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Abstract

We model granular media as continuous bodies that are aggregates of many small elastic
bodies (elastic aggregates). Our model rests on the multiscale geometry of structured de-
formations through the field theory ”elasticity with disarrangements”. This setting provides
a tensorial consistency relation DΨ(G)(FT − GT ) = 0 and an accommodation inequality
0 < detG ≤ detF that relate, through the free energy response Ψ of the individual pieces of
the aggregate, the deformation gradient F of the aggregate and the average deformation G of
the pieces of the aggregate. The solutions G of these two relations are called disarrangement
phases corresponding to F . In Part I we classify all of the disarrangement phases for a model
elastic aggregate. The compact phase G = F , in which the pieces of the aggregate all deform
in the same way as the aggregate, itself, forms one category in the classification, while the
non-compact phases G 6= F are categorized as to whether the stress (detF )−1DΨ(G)FT is
planar, uniaxial, or zero. Our classification will form the basis for the solution of boundary
value problems for the model aggregate as well as for a broader class of aggregates. In Part
II we use the classification to obtain an unexpected connection between elastic aggregates and
materials with no-tension response.

1 Introduction

A principal challenge in modeling multiscale phenomena in continua is that of describing the cou-
pling between macroscopically observed geometrical changes and submacroscopically occurring ge-
ometrical changes. In this article we study in the setting of the multiscale geometry of structured
deformations [1, 2, 3] the manner in which the macroscopic deformation of an aggregate of elastic
bodies, treated as a single, continuous body, can be related to the submacroscopic deformation of
the pieces of the aggregate (for other treatments of aggregates see e.g. [4, 5, 6]). Structured de-
formations provide an appropriate setting, because they provide purely geometrical fields g and G
that distinguish between the macroscopic deformation of a continuum and the smooth geometrical
changes that occur at submacroscopic length scales. In the case of elastic aggregates, we may think
of the point mapping g as providing the macroscopic geometrical changes of the aggregate, as a
whole, and we may think of the tensor field G as providing a measure of the average geometrical
changes of individual pieces (or grains) of the aggregate. The theory of structured deformations
then justifies calling the field M = ∇g − G the deformation due to disarrangements, i.e., due to
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submacroscopic slips and separations among the pieces of the aggregate. We emphasize in this
paper the case in which the aggregate undergoes a given, homogeneous deformation g with gradient
∇g = F = const. while all of the pieces of the aggregate undergo a sequence of piecewise homoge-
neous deformations whose gradients, when averaged over small subbodies, converge to the constant
tensor field G.

A previously formulated theory [7] of elastic bodies undergoing disarrangements provides the
consistency relation C(F,G) = 0, a tensorial relation whose form is determined by the Helmholtz
free energy response of the body, and also provides the accommodation inequality, 0 < detG ≤ detF
that guarantees that the macroscopic deformation F provides enough volume to accommodate the
submacroscopic geometrical changes associated with G. Together the consistency relation and
accommodation inequality determine which tensors G are compatible with a given macroscopic
deformation gradient F . In this article we define a disarrangement phase corresponding to F to
be a tensor G that satisfies both the consistency relation and the accommodation inequality for the
given F .

Our specific goals in Part I of the present study are

• to introduce formally the concept of disarrangement phase in the context of aggregates of
elastic bodies,

• to point out in the broadest class of elastic aggregates the existence for each F of a ”compact”
disarrangement phase, or disarrangement-free phase, in which the pieces of the aggregate
deform in the same way as the aggregate, itself,

• to point out in a slightly narrower context the existence for each F with sufficiently large
determinant of ”loose” disarrangment phases in which each piece of the aggregate relaxes to
a stress-free configuration that generally differs from F ,

• to determine for a model elastic aggregate a classification of the disarrangment phases, in-
cluding ones that are neither compact phases nor loose phases.

e
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Figure 1: Standard phases and disarrangement phases.
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We illustrate now by means of two idealized, one-dimensional, isothermal stress-extension curves
the idea of a disarrangement phase and compare it with the familiar notion of ”phase of an elastic
body”. For the left-hand curve in the figure ”Standard phases and disarrangement phases,” the
stress T is a (single-valued) function of the extension e with the property that, for some values of
stress, there are more than one value of extension that produce that stress. For example, the stress
T0 can be achieved at three different values of the extension, and it is customary to refer to the
three values of e corresponding to T0 as phases of the elastic continuum corresponding to the stress
T0. In this standard notion of phase, different phases may be distinguished by differences in the
macroscopic deformation of the body, and an important goal in the study of phases for continua
is that of providing contexts in which coexistent phases, even fine mixtures of such phases, can be
described and simulated.

By contrast, the stress-extension curve on the right of the figure does not provide a single stress
value T for each extension e, and we may fix the extension at the value e0 and consider the three
values of stress compatible with e0 as corresponding to distinct phases of the material. Clearly,
the macroscopic extension of the body cannot be used to distinguish among these phases, and it
is natural to explore the possibility that disarrangements, i.e., non-smooth geometrical changes at
submacroscopic length scales, may be used to distinguish among these phases.

2

In Section 2 we review the aspects of structured deformations and of the field theory ”elasticity
with disarrangements” [7] required for the present study. The constitutive properties of the elastic
aggregates are specified by means of the free energy response function Ψ, which is assumed not
to depend upon the disarrangement tensor M = F − G, so that the disarrangements for the
aggregates under consideration do not result in the storage of energy and may be described as
”purely dissipative.” The consistency relation and the accommodation inequality are recorded there,
and, because of the centrality of the consistency relation in this article, we provide in the Appendix
to Part II not only a sketch of its derivation but also a simple, submacroscopic interpretation of
the consistency relation in the case of purely dissipative disarrangements: for the case of purely
dissipative disarrangements the consistency relation implies that, on average, the tractions vanish
at points of the body where submacroscopic slips or separations occur. We end Section 2 with a
proof, based on the consistency relation and a semiconvexity property of Ψ, that, for a given F ,
disarrangements of rank one cannot increase the free energy density.

Section 3 contains the definition of ”disarrangement phase corresponding to F” as well as the
description of the compact phase (disarrangement-free phase) and, for a slightly less general class
of aggregates, a description of the loose phases (stress-free phases) of an aggregate. In the compact
phase, the disarrangement tensor M vanishes, so that the pieces of the aggregate deform precisely
as the aggregate through the macroscopic deformation gradient, i.e., G = F = ∇g. In the loose
phases, the pieces of the aggregate achieve a stress-free, energy minimizing state of deformation in
which G is a scalar times an arbitrary rotation tensor. The accommodation inequality shows that
loose phases can only be present when the volume change detF of the macroscopic deformation is
sufficiently large.

We describe in Section 4 a two-parameter class of free energy response functions Ψαβ ( with α
and β ”elastic constants” ) widely studied in the literature (see, for example, [9], Section 4.10) that
determines the model elastic aggregate under study here.
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In Section 5 we are able to classify, for a given but arbitrary deformation gradient F , all of the
solutions of the consistency relation in terms of the dimensionless ratio r = α/β. These solutions
G naturally form four categories: ”compact,” ”plane-stress,” ”uniaxial stress.” and ”stress-free,”
the last three according to the nature of the stress response S that is calculated for each category
of solutions. Because the consistency relation can be written in the tensorial form SMT = 0, the
disarrangement tensors M = F − G for these categories turn out to have ranks 0, at most 1, at
most 2, and at most 3, respectively. We also obtain for each category the specific form taken on by
the accommodation inequality as well as expressions for the stress, free energy, and the left stretch
tensor for G.

The ”first-order” structured deformations employed here do not provide an intrinsic length scale
that could be used to describe the sizes of the pieces of the aggregate. However, the ”second-order”
structured deformations introduced in [10] do provide such a length scale and, hence, the possibility
of incorporating size effects into models of elastic aggregates. Nevertheless, the present approach
based on first-order structured deformations can provide dimensionless geometrical quantities that
measure ratios of sizes of pieces of the aggregate to other important characteristic lengths such
as the size of shear bands that support large, localized deformations (see e.g. [11, 12, 13, 14]) or
the size of compact filaments that substantially bear loads in the aggregate. (See, for example
[15], [16], for dimensionless quantities corresponding to first-order structured deformations of single
crystals and for the role of these dimensionless quantities in modeling the hardening behavior of
aluminium single crystals in Taylor’s soft device.)

2 Statics of elastic aggregates

The multiscale geometry provided by structured deformations [1] in the context of a recent field
theory of elastic bodies [7] has been applied [17] to describe the dynamics of a continuum composed
of small elastic bodies that can deform individually in a manner that differs from the macroscopic
deformation of the continuum. Here, we specialize that description to a body that does not evolve
in time. In this context, a structured deformation (g,G) provides the macroscopic deformation
g : B −→ E mapping points X in the body B injectively into points g(X) in Euclidean space E
as well as the deformation without disarrangements G : B −→ Lin mapping points X in the body
into second-order tensors G (X) that describe the deformation of pieces of the aggregate. The
definition of structured deformation includes the requirement that the fields g and G satisfy the
accommodation inequality [1] at each point X in the body:

0 < m < detG(X) ≤ det∇g(X). (1)

Here, m is a positive number that does not depend upon X, ∇g is the classical derivative of the
macroscopic deformation, and det denotes the determinant. This inequality reflects the idea that
the macroscopic deformation should provide enough room to accommodate all of the pieces of the
aggregate without causing interpenetration of matter. The ability of the pieces of the aggregate to
deform differently from the aggregate, itself, gives rise to slips and separations among the individual
pieces— called disarrangements (see Fig. 2 for illustration). The accomodation inequality can be
used to prove the Approximation Theorem [1]: there exists a sequence n 7−→ fn of injective,
piecewise-smooth mappings of the body into Euclidean space such that

g = lim
n−→∞

fn and G = lim
n−→∞

∇fn (2)
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Figure 2: Piecewise smooth deformation fn and the resulting macroscopic deformation (shearing
and separation of individual pieces may result in a macroscopic expansion)

where for present purposes the sense of convergence in the two limits need not be made explicit.
Thus G, as a limit of classical derivatives, reflects at the macrolevel the smooth deformation away
from any submacroscopic sites of disarrangements associated with the piecewise smooth approxi-
mates fn. In addition, it has been shown [1], [18] that the tensor field

M = ∇g −G (3)

captures the average of the submacroscopic separations and slips embodied in the jumps of the
approximates fn, and we are justified in calling M the deformation due to disarrangements. (See
the Appendix in Part II for an identification relation that justifies this terminology.) The piecewise
smooth approximations fn may be viewed as snapshots of the deforming aggregate taken with
magnification sufficient to reveal the individual pieces of the aggregate.

We note that general elastic bodies undergoing disarrangements can store energy through both
the deformation due to disarrangements G and the deformation without disarrangements M [7].
In order to specialize to the situation in which the slips and separations between pieces of the
aggregate are purely dissipative, i.e., do not themselves contribute to the stored energy, it was
assumed in [17] that the Helmholtz free energy field ψ for the aggregate is determined entirely by
the deformation without disarrangements G, which at each point X in the reference configuration
amounts to the relation:

ψ(X) = Ψ(G(X)) (4)

where Ψ is a smooth constitutive function and ψ(X) is the free energy per unit volume in the
reference configuration. The constitutive equation (4) for an aggregate undergoing purely dissi-
pative disarrangements can be derived from the assumption that (i) the energy associated with
the piecewise smooth approximations fn has no interfacial term and that (ii) the convergence in
(2) is essentially uniform and Ψ is continuous. (See [2], Part Two, Section 2 for the supporting
mathematical reasoning). This amounts to assuming that each piece of the aggregate is an elastic
body with energy density response Ψ and that no energy is stored when pieces of the aggregate
rotate, separate, or slide relative to one another.

The general field equations for elastic bodies undergoing disarrangements [7] reduce in statics,
and in the present case of purely dissipative disarrangements, to the system

divDΨ(G) + b = 0 (5)
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DΨ(G)(∇g −G)T = 0 (6)

0 < detG ≤ det∇g (7)

in which (5) is the equation of balance of forces, (6) is a tensorial equation, the consistency relation,
that reflects the fact the the stress tensor in a continuum undergoing disarrangements has both an
additive and a multiplicative decomposition (see the appendix in Part II of this article and [7] for
details), and (7) is a weakened version of the accommodation inequality (1). Here, DΨ(G) denotes
the derivative of the response function Ψ. Because of the definition (3) of the disarrangement tensor
M , the system (5) - (7) amounts to thirteen scalar relations to determine the twelve scalar fields
that characterize g and G. The stress tensor S in the reference configuration is determined in the
present case of purely dissipative disarrangements through the stress relation

S = DΨ (8)

and this relation then permits one to impose boundary conditions of place and/or of traction in
connection with the system (5) - (7). (As in the context of classical, non-linear elasticity, the
assumption that the free energy response function Ψ is frame indifferent implies that balance of
angular momentum is satisfied.)

The significance of the consistency relation (6) in the present study is underscored by the
following result, which shows that, under mild assumptions on the free energy response function
Ψ, rank-one disarrangements associated with a structured deformation (g,G) that satisfies the
consistency relation (6) generally decrease the free energy from its value for the corresponding
(classical) structured deformation (g,∇g).

Remark 1 Assume that the free energy response function Ψ not only is smooth but also is rank-
one convex, i.e., for all tensors A and vectors a and b such that both detA and det(A+ a⊗ b) are
positive, there holds

DΨ(A) · (a⊗ b) ≤ Ψ(A+ a⊗ b)−Ψ(A). (9)

Let (g,G) a structured deformation and X a point in the body be given such that the disarrangement
tensor M(X) = ∇g(X)−G(X) has rank one and such that the consistency relation (6) is satisfied.
It follows that the free energy density Ψ(G(X)) at X for the structured deformation (g,G) is no
greater than the free energy density Ψ(∇g(X)) at X for the classical deformation (g,∇g) :

Ψ(G(X)) ≤ Ψ(∇g(X)). (10)

To verify this remark, we note that, from (6), (9), and the fact that M(X) is rank one:

0 = DΨ(G(X))(∇g(X)−G(X))T · I = DΨ(G(X)) · (∇g(X)−G(X))

≤ Ψ(G(X) + (∇g(X)−G(X)))−Ψ(G(X))

= Ψ(∇g(X))−Ψ(G(X)).

3 Disarrangement phases

Among the field relations (5) - (7) above, we focus attention on the consistency relation (6) that,
at each point X in the body, requires that the deformation without disarrangements G(X) and the
macroscopic deformation gradient F (X) := ∇g(X) satisfy

DΨ(G(X))(F (X)T −G(X)T ) = 0, (11)
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and on the accommodation inequality (7)

0 < detG(X) ≤ detF (X). (12)

If we consider a given material point X and omit from our notation the dependence upon X, then
these relations amount to the following pair of requirements to be satisfied by tensors F and G:

DΨ(G)(FT −GT ) = 0 and 0 < detG ≤ detF . (13)

For a given tensor F , we call a tensor G that satisfies both relations in (13) a disarrangement phase
corresponding to F for the aggregate. Once the tensor F is given, each disarrangement phase
G corresponding to F may be thought of as a state of deformation in which the aggregate itself
undergoes the homogeneous deformation X 7−→ X0+F (X−X0) and in which each piece undergoes
the homogeneous deformation X 7−→ X0 +G(X −X0).

We consider now two widely occurring examples of disarrangement phases. For every choice of
free energy response function Ψ and for every choice of macroscopic deformation gradient F , the
choice G = F satisfies both the relations in (13), and we call the resulting disarrangement phase
G = F the compact phase corresponding to F [17]. In the compact phase, M is zero, so that there
are no disarrangements, and each piece of the aggregate deforms in the same way as the aggregate
itself.

For a second example of disarrangement phases, we showed [17] that, for isotropic free energy
response functions Ψ satisfying standard smoothness, semiconvexity and growth properties, there
exists a positive number ςmin such that Ψ attains an absolute minimum at each tensor ςminR with
R a rotation tensor. Consequently, DΨ(ςminR) = 0 so that for every choice of F the consistency
relation (13)1 is satisfied with G = ςminR. In order that the the accommodation inequality (13)2
also be satisfied for this choice of G, we must have

ς3min ≤ detF . (14)

Therefore, if F satisfies (14), then for each rotation tensor R, the tensor G = ςminR is a disarrange-
ment phase corresponding to F . Because DΨ(ςminR) = 0 each piece of the aggregate is stress-free
in such a phase. Consequently, this disarrangement phase describes the aggregate in a state in
which the macroscopic deformation provides via the inequality (14) enough room for each piece of
the aggregate to deform into a stress-free configuration in which all the principal stretches are equal
to ςmin and to rotate via R. Thus, each piece of the aggregate in this phase is completely relaxed,
and we call ςminR the loose phase corresponding to F and R.

4 A model free energy Ψαβ

Our aim in the remainder of the paper is to illustrate the richness of possibilities for disarrangement
phases of elastic aggregates through the choice of a specific free energy response function that
appears widely in the literature (see, for example, [9], Section 4.10) and that also was used for
illustrative purposes in our article [17]. We let α and β be positive numbers and consider henceforth
an elastic aggregate whose free energy response function is

Ψαβ(G) =
1

2
α(detG)−2 +

1

2
βtr(GGT ) =

1

2
β(

r

detBG
+ trBG) (15)
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where BG := GGT is a Cauchy-Green tensor corresponding to G and r := α/β. Here, the numbers
α and β represent ”elastic constants” for the pieces of the aggregate, and they determine the stress
response in the reference configuration through the relation

β−1S = β−1DΨαβ(G) = − r

(detG)2
G−T +G. (16)

It is easy to verify from the previous two relations that not only is the free energy Ψαβ rank-one
convex (9), but also is strictly rank-one convex, in the sense that equality holds in (9) if and only
if a = 0 or b = 0.

We note for this model aggregate that DΨαβ(G) = 0 if and only if

r

(detG)2
G−T = G.

Writing G = VGRG in its polar decomposition (with VG symmetric and positive definite and RG
a rotation) this relation becomes V 2

G = r(detVG)−2I, with I the identity tensor, so that VG =√
r(detVG)−1I. Taking the determinant of both sides tells us that detVG = r3/8 . Therefore,

VG = r1/8I, and we may conclude:

DΨαβ(G) = 0 if and only if G = r1/8R for some rotation R. (17)

Thus, the only candidates for stationary points for the free energy response are G = r1/8R with R
a rotation, and the free energy (15) at such points is given by

2

β
Ψαβ(r1/8R) =

r

r3/4
+ tr(r1/4I) = 4r1/4. (18)

The growth properties of Ψαβ as detG tends to zero and as tr(GGT ) tends to infinity tell us
that 2

βΨαβ attains the absolute minimum value 4r1/4 at precisely the points G = r1/8R with R a

rotation. From the discussion preceding (14) we conclude that for this free energy, ζmin = r1/8.
Consequently, for each macroscopic deformation gradient F satisfying

r3/8 = det(r1/8R) ≤ detF, (19)

the tensors G = r1/8R are the loose phases corresponding to F . In fact, for every macroscopic
deformation field g that satisfies r3/8 ≤ det∇g(X) for all X in the body, and for every choice
of rotation field X 7−→ Q(X) on the body, the structured deformation (g, r1/8Q) has the property
that, at every point X in the body, G(X) is a loose phase corresponding to ∇g(X). Moreover,
this family of structured deformations includes all possibilities for achieving loose phases in the
aggregate. The fact that the field G need not itself be a gradient tells us that the rotation field Q
can vary from point to point. Therefore, the loose phases can support a texturing at the length
scale of the individual pieces of the aggregate.

For each macroscopic deformation gradient F , the compact phase G = F corresponding to F
yields the stress in the reference configuration S satisfying

β−1S = F − r

(detF )2
F−T (20)

as well as the stress in the deformed configuration T satisfying

β−1(detF )T = β−1SFT = FFT − r(det(FFT ))−1I

= BF − r(detBF )−1I, (21)

with BF = FFT .
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5 General solutions of the consistency relation associated
with Ψαβ

With a view toward classifying the disarrangement phases of the model material, we focus here
first on determining all of the solutions of the consistency relation (13)1, which here, by (20), is
equivalent to

(G− r

(detG)2
G−T )(FT −GT ) = 0. (22)

Specifically, we let F be given and seek all solutions G with detG > 0 of (22), without for the
moment taking into account satisfaction of the accommodation inequality (13)2. Using again the
polar decomposition G = VGRG and the Cauchy-Green tensor BG = GGT = V 2

G, we may write
(22) in the equivalent form

(VG −
r

(detVG)2
V −1G )(RGF

T − VG) = 0

or, by multiplying the last relation on the left by VG, in the form

(BG −
r

detBG
I)(RGF

T − VG) = 0. (23)

5.1 The case G = F (compact phase)

We first consider the case G = F (considered above in the discussion of the compact phase cor-
responding to F ), so that the expression RGF

T − VG equals RFF
T − VF = 0. Consequently,

the consistency relation (23) is satisfied in this case, and we have the following expressions for the
Cauchy stress T = (detF )−1DΨαβ(G)FT and for the free energy Ψαβ(G):

β−1(detF )T = FFT − r

(detF )2
I (24)

2β−1Ψαβ(G) =
r

(detF )2
+ tr(FFT ) (25)

Of course, in this case the accommodation inequality (7) is satisfied with equality.

5.2 The case G 6= F (non-compact phases)

We assume now that G 6= F and note from (23) that the range of RGF
T − VG then contains non-

zero elements and, hence, the nullspace of BG − r
detBG

I is non-trivial. Consequently, the number

r/detBG must be one of the eigenvalues λG1 , λG2 , λG3 of BG, say (without loss of generality) λG1
and, since detBG = λG1 λ

G
2 λ

G
3 , we have

(λG1 )2λG2 λ
G
3 = r. (26)

At this point we invoke the Spectral Theorem to represent VG and BG = V 2
G in terms of an

orthonormal basis eG1 , eG2 , eG3 of eigenvectors corresponding to the eigenvalues λG1 , λG2 , λG3 of BG :

BG =

3∑
i=1

λGi e
G
i ⊗ eGi and VG =

3∑
i=1

(λGi )1/2eGi ⊗ eGi . (27)

9



We assume without loss of generality that eG1 = eG2 ×eG3 , and, substituting these expressions for BG

and VG into (23), taking into account (26), and using I =
3∑
i=1

eGi ⊗ eGi we find that the consistency

relation is equivalent to

3∑
i=2

(λGi − λG1 )eGi ⊗ eGi

RGFT − 3∑
j=1

(λGj )1/2eGj ⊗ eGj

 = 0. (28)

The identity (a⊗ b)A = a⊗AT b and the orthonormality of the basis eG1 , eG2 , eG3 yield the relation

0 =

3∑
i=2

(λGi − λG1 )eGi ⊗ (FRTGe
G
i − (λGi )1/2eGi )

=

3∑
i=2

eGi ⊗ (λGi − λG1 )(FRTG − (λGi )1/2I)eGi . (29)

Taking the transpose of the last sum of dyads and applying it to each of the basis vectors eG2 and
eG3 leads to the equivalent system of vector relations

(λGi − λG1 )(FRTG − (λGi )1/2I)eGi = 0 for i = 2, 3, (30)

while applying it to the basis vector eG1 yields no new information. In summary, these arguments
show: if G 6= F , then without loss of generality (λG1 )2λG2 λ

G
3 = r, and the consistency relation is

equivalent to (30).

5.2.1 The case (λG1 )2λG2 λ
G
3 = r and λGi 6= λG1 for i = 2, 3 (”plane-stress”)

In view of (30) we conclude in this case that the consistency relation is equivalent to the relations

RTGe
G
i = (λGi )1/2F−1eGi for i = 2, 3. (31)

Taking the magnitudes of the vectors on both sides of these relations permits us to express two of
the eigenvalues of BG in terms of the action of BF on eigenvectors of BG:

λGi =
∣∣F−1eGi ∣∣−2 = (F−1eGi · F−1eGi )−1

= (F−TF−1eGi · eGi )−1 = (B−1F eGi · eGi )−1 for i = 2, 3, (32)

and, by (26), we also obtain the relation

λG1 =
√
r(B−1F eG2 · eG2 )1/2(B−1F eG3 · eG3 )1/2. (33)

Because (31) gives the action of the rotation RTG on the pair of orthogonal unit vectors eG2 and eG3 ,
it follows that

RTGe
G
1 = RTG(eG2 × eG3 ) = RTGe

G
2 ×RTGeG3

= (λG2 )1/2F−1eG2 × (λG3 )1/2F−1eG3

= (λG2 )1/2(λG3 )1/2(F−1eG2 × F−1eG3 ).
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The relation Av ×Aw = (detA)A−T (v × w) with A := F−1 then implies

RTGe
G
1 =

(λG2 )1/2(λG3 )1/2

detF
FT (eG2 × eG3 )

=
(λG2 )1/2(λG3 )1/2

detF
FT eG1

=
1

(B−1F eG2 · eG2 )1/2(B−1F eG3 · eG3 )1/2 detF
FT eG1 . (34)

For i = 2, 3 the original relations (31) can be written by means of (32) in a form similar to (34):

RTGe
G
i =

1

(B−1F eGi · eGi )1/2
F−1eGi . (35)

We conclude that the consistency relation (22) in the present case implies the formulas (32) and
(33) for the eigenvalues of BG as well as the formulas (34) and (35) that determine RG. Moreover,
the quantities RG and BG = V 2

G determined through these formulas are expressed in terms of the
eigenvectors of BG, together with the actions of B−1F , of F−1, and of FT on these eigenvectors.
Because RG is orthogonal, the formula (35) tells us that

B−1F eG2 · eG3 = (FFT )−1eG2 · eG3 = F−1eG2 · F−1eG3 =

= (VGRG)−1eG2 · (VGRG)−1eG3

= (λG2 )−1/2(λG3 )−1/2RTGe
G
2 ·RTGeG3 = 0 (36)

and, in particular, not only are eG2 and eG3 orthogonal, but so also are F−1eG2 and F−1eG3 .
Writing GT = RTGVG we may use the results just obtained to write

GT =

3∑
i=1

(λGi )1/2RTGe
G
i ⊗ eGi

=
r1/4

(B−1F eG2 · eG2 )1/4(B−1F eG3 · eG3 )1/4 detF
FT eG1 ⊗ eG1

+

3∑
i=2

(B−1F eGi · eGi )−1F−1eGi ⊗ eGi ,

so that for the present case λGi 6= λG1 for i = 2, 3, the consistency relation in its equivalent form
(31) yields the following formula

G =
r1/4

(B−1F eG2 · eG2 )1/4(B−1F eG3 · eG3 )1/4 detF
(eG1 ⊗ eG1 )F

+(

3∑
i=2

(B−1F eGi · eGi )−1eGi ⊗ eGi )F−T (37)

and necessitates that (32) - (36) hold. The condition λGi 6= λG1 for i = 2, 3 becomes the restriction

√
r(B−1F eG2 · eG2 )1/2(B−1F eG3 · eG3 )1/2 6= (B−1F eGi · eGi )−1 for i = 2, 3 (38)
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on two of the eigenvectors eG2 and eG3 of BG. We also note for later use the formula

detG = (detBG)1/2 = (
r

λG1
)1/2

= (
r√

r(B−1F eG2 · eG2 )1/2(B−1F eG3 · eG3 )1/2
)1/2

=
r1/4

(B−1F eG2 · eG2 )1/4(B−1F eG3 · eG3 )1/4
. (39)

Actually, the relations (32) - (39) just derived yield a characterization of all solutions G of the
consistency relation (31) in the present case:

Remark 2 Let orthogonal unit vectors e and f and a linear mapping F with detF > 0 be given
satisfying

F−1e · F−1f = 0, r1/2
∣∣F−1e∣∣3 ∣∣F−1f ∣∣ 6= 1, r1/2

∣∣F−1e∣∣ ∣∣F−1f ∣∣3 6= 1. (40)

Then the tensor

G = r1/4
∣∣F−1e∣∣1/2 ∣∣F−1f ∣∣1/2 (e× f)⊗ (

F−1e

|F−1e| ×
F−1f

|F−1f | ) +

+
∣∣F−1e∣∣−1 e⊗ F−1e

|F−1e| +
∣∣F−1f ∣∣−1 f ⊗ F−1f

|F−1f | (41)

is a solution of the consistency relation (31), and the solution (41) equals F if and only if

BF (e× f) =
r

detBF
e× f. (42)

Moreover, every solution G 6= F of the consistency relation (31) in the case λGi 6= λG1 for i = 2, 3
is of the form (41) for some choice of the orthogonal unit vectors e and f satisfying (40), and this
formula for G implies that

VG = r1/4
∣∣F−1e∣∣1/2 ∣∣F−1f ∣∣1/2 (e× f)⊗ (e× f) +

+
∣∣F−1e∣∣−1 e⊗ e+

∣∣F−1f ∣∣−1 f ⊗ f, (43)

RG = (e× f)⊗ (
F−1e

|F−1e| ×
F−1f

|F−1f | ) +

+e⊗ F−1e

|F−1e| + f ⊗ F−1f

|F−1f | , (44)

detG = r1/4
∣∣F−1e∣∣−1/2 ∣∣F−1f ∣∣−1/2 . (45)

In addition, if T = (detF )−1DΨαβ(G)FT is the Cauchy stress, then

β−1(detF )T =
∣∣F−1e∣∣−2 (1− r1/2

∣∣F−1e∣∣3 ∣∣F−1f ∣∣) e⊗ e+

+
∣∣F−1f ∣∣−2 (1− r1/2

∣∣F−1e∣∣ ∣∣F−1f ∣∣3) f ⊗ f, (46)
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and the free energy Ψαβ(G) is given by

2

β
Ψαβ(G) = 2r1/2

∣∣F−1e∣∣ ∣∣F−1f ∣∣+
∣∣F−1e∣∣−2 +

∣∣F−1f ∣∣−2 . (47)

We note that the formula (43) for VG immediately yields the formulas

λG1 = (r1/4
∣∣F−1e∣∣1/2 ∣∣F−1f ∣∣1/2)2 = r1/2

∣∣F−1e∣∣ ∣∣F−1f ∣∣ ,
λG2 = (

∣∣F−1e∣∣−1)2 =
∣∣F−1e∣∣−2 ,

λG3 = (
∣∣F−1f ∣∣−1)2 =

∣∣F−1f ∣∣−2 (48)

for the eigenvalues of the stretch tensor BG = V 2
G, and it follows directly that these eigenvalues

satisfy the relation (26). Moreover, the corresponding eigenvectors eG1 , eG2 , eG3 of BG (and of VG )
are e× f , e, and f , respectively. It is clear that the right-hand sides of the formulas (43) and (44)
are, respectively, positive definite and orthogonal tensors and that their product is the right-hand
side of (41). This observation allows us to verify the consistency relation using the equivalent form
(31) along with (43), (44), and (48):

RTGe
G
2 = RTGe =

F−1e

|F−1e| = (λG2 )1/2F−1e

with a similar calculation showing that RTGe
G
3 = (λG3 )1/2F−1f . With these observations, we have

verified that the formula (41) does in fact provide a solution to the consistency relation, and the
arguments that yielded above the relations (32) - (39) show that every solution G in this case has
the form (41). It is clear from (26) that (42) is a necessary condition for the equality of G in (41)
and F . The sufficiency of (42) for this equality is established by showing that (42), (41), and (40)1
imply that F−1G = I, and we omit the details of this argument. To complete the verification of
the remark, we note that

β−1(detF )T = DΨαβ(G)FT = DΨαβ(G)GT

= (G− r
(detG)2G

−T )GT = V 2
G − r

(detG)2 I

= (r1/4
∣∣F−1e∣∣1/2 ∣∣F−1f ∣∣1/2)2(e× f)⊗ (e× f) +∣∣F−1e∣∣−2 e⊗ e+

∣∣F−1f ∣∣−2 f ⊗ f − r1/2 ∣∣F−1e∣∣ ∣∣F−1f ∣∣ I
which when simplified gives the formula (46), and we note, finally, that (47) follows from the
definition (15) of Ψαβ and from (48). (The second equation used in the calculation above is
nothing other than the consistency relation, itself).

The formula (46) for the Cauchy stress implies that the traction T (e×f) on a plane with normal
e× f is zero and that every traction vector Tn lies in the plane determined by e and f . Moreover,
both Te and Tf are non-zero. It is then appropriate to use the attribute plane-stress to describe
the solutions G (41) of the consistency relation in the present case λGi 6= λG1 for i = 2, 3, and we shall
use the term plane-stress disarrangement phases corresponding to F in referring to such tensors G
that also satisfy the accommodation inequality (7) in the form 0 < detG ≤ detF :

0 < r1/4
∣∣F−1e∣∣−1/2 ∣∣F−1f ∣∣−1/2 ≤ detF. (49)
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5.2.2 The case (λG1 )2λG2 λ
G
3 = r and λG2 = λG1 , λ

G
3 6= λG1 (”uniaxial stress”)

From (30) we have in this case that the consistency relation is equivalent to the single condition

RTGe
G
3 = (λG3 )1/2F−1eG3 (50)

and using the same reasoning as in (32) we have

λG3 = (B−1F eG3 · eG3 )−1 =
∣∣F−1eG3 ∣∣−2 , (51)

and, by (26) and λG2 = λG1 we immediately obtain the formulas

(λG1 )3 =
r

λG3
= r(B−1F eG3 · eG3 ) = r

∣∣F−1eG3 ∣∣2 ,
λG1 = λG2 = r1/3(B−1F eG3 · eG3 )1/3 = r1/3

∣∣F−1eG3 ∣∣2/3 , (52)

detBG =
r

λG1
=

r2/3

(B−1F eG3 · eG3 )1/3
= (

r∣∣F−1eG3 ∣∣ )2/3,
detG = (detBG)1/2 =

r1/3

(B−1F eG3 · eG3 )1/6
= (

r∣∣F−1eG3 ∣∣ )1/3. (53)

We note here that the condition λG3 6= λG1 in the definition of the present case now takes the form∣∣F−1eG3 ∣∣−2 6= r1/3
∣∣F−1eG3 ∣∣2/3, i.e.,

r
∣∣F−1eG3 ∣∣8 6= 1. (54)

The relation (50) now becomes

RTGe
G
3 =

∣∣F−1eG3 ∣∣−1 F−1eG3 (55)

and we may write along the lines of the argument in the previous subsection:

GT =

3∑
i=1

(λGi )1/2RTGe
G
i ⊗ eGi

=

2∑
i=1

(λGi )1/2RTGe
G
i ⊗ eGi + (λG3 )1/2RTGe

G
3 ⊗ eG3

= r1/6
∣∣F−1eG3 ∣∣1/3RTG 2∑

i=1

eGi ⊗ eGi +
∣∣F−1eG3 ∣∣−1 ∣∣F−1eG3 ∣∣−1 F−1eG3 ⊗ eG3 .

Taking the transpose of both sides of this relation leads us to the following formula for G:

G = r1/6
∣∣F−1eG3 ∣∣1/3

(
2∑
i=1

eGi ⊗ eGi

)
RG +

∣∣F−1eG3 ∣∣−2 (eG3 ⊗ eG3 )F−T ,

or, alternatively, writing
2∑
i=1

eGi ⊗ eGi = I − eG3 ⊗ eG3 , we are led to the relation

G = r1/6
∣∣F−1eG3 ∣∣1/3 (I − eG3 ⊗ eG3 )RG +

∣∣F−1eG3 ∣∣−1 eG3 ⊗ F−1eG3∣∣F−1eG3 ∣∣ . (56)
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Remark 3 Let a unit vector e, a proper orthogonal tensor R, and a linear mapping F with
detF > 0 be given satisfying

RT e =
F−1e

|F−1e| and r1/8
∣∣F−1e∣∣ 6= 1. (57)

Then the tensor G given by

G = r1/6
∣∣F−1e∣∣1/3 (I − e⊗ e)R+

∣∣F−1e∣∣−1 e⊗ F−1e

|F−1e| (58)

is a solution of the consistency relation (30) for the case (λG1 )2λG2 λ
G
3 = r and λG2 = λG1 , λG3 6= λG1 .

The solution (56) equals F if and only if RF = R and, for all vectors v perpendicular to e,

BF v =
r

detBF
v. (59)

Moreover, every solution of the consistency relation for this case is of the form (58) with R and e
satisfying (57), and the following relations hold:

VG = r1/6
∣∣F−1e∣∣1/3 (I − e⊗ e) +

∣∣F−1e∣∣−1 e⊗ e (60)

RG = R (61)

detG = detVG = r1/3
∣∣F−1e∣∣−1/3 (62)

In addition, if T = (detF )−1DΨαβ(G)FT is the Cauchy stress, then

β−1(detF )T =
1− r1/3

∣∣F−1e∣∣8/3
|F−1e|2

e⊗ e, (63)

and the free energy Ψαβ(G) is given by

2

β
Ψαβ(G) = 3r1/3

∣∣F−1e∣∣2/3 +
∣∣F−1e∣∣−2 . (64)

To verify (60) and (61), it suffices to use (57) to rewrite (58) in the form

G = r1/6
∣∣F−1e∣∣1/3 (I − e⊗ e)R+

∣∣F−1e∣∣−1 e⊗ F−1e

|F−1e|
= r1/6

∣∣F−1e∣∣1/3 (I − e⊗ e)R+
∣∣F−1e∣∣−1 e⊗RT e

= (r1/6
∣∣F−1e∣∣1/3 (I − e⊗ e) +

∣∣F−1e∣∣−1 e⊗ e)R
and to note that the second factor on the right is the rotation R and the first factor is positive
definite and symmetric. The satisfaction of the consistency relation in the form (50) by the tensor

G in (58) then follows from (57) and the fact that VGe =
∣∣F−1e∣∣−1 e. The assertion containing

the relation (59) is easily verified by employing the polar decomposition of G below (64) and the
uniqueness of the factors in that decomposition. That every solution of the consistency relation in
the present case is of the form (58) is established by the arguments that precede the statement of
the Remark, and the formulas (63) and (64) are then easily verified.
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The formula (63) and the restriction (57) show that the state of stress in the deformed configura-
tion of the aggregate is uniaxial and non-zero for every solution G of the consistency relation in the
present case (λG1 )2λG2 λ

G
3 = r and λG2 = λG1 , λG3 6= λG1 . It is then appropriate to use the attribute

uniaxial stress to describe the solutions G and the term uniaxial stress disarrangement phases cor-
responding to F in referring to such tensors G that also satisfy the accommodation inequality (7)
in the form 0 < detG ≤ detF :

0 < r1/3
∣∣F−1e∣∣−1/3 ≤ detF. (65)

5.2.3 The case (λG1 )2λG2 λ
G
3 = r and λG1 = λG2 = λG3 (”zero stress”/loose phase)

The relation (26) immediately yields λG1 = λG2 = λG3 = r1/4, so that

BG = r1/4I and G = r1/8R, (66)

with no restriction on the rotation R = RG imposed by the consistency relation. Of course, in this
case we also have

detG = r3/8, (67)

and we note that this case recovers precisely those tensors G identified in the previous section that
render Ψαβ a minimum and that enter into the description of the loose phase. We have from those
considerations

T = 0 and 2β−1Ψαβ(G) = 4r1/4, (68)

and the accommodation inequality (7) takes the form

r3/8 ≤ detF. (69)

6 Conclusions

In this Part I of our study we have delimited the coupling between the macroscopic deformation
F and the deformation G of the pieces (or grains) of an elastic aggregate through the consistency
relation DΨ(G)(FT −GT ) = 0 and through the accommodation inequality 0 < detG ≤ detF . For
a model elastic aggregate and for a given but arbitrary F , we have classified all of the solutions
G of these two relations (the disarrangement phases corresponding to F ) according to whether
G = F (the compact phase in which all of the pieces of the aggregate deform in the same way
as the aggregate) or G 6= F . Three categories exhaust the class of non-compact phases G 6= F ,
corresponding to whether the Cauchy stress T = (detF )−1DΨ(G)FT is planar, uniaxial, or zero.
The four categories of disarrangement phases provide a rich portfolio of phases that can appear in
response to prescribed boundary conditions on the aggregate, and future research will employ these
phases in the solution of a variety of boundary-value problems. The classification also provides a
basis for the study of stable disarrangement phases of the model aggregate that we provide in Part
II. That study achieves an unexpected connection between elastic aggregates and the no-tension
materials used to describe structures composed of masonry-like elements.
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