,A,B) =
(L(x) · (A − B))± for the volume density of the relaxed energy obtained in The-
orem 4. These interpretations rest on the interpretations of the initial energy∫
S(u)∩Q([u] · L(x0)ν)± dHN−1. We take the simple case in which L is the constant

mapping with value I, the identity matrix, and in which the positive part ([u] · ν)+

of the normal component of the jump appears in the initial interfacial energy. The
integral in the initial energy then represents the volume swept out by jumps in u
that cause separation at the disarrangement site S(u) ∩ Q, and the corresponding
bulk relaxed density (I ·(A−B))+ = tr(A−B)+ represents the least volume fraction
in the reference region Ω that can arise from separations associated with simple de-
formations that converge to a structured deformation (g,G) with constant ∇g = A
and with G = B. In particular, for a given N ×N matrix M0, we may take g to be
the identity mapping x 7−→ x, so that A = I, and we may take G to be I+M0. For
these choices, the structured deformation (i, I +M0) is ”purely submacroscopic” in
that it produces no macroscopic changes while guaranteeing that, in a precise limit-
ing sense, small pieces of the reference region Ω are deformed by an average amount
I+M0 with each piece being centered in its original location. The bulk relaxed den-
sity tr(A−B)+ = (trM0)+ then represents the least volume fraction in the reference
region swept out by separations alone in producing the purely submacroscopic de-
formation (i, I + M0). Thus, the relaxed volume density of the particular initial
energy considered in this example provides purely geometrical information about
the submacroscopic separations associated with structured deformations and has
relevance in describing bodies that accumulate submacroscopic separations during
changes in shape.

Alternatively, when the negative part ([u] · ν)− of the normal component of the
jump is taken in the initial interfacial energy density, then the initial energy tracks
the volume swept out in the reference region due to switching or, when u is not
injective, interpenetration of pieces of the reference region. For the structured de-
formation (i, I + M0) the corresponding relaxed volume density tr(M0)− provides
geometrical information about the volume fraction of material in the reference re-
gion that is swept out by submacroscopic switches and interpenetrations across
disarrangement sites. This bulk relaxed density has relevance in the description of
bodies that experience diffused submacroscopic defects that can switch places with
one another or with normal pieces of the body (as in the case of dislocation motion)
or in the case of bodies in which two distinct lattices interpenetrate.
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Of course, the relation

([u] · ν)+ + ([u] · ν)− = |[u] · ν|

tells us that when |[u] · ν| is taken as the initial interfacial density, then both the
initial energy and the relaxed bulk energy density |tr(A−B)| track separations,
switches and interpenetrations. In particular, the relaxed volume density |tr(M0)|
for the purely submacroscopic structured deformation (i, I+M0) provides the volume
fraction of volume swept out by separations, switches, and interpenetrations.

When the matrix M0 is in the set S in Theorem 1, then we have from Theorem
2:

inf
R∈A

1

|R|

∫
∂R

|M0x · ν(x)| dHN−1(x) = |trM0|,

and we conclude that the infimum on the left-hand side of this formula not only rep-
resents the optimal total density of flux arising from the linear mapping x 7−→M0x,
but also represents the least volume fraction swept out by separations, switches, and
interpenetrations arising from simple deformations un converging to x 7−→ x and
with ∇un converging to I + M0 in the sense described in (34). It is easy to show
from Theorem 2 that for M0 ∈ S

inf
R∈A

1

|R|

∫
∂R

(M0x · ν(x))± dHN−1(x) = (trM0)±,

from which we conclude that, for each choice of ±, the optimal flux density on the
left-hand side also represents the least volume fraction swept out by separations (for
the case of “+”) or by switches and interpenetrations (for the case of “−”) arising in
simple deformations un converging to x 7−→ x and with ∇un converging to I + M0

in the sense described in (34). In this manner, we have established the desired
connections between optimal flux densities and optimal measures of submacroscopic
geometrical changes associated with structured deformations.

Acknowledgments: In a private communication M. Šilhavý has independently
provided a corrected version of the relation (2.17) contained in [10].
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