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Abstract

We introduce in Part II the notion of a stable disarrangement phase G corresponding to a
given macroscopic deformation F of an elastic aggregate. Specifically, a stable disarrangement
phase G minimizes the free energy density Ψ(G′) among all tensors G′ that satisfy the consis-
tency relation DΨ(G′)(FT −G′T ) = 0 and the accommodation inequality 0 < detG′ ≤ detF .
The classification of disarrangement phases obtained in Part I for a model elastic aggregate
is employed in Part II to establish the main result of the present study: stable disarrange-
ment phases of the model aggregate cannot support tensile tractions. This result provides an
example of a no-tension material whose response in compression is non-linear, in contrast to
standard descriptions of no-tension materials in which the response in compression is assumed
at the outset to be linear. Moreover, our main result suggests that the present field theory of
elastic aggregates provides a broad setting for the study of structures containing masonry-like
elements.

1 Introduction

In Part I of the present study, we used a previously formulated theory [1] of elastic bodies un-
dergoing disarrangements in order to provide in the context of elastic aggregates the consistency
relation DΨ(G)(FT −GT ) = 0, a tensorial relation whose form is determined by the Helmholtz free
energy response Ψ of the pieces of the aggregate, and also to provide the accommodation inequality,
0 < detG ≤ detF that guarantees that the macroscopic deformation F provides enough volume
to accommodate the submacroscopic geometrical changes G associated with the pieces of the ag-
gregate. Together the consistency relation and accommodation inequality determine which tensors
G are compatible with a given macroscopic deformation gradient F , and in Part I we defined a
disarrangement phase corresponding to F to be a tensor G that satisfies both the consistency rela-
tion and the accommodation inequality for the given F . (A derivation of the consistency relation
together with a submacroscopic interpretation are provided in the Appendix to Part II.)

For a broad class of free energy response functions Ψ the collection of disarrangement phases
corresponding to F includes not only the compact phase G = F in which the pieces of the aggregate
all undergo the same macroscopic deformation F , but also loose phases G = ζminR in which the
pieces undergo a specific dilatation ζminI determined by Ψ followed by an arbitrary rotation R and
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so attain a stress-free state, all provided that the accommodation inequality ζ3min = detG ≤ detF
is satisfied.

The analysis given in Part I provides for a specific two-parameter class Ψαβ a complete clas-
sification of all of the disarrangement phases corresponding to a given but arbitrary macroscopic
deformation gradient F . That classification as well as examples presented elsewhere [1, 2] show
that there are typically multiple disarrangement phases G corresponding to a given macroscopic
deformation gradient F , and it is important to single out those disarrangement phases that are
energetically favorable. An analogous situation arises in the statistical mechanical modelling of the
macroscopic response of nematic elastomers in which a unit vector n, along with the macroscopic
deformation gradient F , emerges from the statistical modelling. For a given tensor F the vector n
is determined by minimizing the resulting energy with respect to that vector [3, 4, 5]. In a similar
spirit within the context of micromechanics (see e.g. [6, 7, 8, 9, 10, 11]), the widely used method of
representative volume elements fixes the macroscopic deformation gradient F and determines the
response of the representative volume element in terms of F by solving a boundary value problem
which, in some cases, amounts to finding the minima of a corresponding energy functional. Ac-
cordingly, we define here a stable disarrangement phase corresponding to F to be a disarrangement
phase G corresponding to F that minimizes the Helmholtz free energy among all disarrangement
phases corresponding to F .

Our principal goal in Part II of the present study is to establish for the two-parameter class of
elastic aggregates studied in Part I that stable disarrangement phases G necessarily have a stress
response that not only is non-linear in compression but also that is ”no-tension” or ”masonry-like”:
DΨαβ(G)FTn · n ≤ 0 for all unit vectors n.

The notion of a ”stable disarrangement phase” is introduced in Section 2 as an energy-minimizing
disarrangement phase, and the notions of compact phase and of loose phases are reexamined in light
of this notion of stability. We point out that, because disarrangements of rank one cannot increase
the free energy, the class of macroscopic deformations for which the compact phase is a stable
disarrangement phase may be viewed as being rather limited.

We consider in Section 3 the two-parameter class of free energy response functions Ψαβ studied
in Part I and that serves as the setting for the remainder of this article (with the exception of the
Appendix) . We review the solutions of the consistency relation G obtained in Part I by describing
the four categories that exhaust the collection of disarrangement phases: ”compact,” ”plane-stress,”
”uniaxial stress.” and ”stress-free,” the last three according to the nature of the stress response S
that is calculated for each category of solutions. Because the consistency relation can be written
in the tensorial form SMT = 0, the disarrangement tensors M = F − G for these categories
turn out to have ranks 0, at most 1, at most 2, and at most 3, respectively. We close Section 3
with some comparisons of the free energy among disarrangement phases in different categories but
corresponding to the same macroscopic deformation gradient F .

In Section 4 for the two-parameter class of free energy response functions Ψαβ we prove the main
result of this article: stable disarrangement phases necessarily have ”no-tension” or ”masonry-like”
response that, unlike the standard setting for such material response [12, 13, 14, 15, 16, 17, 18],
allows for non-linear stress-deformation relations in compression. 2 Figure 1 provides a schematic,
one-dimensional stress-extension curve for a no-tension material with non-linear response in com-
pression, while 2 Figure 2 depicts a no-tension material with linear response in compression. For
the disarrangement phases associated with Ψαβ , it is noteworthy that the ”no-tension” property
emerges necessarily from the property of stability, and an issue for future research is the determi-
nation of broader classes of free energies for which stability implies a no-tension response.
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Figure 1: No-tension/non-linear in compression.
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Figure 2: No tension/linear in compression.
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2 Stable disarrangement phases

The analysis in Part I as well as examples available in the literature [1, 2] show that, given the
free-energy response function Ψ and the macroscopic deformation gradient F , there are many
disarrangement phases corresponding to F , even if one agrees to count as equivalent different dis-
arrangement phases G and G′ corresponding to the given F that deliver the same stress tensor,
DΨ(G) = DΨ(G′), and the same free energy density Ψ(G) = Ψ(G′). The multiplicity of disarrange-
ment phases G corresponding to a given F appearing in the contexts [1, 2] suggested additional
conditions for selecting preferred disarrangement phases. A condition closely related to the present
context was introduced in the paper [2] in which an ”augmented energy functional” was identi-
fied as a function defined on time-parameterized families of structured deformations (g,G) and
on corresponding statical environments of the body, with the property that, at each given time,
the augmented energy is stationary with respect to the variable g at equilibria for the body in
the given environment. Moreover, on ”purely submacroscopic processes”, i.e., ones that change
G but not g, the rate of change of the augmented energy was shown to equal the rate of storage
of energy minus the rate of dissipation of energy. This observation led in [2] to the notion that
an equilibrium configuration (g,G) be submacroscopically stable if, for fixed g, the tensor field G
provided an absolute minimum for the augmented energy subject to satisfaction of the consistency
relation and the accommodation inequality. As a result, in order to leave a submacroscopically
stable equilibrium configuration via a purely submacroscopic process, energy must be stored faster
than it is dissipated.

In the present context, although no evolution in time is admitted, it is reasonable to mold the
concept of ”a submacroscopically stable equlilibrium configuration of the body” into one of ”a stable
disarrangement phase for the material.” Accordingly, for a given macroscopic deformation gradient
F , we say that a tensor G is a stable disarrangement phase corresponding to F if, not only is G a
disarrangement phase corresponding to F , but also G delivers the minimum energy density Ψ(G′)
among all disarrangement phases G′ corresponding to F . Thus, each stable disarrangement phase
G corresponding to F is a solution to the minimization problem :

min
G′

Ψ(G′) subject to 0 < detG′ ≤ detF and DΨ(G′)(FT −G′T ) = 0. (1)

Following our discussion in Section 3 of Part I, if the free energy response function Ψ is assumed
to be isotropic, smooth, rank-one convex, and to have standard growth properties, then, for each
rotation R and each tensor F satisfying the accommodation inequality in the form ς3min ≤ detF ,
the tensor ςminR is a stable disarrangement phase corresponding to F . Indeed, G′ = ςminR is
an absolute minimizer of the free energy response function and satisfies both relations in (1). Of
course, if the tensor F does not satisfy the inequality ς3min ≤ detF , then there is no loose phase
corresponding to F and R, no matter what the choice of rotation tensor R. Turning to the notion
of compact phase, we note that, while the tensor G = F always is available as the compact phase
corresponding to F , this compact phase need not be a stable disarrangement phase corresponding
to F , since G = F need not minimize the energy among disarrangement phases G′ corresponding
to F and, therefore, need not be a solution of the problem (1). We may summarize this situation
through the assertions: for arbitrary macroscopic deformation gradients F , the compact phase
corresponding to F always competes for the status of a stable disarrangement phase but need not
win that status. By contrast, only for F satisfying ς3min ≤ detF does a loose phase ςminR compete;
however, when it does compete, a loose phase always achieves the status of stable disarrangement
phase.

4



We note that the smoothness and growth properties of Ψ introduced in [19] actually are sufficient
for the existence of stable disarrangement phases for arbitrary macroscopic deformations F , because
the set of tensors G′ in (1) satisfying the accommodation inequality and the consistency relation
form a closed subset of LinV, and the smoothness and growth properties of Ψ imply that there is
a closed, bounded set of tensors that contains a tensor G′ at which the minimum of Ψ is attained.

On the other hand, if Ψ is smooth and rank-one convex, Remark 1 in Part I and the notion
of stable disarrangement phases corresponding to F now tell us: if the compact phase for F is
a stable disarrangement phase corresponding to F , then so are all disarrangement phases G for F
having F −G of rank one.

3 Classification from Part I of the disarrangement phases
for the model free energy Ψαβ

In Part I we illustrated the richness of possibilities for disarrangement phases of elastic aggregates
through the specific choice of free energy response

Ψαβ(G) =
1

2
α(detG)−2 +

1

2
βtr(GGT ) =

1

2
β(

r

detBG
+ trBG) (2)

where BG := GGT is a Cauchy-Green tensor corresponding to G and r := α/β. The numbers α
and β represent ”elastic constants” for the pieces of the aggregate, and they determine the stress
response in the reference configuration through the relation

β−1S = β−1DΨαβ(G) = − r

(detG)2
G−T +G. (3)

The consistency relation DΨ(G)(FT −GT ) = 0 here is equivalent to

(G− r

(detG)2
G−T )(FT −GT ) = 0 (4)

or, in terms of the polar decomposition G = VGRG of G with V 2
G = BG, in the form

(BG −
r

detBG
I)(RGF

T − VG) = 0. (5)

We display below all of the disarrangement phases for this model aggregate as classified in Part I.

3.1 G = F (compact phase)

β−1(detF )T = FFT − r

(detF )2
I (6)

2β−1Ψαβ(G) =
r

(detF )2
+ tr(FFT ) (7)

0 < detG = detF (8)
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3.2 G 6= F (non-compact phases)

When G 6= F , the nullspace of BG − r
detBG

I is non-trivial and the number r/detBG must be

one of the eigenvalues λG1 , λG2 , λG3 of BG, say (without loss of generality) λG1 . We represent VG
and BG = V 2

G in terms of an orthonormal basis eG1 , eG2 , eG3 of eigenvectors corresponding to the
eigenvalues λG1 , λG2 , λG3 of BG :

BG =

3∑

i=1

λGi e
G
i ⊗ eGi and VG =

3∑

i=1

(λGi )1/2eGi ⊗ eGi (9)

and assume without loss of generality that eG1 = eG2 × eG3 . In Part I we showed: if G 6= F , then
without loss of generality (λG1 )2λG2 λ

G
3 = r, and the consistency relation is equivalent to

(λGi − λG1 )(FRTG − (λGi )1/2I)eGi = 0 for i = 2, 3, (10)

3.2.1 Plane stress: (λG1 )2λG2 λ
G
3 = r and λGi 6= λG1 for i = 2, 3

All of the solutions of the consistency relation in this case are given through the following result
from Part I:

Remark 1 Let orthogonal unit vectors e and f and a linear mapping F with detF > 0 be given
satisfying

F−1e · F−1f = 0, r1/2
∣∣F−1e

∣∣3 ∣∣F−1f
∣∣ 6= 1, r1/2

∣∣F−1e
∣∣ ∣∣F−1f

∣∣3 6= 1. (11)

Then the tensor

G = r1/4
∣∣F−1e

∣∣1/2 ∣∣F−1f
∣∣1/2 (e× f)⊗ (

F−1e
|F−1e| ×

F−1f
|F−1f | ) +

+
∣∣F−1e

∣∣−1 e⊗ F−1e
|F−1e| +

∣∣F−1f
∣∣−1 f ⊗ F−1f

|F−1f | (12)

is a solution of the consistency relation (10), and the solution (12) equals F if and only if

BF (e× f) =
r

detBF
e× f. (13)

Moreover, every solution G 6= F of the consistency relation (??) in the case λGi 6= λG1 for i = 2, 3
is of the form (12) for some choice of the orthogonal unit vectors e and f satisfying (11), and this
formula for G implies that

VG = r1/4
∣∣F−1e

∣∣1/2 ∣∣F−1f
∣∣1/2 (e× f)⊗ (e× f) +

+
∣∣F−1e

∣∣−1 e⊗ e+
∣∣F−1f

∣∣−1 f ⊗ f, (14)

RG = (e× f)⊗ (
F−1e
|F−1e| ×

F−1f
|F−1f | ) +

+e⊗ F−1e
|F−1e| + f ⊗ F−1f

|F−1f | , (15)
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detG = r1/4
∣∣F−1e

∣∣−1/2 ∣∣F−1f
∣∣−1/2 . (16)

In addition, if T = (detF )−1DΨαβ(G)FT is the Cauchy stress, then

β−1(detF )T =
∣∣F−1e

∣∣−2 (1− r1/2
∣∣F−1e

∣∣3 ∣∣F−1f
∣∣) e⊗ e+

+
∣∣F−1f

∣∣−2 (1− r1/2
∣∣F−1e

∣∣ ∣∣F−1f
∣∣3) f ⊗ f, (17)

and the free energy Ψαβ(G) is given by

2

β
Ψαβ(G) = 2r1/2

∣∣F−1e
∣∣ ∣∣F−1f

∣∣+
∣∣F−1e

∣∣−2 +
∣∣F−1f

∣∣−2 . (18)

The formula (17) for the Cauchy stress implies that the traction T (e×f) on a plane with normal
e× f is zero and that every traction vector Tn lies in the plane determined by e and f . Moreover,
both Te and Tf are non-zero. It is then appropriate to use the attribute plane-stress to describe
the solutions G (12) of the consistency relation in the present case λGi 6= λG1 for i = 2, 3, and we use
as in Part I the term plane-stress disarrangement phases corresponding to F in referring to such
tensors G that also satisfy the accommodation inequality 0 < detG ≤ detF that now takes the
form:

0 < r1/4
∣∣F−1e

∣∣−1/2 ∣∣F−1f
∣∣−1/2 ≤ detF. (19)

3.2.2 Uniaxial stress: (λG1 )2λG2 λ
G
3 = r and λG2 = λG1 , λ

G
3 6= λG1

All of the solutions of the consistency relation in this case are given through the following result
from Part I:

Remark 2 Let a unit vector e, a proper orthogonal tensor R, and a linear mapping F with
detF > 0 be given satisfying

RT e =
F−1e
|F−1e| and r1/8

∣∣F−1e
∣∣ 6= 1. (20)

Then the tensor G given by

G = r1/6
∣∣F−1e

∣∣1/3 (I − e⊗ e)R+
∣∣F−1e

∣∣−1 e⊗ F−1e
|F−1e| (21)

is a solution of the consistency relation (10) for the case (λG1 )2λG2 λ
G
3 = r and λG2 = λG1 , λG3 6= λG1 .

The solution (21) equals F if and only if RF = R and, for all vectors v perpendicular to e,

BF v =
r

detBF
v. (22)

Moreover, every solution of the consistency relation for this case is of the form (21) with R and e
satisfying (20), and the following relations hold:

VG = r1/6
∣∣F−1e

∣∣1/3 (I − e⊗ e) +
∣∣F−1e

∣∣−1 e⊗ e (23)

RG = R (24)

detG = detVG = r1/3
∣∣F−1e

∣∣−1/3 (25)
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In addition, if T = (detF )−1DΨαβ(G)FT is the Cauchy stress, then

β−1(detF )T =
1− r1/3

∣∣F−1e
∣∣8/3

|F−1e|2
e⊗ e, (26)

and the free energy Ψαβ(G) is given by

2

β
Ψαβ(G) = 3r1/3

∣∣F−1e
∣∣2/3 +

∣∣F−1e
∣∣−2 . (27)

The formula (26) and the restriction (20) show that the state of stress in the deformed configura-
tion of the aggregate is uniaxial and non-zero for every solution G of the consistency relation in the
present case (λG1 )2λG2 λ

G
3 = r and λG2 = λG1 , λG3 6= λG1 . It is then appropriate to use the attribute

uniaxial stress to describe the solutions G and the term uniaxial stress disarrangement phases
corresponding to F in referring to such tensors G that also satisfy the accommodation inequality
0 < detG ≤ detF in the form:

0 < r1/3
∣∣F−1e

∣∣−1/3 ≤ detF. (28)

3.2.3 Loose phase: the case (λG1 )2λG2 λ
G
3 = r and λG1 = λG2 = λG3

The relations (λG1 )2λG2 λ
G
3 = r and λG1 = λG2 = λG3 immediately yield λG1 = λG2 = λG3 = r1/4, so

that
BG = r1/4I and G = r1/8R, (29)

Of course, in this case we also have
detG = r3/8, (30)

and we note that this case recovers precisely those tensorsG that render Ψαβ a minimum. Moreover,
we have:

T = 0 and 2β−1Ψαβ(G) = 4r1/4,

and the accommodation inequality takes the form

r3/8 ≤ detF. (31)

3.3 Some energy comparisons among disarrangement phases

The categories of solutions of the consistency relation and the associated versions of the accom-
modation inequality just provided permit us to compare the energies of competing disarrangement
phases corresponding to a given F . The first comparison relates the energies for the compact and
plane-stress disarrangement phases: if Gp is a plane-stress disarrangement phase corresponding to
F with Gp 6= F , then the energy associated with Gp is strictly less than that for the compact phase
G = F :

Ψαβ(Gp) < Ψαβ(F ). (32)

Indeed, the stress in a plane-stress disarrangement phase has rank two, and the consistency relation
then tells us that the range of the transpose FT − GTp of the disarrangement tensor F − Gp is
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included in the one-dimensional nullspace of the stress. Therefore, since Gp 6= F , both FT − GTp
and F − Gp have rank 1. Consequently, Remark 1 of Part I and the strict rank-one convexity of
Ψαβ yield (32).

The second comparison involves the plane-stress and uniaxial stress disarrangement phases: if
Gp is a plane-stress phase with corresponding unit vectors e and f as in (12) and if Gu is a uniaxial
stress phase as in (21), with e the same unit vector as in (12), then

Ψαβ(Gu) < Ψαβ(Gp). (33)

To verify this inequality, we put x = B−1F e · e and y = B−1F f · f in the formulas (18) and (27) for
the free energy in the two phases to obtain the relations

2

β
Ψαβ(Gp) = 2r1/2x1/2y1/2 + x−1 + y−1

2

β
Ψαβ(Gu) = 3r1/3x1/3 + x−1.

It then suffices to compare 2
βΨαβ(Gp)−x−1 and 2

βΨαβ(Gu)−x−1, and we may use the arithmetic-
geometric mean inequality to write

2

β
Ψαβ(Gp)− x−1 = r1/2x1/2y1/2 + r1/2x1/2y1/2 + y−1

≥ 3(r1/2x1/2y1/2r1/2x1/2y1/2y−1)1/3

=
2

β
Ψαβ(Gu)− x−1.

Equality holds in this relation if and only if r1/2x1/2y1/2 = y−1, i.e., r1/2x1/2y3/2 = 1, which is
ruled out by (11)3, and this verifies (33).

Similar arguments based on the fact that loose phases achieve the absolute minimum value
2βr1/4 = 2β3/4α1/4 of Ψαβ easily deliver three additional comparisions: if Gp and Gu are plane-
stress and uniaxial stress disarrangement phases corresponding to F (with or without any equality
of the unit vectors associated with the two phases) and if detF ≥ r3/8, then for any loose phase
Gl = r1/8R corresponding to F we have

Ψαβ(Gp) > Ψαβ(Gl), Ψαβ(Gu) > Ψαβ(Gl), and Ψαβ(F ) ≥ Ψαβ(Gl) (34)

with equality holding in the last inequality if and only if F , itself, is of the form r1/8R′ for some
rotation R′.

4 Stable disarrangement phases associated with Ψαβ cannot
support tensile tractions

The previous section provides four categories of disarrangement phases, compact, plane-stress,
uniaxial stress, and loose, and it is easy to show that the consistency relation (4) implies that the
disarrangement tensor M has rank 0, has rank at most 1, rank at most 2, and rank at most 3,
respectively. These categories and the explicit solutions obtained in each then provide the starting
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point for studying the stable disarrangement phases associated with Ψαβ for arbitrary macroscopic
deformation F .

The principal result of the present study is the assertion that the stable disarrangement phases
associated with Ψαβ cannot support tensile tractions and, therefore, provide a no-tension material
response that is non-linear in compression.

Remark 3 Let a tensor F with detF > 0 and a stable disarrangement phase G corresponding to
F be given. It follows that the normal tractions provided by G are never positive, i.e., the Cauchy
stress T = (detF )

−1
DΨαβ(G)FT satisfies the ”no-tension” condition:

Tn · n ≤ 0. for every unit vector n. (35)

We establish this result by considering in turn the four categories of disarrangement phases
to which the given tensor G can belong and by showing that, in each category, the conditions
”stability” and ”violation of the no-tension condition (35)” are contradictory. In doing so, it is
convenient to denote by λM ≥ λmed ≥ λm > 0 the eigenvalues of BF = FFT and by eM , emed,
and em a corresponding orthonormal basis of eigenvectors of BF .

Suppose first that G is a compact phase corresponding to F that is stable and violates the no-
tension condition (35). In this case, G = F and, since G is stable, we have

Ψαβ(G) ≤ Ψαβ(G′) (36)

for every disarrangement phase G′ corresponding to F . The ”no-tension” condition (35) is violated

if and only if the largest principal stress associated with T = (detF )
−1
DΨαβ(G)FT is positive.

From the catalog in Section 3, the formula (6) for T in the compact phase provides a formula for the
largest principal stress and yields the following equivalent statement that the no-tension condition
is violated:

λM −
r

λM λmed λm
= λM −

r

(detF )2
> 0. (37)

i.e.,
λM

2λmed λm > r. (38)

If λM = λm then all eigenvalues of FFT equal λM , the relation (38) reduces to λM > r1/4, and
we have

detF = (λ3M )1/2 > (r3/4)1/2 = r3/8.

We may then conclude from (31) that the accommodation inequality for loose phases G̃ = r1/8R̃

corresponding to F is satisfied. Moreover, the given compact phase satisfies: G = F = λ
1/2
M R for

some rotation R, from which it follows that

2

β
Ψαβ(G) =

r

λ3M
+ 3λM .

By the Arithmetic-Geometric Mean Inequality, there follows

2

β
Ψαβ(G) ≥ 4(

r

λ3M
λ3M )1/4 = 4r1/4 =

2

β
Ψαβ(G̃)

with equality holding if and only if r
λ3
M

= λM , i.e. r = λ4M , which is excluded by (38) . Consequently,

Ψαβ(G) > Ψαβ(G̃), contradicting (36) when G′ = G̃.
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It suffices then to consider the remaining case λM > λm. Recalling that emed and em denote a
pair of orthogonal unit eigenvectors of FFT corresponding to λmed and λm, respectively, we have

(detBF )2(B−1F emed · emed)(B−1F em · em)

= (λM λmed λm)2λmed
−1λ−1m = λM

2λmed λm > r,

and this inequality tells us that the accommodation inequality (19) for the plane-stress category
corresponding to F is satisfied with strict inequality when e := emed and f := em, i.e.,

(detBF )2(B−1F emed · emed)(B−1F em · em) > r. (39)

Consequently, if we replace f = em by fε := (em + εeM )/(1 + ε2)1/2, then for ε sufficiently small
we have

(detBF )2(B−1F emed · emed)(B−1F fε · fε) > r (40)

as well as
emed · fε = B−1F emed · fε = 0. (41)

Moreover, the formula
∣∣F−1fε

∣∣2 = B−1F fε · fε =
λ−1m + ε2λ−1M

1 + ε2

and the inequality λm < λM tell us that, as ε varies in a small open interval containing 0, the pairs

(r1/2
∣∣F−1emed

∣∣ ∣∣F−1fε
∣∣3 , r1/2

∣∣F−1emed
∣∣3 ∣∣F−1fε

∣∣) trace out a smooth, non-trivial curve, and we
may conclude that there are infinitely many points (x′, y′) on that curve such that x′ 6= 1 or y′ 6= 1.
Therefore, in addition to the accommodation inequality in the form (40), the conditions (11)2,3
are satisfied with e = emed and f = fε for an appropriate choice of ε. Moreover, because the
spectrum of Gε varies with ε while that of VF does not, ε can be chosen so that, in addition,
Gε 6= F . Consequently, this choice of the pair of unit vectors determines through (12) a plane-
stress disarrangement phase Gε corresponding to F . The fact that Gε is in the plane-stress category
with Gε 6= F implies that we may use the inequality (32) with Gp := Gε to conclude that

Ψαβ(G) = Ψαβ(F ) > Ψαβ(Gε),

and this inequality contradicts the assumption that the compact phase G = F is stable. This
completes the proof for a compact phase that stability and violation of the no-tension condition are
contradictory.

Suppose that G is a plane-stress phase corresponding to F that is stable and violates the no-
tension condition (35). In this case, G is given by (12), and, since G is stable, we have

Ψαβ(G) ≤ Ψαβ(G′) (42)

for every disarrangement phase G′ corresponding to F . The no-tension condition (35) is violated

if and only if the largest principal stress associated with T = (detF )
−1
DΨαβ(G)FT is positive.

From the catalog in Section 6, the formula (17) for T in plane-stress phases can be written:

β−1(detF )T = x−1(1− r1/2x3/2y1/2)e⊗ e+ y−1(1− r1/2x1/2y3/2)f ⊗ f (43)

with
x = B−1F e · e, y = B−1F f · f, (44)
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and e, f orthogonal unit vectors satisfying the constraints (11). Consequently, the no-tension
condition (35) is violated if and only if at least one of the scalar coefficients on the right-hand side
is positive or, equivalently,

rx3y < 1 or rxy3 < 1. (45)

Moreover, the accommodation inequality (19) for the plane-stress phase G can be written now as

r ≤ (detF )4xy. (46)

If λm = λM , then BF = λM I, F = λ
1/2
M R for some rotation R, detF = λ

3/2
M , x = y = λ−1M , and

the last inequality becomes

r ≤ (λ
3/2
M )4(λ−1M )2 = λ4M = ((detF )2/3)4 = (detF )8/3.

In other words, the accommodation inequality (31) for loose phases corresponding to F = λ
1/2
M R is

satisfied. Therefore, there is a loose phase G′ = r1/8R′ corresponding to F and we have from (18)

2

β
Ψαβ(G) = 2r1/2x1/2y1/2 + x−1 + y−1 (47)

= 2r1/2λ−1M + 2λM ≥ 4r1/4 =
2

β
Ψαβ(G′)

with equality holding if and only if r1/2λ−1M = λM , i.e., r = λ4M , which is excluded by (45), the
violation of the no-tension condition. Consequently, if λm = λM , the disarrangement phase G
corresponding to F is not stable, and the assumptions that G is stable and that its stress violates
the no-tension condition are contradictory.

In the alternative case λm < λM , we shall use the following consequence of the formula (47) for
2
βΨαβ(G) in terms of x and y:

−x ∂

∂x
(

2

β
Ψαβ(G)) = x−1(1− r1/2x3/2y1/2)

−y ∂
∂y

(
2

β
Ψαβ(G)) = y−1(1− r1/2x1/2y3/2). (48)

Comparing the right-hand sides of these relations with the inequalities (45) we conclude that the
no-tension condition is violated for the given pair (x, y) associated with G if and only if

∂

∂x
Ψαβ(G) < 0 or

∂

∂y
Ψαβ(G) < 0. (49)

We denote by R the range of the mapping Π := (e′, f ′) 7−→ (x′, y′) = (B−1F e′ · e′, B−1F f ′ · f ′)
with domain the set of pairs of orthogonal unit vectors satisfying (11) (with e replaced by e′ and f
replaced by f ′ ), and we note that R is contained in the square in the x′ − y′ plane determined by
the minimum and maximum eigenvalues of B−1F , λ−1M and λ−1m , respectively (see Fig. 3):

R ⊂ [λ−1M , λ−1m ]× [λ−1M , λ−1m ].

The definition of R and the nature of the constraints (11) tell us that R is symmetric under
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×
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λ−1
M , λ−1

m

]

Figure 3: The square that contains the range of Π in all cases.

interchange of x′ and y′. Moreover, the ”6=” parts of the constraints (11) along with (48) imply
that at every point (x′, y′) in R, both of the partial derivatives Ψαβ are non-zero. It is clear
then that the pair (x, y) corresponding to the given stable disarrangement phase G cannot be an
interior point of R. In fact, were this so, the partial derivatives ∂

∂x′Ψαβ |(x,y) and ∂
∂y′Ψαβ |(x,y)

both would vanish, contradicting the previous statement. Consequently, the given minimizing point
(x, y) associated with G lies in ∂R, the boundary of R, which is also symmetric under interchange
of x′ and y′.

It is convenient to consider three mutually exclusive and exhaustive cases that may arise. Firstly,
we assume λm = λmed < λM , so that the minimum eigenvalue λm of BF = FFT has a two-
dimensional eigenspace Em orthogonal to the one-dimensional eigenspace EM associated with the
maximum eigenvalue λM . Because we may represent each pair of orthogonal unit vectors e′ and f ′

that form the domain of the mapping Π in terms of these eigenspaces, we have for some ϕ′ ∈ [0, 2π]
and for some unit vector e′⊥ perpendicular to eM : e′ = cosϕ ′e′⊥ + sinϕ′ eM and, therefore,

x′ = B−1F e′ · e′ = λ−1m cos2 ϕ ′ + λ−1M sin2 ϕ ′.

Recalling from (11)1 that B−1F e′ · f ′ = 0, we obtain in the following table shows all the essential
possibilities for e′, for f ′, and for (x′, y′) = Π(e′, f ′) that can occur, taking into account the
symmetry of R noted above:

e′ f ′ x′ y′

∈ EM ∈ Em λ−1M λ−1m
∈ Em ∈ Em λ−1m λ−1m

/∈ EM and /∈ Em ±e′ ×B−1F e′ λ−1m cos2 ϕ ′ + λ−1M sin2 ϕ ′ λ−1m

As ϕ′ varies in the interval [0, 2π], the pairs (x′, y′) ∈ R explicitly covered in the table form the
horizontal line line segment [λ−1M , λ−1m ] ×

{
λ−1m

}
in the x′−y′plane, with the exception of at most

four points (x∗, y∗) satisfying r1/2x
′3/2
∗ y

1/2
∗ = 1 or r1/2x

1/2
∗ y

3/2
∗ = 1.
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The symmetry of R under interchange of x′ and y′ then yields for the present case λm = λmed <
λM :

R∪ {(x∗, y∗)} = [λ−1M , λ−1m ]×
{
λ−1m

}
∪
{
λ−1m

}
× [λ−1M , λ−1m ] (50)

where {(x∗, y∗)} represents a set of points with at most four elements (see Fig. 4). Thus,

y′

x′λ−1
M

λ−1
M

λ−1
m

λ−1
m

x′y′ =
r

λ4
mλ2

M

R∪ {(x∗, y∗)}
x0

Figure 4: The range of Π for λm = λmed < λM .

R ∪ {(x∗, y∗)} is the union of a horizontal line segment and its vertical reflection about x′ = y′,
the two segments meeting at the point (λ−1m , λ−1m ). Moreover, R ∪ {(x∗, y∗)} = ∂R in this case,
and since the given minimizing point (x, y) lies in R and represents a disarrangement phase, the
accommodation inequality (46) is satisfied at least at one point in R.

It is convenient to assume first that every point in R satisfies the accommodation inequality
(46), so that the pair of segments R∪{(x∗, y∗)} lies entirely on or above the curve (detF )4x′y′ = r
in the x′−y′ plane. Because both of the partial derivatives of Ψαβ are non-zero at every point
of R, we may conclude that the given minimizing point (x, y) cannot lie in the interior of either
segment and so must lie at one of the three endpoints (λ−1M , λ−1m ), (λ−1m , λ−1m ), or (λ−1m , λ−1M ) of the
two segments that form R∪{(x∗, y∗)}.

Suppose now that the minimizing point (x, y) associated with the given G equals (λ−1M , λ−1m ),
the left endpoint of the horizontal segment in R∪{(x∗, y∗)}. We cannot have the free energy
decreasing on points (x′, λ−1m ) as x′ increases from λ−1M , and it follows that ∂

∂x′Ψαβ |(λ−1
M
,λ−1

m )> 0

(the value 0 is ruled out as noted above). The formulas (48) then tell us that 1− r1/2x3/2y1/2 < 0
and, by (46), we have

λ3Mλm = x−3y−1 < r ≤ (detF )4xy = (detBF )2xy

= λ2Mλ
4
mλ
−1
M λ−1m = λMλ

3
m,

so that λM < λm, a contradiction. We conclude that the possibility (x, y) = (λ−1M , λ−1m ) is ruled
out. By (47), the free energy is unchanged when x and y are interchanged, thus ruling out also the
possibility (x, y) = (λ−1m , λ−1M ). For the remaining possibility (x, y) = (λ−1m , λ−1m ) the minimization
property of this point implies that both partial derivatives of the free energy must be negative.
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The relation (48) then yield 1 − r1/2x3/2y1/2 = 1 − r1/2x1/2y3/2 > 0, or, equivalently, λ4m > r.
This relation then yields

(detF )8/3 = (detBF )4/3 = (λMλ
2
m)4/3

> (λmλ
2
m)4/3 = λ4m > r, (51)

which shows that F admits the loose disarrangement phases G′ = r1/8R′ with R′ an arbitrary
rotation. The inequality (34)1 at the end of Section 6, with Gp = G and Gl = G′, then tells
us that Ψαβ(G) > Ψαβ(G′), and this inequality completes the proof that the assertions ”G is a
stable disarrangement phase corresponding to F in the plane-stress category” and ”G violates the
no-tension condition” are contradictory for the case in which λm = λmed < λM and in which no
portion of R lies below the curve (detF )4x′y′ = r.

Turning to the case in which λm = λmed < λM and some portion of R lies below the curve
(detF )4x′y′ = r, we note that the symmetry of both R and of the curve (detF )4x′y′ = r under
reflection through the line x′ = y′ permits us to consider only the portion of the horizontal segment

H = [λ−1M , λ−1m ]×
{
λ−1m

}

that lies on or above (detF )4x′y′ = r (see Fig. 6). If the only such portion is the single point
(λ−1m , λ−1m ), then the analysis for the previous case shows that a contradiction arises if (x, y) =
(λ−1m , λ−1m ). The only remaining case to consider is when the portion of the horizontal segment H
lying on or above the curve has the form [x0, λ

−1
m ]×

{
λ−1m

}
with λ−1M < x0 < λ−1m and with (x0, λ

−1
m )

lying on the curve (detF )4x′y′ = r , so that

x0 = λ−2M λ−3m r and (x0, λ
−1
m ) = (λ−2M λ−3m r, λ−1m ). (52)

As in earlier cases, we know that the minimizing point (x, y) must be an endpoint of the segment
[x0, λ

−1
m ]×

{
λ−1m

}
. The earlier analysis shows again that a contradiction arises if (x, y) =

{
λ−1m

}
×{

λ−1m
}

, and we consider now the remaining alternative: (x, y) = (λ−2M λ−3m r, λ−1m ). This left-hand

endpoint of the segment minimizes the free energy only if ∂
∂x′Ψαβ |(x,y)> 0 , and (49) at (x, y)

implies ∂
∂y′Ψαβ |(x,y)< 0, which by (48) means that 1 − r1/2x1/2y3/2 > 0. Using the formula

(x, y) = (λ−2M λ−3m r, λ−1m ) we conclude that r < λMλ
3
m. On the other hand, the inequality λ−1M <

x0 = λ−2M λ−3m r implies λMλ
3
m < r, a contradiction. This completes the analysis of the case in which

λm = λmed < λM .
Of the two remaining cases λm < λmed = λM and λm < λmed < λM we now treat the former

: λm < λmed = λM , so that detBF = λ2Mλm. With reasoning along the lines that led to the
table above, it is easy to show now that the R range of the mapping Π again is, with the exception

of at most four points (x∗, y∗) satisfying r1/2x
3/2
∗ y

1/2
∗ = 1 or r1/2x

1/2
∗ y

3/2
∗ = 1, the union of two

perpendicular segments

R∪{(x∗, y∗)} = ([λ−1M , λ−1m ]×
{
λ−1M

}
) ∪ (

{
λ−1M

}
× [λ−1M , λ−1m ]) (53)

that now meet at the point (λ−1M , λ−1M ). Here, again, {(x∗, y∗)} represents a set of points with at
most four elements. Following the argument in the previous case, we assume first that all points of
R lie on or above the curve (detF )4x′y′ = r and conclude that the assumed minimizing point (x, y)
must be among the three endpoints (λ−1M , λ−1m ), (λ−1M , λ−1M ), (λ−1m , λ−1M ) of the two segments of R.
By symmetry, we again may limit our attention to the two endpoints (λ−1M , λ−1M ) and (λ−1m , λ−1M ) of

15



y′

x′λ−1
M

λ−1
M

λ−1
m

λ−1
m

x′y′ =
r

λ2
mλ4

M

x0

Figure 5: The range of Π for λm < λmed = λM .

the horizontal segment of R. If (x, y) = (λ−1M , λ−1M ), then the minimizing property implies that both
partial derivatives of Ψα,β must be positive and, therefore, both principal stresses must be negative.
Consequently, the stability of the plane-stress phase G and the violation of the no-tension condition
are contradictory for (x, y) = (λ−1M , λ−1M ). If (x, y) = (λ−1m , λ−1M ), then the minimizing property of
(x, y) implies that ∂

∂x′Ψαβ |(x,y)< 0, so that 1− r1/2x3/2y1/2 > 0, or, equivalently, λMλ
3
m > r. We

then have
r3/4 < λ

3/4
M λ9/4m = λ

3/4
M λ1/4m λ2m < λMλ

2
m < λ2Mλm = detBF ,

so that r3/8 < detF , and the loose phases G′ = r1/8R′ corresponding to F are admissible as
competitors for disarrangement phases. Comparing energies by means of (34)1 as in previous
cases, we conclude that the stability of the phase G and the violation of the no-tension condition
are contradictory in the case where λm < λmed = λM and where all points of R lie on or above the
curve (detF )4x′y′ = r.

For the case λm < λmed = λM with some points of R lying below the curve (detF )4x′y′ = r as
in Fig. 5, we need only consider points (x, y) on the horizontal segment [x0, λ

−1
m ] ×

{
λ−1M

}
, where

the point (x0, λ
−1
M ) lies on (detF )4x′y′ = r. Consequently, we have

x0 = λ−3M λ−2m r and (x0, λ
−1
M ) = (λ−3M λ−2m r, λ−1M ), (54)

and the segment under consideration may be written as [λ−3M λ−2m r, λ−1m ] ×
{
λ−1M

}
. The interior

points of this segment, as usual, are not candidates for the minimizer (x, y) and, as in the case where
no points of R lie below (detF )4x′y′ = r, the right-hand endpoint (λ−1m , λ−1M ) can be shown not to
be a minimizer that violates the no-tension condition. The only remaining possibility to consider
is (x, y) = (x0, λ

−1
M ) = (λ−3M λ−2m r, λ−1M ). This left-hand endpoint of the segment minimizes the free

energy only if ∂
∂x′Ψαβ |(x,y)> 0 , and (48) then tells us that 1 − r1/2x3/2y1/2 < 0. Consequently,

because (x, y) = (x0, λ
−1
M ) = (λ−3M λ−2m r, λ−1M ) in the present case, we find that λ

5/2
M λ

3/2
m < r. The

relation (49) at (x, y) implies ∂
∂y′Ψαβ |(x,y)< 0, which by (48) means that 1 − r1/2x1/2y3/2 > 0.
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Using the formula (x, y) = (λ−3M λ−2m r, λ−1M ) we conclude that r < λ3Mλm, and, combining the last
two inequalities, we may write

λ
5/2
M λ3/2m < r < λ3Mλm. (55)

Thus, the plane-stress disarrangement phase G corresponding to F associated with the point
(B−1F e0 · e0, B−1F f0 · f0) = (x0, λ

−1
M ) = (λ−3M λ−2m r, λ−1M ) is stable and violates the no-tension con-

dition only if the inequalities (55) hold. We now show that these inequalities are sufficient to
provide a uniaxial stress disarrangement phase G̃ corresponding to F that has lower energy than
does G. According to (20) and (28) in the catalog of disarrangement phases, the determination of
G̃ requires that we find a unit vector ẽ such that the number x̃ = B−1F ẽ · ẽ satisfies

x̃ 6= r−1/4 and r ≤ (B−1F ẽ · ẽ)1/2(detF )3 = x̃1/2(λ2Mλm)3/2. (56)

We show now that the choice ẽ = e0, which implies that x̃ = x0 = λ−3M λ−2m r, satisfies these

conditions. First, we note that x̃ = r−1/4 is equivalent to the relation λ
12/5
M λ

8/5
m = r. Substituting

this relation into the left-hand inequality of (55), we find that x̃ = r−1/4 implies that λ
5/2
M λ

3/2
m <

λ
12/5
M λ

8/5
m which in turn is equivalent to λM < λm. The last relation is false, and we conclude

that x̃ 6= r−1/4. Similarly, when x̃ = λ−3M λ−2m r is substituted into the right-hand side of the
second inequality in (56), we obtain the inequality r ≤ λ3Mλm. Thus, according to the right-hand
inequality in (55), the inequality r ≤ λ3Mλm indeed is satisfied, and we have verified (56). We may
now use (34), with Gp = G and Gu = G̃, to show that the uniaxial stress phase G̃ has lower energy
than does the plane-stress phase G and, thus, that the conditions of stabilty and of violation of
the no-tension condition are contradictory when G is a plane-stress phase, when λm < λmed = λM ,
and when some points of R lying below the curve (detF )4x′y′ = r. The treatment of the case
λm < λmed = λM now is complete.

We turn finally to the remaining case λm < λmed < λM , and we note here that the range of
the mapping Π = (e′, f ′) 7−→ (x′, y′) = (B−1F e′ · e′, B−1F f ′ · f ′) consists of the rectangle RL defined
by

RL = [λ−1med, λ
−1
m ]× [λ−1M , λ−1med], (57)

without the points on the two curves r1/2x′ 3/2y′ 1/2 = 1 and r1/2x′ 1/2y′ 3/2 = 1, together with its
reflection about the line x′ = y′ (see Fig. 6). The symmetry of the condition (45) for violation of
the no-tension condition and the invariance of the free energy in (47) under interchange of x and y
permits us to consider only the points in the range of Π with x′ ≥ y′, and we first consider the case
where all of the points of RL lie on or above the hyperbola (detF )4x′y′ = r . The interior points
of RL are ruled out as minimizers, because both of the partial derivatives of the free energy would
have to be zero at such every point, and we need only consider the cases where the minimizing
point (x, y) equals one of the four vertices of RL. Because the details of the reasoning for each of
the vertices are similar to those considered in previous cases, we only summarize the nature of the
argument that excludes each of the four vertices. For the upper left-hand vertex (λ−1med, λ

−1
med), we

note that (1) the partial derivatives of the free energy do not vanish and (2) points on the horizontal
segment [λ−1med − ε, λ−1med + ε]×

{
λ−1med

}
and on the vertical segment

{
λ−1med

}
× [λ−1med − ε, λ−1med + ε]

lie in the range of Π for ε > 0 sufficiently small. Observations (1) and (2) together rule out (λ−1med,
λ−1med) being a minimizing point. For the lower left-hand vertex (λ−1med, λ

−1
M ) to be a minimizing

point, both partial derivatives of the free energy would have to be positive, and this contradicts
the violation of the no-tension condition (49). The lower right-hand vertex (λ−1m , λ−1M ) would be
a minimum only if ∂

∂x′Ψαβ(λ−1m , λ−1M ) < 0 and ∂
∂y′Ψαβ(λ−1m , λ−1M ) > 0, and these two inequalities
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are easily shown to lead to the contradiction: λ3mλM > r > λmλ
3
M . Finally, the upper right-hand

vertex (λ−1m , λ−1med) is ruled out by showing that both the partial derivatives of Ψαβ at this point
must be negative and, therefore, the determinant of F then is large enough to admit loose phases
corresponding to F having free energy strictly lower than that of the assumed plane-stress phase
minimizer.

y′

x′λ−1
M

λ−1
M

λ−1
m

λ−1
m

x′y′ =
r

λ2
mλ2

medλ
2
M

RL

λ−1
med

λ−1
med

Figure 6: The range of Π for λm < λmed < λM .

For disarrangement phases G in the plane-stress category, the final case to consider is where
λm < λmed < λM and where some of the points of the rectangle RL defined in (57) lie below the
hyperbola (detF )4x′y′ = r in the x′−y′ plane. In this case, all of the points of RL lying below the
hyperbola are removed from consideration, and only the remaining points (x, y) on the boundary
of RL as well as those points (x, y) of (detF )4x′y′ = r that intersect RL need be considered. It is
easy to show that a point on the hyperbola (detF )4x′y′ = r that also is an interior point RL cannot
be both a minimizer and violate the no-tension condition, since both of the partial derivatives of
Ψαβ at such a point must be positive. There remain to be considered (a) the points of intersection
of two remaining perpendicular segments of edges of RL and (b) the points (x, y) that are on the
intersection of the hyperbola (detF )4x′y′ = r and one of the sides of RL. The collection (a)
includes only vertices of RL, at most three of them, and all such vertices can be ruled out as
candidates for minimizers in the manner described in the previous paragraph. The collection (b)
has exactly two points and may include vertices of RL, with the exception of (λ−1med, λ

−1
M ), as well as

other points on the sides of RL. Ruling out the vertices of RL in the collection (b) as candidates for
minimizers that violate the no-tension condition follows in a manner analogous to that described in
the previous paragraph. The remaining points (x, y) in the collection (b) are not vertices of RL and
lie on one of the four sides of RL as well as on the hyperbola (detF )4x′y′ = r. If such a point (x, y)
lies on either of the two horizontal sides [λ−1med, λ

−1
m ] ×

{
λ−1med

}
and [λ−1med, λ

−1
m ] ×

{
λ−1M

}
or on the

vertical side
{
λ−1med

}
× [λ−1M , λ−1med], then reasoning similar to that used in the case λm < λmed = λM

permits one to show that there is a uniaxial phase corresponding to F that has lower energy than
the given plane-stres phase. Finally, if (x, y) lies on the remaining vertical side

{
λ−1m

}
× [λ−1M , λ−1med]

18



of RL, then it is a routine matter to show that the assumed minimization property and the assumed
violation of the no-tension condition together lead to the inequality λm > λmed, a contradiction.
The case where the disarrangement phase under consideration is in the plane-stress category has
now been completed.

Suppose next that G is a uniaxial stress phase corresponding to F that is stable and violates
the no-tension condition (35). Then there is a unit vector e and a rotation R satisfying (20) such
that G is given by (21), the free energy is given by (27), and the Cauchy stress is given by (26). If
we put x := B−1F e · e, then (20)2, (27), and (26) here read

x 6= r−1/4 (58)

2

β
Ψαβ = 3r1/3x1/3 + x−1 (59)

detF

β
T =

1− (rx4)1/3

x
e⊗ e, (60)

and the accommodation inequality (28) becomes

r ≤ (detF )3x1/2 = λ
3/2
M λ

3/2
medλ

3/2
m x1/2. (61)

We denote by I the set of numbers x′ = B−1F e′ ·e′ with e′ a unit vector vector satisfying B−1F e′ ·e′ 6=
r−1/4, and we note that I differs from the interval [λ−1M , λ−1m ] by at most the singleton {r−1/4}.
Because there holds

d

dx

2

β
Ψαβ = r1/3x−2/3 − x−2 = x−2(r1/3x4/3 − 1),

the relation (60) can be written

detF

β
T = −x d

dx
(

2

β
Ψαβ) e⊗ e. (62)

Suppose now that x is in the interior of the set I. Since by assumption the vector e yields
the minimum free energy over all disarrangement phases corresponding to F , the interior point x
minimizes the free energy over the set I, so that the derivative of the free energy at x vanishes.
The formula (62) for T then tells us that the Cauchy stress vanishes and, therefore, the no-tension
condition is satisfied. Because we assumed that the no-tension condition is violated, we conclude
that x must be a boundary point of I that is in the set I. However, the boundary of the set I is
the set {λ−1M , λ−1m , r−1/4} or the set {λ−1M , λ−1m }, depending upon whether or not r−1/4 ∈ (λ−1M , λ−1m ).
The relation (58) tells us that x = λ−1M or x = λ−1m , and the violation of the no-tension condition
along with (62) tell us that d

dx
2
βΨαβ < 0. Since x minimizes Ψαβ on the set I, we may conclude

that x = λ−1m as well as r1/3λ
−4/3
m − 1 = r1/3x4/3 − 1 < 0. Consequently, this inequality and (61)

yield the inequalities

r < λ4m and r ≤ λ3/2M λ
3/2
medλ

3/2
m λ−1/2m = λ

3/2
M λ

3/2
medλm

and we conclude that

r3 = r2r < (λ
3/2
M λ

3/2
medλm)2λ4m

= (λMλmedλm)3λ3m ≤ ((detF )2)3(detF )2

= (detF )8.
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This inequality permits us to conclude from (31) that F admits not only the given uniaxial stress
disarrangment phase G, but also loose phases G′ = r1/8R′ that, according to the comparisons made
earlier, have lower energy than G. Thus, a uniaxial stable disarrangement phase cannot violate
the no-tension condition.

Our argument is completed by noting that every loose disarrangement phase has zero stress
and, hence, cannot violate the no-tension condition.

5 Conclusions and outlook

We have provided here in the context of elastic aggregates undergoing purely dissipative disar-
rangements a notion of disarrangment phase G corresponding to a given macroscopic deformation
F . Given the free energy response function G 7−→ Ψ(G), the disarrangement phases G are solutions
of the consistency relation

DΨ(G)(FT −GT ) = 0 (63)

that also satisfy the accommodation inequality

0 < detG ≤ detF. (64)

We pointed out previously (see [19]) that both relations are satisfied with G = F , the compact
phase corresponding to F , in which the pieces of the aggregate undergo on average the macroscopic
deformation F , and we also showed there that, under mild restrictions on Ψ, there also exist loose
phases G = ςminR, provided that ς3min ≤ detF . For the loose phases, the pieces of the aggregate
on average undergo an expansion ςminI followed by a rotation R that achieve a state of zero stress
and (globally) minimum free energy.

In addition, we have provided here a notion of material stability by considering stable disar-
rangement phases corresponding to F , i.e., minimizers G of the free energy Ψ(G) subject to the
constraints (63) and (64), and we point out that the loose phases corresponding to F , when they
exist, always are stable. We focussed our considerations in this article on the two-parameter free
energy response

Ψαβ(G) = α
2 (detG)−2 + β

2 tr(GG
T ), (65)

and we found for an arbitrary macroscopic deformation F all solutions G of (63) and (64) and,
hence, all disarrangement phases corresponding to F . Included in this portfolio of disarrangement
phases are not only the compact and loose phases, but also a one-parameter family of phases Gu in
which the Cauchy stress T = (detF )−1DΨ(Gu)FT is uniaxial, as well as a two-parameter family of
phases Gp in which T = (detF )−1DΨ(Gp)F

T is planar (see Remarks 2 and 3). We employed our
catalog of the disarrangement phases for Ψαβ to obtain our main result in this paper, that every
stable disarrangement phase has the no-tension property:

Ta · a ≤ 0 for all vectors a. (66)

This result provides an unexpected connection to the widely studied class of no-tension materials,
in which the stress by assumption is a linear function of the infinitesimal elastic strain (which corre-
sponds here to our 1

2 (G+GT )−I ) and in which, also by assumption, T has the no-tension property
(66). Such no-tension materials are used to model structures composed of masonry-like elements
that can support large compressive tractions but that separate or crack under tensile tractions,
Our result ”stability implies no-tension” shows that the present setting in which elastic aggregates
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undergo purely dissipative disarrangements provides an alternative and broader perspective for the
important subject of no-tension materials.

In a paper under preparation we shall determine for several families {Fλ} all of the stable dis-
arrangement phases corresponding to Fλ for the free energy response Ψαβ . These results will
provide confirmation of the present result ”stability implies no-tension” for the particular macro-
scopic deformations Fλ and also provide an explicit catalogue of unstable disarrangement phases.
Unstable phases are important in the statics and dynamics of elastic aggregates, because in some
circumstances unstable phases can satisfy prescribed boundary conditions while stable phases can-
not. For example, loose phases, when they can form, are always stable and stress-free. Moreover, in
some circumstances loose phases are the only stable disarrangement phases available. Consequently,
non-zero prescribed boundary tractions cannot be supported by these particular stable phases. We
expect that solutions of boundary value problems in the present context will consist typically of
coexistent disarrangement phases, some stable and some not. This situation requires that the
static compatibility condition at phase boundaries be formulated and coupled with the differential
equations that govern the macroscopic placement field corresponding to each phase present in the
body.

The notions of disarrangement phase and of stable disarrangement phase are meaningful in the
broader context of the field theory of elasticity with disarrangements and were used implicitly in
the article [2] in defining and analyzing ”submacroscopically stable equilibria” of elastic bodies.
Examples there provide not only a catalogue of disarrangement phases for two model free energies
but also the partial differential equations satisfied by the macroscopic placement field g in each
stable disarrangement phase. The coexistence of both stable and unstable disarrangement phases
alluded to above for elastic aggregates also will be the subject of further study in the broader
context of elasticity with disarrangements.

6 Appendix: Derivation and submacroscopic interpretation
of the consistency relation

The consistency relation (63) is a key ingredient in formulating the concepts of disarrangement
phase and stable disarrangement phase. The form given in (63) is the result of specialization of the
original consitency relation derived in detail in [1] to the case of purely dissipative disarrangements
DMΨ = 0, and we sketch here for the convenience of the reader the principal ideas in that derivation,
as well as a submacroscopic interpretation available in the case of purely dissipative disarrangements
. Central to the derivation is the factorization of a structured deformation (g,G)

(g,G) = (g,∇g) ◦ (i,K) (67)

in which i is the identity mapping and K := (∇g)−1G . The definition of the composition operation
◦ on the right-hand side requires that, in the usual manner, g be composed with the identity
mapping i and that the tensor field ∇g and the tensor field K be composed pointwise as linear
mappings. The result of these compositions is the pair (g,G) on the left-hand side. The structured
deformation (i,K) is called the purely submacroscopic part of (g,G): it does not move material
points but does introduce purely submacroscopic disarrangements when I = ∇i differs from K.
The structured deformation (g,∇g) introduces no disarrangements and is called the classical part
of (g,G). Since the classical part (g,∇g) describes the deformation from the reference configuration
to the deformed configuration, we may view the purely submacroscopic part (i,K) as taking the
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body from a ”virgin” configuration (in which no disarrangements have been produced) into the
reference configuration, and the consistency relation centers on the tractions that can arise through
(i,K) in terms of the Piola-Kirchhoff stress S (defined on the reference configuration).

We consider the vector calculus formula:

detK divS = div
(
(detK) SK−T

)
+ div

(
(detK) S − (detK) SK−T

)

−S (∇detK) (68)

obtained by calculating div((detK)S) using a product rule, adding and subtracting div
(
(detK) SK−T

)
,

and then solving for detK divS. Application of the Approximation Theorem to the structured
deformation (i,K) and repeated use of the divergence theorem and change of variables formulas in
connection with the approximatations permit us ([20], Part Two, Section 1) to identify the terms
in this identity in the following way:

terms in (68) interpretation
detK divS volume density of tractions Sn on prescribed

surfaces and on disarrangement sites

div((detK) SK−T ) volume density of tractions Sn on prescribed surfaces only

These interpretations permit us to call S\ := (detK) SK−T the stress without disarrangements and
Sd = (detK) S − (detK) SK−T the stress due to disarrangments. They also yield multiplicative
and additive formulas involving the stresses S, S\, and Sd:

S = (detK)−1S\K
T

(detK)S = S\ + Sd.

Elimination of (detK)S from these two formulas leads to the relation S\KT = S\ + Sd which is
equivalent to the consistency relation in the useful form [1]:

S\M
T + SdF

T = 0. (69)

This relation is based on the multiscale geometry of structured deformations and on the notion
of contact forces, and it does not entail any constitutive assumptions. However, the constitutive
assumptions [1]:

ψ = Ψ(G,M), S\ = (detK)DGΨ(G,M), and Sd = (detK)DMΨ(G,M)

permit one to write the consistency relation (69) in the final form

DGΨ(G,M)MT +DMΨ(G,M)FT = 0 (70)

and the assumption that the free energy does not depend upon M (purely dissipative disarrange-
ments) leads to the consistency relation (63) introduced at the beginning of this article.

The definition M = F − G of the disarrangement tensor M , the consistency relation (63),
and the stress relation S = DGΨ +DMΨ imply for the case of purely dissipative disarrangements
DMΨ = 0 that the consistency relation takes the simple form

SMT = 0. (71)
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The analysis in [21] provides the following ”identification relation” for the tensor M(X) in terms
of an appropriate sequence n 7−→ fn of piecewise smooth, injective functions:

M(X) = lim
r−→0

lim
n−→∞

vol(Br(X))−1
∫

Br(X)∩S(fn)
[fn](Y )⊗NY dAY (72)

where Br(X) denotes the ball centered at X of radius r, S(fn) denotes the jump set of fn, [fn](Y )
denotes the jump of fn at Y , and NY denotes the normal at Y to the jump set. The identification
relation (72) for M(X) tells us that this tensor is a limit of averages of the jumps of approximating
deformations fn as n tends to ∞ and as the balls over which the averages are taken shrink to
the point X. Consequently, the left-hand side of the consistency relation in the form (71) when
evaluated at the point X possesses the following identification relation:

S(X)M(X)T = lim
r−→0

lim
n−→∞

vol(Br(X))−1
∫

Br(X)∩S(fn)
S(X)NY ⊗ [fn](Y )dAY (73)

in which the integrand S(X)NY ⊗ [fn](Y ) is the tensor product of the traction S(X)NY vector
at the point Y in Br(X) ∩ S(fn), calculated using the stress at the center of the ball, and of
the jump [fn](Y ). This identification relation permits us to give the following interpretation to
the consistency relation in the form (71): for the case of purely dissipative disarrangements the
consistency relation (71) is the assertion that, on average, the tractions vanish at points of the body
where submacroscopic slips or separations occur.
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