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ABSTRACT. The average distance problem finds application in data parameterization, which in-
volves “representing” the data using lower dimensional objects. From a computational point of
view it is often convenient to restrict the unknown to the family of parameterized curves. How-
ever this formulation exhibits several undesirable properties. In this paper we propose an alter-
native variant: the average distance functional is replaced by a transport cost, and the unknown
is composed both by a curve and by a “projected measure”, on which an Lq penalization term
is added. Moreover we will add a term penalizing non injectivity. We will use techniques from
optimal transport theory and calculus of variations. The main aim is to prove essential bounded-
ness, and a variant of Lipschitz continuity for Radon-Nikodym derivative of projected measures
for minimizers.
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1. INTRODUCTION

The average distance problem was first proposed for mathematical modeling of optimization
problems, such as urban planning and image processing, and for application in statistics. It also
finds application in data parameterization, where given a data distribution, the aim is to find
a lower dimensional object “representing” such data (see for instance Drineas, Frieze, Kannan,
Vempala and Vinay [6], Smola, Mika, Schölkopf and Williamson [21]). The average distance
problem was first analyzed by Buttazzo, Oudet and Stepanov in [3], where several qualitative
properties of minimizers were proven. Further results were proven in Buttazzo and Stepanov [4,
5], Paolini and Stepanov [18]. A similar formulation, often referred as “penalized formulation”,
was introduced by Buttazzo, Mainini and Stepanov introduced in [2]:

Problem 1.1. Given d ≥ 2, a nonnegative, compactly supported measure µ and a parameter λ > 0,
minimize

Eλµ : A −→ [0,+∞), Eλµ(·) := Fµ(·) + λH1(·),
where

Fµ : A −→ [0,+∞), Fµ(Σ) :=

∫
Rd

inf
y∈Σ
|x− y|dµ(x),

A := {Σ ⊆ Rd : Σ compact, path-wise connected,H1(Σ) < +∞}.

Existence of minimizers follows from Blaschke’s selection theorem and and Gołąb’s theo-
rem. For future reference any considered measure will be assumed nonnegative, compactly
supported, probability measure. The choice to work with probability measures is done for the
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sake of simplicity, and results proven in this paper can be easily extended to finite measures.
Problem 1.1 could be used to parameterize data clouds, i.e. representing a distribution of data
point using lower dimensional objects, in this case elements of A. Let

• µ be the distribution of data points,
• Σ (the unknown) be the set parameterizing the data points.

Thus Fµ(Σ) represents the “error” of such representation, while λH1(Σ) is the cost associated to
its complexity. Although it is possible to consider penalizations terms of the form G(Σ) (instead
of λH1(Σ)), with G satisfying some natural conditions (e.g. G non decreasing with respect to
set inclusion, etc.), this is outside the scope of this paper. Thus minimizing Eλµ corresponds
to finding the “best” one dimensional parameterization, which “balances” approximation error
and complexity.

Moreover, from a computational point of view it is often advantageous to restrict the un-
known to the family of parameterized curves. We need first to define the “length” of a param-
eterized curve, as defining it as H1-measure of the graph is not natural, since injectivity is not
imposed and points (of the graph) can be visited multiple times. Let

C∗ := {γ∗ : [0, 1] −→ Rd : γ∗ differentiable L1-a.e. with |(γ∗)′| constant L1-a.e.},
and define the “length” of a curve γ∗ ∈ C∗ as its total variation

(1.1) Lγ∗ := ‖γ∗‖TV = sup
n

 sup
0=t0<···<tn−1<tn=1

n∑
j=1

|γ∗(tj)− γ∗(tj−1)|

 .

For the sake of simplicity, we will work with elements of

C := {γ : [0, a] −→ Rd : a ≥ 0, γ differentiable L1-a.e. with |γ′| = 1 L1-a.e.}.
Elements of C∗ will be referred as “constant speed parameterized curves”, while elements of C will
be referred as “arc-length parameterized curves”. A natural way to define the “length” of an arc-
length parameterized curve γ : [0, a] −→ Rd is the following:

(1) if a = 0, then Lγ := 0,
(2) if a > 0, then Lγ := Lγ∗ where γ∗ ∈ C∗, γ∗ : [0, 1] −→ Rd, γ∗(t) := γ(ta).

Thus by construction Lγ = a, and the domain of a curve γ ∈ C is [0, Lγ ]. The average distance
problem becomes:

Problem 1.2. Given d ≥ 2, a nonnegative, compactly supported measure µ and a parameter λ > 0,
minimize

Ẽλµ : C −→ [0,+∞), Ẽλµ(γ) := F̃µ(γ) + λLγ ,

where
F̃µ : C −→ [0,+∞), F̃µ(γ) :=

∫
Rd

inf
y∈Γγ

|x− y|dµ, Γγ := γ([0, Lγ ]).

For future reference notation Lγ will denote the “length” of γ, while Γγ will denote its graph.
More details on the space C (including its topology) will be discussed in Section 2. In many
applications the integrand infy∈Γγ |x − y| can be replaced by infy∈Γγ |x − y|p for some p ≥ 1.
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Choice p = 2 is the most common. Note that in this case, if the reference measure µ is discrete,
i.e.

µ :=
∑
j

ajδxj ,
∑
j

aj = 1, aj ≥ 0 ∀j,

then
F̃µ(γ) =

∑
j

aj |xj − yj |2, yj ∈ argminy∈Γγ
|xj − y| ∀j,

i.e. F̃µ(γ) is the (weighted) mean square distance of points xj from the graph of γ. Problem 1.2
is related to “principal curves”, and the lazy traveling salesman problem (see for instance Polak
and Wolanski [19]). Principal curves are widely used in statistics and machine learning. For
a (highly non exhaustive) list of references about the literature (both theoretical and applied)
on principal curves, we cite Duchamp and Stuetzle [7, 8], Fischer [9], Hastie [10], Hastie and
Stuetzle [11], Kégl [12], Kégl and Aetal [13], Ozertem and Erdogmus [17], Tibshirani [22].

However the formulation of Problem 1.2 still exhibits several undesirable properties when
used in data parameterization:

(1) it has been proven (Slepčev [20]) that even assuming µ � Ld with dµ/dLd ∈ C∞,
Problem 1.1 may admit minimizers which are simple curves failing to be C1 regular.
Moreover, any simple curve minimizing Problem 1.1 admits a parameterization γ ∈ C
minimizing Problem 1.2, and a positive amount of mass is projected on any point on
which C1 regularity fails. For further details about “projections”, we refer to Section
2 of [16]. In data parameterization, this corresponds to a loss of information, which is
undesirable.

(2) The aforementioned configuration is a limit case of a more general issue: indeed in the
formulation of Problem 1.2 there is no penalization for very high (even infinite) data
concentration on the representation.

(3) In [15] it has been proven that Problem 1.1 may admit minimizers which are simple
curves (thus these admit parameterizations minimizing Problem 1.2) whose set of non
differentiability is not closed. This makes difficult to “control” the set on which C1 regu-
larity fails.

(4) Injectivity is not guaranteed, but highly desired: indeed given a minimizer γ of Problem
1.2, there are two “natural” choices of distances:
• for data points, Euclidean distance is the natural choice,
• on the representation γ however, the natural distance is the path distance dγ , defined

as dγ
(
γ(s), γ(t)

)
:= |s− t|, s, t ∈ [0, Lγ ].

Clearly, if γ is not injective, then there exist s, t satisfying s < t and γ(s) = γ(t). Thus
these two distances are not equivalent, and data points which are “close” (with respect to
Euclidean distance) can be projected on points which are “distant” (with respect to dγ).
This is undesirable. Figure 2 is a schematic representation of this situation.

(5) The functional F̃µ forces any point to project on one of the closest points on the curve.
This imposes strong geometric rigidity on minimizers.
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γopt (graph of)

p

B

FIGURE 1. In this example from [20], the set B ⊆ supp(µ) of positive µ-measure is
projected on the single point p, on which C1 regularity fails.

Thus we propose an alternative variant:

Problem 1.3. Given d ≥ 2, a measure µ, and parameters λ, ε, ε′ > 0, p ≥ 1, q > 1, solve

min
(γ,ν,Π)∈T

E [µ, λ, ε, ε′, p, q](γ, ν,Π),

where

T := {(γ, ν,Π) : γ ∈ C, ν probability measure on [0, Lγ ],

Π transport plan between µ and γ]ν},

E [µ, λ, ε, ε′, p, q](γ, ν,Π) :=

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε

∫ Lγ

0
νq dL1 + ε′η(γ),

η(γ) :=

∫ Lγ

0

∫ Lγ

0

(
|t− s|

|γ(t)− γ(s)|

)2

dtds,

(1.2)
∫ Lγ

0
νq dL1 :=


∫ Lγ

0

(
dν

dL1

)q
dL1 if ν � L1,

+∞ otherwise.



REGULARITY OF DENSITIES IN RELAXED AND PENALIZED AVERAGE DISTANCE PROBLEM 5

γ (graph of)
γ(t) = γ(s)

γ(It) γ(Is)

time increases in this direction

µ

FIGURE 2. In this configuration, assuming t < s, points belonging to the red part are
projected on γ(Is), while points belonging to the green part are projected on γ(It). The
sets γ(Is) and γ(It) are distant with respect to dγ . The colored area is part of supp(µ).
Time increases along the direction of dotted arrows.

The convergence in T will be detailed in Section 2. Note that the formulation of Problem 1.3 is
quite different from classical average distance problem, and resembles the Monge-Kantorovich
problem. Definition (1.2) is justified in view of Lemma 2.3. Existence of minimizers will be

proven in Lemma 2.1. For future reference
∫ Lγ

0
νq dL1 will be referred as “density penalization

term”, while with an abuse of notation, the transport cost
∫
Rd×Γγ

|x− y|p dΠ(x, y) will be referred

as “average distance term”. The transport plan Π is more a technical expedient, and will play a
marginal role in the following. Given x ∈ supp(µ), y ∈ Γγ , we will say that “x projects on y” if
(x, y) ∈ supp(Π). Note that:

• ε′η(γ) penalizes non injectivity;

• ε
∫ Lγ

0
νq dL1 penalizes high concentrations of data on Γγ . In particular it diverges if a

positive amount of data is projected on a singleton;
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• the functional F̃µ(γ) (from Problem 1.2) is replaced by
∫
Rd×Γγ

|x− y|p dΠ(x, y), allowing

data points to be projected on any point (not just the closest ones). However, project-
ing on a distant point increases transport cost, but can be advantageous if such choice
decreases the density penalization term.

The aim of this paper is to prove essential boundedness (Theorem 3.1) and “Lipschitz regular-
ity” (Theorem 3.2) for dν/dL1, when (γ, ν,Π) is a minimizer. Note that dν/dL1 is well defined
upon L1-negligible sets. This paper will be structured as follows:

• in Section 2 we introduce preliminary notations and results, and prove existence of min-
imizers for Problem 1.3,
• in Section 3 we prove that for any minimizer (γ, ν,Π) of Problem 1.3, the Radon-Nikodym

derivative dν/dL1 is essentially bounded. Moreover, if the exponent q appearing in the
density penalization term is assumed q = 2, then dν/dL1 satisfies a variant of Lipschitz
continuity.

2. PRELIMINARIES

The aim of this section is to present preliminary notions and results. The main result is ex-
istence of minimizers for Problem 1.3. We endow the space C with the following convergence:

given a sequence {γn} ⊆ C, we say {γn} converges to γ ∈ C (and write {γn}
C→ γ) if:

• {Lγn} → Lγ ,
• upon time inversion, i.e. replacing (for suitable indices) γn with γ̃n defined as γ̃n(t) :=
γn(Lγn − t), the sequence {γ∗n} converges to γ∗ uniformly, where

γ∗ : [0, 1] −→ Rd, γ∗(t) := γ(tLγ),

γ∗n : [0, 1] −→ Rd, γ∗n(t) := γn(tLγn), n = 1, 2, · · ·
denote the constant speed reparameterizations.

The convergence in C induces a “natural” convergence in T : we say that a sequence {(γn, νn,Πn)} ⊆
T converges to (γ, ν,Π) ∈ T (and write {(γn, νn,Πn)} T→ (γ, ν,Π)) if {γn}

C→ γ, {νn}
∗
⇀ν,

{Πn}
∗
⇀Π.

The first issue is existence of minimizers. For the sake of brevity we will omit writing the
dependency on dimension (since all results will be valid for any dimension) for all quantities.

Lemma 2.1. Given d ≥ 2, a measure µ, parameters λ, ε, ε′ > 0, p ≥ 1, q > 1, the functional
E [µ, λ, ε, ε′, p, q] admits minimizers in T .

The proof will be split over several lemmas. Note that the set {E [µ, λ, ε, ε′, p, q] < +∞} is non
empty: indeed choose arbitrary points x ∈ supp(µ), y ∈ B(x, 1), and let

ψ : [0, 1] −→ Rd, ψ(t) := (1− t)x+ ty.

Let Π be an arbitrary optimal plan between µ and ψ]L1
x[0,1]. Then direct computation gives

(2.1) E [µ, λ, ε, ε′, p, q](ψ,L1
x[0,1],Π) ≤ (diam supp(µ) + 1)p + λ+ ε+ ε′ < +∞.
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Lemma 2.2. Given d ≥ 2, a measure µ, parameters λ, ε, ε′ > 0, p ≥ 1, q > 1,M ≥ infC E [µ, λ, ε, ε′, p, q],
and a sequence {(γn, νn,Πn)} ⊆ T ∩ {E [µ, λ, ε, ε′, p, q] ≤M}, then it holds:

(1) length estimate:

(2.2) 0 < (M/ε)
1

1−q ≤ inf
n
Lγn ≤ sup

n
Lγn ≤M/λ < +∞,

(2) confinement condition:

(2.3)
⋃
n

Γγn ⊆
(

supp(µ)
)
M1/p+M/λ

,

where for given r ≥ 0,(
supp(µ)

)
r

:=

{
x ∈ Rd : inf

z∈supp(µ)
|x− z| ≤ r

}
.

Proof. Length estimate. Note that

(∀n) λLγn ≤ E [µ, λ, ε, ε′, p, q](γn, νn,Πn) ≤M =⇒ Lγn ≤M/λ,

proving the upper bound in (2.2).
Fix an arbitrary n. Condition E [µ, λ, ε, ε′, p, q](γn, νn,Πn) ≤M gives

M ≥ E [µ, λ, ε, ε′, p, q](γn, νn,Πn) ≥ ε
∫ Lγn

0

(
dνn
dL1

)q
dL1 ≥ ε

∫ Lγn

0

(
1

Lγn

∫ Lγn

0

dνn
dL1

dL1

)q
dL1

= ε

∫ Lγn

0

(
1

Lγn

)q
dL1 = εL1−q

γn .

Since q > 1, it follows L1−q
γn ≤M/ε , proving the lower bound in (2.2).

Confinement condition. Note that for any n and ξ ≥ 0, if Γγn ∩
(

supp(µ)
)

(M+ξ)1/p
= ∅ then

E [µ, λ, ε, ε′, p, q](γn, νn,Πn) ≥
∫
Rd×Γγn

|x− y|p dΠ(x, y) ≥M + ξ.

Since {(γn, νn,Πn)} ⊆ T ∩ {E [µ, λ, ε, ε′, p, q] ≤M}, it follows

(∀n)(∀ξ > 0) Γγn ∩
(

supp(µ)
)

(M+ξ)1/p
6= ∅.

Using length estimate supn Lγn ≤M/λ gives

(∀n)(∀ξ > 0) Γγn ⊆
(

supp(µ)
)

(M+ξ)1/p+M/λ
,

and the arbitrariness of ξ proves (2.3). �

Lemma 2.3. Given d ≥ 2, a measure µ, parameters λ, ε, ε′ > 0, p ≥ 1, q > 1, and (γ, ν,Π) ∈ T
satisfying E [µ, λ, ε, ε′, p, q](γ, ν,Π) < +∞, then ν � L1.

Proof. Lebesgue decomposition theorem gives ν = νa + νs, where νa � L1, νs⊥L1. Assume by
contradiction νs 6= 0, i.e. there exists a L1- negligible set A ⊆ [0, Lγ ] such that νs(A) = a > 0. Let
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{An} be a sequence of open sets satisfying An ⊇ A and L1(An) = 1/n (for any n ∈ N). Then it
holds

lim inf
n

∫
An

νqs dL1 ≥ lim inf
n

∫
An

∫
An

(
a

1/n

)q
dL1 = lim inf

n

∫
An

aqnq−1 = +∞,

which contradicts E [µ, λ, ε, ε′, p, q](γ, ν,Π) < +∞. �

Note that

(2.4) (∀γ ∈ C) η(γ) < +∞ =⇒ γ injective.

This because if there exist t, s ∈ [0, 1] with t < s, γ(t) = γ(s), the integrand
(

|s− t|
|γ(s)− γ(t)|

)2

would have an asymptote of order two in t, thus η(γ) = +∞.
Now it is possible to prove Lemma 2.1.

Proof. (of Lemma 2.1) Consider a minimizing sequence {(γn, νn,Πn)}. Since (in view of (2.1))

inf
T
E [µ, λ, ε, ε′, p, q] ≤ (diam supp(µ) + 1)p + λ+ ε+ ε′ =: M,

assume without loss of generality supn E [µ, λ, ε, ε′, p, q](γn, νn,Πn) ≤ 2M . Lemma 2.2 gives c1, c2

such that c2 ≥ supn Lγn ≥ infn Lγn ≥ c1 > 0. Let

γ∗n : [0, 1] −→ Rd, γ∗n(t) := γn(tLγn), n = 1, 2, · · ·
be constant speed reparameterizations. Lemma 2.2 proves that the sequence {γ∗n} satisfies con-
ditions of Ascoli-Arzelà theorem, thus (upon subsequence, which will not be relabeled) there
exists γ∗ : [0, 1] −→ Rd such that {γ∗n} → γ∗ uniformly, and Lγ∗ := limn Lγ∗n > 0. This implies

{γn}
C→ γ, where

γ : [0, Lγ∗ ] −→ Rd, γ(t) := γ∗(t/Lγ∗).

Define the measures ν∗n as

ν∗n(B) := νn(BLγn) for any L1-measurable set B ⊆ [0, 1], n = 1, 2, · · · ,
where BLγn := {t ∈ [0, Lγn ] : t/Lγn ∈ B}. Since {(γn, νn,Πn)} is a minimizing sequence, it
follows

sup
n

∫ Lγn

0
νqn dL1 < +∞ =⇒ ν∗n � L1, n = 1, 2, · · · .

Let fn := dν∗n/dL1, n = 1, 2, · · · . Since νn are nonnegative, it follows fn ≥ 0 for any n, and∫ Lγn

0
νqn dL1 differs from

∫ 1

0
f qn dL1 by the multiplicative constant Lγn . This yields

sup
n

∫ Lγn

0
νqn dL1 < +∞ =⇒ sup

n

∫ 1

0
f qn dL1 < +∞,

i.e. the sequence {fn} is bounded in Lq([0, 1]). Thus there exists f ∈ Lq([0, 1]) such that (upon
subsequence, which will not be relabeled) {fn}⇀ f , which implies

{ν∗n} = {fn · L1} ∗⇀f · L1 =: ν∗,
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and ∫ 1

0
f q dL1 = ‖f‖qLq ≤ lim inf

n
‖fn‖qLq = lim inf

n

∫ 1

0
f qn dL1.

Since {Lγn} → Lγ , it follows

(2.5) {νn}
∗
⇀ν,

∫ Lγ

0
νq dL1 ≤ lim inf

n

∫ Lγn

0
νqn dL1,

where ν is defined as

ν(B) := ν∗(B/Lγn) for any L1-measurable set B ⊆ [0, Lγ ], B/Lγ := {t ∈ [0, 1] : tLγ ∈ B}.
Note that Γγn ⊆ Rd, thus γn]νn (resp. Πn) is also a measure on Rd (resp. Rd × Rd). Thus∫

Rd×Γγn

|x− y|p dΠn(x, y) =

∫
Rd×Rd

|x− y|p dΠn(x, y),

eliminating any problem that a moving domain of integration may generate. Prokhorov’s theo-
rem gives the existence of Π such that (upon subsequence, which will not be relabeled) {Πn}

∗
⇀Π,

and Π is a transport plan between µ and γ]ν (for further details about stability of transport plans,
we refer to [1], [23] and references therein), yielding

(2.6) lim
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) =

∫
Rd×Γγ

|x− y|p dΠ(x, y).

It remains to prove lower semicontinuity for ε′η(·). Let

gn : [0, 1]× [0, 1] −→ R, gn(t, s) :=

(
|s− t|

|γ∗n(s)− γ∗n(t)|

)2

.

g : [0, 1]× [0, 1] −→ R, g(t, s) :=

(
|s− t|

|γ∗(s)− γ∗(t)|

)2

.

Since {γ∗n} → γ∗ uniformly, it follows {gn} → g pointwisely. Fatou’s lemma gives

(∀s ∈ [0, 1])

∫ 1

0
g(s, t) dt ≤ lim inf

n

∫ 1

0
gn(s, t) dt,

i.e.

η(γ∗) =

∫ 1

0

∫ 1

0
g(s, t) dtds ≤

∫ 1

0

(
lim inf

n

∫ 1

0
gn(s, t) dt

)
ds

≤ lim inf
n

∫ 1

0

∫ 1

0
gn(s, t) dtds = lim inf

n
η(γ∗n).

Since η(γn) (resp. η(γ)) differs from η(γ∗n) (resp. η(γ∗)) by the multiplicative constant L2
γn (resp.

L2
γ), it follows

lim inf
n

η(γn) ≥ η(γ).

Since {Lγn} → Lγ , combining with (2.5) and (2.6) gives

E [µ, λ, ε, ε′, p, q](γ, ν,Π) ≤ lim inf
n
E [µ, λ, ε, ε′, p, q](γn, νn,Πn),
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and the proof is complete. �

We conclude this section with two simple observations.

Lemma 2.4. Given d ≥ 2, a measure µ, parameters λ > 0, p ≥ 1, q > 1, sequences {εn}, {ε′n} → 0,
and (γ, ν,Π) ∈ T , then it holds:

• any sequence {(γn, νn,Πn)} T→ (γ, ν,Π), satisfies

(2.7) lim inf
n
E [µ, λ, εn, ε

′
n, p, q](γn, νn,Πn) ≥

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ ;

• assume there exist ε, ε′ > 0 such that E [µ, λ, ε, ε′, p, q](γ, ν,Π) < +∞. Then there exists a
sequence {(γn, νn,Πn)} T→ (γ, ν,Π), such that

(2.8) lim sup
n
E [µ, λ, εn, ε

′
n, p, q](γn, νn,Πn) ≤

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ ;

Proof. Fix an arbitrary (γ, ν,Π) ∈ T . Consider an arbitrary sequence {(γn, νn,Πn)} T→ (γ, ν,Π).
It holds

lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + εn

∫ Lγn

0
νqn dL1 + ε′nη(γn)

≥ lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn

≥
∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ ,

proving (2.7).
To prove (2.8), note that since by hypothesis there exist ε, ε′ > 0 such that E [µ, λ, ε, ε′, p, q](γ, ν,Π) <

+∞, it follows that γ is injective in view of (2.4), and ν � L1 in view of Lemma 2.3. Let

γn := γ, νn := ν, Πn := Π, n = 1, 2, · · · .

By construction {(γn, νn,Πn)} T→ (γ, ν,Π), and∫ Lγn

0
νqn dL1 =

∫ Lγn

0
νq dL1 < +∞, η(γn) = η(γ) < +∞, n = 1, 2, · · · ,

thus

lim
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + εn

∫ Lγn

0
νqn dL1 + ε′nη(γn)

=

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ ,

proving (2.8). �
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Lemma 2.5. Given d ≥ 2, a measure µ, parameters λ, ε′ > 0, p ≥ 1, q > 1, a sequence {εn} → 0, and
(γ, ν,Π) ∈ T , then there exists a sequence {(γn, νn,Πn)} T→ (γ, ν,Π) such that

lim
n
E [µ, λ, εn, ε

′, p, q](γn, νn,Πn) = E [µ, λ, 0, ε′, p, q](γ, ν, P i)(2.9)

=

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′η(γ).

In particular {E [µ, λ, εn, ε
′, p, q]} Γ→ E [µ, λ, 0, ε′, p, q] as n→ +∞.

Before the proof, note that for fixed γ, the quantity

E [µ, λ, 0, ε′, p, q](γ, ν,Π) =

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′η(γ)

is minimum when ∫
Rd×Γγ

|x− y|p dΠ(x, y) =

∫
Rd

inf
z∈Γγ
|x− z|p dµ(x),

since only the average distance term depends on ν and Π.

Proof. If η(γ) = +∞ then (2.9) follows. Thus assume η(γ) < +∞, i.e. γ is injective.
• Case Lγ > 0.

Let γn := γ, n = 1, 2, · · · . Note that for any t ∈ [0, Lγ ] the measure δt (Dirac measure in t)
can be approximated (in the weak-∗ topology) by measures of the form fn,t · L1

x[0,Lγ ], where
fn,t := knχIt(kn), {kn} → +∞, χ denotes the characteristic function of the subscripted set, and
It(kn) is an arbitrary interval containing t such that L1(It(kn)) = 1/kn. Thus any measure of the
form ( H∑

j=1

ajδtj

)
· L1
x[0,Lγ ], H ∈ N,

H∑
j=1

aj = 1, {tj} ⊆ [0, Lγ ]

can be approximated (in the weak-∗ topology) by measures of the form
(∑H

j=1 ajfn,t

)
· L1
x[0,Lγ ].

Thus ν can be approximated (in the weak-∗ topology) by a sequence of measures {νn} the form

νn :=

Hn∑
j=1

aj,nfn,tj,n

 · L1
x[0,Lγ ],

for suitable choices of {Hn} ⊆ N, {aj,n} ⊆ [0, 1],
∑

j,n aj,n = 1, {tj,n} ⊆ [0, Lγ ]. Choosing

kn := ε
1/(2−2q)
n gives

(∀n, t)
∫ Lγ

0
f qn,t dL1 ≤ kq−1

n = ε−1/2
n ,

thus

(2.10) (∀n)

∫ Lγ

0

(
dνn
dL1

)q
dL1 ≤ ε−1/2

n .
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For any n, choose an optimal plan Πn between µ and γ]νn. Since {νn}
∗
⇀ν, it follows (upon

subsequence, which will not be relabeled) {Πn}
∗
⇀Π, and

lim
n
E [µ, λ, εn, ε

′, p, q](γn, νn,Πn) = lim
n

∫
Rd×Γγ

|x− y|p dΠn(x, y) + λLγ

+ εn

∫ Lγ

0

(
dνn
dL1

)q
dL1 + ε′η(γ)

(2.10)
≤
∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′η(γ).

• Case Lγ = 0.
This implies ν = δ0. Choose an arbitrary unit vector w ∈ Rd, let {P} := Γγ and

γn : [0, ξn] −→ Rd, γn(t) := P + tw, ξn := ε1/(2q−2)
n n = 1, 2, · · · .

By construction {γn}
C→ γ. Let

νn := ξ−1
n · L1

x[0,ξn], n = 1, 2, · · · ,

and direct computation gives

(∀n)

∫ ξn

0

(
dνn
dL1

)q
dL1 ≤ ε−1/2

n .

By construction {νn}
∗
⇀ν. For any n choose an optimal plan Πn between µ and γn]νn, and (note

that Πn can be considered as measure on Rd, thus eliminating any problem potentially related
to a moving domain of integration) upon subsequence (which will not be relabeled) {Πn}

∗
⇀Π.

Since by construction {η(γn)} → 0, it follows

lim
n
E [µ, λ, εn, ε

′, p, q](γn, νn,Πn) = lim
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λξn

+ εn

∫ ξn

0

(
dνn
dL1

)q
dL1 + ε′η(γn)

=

∫
Rd×Γγ

|x− y|p dΠ(x, y) =

∫
Rd
|x− P |p dµ(x).

Thus (2.9) is proven. Since for any sequence {(γn, νn,Πn)} T→ (γ, ν,Π) it holds

lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + εn

∫ Lγn

0
νqn dL1 + ε′η(γn)

≥ lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + ε′η(γn)

≥
∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′η(γ),
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it follows {E [µ, λ, εn, ε
′, p, q]} Γ→ E [µ, λ, 0, ε′, p, q] as n→ +∞. �

3. REGULARITY OF DENSITIES

In Lemma 2.3 it has been proven that if (γ, ν,Π) is a minimizer of Problem 1.3 then ν � L1.
In this section further regularity properties will be analyzed. The main results are:

Theorem 3.1. (Essential boundedness) Given d ≥ 2, a measure µ, parameters λ, ε, ε′ > 0, p ≥ 1, q > 1,
and a minimizer (γ, ν,Π) of E [µ, λ, ε, ε′, p, q], then dν/dL1 ∈ L∞.

Theorem 3.2. (“Lipschitz continuity”) Given d ≥ 2, a measure µ, parameters λ, ε, ε′ > 0, p ≥ 1, and a
minimizer (γ′, ν ′,Π′) of E [µ, λ, ε, ε′, p, 2], then for any time t ∈ [0, Lγ ], it holds:

(1) upon suitably modifying dν/dL1 on a L1-negligible set, dν/dL1 is continuous in t,
(2) denoting by Λ the set of Lebesgue points of dν/dL1, for arbitrary sequences {tn} → t, {sn} → t,
{tn}, {sn} ⊆ Λ, there exists n0 such that

(∀n ≥ n0)

∣∣∣∣ dν
dL1

(tn)− dν
dL1

(sn)

∣∣∣∣ ≤ H|tn − sn|,
where

H := p(M1/p +M/λ)p−1/ε, M := (diam supp(µ) + 1)p + λ+ ε+ ε′.

In particular, conclusions (1) and (2) imply that for any t ∈ [0, Lγ ] there exists a function g such that:
• g is continuous in t,
• L1({dν/dL1 6= g}) = 0 ,
• for any sequence {tn} → t it holds |g(tn)− g(t)| ≤ H|tn − t|.

Choice q = 2 in Theorem 3.2 is due to technical reasons, as noted in Remark I in the following.
The next lemma will be useful.

Lemma 3.3. Given K ≥ 1, a, b ∈ [0,K], p ≥ 1, then it holds |ap − bp| ≤ |a− b|pKp−1.

Proof. Assume by symmetry a ≥ b. If p ∈ N, then

ap − bp = (a− b)
p−1∑
j=0

ap−1−jbj
a,b≤K
≤ (a− b)pKp−1.

If p /∈ N, let g(p) :=
ap − bp

a− b
, and note that the only issue is the diagonal {a = b}. Moreover direct

computation gives {∇g = 0} ⊆ {a = b}. For any sufficiently small δ � 1, letting a = (1 + δ)b
gives g(a, b) ≈ pbp−1 ≤ pKp−1. Note also that for a = K, b 7→ g(K, b) is maximum when
Kp − bp

K − b
= pbp−1, concluding the proof. concluding the proof. �

Proof. (of Theorem 3.1) Note that the term η(γ) depends only on γ, not on ν or Π. As the follow-
ing construction does not alter γ, the term η(γ) does not change.
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Choose an arbitrary S � 1, and let AS := {S ≤ dν/dL1 ≤ S4/3}. Clearly L1(AS)S ≤ 1.
Assume L1(AS) > 0. The goal is to find an upper bound for S. Since (γ, ν,Π) is a minimizer, it
follows

E [µ, λ, ε, ε′, p, q](γ, ν,Π) ≤ (diam supp(µ) + 1)p + λ+ ε+ ε′ =: M.

Lemma 2.2 gives the existence of constants c := (M/ε)
1

1−q < 1, C := M/λ such that C ≥ Lγ ≥
c > 0. The set B := {dν/dL1 ≤ 2/c} ⊆ [0, Lγ ] satisfies L1(B) ≥ 1− c/2. Let

ν ′S := ν − νxAS +
ν(AS)

L1(B)
L1
xB.

In particular, for any S > 2/c it holdsAS∩B = ∅. Let Π′S be an optimal plan between µ and γ]ν ′S .
Consider arbitrary x ∈ supp(µ), y, y′ ∈ Γγ . Lemma 2.2 gives

∣∣|x − y| − |x − y′|∣∣ ≤ M1/p + M/λ,
where clearlyM ≥ 1. Thus applying Lemma 3.3 (with a := |x−y|, b := |x−y′|,K := M1/p+M/λ)
gives ∣∣|x− y|p − |x− y′|p∣∣ ≤ ∣∣|x− y| − |x− y′|∣∣p(M1/p +M/λ)p−1

≤ Lγp(M1/p +M/λ)p−1,

i.e. ∫
Rd×Γγ

|x− y|dΠ′S(x, y)−
∫
Rd×Γγ

|x− y|dΠ(x, y) ≤ Lγp(M1/p +M/λ)p−1ν(AS)

≤ Cp(M1/p +M/λ)p−1S4/3L1(AS).(3.1)

Recalling that
dν ′S
dL1

∣∣∣∣
AS

= 0 for any S > 2/c, it follows

∫
B

(
dν ′S
dL1

)2

dL1 −
∫
B

(
dν

dL1

)2

dL1 =

∫
B

(
dν

dL1
+
ν(AS)

L1(B)

)2

dL1 −
∫
B

(
dν

dL1

)2

dL1

=
2ν(AS)

L1(B)
ν(B) +

(
ν(AS)

L1(B)

)2

L1(B)

≤ 2ν(B)

L1(B)
S4/3L1(AS) +

S8/3L1(AS)2

L1(B)
,

and

(3.2)
∫
AS

(
dν

dL1

)2

dL1 −
∫
AS

(
dν ′S
dL1

)2

dL1 ≥ S2L1(AS).

Combining estimates (3.1), (3.2) and the minimality of (γ, ν,Π) (compared against (γ, ν ′S ,Π
′
S))

gives

Cp(M1/p +M/λ)p−1S4/3L1(AS) + ε
2ν(B)

L1(B)
S4/3L1(AS) + ε

S8/3L1(AS)2

L1(B)

≥ εS2L1(AS).(3.3)
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Note that

lim
S→+∞

Cp(M1/p +M/λ)p−1S4/3L1(AS)

S2L1(AS)
= 0.

Since L1(B) ≥ 1− c/2, it follows

lim
S→+∞

2ν(B)S4/3L1(AS)/L1(B)

S2L1(AS)
= 0,

and

lim
S→+∞

εS8/3L1(AS)2/L1(B)

S2L1(AS)
≤ lim

S→+∞

εS8/3L1(AS)2

(1− c/2)S2L1(AS)

= lim
S→+∞

εS2/3L1(AS)

1− c/2
≤ lim

S→+∞

εS−1/3

1− c/2
= 0.

Let S∗ be the maximum value for which inequality (3.3) holds, thus for any S > S∗ the min-
imality of (γ, ν,Π) cannot hold, and similarly for any S > S∗ assumption L1(AS) > 0 can-
not hold. However, if dν/dL1 /∈ L∞, then there exists a sequence {Sj} → +∞ such that
L1(ASj ) > 0 for any j, and ASj ∩ ASj′ = ∅ whenever j 6= j′. The aforementioned arguments
would construct a competitor contradicting the minimality of (γ, ν,Π). Thus the only possibility
is dν/dL1 ∈ L∞. �

For future reference the exponent q appearing in the density penalization term will be as-
sumed q = 2. This mainly due to technical reasons, as noted in Remark I in the following.

Proposition 3.4. Given d ≥ 2, a measure µ, parameters λ, ε, ε′ > 0, p ≥ 1, and a minimizer (γ, ν,Π)
of E [µ, λ, ε, ε′, p, 2], then it holds:

• for any t ∈ [0, Lγ ] there exist no sequences of Borel sets {An}, {Bn} and {c1,n}, {c2,n} such that

(∀n) inf
n
c1,n − c2,n > 0, (∀ξ)(∃n0) : (∀n ≥ n0) An ∪Bn ⊆ B(t, ξ),

L1(An) > 0, L1(Bn) > 0,
dν

dL1

∣∣∣∣
An

≥ c1,n > c2,n ≥
dν

dL1

∣∣∣∣
Bn

, n = 1, 2, · · · .

Proof. Assume (for the sake of contradiction) there exist t ∈ [0, Lγ ], {An}, {Bn}, {c1,n}, {c2,n}, c
such that

inf
n
c1,n − c2,n ≥ c > 0, (∀ξ)(∃n0) : (∀n ≥ n0) An ∪Bn ⊆ B(t, ξ),

L1(An) > 0, L1(Bn) > 0,
dν

dL1

∣∣∣∣
An

≥ c1,n > c2,n ≥
dν

dL1

∣∣∣∣
Bn

, n = 1, 2, · · · .

Clearly such {An}, {Bn} are disjoint for any n, and it can be assumed L1(An) = L1(Bn) (since if
L1(An) > L1(Bn), there exists A′n ⊆ An satisfying L1(A′n) = L1(Bn), and similarly if L1(Bn) >
L1(An)). Let

ln := L1(An) = L1(Bn), dn := diam(An ∪Bn), n = 1, 2, · · · .
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The goal is to construct ν̃n such that (γ, ν̃n, Π̃n) (with Π̃n arbitrary optimal plan between µ and
γ]ν̃n) contradicts the minimality of (γ, ν,Π). Consider an index n. Choose Cn ⊆ An such that
ν(Cn) =

(
ν(A)− ν(B)

)
/2. Let

ν̃n := ν − νxCn +
ν(An)− ν(Bn)

2L1(Bn)
L1
xBn .

Choose an optimal transport plan Π̃n between µ and γ]ν̃n. Consider arbitrary x ∈ supp(µ),
y ∈ γ(Cn), y′ ∈ γ(Bn). Lemma 2.2 gives∣∣|x− y| − |x− y′|∣∣ ≤M1/p +M/λ, M := (diam supp(µ) + 1)p + λ+ ε+ ε′,

thus Lemma 3.3 (applied with a := |x− y|, b := |x− y′|, K := M1/p +M/λ) gives∣∣|x− y|p − |x− y′|p∣∣ ≤ ∣∣|x− y| − |x− y′|∣∣p(M1/p +M/λ)p−1

≤ dnp(M1/p +M/λ)p−1,

i.e.∫
Rd×Γγ

|x− y|p dΠ̃n(x, y)−
∫
Rd×Γγ

|x− y|p dΠ(x, y) ≤ ν(An)− ν(Bn)

2
p(M1/p +M/λ)p−1dn.

Direct computation gives∫
An∪Bn

(
dν

dL1

)2

dL1 −
∫
An∪Bn

(
dν̃n
dL1

)2

dL1

≥ ν(An)2 + ν(Bn)2

ln
− (ν(An) + ν(Bn))2

2ln

≥ (ν(An)− ν(Bn))2

2ln
.(3.4)

Combining (3.4) with the minimality of (γ, ν,Π) gives

ε

(
ν(An)− ν(Bn)

)2
2ln

≤ ν(An)− ν(Bn)

2
p(M1/p +M/λ)p−1dn,

i.e.
ν(An)− ν(Bn)

ln
≤ dn

ε
p(M1/p +M/λ)p−1.

Since ν(An)− ν(Bn) ≥ cln, it follows

(3.5) c ≤ p(M1/p +M/λ)p−1

ε
dn.

This argument can be repeated for any n, and inequality (3.5) is false for any sufficiently large n
since {dn} → 0. Thus the proof is complete. �

We present some comments on the conclusion of Proposition 3.4. In Corollaries 3.5 and 3.6
we will use the same notation from Proposition 3.4.
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Corollary 3.5. The conclusion of Proposition 3.4 implies

(3.6) (∀t ∈ [0, Lγ ], ξ > 0)(∃δ > 0) : esssup[t−δ,t+δ]
dν

dL1
− essinf [t−δ,t+δ]

dν
dL1

≤ ξ,

where esssup (resp. essinf) denotes the essential supremum (resp. essential infimum).

Proof. Assume the opposite holds, i.e. there exist t ∈ [0, Lγ ], ξ > 0 and a sequence {δn} → 0 such
that

esssup[t−δn,t+δn]

dν
dL1

− essinf [t−δn,t+δn]
dν

dL1
≥ ξ n = 1, 2, · · · .

Then (for any n) there exist An, Bn ⊆ [t− δn, t+ δn] such that

L1(An) > 0, L1(Bn) > 0, inf
An

dν
dL1

− sup
Bn

dν
dL1

≥ ξ

2
, n = 1, 2, · · · .

Letting

c1,n := inf
An

dν
dL1

, c2,n := sup
Bn

dν
dL1

, n = 1, 2, · · ·

concludes the proof. �

Corollary 3.6. The conclusion of Proposition 3.4 implies that for any t ∈ [0, Lγ ] there exists a function
g continuous in t such that dν/dL1 = g L1-a.e., i.e. conclusion (1) of Theorem 3.2.

Proof. Note that if at a given time t0, a function f satisfies

(3.7) (∀ξ > 0)(∃δ > 0) : sup
[t0−δ,t0+δ]

f − inf
[t0−δ,t0+δ]

f ≤ ξ,

then there exists k ∈ R such that for any sequence {tn} → t0 it holds {f(tn)} → k, i.e. f can
be made continuous in t0 by imposing f(t0) := k. Consider an arbitrary time t ∈ [0, Lγ ]. Since
the thesis states a local property, we need only to consider times close to t. Choose a sequence
{ξn} → 0, and Corollary 3.5 gives

(∀n)(∃δn > 0) : esssup[t−δn,t+δn]

dν
dL1

− essinf [t−δn,t+δn]
dν

dL1
≤ ξn.

Thus for any n there exists a L1-negligible set En ⊆ [t − δn, t + δn] such that upon suitably
modifying dν/dL1 on En gives

sup
[t−δn,t+δn]

dν
dL1

− inf
[t−δn,t+δn]

dν
dL1

≤ ξn,

i.e. upon suitably modifying dν/dL1 on
⋃
nEn (clearly L1-negligible) gives

(∀n)(∃δn > 0) : sup
[t−δn,t+δn]

dν
dL1

− inf
[t−δn,t+δn]

dν
dL1

≤ ξn.

Then for arbitrary ξ > 0, choosing ξn ≤ ξ gives

sup
[t−δn,t+δn]

dν
dL1

− inf
[t−δn,t+δn]

dν
dL1

≤ ξn ≤ ξ,
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i.e.

(∀ξ > 0)(∃δ > 0) : sup
[t−δ,t+δ]

dν
dL1

− inf
[t−δ,t+δ]

dν
dL1

≤ ξ.

Thus (upon suitably modifying dν/dL1 on
⋃
nEn) there exists a value h ∈ R such that imposing

dν
dL1

(t) := h makes
dν

dL1
continuous in t. Letting

g : [0, Lγ ] −→ R, g :=

{
dν/dL1 on [0, Lγ ]\ (

⋃
nEn ∪ {t}) ,

h on
⋃
nEn ∪ {t}

concludes the proof. �

Remark I. The choice q = 2 is due to technical reasons, as estimate (3.4) involves computing the
difference

ν(An)2 + ν(Bn)2 −
(
ν(An) + ν(Bn)

)2
/2.

However, we are unable to prove that for any q > 1 there exists a constant Mq > 0 (depending
only on q) such that

ν(An)q + ν(Bn)q −
(
ν(An) + ν(Bn)

)q
/2 ≥Mq (ν(An)− ν(Bn))q .

This would allow to extend the result for any q > 1 (or for any q > 1 for which a similar estimate
holds), by using the same argument found in the proof of Proposition 3.4.

Now we can prove conclusion (2) of Theorem 3.2.

Proof. (of conclusion (2) of Theorem 3.2) Consider an arbitrary t ∈ [0, Lγ ]: note that conclusion
(2) states a local property, thus we need only to consider times close to t. If dν/dL1 is constant
in a neighborhood of t, then conclusion (2) follows with g := dν/dL1. Otherwise, choose two
(mutually disjoint) sequences {tn} → t, {sn} → t, {tn}, {sn} ⊆ Λ (with Λ denoting the set of

Lebesgue points of dν/dL1) such that
dν

dL1
(tn) >

dν
dL1

(sn) for any n ∈ N. For any n choose a
sequence {δn,j}, such that {δn,j} → 0 if j → +∞ or n→ +∞, and let

In,j := (tn − δn,j , tn + δn,j), Jn,j := (sn − δn,j , sn + δn,j), j = 1, 2, · · · .

Clearly choosing sufficiently small δn,j ensures In,j ∩ Jn,j = ∅ for any n, j. Since {tn}, {sn} ⊆ Λ,
it follows (upon choosing sufficiently small δn,j) ν(In,j) > ν(Jn,j) for any n, j. Fix arbitrary n, j.
Choose Cn,j ⊆ In,j such that ν(Cn,j) =

(
ν(In,j)− ν(Jn,j)

)
/2, let

(3.8) ν̃n,j := ν − νxCn,j +
ν(In,j)− ν(Jn,j)

2L1(Jn,j)
L1
xJn,j ,
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and choose an arbitrary optimal plan Π̃n,j between µ and γ]ν̃n,j . Note that∫
In,j∪Jn,j

(
dν

dL1

)2

dL1 −
∫
In,j∪Jn,j

(
dν̃n,j
dL1

)2

dL1

≥ ν(In,j)
2 + ν(Jn,j)

2

δn,j
− 2

δn,j

(
ν(In,j) + ν(Jn,j)

2

)2

=

(
ν(In,j)− ν(Jn,j)

)2
2δn,j

.(3.9)

Note that by construction, any point x ∈ supp(µ) transported by Π on γ(Cn,j) is transported by
Π̃n,j on γ(Jn), i.e. for µ-a.e. x such that there exists y ∈ γ(Cn,j) ⊆ γ(In,j) satisfying (x, y) ∈
supp(Π), there exists also y′ ∈ γ(Jn,j) such that (x, y′) ∈ supp(Π̃). Since

(∀n, j) sup
z∈In,j , w∈Jn,j

|z − w| ≤ |tn − sn|+ 2δn,j ,

and γ is arc-length parameterized, it follows

(3.10) (∀n, j) sup
z∈In,j , w∈Jn,j

|γ(z)− γ(w)| ≤ |tn − sn|+ 2δn,j .

Since (γ, ν,Π) is a minimizer, it follows

E [µ, λ, ε, ε′, p, 2](γ, ν,Π) ≤ (diam supp(µ) + 1)p + λ+ ε+ ε′ =: M,

and applying Lemma 2.2 (with {(γn, νn,Πn)} ≡ (γ, ν,Π)) gives

(3.11) sup
x∈supp(µ), y∈Γγ

|x− y| ≤M1/p +M/λ.

Note that M1/p + M/λ ≥ 1. Applying Lemma 3.3 (with a := |x − y|, b := |x − y′|, K :=

M1/p +M/λ) yields∣∣|x− y|p − |x− y′|p∣∣ ≤ ∣∣|x− y| − |x− y′|∣∣ · p(M1/p +M/λ)p−1,

which gives∫
Rd×Γγ

|x− y|p dΠ̃n,j(x, y)−
∫
Rd×Γγ

|x− y|p dΠ(x, y)

(3.10)
≤ ν(Cn,j)

(
|tn − sn|+ 2δn,j

)
p(M1/p +M/λ)p−1

=
ν(In,j)− ν(Jn,j)

2

(
|tn − sn|+ 2δn,j

)
p(M1/p +M/λ)p−1.(3.12)

Combining estimates (3.9) and (3.12) with the minimality of (γ, ν,Π) gives

(3.13)
ν(In,j)− ν(Jn,j)

2

(
|tn − sn|+ 2δn,j

)
p(M1/p +M/λ)p−1 ≥

ε
(
ν(In,j)− ν(Jn,j)

)2
2δn,j

.
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Note that the above construction can be repeated for any n, j, and since {tn}, {sn} ⊆ Λ, passing
to the limit j → +∞ inequality (3.13) becomes∣∣∣∣ dνdL1

(tn)− dν

dL1
(sn)

∣∣∣∣ ≤ p(M1/p +M/λ)p−1

ε
|tn − sn|,

concluding the proof. �
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