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ABSTRACT. The average-distance problem, in the penalized formulation, involves minimizing

(1) Eλµ(Σ) :=

∫
Rd

d(x,Σ)dµ(x) + λH1(Σ),

among path-wise connected, closed sets Σ with finite H1-measure, where d ≥ 2, µ is a given
measure, λ is a given parameter and d(x,Σ) := infy∈Σ |x − y|. The average-distance problem can
be also considered among compact, convex sets with perimeter and/or volume penalization, i.e.
minimizing

(2) E(µ, λ1, λ2)(·) :=

∫
Rd

d(x, ·)dµ(x) + λ1 Per(·) + λ2 Vol(·),

where µ is a given measure, λ1, λ2 ≥ 0 are given parameters with λ1 + λ2 > 0, and the unknown
varies among compact, convex sets. Very little is known about the regularity of minimizers of (2).
In particular it is unclear if minimizers of (2) are in general C1 regular. The aim of this paper is
twofold: first, we provide in R2 a second approach in constructing minimizers of (1) which are
not C1 regular; then, using the same technique, we provide an example of minimizer of (2) whose
border is not C1 regular, under perimeter penalization only.
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Classification. 49Q20, 49K10, 49Q10, 35B65

1. INTRODUCTION

The average-distance problem was proposed by Buttazzo, Oudet and Stepanov in [2]. To
guarantee well-posedness, an a priori bound on the H1-measure of admissible minimizers was
given, and this formulation is often referred as “constrained formulation”. To overcome the exces-
sive rigidity imposed by hard constraints on the H1-measure, Buttazzo, Mainini and Stepanov
proposed in [1] the “penalized formulation”:

Problem 1.1. Given d ≥ 2, a compactly supported, nonnegative measure µ, and λ > 0, minimize∫
Rd
d(x,Σ)dµ(x) + λH1(Σ), d(x,Σ) := inf

y∈Σ
|x− y|

with the unknown Σ varying in

A := {X ⊆ Rd : X compact, path-wise connected,H1(X) <∞}.
1
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To simplify notations, for future reference let

Fµ : A −→ R, Fµ(Σ) :=

∫
Rd
d(x,Σ)dµ

Eλµ : A −→ R, Eλµ(Σ) := Fµ(Σ) + λH1(Σ).

The functional Fµ will be often referred as “average-distance functional”. In the following, any
considered measure will be assumed nonnegative, compactly supported probability measure.
The choice of working with probability measure is for the sake of simplicity, and it is not restric-
tive since results proven in this paper can be easily extended to finite measures. Existence of
minimizers follows from Blaschke and Goł̨ab theorems.

In the following the expression “average-distance problem” will refer to Problem 1.1. Moreover,
the H1-measure of a set will be often referred as “length”. Originally this problem stemmed
from mathematical modeling of optimization problems. A classic example can be found in urban
planning: let

• µ be the distribution of passengers in a given region,
• Σ (the unknown) be the transport network to be built.

In this case Fµ(Σ) is the “average distance” of passengers from the network (thus smaller values
of Fµ(Σ) imply that “on average, passengers are quite close to the network Σ”, i.e. “Σ is easily
accessible”), and λH1(Σ) is the cost to build such network. Thus minimizing Eλµ is determining
the network which “optimizes accessibility” for passengers, under cost considerations.

A more recent application can be found in data approximation: let
• µ be the distribution of data points,
• Σ (the unknown) be a one dimensional object which approximates the data.

In this case Fµ(Σ) is the error of such approximation, while λH1(Σ) is the cost associated to its
complexity. Thus minimizing Eλµ is equivalent to determine the “best” approximation, which
balances approximation error and cost.

In applications, sometimes the integrand d(x,Σ) in Fµ(Σ) can be replaced by d(x,Σ)p for
some power p ≥ 1 (the case p = 2 is most common). However for the purposes of this paper
the exponent p is not relevant, and we will consider only the case p = 1. The regularity of
minimizers of Problem 1.1 is quite a delicate problem: it is known that minimizers are union of
at most [1/λ] branches, and such branches are Lipschitz regular (Buttazzo, Oudet, Paolini and
Stepanov [2, 3, 4, 13]), satisfying a curvature estimate (Slepčev et al. [11]), but can fail to be C1

regular (Slepčev [15]). Other results were proven by Santambrogio, Tilli [14, 16] and Lemenant
[8]. A review is available in [7].

Average distance problem among convex sets. As proposed by Lemenant and Mainini in [9],
the average-distance problem can be also considered among compact, convex sets, under perime-
ter and/or volume penalization:

Problem 1.2. Given d ≥ 2, a measure µ, and parameters λ1, λ2 ≥ 0 satisying λ1 + λ2 > 0, minimize

E(·) = E(µ, λ1, λ2)(·) :=

∫
Rd
d(x, ·)dµ+ λ1 Per(·) + λ2 Vol(·),
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with the unknown varying in

C := {K ⊆ Rd : K compact and convex}.

Here the “perimeter” of a setE ⊆ Rd is defined as the total variation (in Rd) of its characteristic function
χE , and the “volume” as its Ld measure.

The motivations to study this problem are mainly theoretical, although one could easily find
some applications (see [9]). Some partial results about regularity have been proven in [9]. How-
ever it is unclear if minimizers of Problem 1.2 (under only perimeter or volume penalization, not
both as this case has been discussed in [9]) have C1 regular border. This paper will be structured
as follows:

• Section 2 will recall preliminary results,
• Section 3 will construct (in R2) an explicit example of minimizer of Problem 1.1 failing to

be C1 regular, using an approach different from that used in [15],
• Section 4 will construct, using techniques presented in Section 3, an explicit example of

minimizer K of Problem 1.2 under perimeter penalization only, whose border ∂K is not
C1 regular.

The approach used in Section 3 uses some ideas from [15]: indeed we will approximate the
reference measure µ with a sequence of discrete measures µk

∗
⇀µ. We will use also a result

similar to Lemma 11 of [15] (although with a slightly different proof), and similarly to [15], we
will use the same result (Lemma 2.4) to pass to the limit k → ∞. However the core arguments
(Lemmas 3.4, 3.6 and 3.7), which prove that for infinitely many indices k there exists a minimizer
Σk ∈ argmin Eλµk containing a corner vk with turning angle (see Definition 2.3) bounded from
below (roughly corresponding to Steps 5, 6, 7 of Theorem 12 in [15]), are significantly different.
These are specifically tailored for the reference measure considered in Section 3, and cannot be
easily adapted for measures in Theorem 12 of [15].

It is worth noticing that this approach allows also to construct an example of minimizer of
Problem 1.1 whose set of corners (i.e. points where C1 regularity does not hold) is not closed
([10]).

2. PRELIMINARY RESULTS

The main goal of this section is to introduce some notations and recall well known results
which will be used in Section 3.

The average-distance functional satisfies the following well known properties:
(1) for any probability measure µ on Rd, and λ > 0, the functional Eλµ is lower semicontinu-

ous w.r.t. dH (here, and in the following, dH will denote the Hausdorff distance),
(2) given Σ ∈ A, and λ > 0, the mapping µ 7→ Eλµ(Σ) is continuous w.r.t. weak-* convergence

of measures,
(3) if µn

∗
⇀µ, then for any λ > 0, Eλµn

Γ→ Eλµ ,
(4) consider a sequence µn

∗
⇀µ, and for any n choose Σn ∈ argmin Eλµ . Then upon subse-

quence Σn
dH→Σ ∈ argmin Eλµ .
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For further details, we refer to [2, 3, 4, 15].

Recall that given a set of points Π := {P1, · · · , Pj} ⊆ Rd, the Steiner graph of Π is a path-
wise connected set with minimal length containing all points of Π. The next result (from [15])
proves an intrinsic connection between Steiner graphs and minimizers of Problem 1.1, when the
reference measure is discrete:

Proposition 2.1. Given d ≥ 2, a discrete measure µ :=
∑n

i=1 aiδxi on Rd, and λ > 0, then any
minimizer Σ ∈ argminAE

λ
µ is a Steiner graph.

The following classic result (see for instance [5, 6]) proves several geometric properties about
Steiner graphs:

Proposition 2.2. Given a Steiner graph G, it holds:
• G is a tree,
• if Ju, vK and Jv, wK are edges, with a common vertex v, then ûvw ≥ 2π/3,
• the maximal degree of any vertex is 3,
• if v is a vertex of degree 3, let Jui, vK, i = 1, 2, 3 be the three different edges containing v, then the

angle between any two such edges is 2π/3, and these edges are coplanar.

In view of Propositions 2.1 and 2.2, the following definition will be useful:

Definition 2.3. Given a discrete measure µ, λ > 0, and Σ ∈ argminAE
λ
µ , a vertex v ∈ Σ is called:

• “endpoint” if has degree 1,
• “corner” if has degree 2,
• “triple junction” if has degree 3.

If v is a corner, denoting with w, z the two vertices for which Jw, vK and Jv, zK are edges, the “turning
angle” in v is:

TA(v) := π − ŵvz.
Similarly, given a subset A ⊆ Σ, the turning angle of A is defined as

TA(A) :=
∑

u∈A, u corner

TA(u).

Given v ∈ Σ and x ∈ supp(µ), the following expressions will be used:
• “x talks to v”, “x projects on v”, “v talks to x”: all these mean d(v,Σ) = |x− v|;
• “v receives mass from A”, where A ⊆ supp(µ): there exists x ∈ A such that x talks to v;
• TM(µ, v,Σ) (TM(v) when no risk of confusion arises) denotes the total mass of project-

ing on v, which we note may not coincide with the total mass supported on the points
talking to v. The quantity TM(µ, v,Σ) will be often referred as “(amount of) mass pro-
jecting on v”. For a detailed discussion see Lemma 2.1 in [11];
• “H mass projects on v”, where H ≥ 0: this means TM(µ, v,Σ) = H .

Given two points p, q the notation Jp, qK will denote the straight segment {(1−t)p+tq : t ∈ [0, 1]}.
Finally we recall a convergence result:
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Lemma 2.4. Given a sequence of curves {γk} : [0, 1] −→ K (k ∈ N), with K ⊆ R2 a given compact set,
satisfying

sup
k
‖γ′k‖BV <∞, sup

k
H1(γk([0, 1])) <∞,

then there exists a curve γ : [0, 1] −→ K, such that (upon subsequence) it holds:
(1) γk → γ in Cα, for any α ∈ [0, 1),
(2) γ′k → γ′ in Lp, for any p ∈ [1,∞),
(3) γ′′k

∗
⇀γ′′ in the space of signed Borel measures.

3. COUNTEREXAMPLE

The aim of this section is to present a different approach in constructing minimizers (of Prob-
lem 1.1) failing to be C1 regular.

B′ B′′

B

x0

y

FIGURE 1. A schematic representation of the support of µ. For the sake of clarity
the radius r has been chosen large.

Endow R2 with the standard Cartesian coordinate system. Let

(3) µ = µ(r, η) :=

(
1− η
2πr2

(χB′ + χB′′) +
η

πr2
χB

)
· L2,

(4) λ = λ(η) :=
1− η

2
− 10−100,

where χ denotes the characteristic function (of the subscripted set), and

B′ := B((−1, 0), r), B′′ := B((1, 0), r), B := B((0, 1), r).
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Parameters η and r are to be determined later (see conditions (C1) and (C2)). If λ > 1/3, any
minimizer Σ ∈ argmin Eλµ(r,η) is a simple curve independently of r, η. For further details we
refer to [11]. For the sake of brevity, we will omit writing dependencies on η and r if no risk of
confusion arises.

Lemma 3.1. Let µ and λ be the quantities defined in (3) and (4). Then there exist r0, η0 > 0 such that
for any r ∈ (0, r0), η ∈ (0, η0), any minimizer Σ ∈ argmin Eλµ satisfies:

(i) Σ ∩B((−1, 0), 0.01) 6= ∅, Σ ∩B((1, 0), 0.01) 6= ∅,
(ii) Σ ⊆ {y < 1/3},

(iii) Σ ⊆ {y ≥ −r}.

Proof. Note that for any η such that λ > 1/3, Σ is a simple curve in view of [11, Lemma 3.1]. To
prove (i), note that passing to the limit r → 0 the measure µ = µ(r, η) converges (w.r.t. weak-*
topology) to

µ̄ :=
1− η

2
(δ(−1,0) + δ(1,0)) + ηδ(0,1).

Since µ̄((±1, 0)) > λ, any minimizer Σ̄ ∈ argminAE
λ
µ̄ contains {(±1, 0)}. Since for sequences

rk → 0, {Σk ∈ argminAE
λ
µ(rk,η)} it holds (upon subsequence) Σk

dH→Σ ∈ argminAE
λ
µ̄ , statement

(i) is proven.

To prove (ii) it suffices to note that any set X containing {p1, p2, q}with p1 ∈ B((−1, 0), 0.01),
p2 ∈ B((1, 0), 0.01) and q ∈ {y = 1/3} satisfies

H1(X) ≥ 2
√

0.992 + (1/3− 0.01)2,

while

Eλµ(J(−1, 0), (1, 0)K) ≤ 1− η
2

r + η + 2λ.

Thus for sufficiently small η, r it holds

Eλµ(J(−1, 0), (1, 0)K) < λH1(X) ≤ Eλµ(X),

i.e. X /∈ argmin Eλµ .

To prove (iii), let

π : R2 −→ R2, π(x, y) := (x,max{y,−r}).

Note that:

• any X ∈ A satisfiesH1(π(X)) ≤ H1(X), with equality holding only if X ⊆ {y ≥ −r},
• for any X ∈ A, x ∈ supp(µ) it holds d(x,X) = d(x, π(X)).

Thus any minimizer Σ ∈ argmin Eλµ satisfies π(Σ) = Σ, and the proof is complete. �

As consequence we have:
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Corollary 3.2. Let µ and λ be the quantities defined in (3) and (4). Then there exists r0, η0 > 0 such
that for any r ∈ (0, r0), η ∈ (0, η0), and minimizer Σ ∈ argmin Eλµ , it holds:

(∀z ∈ B) argminw∈Σ |z − w| ⊆ {−0.01 ≤ x ≤ 0.01},
(∀z′ ∈ B′) argminw′∈Σ |z

′ − w′| ⊆ {−1.01 ≤ x ≤ −0.99},
(∀z′′ ∈ B′′) argminw′′∈Σ |z

′′ − w′′| ⊆ {0.99 ≤ x ≤ 1.01}.

Proof. Consider an arbitrary minimizer Σ ∈ argmin Eλµ . Lemma 3.1 implies the existence of a
point w ∈ Σ such that (for sufficiently small r)

(∀z ∈ B) |z − w| ≤ 1 + 2r< inf
x∈B, y∈B′

|x− y| = inf
x∈B, y∈B′′

|x− y| =
√

2− 2r.

Choosing sufficiently small r guarantees the existence of w′, w′′ ∈ Σ such that

(∀z′ ∈ B′) |z′ − w′| ≤ r + ε(r), (∀z′′ ∈ B′′) |z′′ − w′′| ≤ r + ε(r),

where
ε(r) := max{d((−1, 0),Σ), d((1, 0),Σ)},

and from the proof of Lemma 3.1 it follows limr→0+ ε(r) = 0. Thus the proof is complete. �

Thus choose sufficiently small r, η such that:
(C1) η ≤ 10−100, r/η ≤ 10−100,
(C2) conclusions of Lemma 3.1 and Corollary 3.2 hold.

Discrete measures. Similarly to [15], the first step involves approximating (in the weak-* topol-
ogy) µ with a sequence of discrete measures. Given three points v1, v2, v3, define the “region of
influence” V (v2) as follows:

(1) if v1, v2, v3 are collinear, then V (v2) is the unique line passing through v2 and orthogonal
to v3 − v2,

(2) otherwise, let θi := vi+1−vi
|vi+1−vi| (i = 1, 2), ξ := θ2+θ1

|θ2+θ1| , b := θ2−θ1
|θ2−θ1| , β := TA(v2)/2, and

V (v2) := v2 + {x ∈ R2 : |〈ξ, x〉| ≤ 〈b, x〉 tanβ},

where 〈, 〉 denotes the standard Euclidean scalar product of R2.
Note that if TA(v2) > 0, V (v2) is an angle with vertex v2, of amplitude TA(v2), and the border
∂V (v2) is union of two half-lines l± starting in v2.

For j = 1, 2, · · · , define

µj :=
1− η

2

( 1

](B′ ∩ 1
jZ2)

](B′∩ 1
j
Z2)∑

i=1

δp′i

)
+

1− η
2

( 1

](B′′ ∩ 1
jZ2)

](B′′∩ 1
j
Z2)∑

i=1

δp′′i

)

+ η
( 1

](B ∩ 1
jZ2)

](B∩ 1
j
Z2)∑

i=1

δpi

)
,(5)
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where

{p′i} := B′ ∩ 1

j
Z2, {p′′i } := B′′ ∩ 1

j
Z2, {pi} := B ∩ 1

j
Z2,

Geometrically, this means that the mass supported in B (resp. B′, B′′) is uniformly distributed
on the uniform grid B ∩ 1

jZ
2, (resp. B′ ∩ 1

jZ
2, B′′ ∩ 1

jZ
2). Note that in Corollary 3.2 replacing the

reference µwith µj , the same conclusion holds (with the same proof). In particular any point can
receive mass from at most one of the balls B,B′, B′′. For the sake of brevity, in the following we
will refer to Corollary 3.2 when using its conclusion, even if the reference measure of the context
is µj instead of µ.

The next result proves that if a positive fraction of the mass supported inB projects on a point
v, then TA(v) > 0.

Lemma 3.3. Consider the family of measures {µj} defined in (5). Let λ be the parameter defined in (4).
Then for any index j and minimizer Σ ∈ argmin Eλµj , if a positive fraction of the mass supported in B
projects on a point v ∈ Σ, then TA(v) > 0.

Proof. Assume for the sake of contradiction that TA(v) = 0, and let E ⊆ B be the set of points
talking to v. Simple geometric considerations give E ⊆ V (v), which (since TA(v) = 0) is the line
through v orthogonal to v1 − v2.

v1 v2v

vs

B

V (v)

FIGURE 2. This is a schematic representation of the variation.

Consider the variation in Figure 2: define the competitor Σs as

Σs := Σ\Jv1, v2K ∪ (Jv1, vsK ∪ Jv2, vsK).

By construction
Fµj (Σ)− Fµj (Σs) ≥ as,
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since E ⊆ B ⊆ {y ≥ 2/3}, while Σ ⊆ {y ≤ 1/3} (Lemma 3.1), and (for sufficiently small s)

H1(Σs)−H1(Σ)=O(s2).

Thus the minimality of Σ is contradicted. �

This result has not been used in [15], and due to the very constructions therein, it is unclear
if the proof we used is valid for the reference measure in Theorem 12 of [15]. The next result
proves a relation between the turning angle of a given corner and the amount of mass projecting
on it.

Lemma 3.4. Consider the family of measures {µj} defined in (5). Let λ be the parameter defined in (4).
Then for any index j, minimizer Σ ∈ argmin Eλµj , and corner v ∈ Σ, it holds:

(i) upper bound estimate on the turning angle:

TA(v) ≤ π

2λ
TM(v),

(ii) estimates on the curvature κ(I) of an arbitrary subset I ⊆ Σ:

κ(I) ≤ π

2λ

∑
v∈I, v corner

TM(v),

(iii) bounds for small turning angles:

(6) TA(v)→ 0+ =⇒ TA(v)

TM(v)/λ
→ 1.

In particular, if TA(v) ≤ 0.01 then
TA(v)

TM(v)/λ
≥ 1

2
.

Note that statements (i) and (ii) have been proven (or follow easily from) in [15]. However
statement (iii), which will play a crucial role in the following arguments, has not been used in
[15], and it has not been proven explicitly. Although it may follow from Lemma 9 of [15], our
proof is somewhat easier.

Proof. Statements (i) and (ii) have been proven in [15]. To prove (iii), note that upon scaling and
translation the configuration is that in Figure 3.

Consider the variations in Figure 3. The competitor

Σ+
s := Σ\(Jv1, vK ∪ Jv2, vK) ∪ (Jv1, v

+
s K ∪ Jv2, v

+
s K)

satisfies:
• simple geometric considerations give that minz∈V (v)(|z − v| − |z − v+

s |) is achieved for
points z ∈ ∂V (v), which satisfy

|z − v+
s |2 = |z − v|2 + s2 − 2 cos(TA(v)/2)|z − v|s.

For small values of s, in first order approximation, this reads

|z − v+
s |2≥|z − v|2 − 2 cos(TA(v)/2)|z − v|s+O(s2),
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v1 v2

v

v+
s

v−s

β

V (v)

FIGURE 3. This is a schematic representation of the configuration. Here β is the bisector
of V (v), and |v1 − v| = |v2 − v|.

i.e.

|z − v| − |z − v+
s |≥

2 cos(TA(v)/2)|z − v|s+O(s2)

|z − v|+ |z − v+
s |

=s cos(TA(v)/2)+O(s2).

Thus

(7) Fµj (Σ)− Fµj (Σ+
s )≥TM(v)s cos(TA(v)/2)+O(s2).

• For length, direct computation gives

|v1 − v+
s |2 = |v1 − v|2 + s2 − 2 cos

π − TA(v)

2
s|v1 − v|,

which for small values of s gives
(8)

H1(Σ+
s )−H1(Σ)=2

(
|v1−v|− |v1−v+

s |
)
+O(s2)=2 cos

π − TA(v)

2
s+O(s2) = 2 sin

TA(v)

2
s+O(s2).

Combining estimates (7), (8) and minimality condition Eλµj (Σ) ≤ Eλµj (Σ
+
s ) (for any s > 0) yields

(9) TM(v) cos
TA(v)

2
≤ 2λ sin

TA(v)

2
.

The competitor
Σ−s := Σ\(Jv1, vK ∪ Jv2, vK) ∪ (Jv1, v

−
s K ∪ Jv2, v

−
s K)

satisfies:
• for any z it holds |z − v−s | ≤ |z − v|+ s, i.e.

(10) Fµj (Σ
−
s )− Fµj (Σ) ≤ TM(v)s.
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• For length, direct computation gives

|v1 − v+
s |2 = |v1 − v|2 + s2 − 2 cos

TA(v)

2
s|v1 − v|,

i.e.

(11) H1(Σ+
s )−H1(Σ)=2 sin

TA(v)

2
s+O(s2).

Combining estimates (10), (11) and minimality condition Eλµj (Σ) ≤ Eλµj (Σ
−
s ) yields

(12) TM(v) ≥ 2λ sin
TA(v)

2
.

Combining (9) and (12) proves (6). The implication

TA(v) ≤ 1

100
=⇒ TA(v)

TM(v)/λ
≥ 1

2

follows immediately from (9): under assumption TA(v) ≤ 0.01, inequality (9) reads

TM(v) ≤ 2λ tan
TA(v)

2

TA(v)≤0.01

≤ 2λTA(v),

hence 1
2 ≤

TA(v)
TM(v)/λ , and the proof is complete. �

Lemma 3.5. Consider the family of measures {µj} defined in (5). Let λ be the parameter defined in (4).
Then for any index j, minimizer Σ ∈ argmin Eλµj , and corner v ∈ Σ receiving mass from B, it holds
V (v) ∩ Σ = {v}.

For future reference, the notation ‖ · ‖TV will denote the total variation semi-norm. We will
omit writing the domain if no risk of confusion arises.

Proof. Let f : [0, 1] −→ Σ be a constant speed bijective parameterization, and denote with tv :=
f−1(v). Assume there exists another pointw := f(tw) ∈ V (v)∩Σ, w 6= v. Recall that by construc-
tion, the border ∂V (v) is union of half-lines l± starting in v and orthogonal to the left/right tan-
gent vector τ± := limt→t±v f

′(t). Since the amplitude of V (v) is TA(v) ≤ πη
2λ (in view of Corollary

3.2 and Lemma 3.4), it follows ∠(w−v)l− ≤ TA(v), i.e. ∠(w−v)τ− ∈ [π/2−TA(v), π/2+TA(v)],
thus ‖f ′‖TV ≥ π/4. Since Lemma 3.4 gives ‖f ′‖TV ≤

π

2λ
(1 − 2λ), a contradiction has been

achieved, concluding the proof. �

The next result proves that given distinct corners v1 6= v2, then the intersection V (v1) ∩ V (v2)
is empty.

Lemma 3.6. Consider the family of measures {µj} defined in (5). Let λ be the parameter defined in (4).
Then for any index j, minimizer Σ ∈ argmin Eλµj , and distinct corners vi, v′i receiving mass from B, it
holds V (vi) ∩ V (v′i) = ∅.

The arguments we use in this proof strongly rely on Lemma 3.1, whose proof uses the partic-
ular construction of µ, and cannot be extended (at least without very significant modifications)
to measures considered in Theorem 12 of [15].



12 XIN YANG LU

Proof. For the sake of brevity, given a point p, the notations px (resp. py) will denote the x (resp.
y) coordinate of p. Assume for the sake of contradiction there exist distinct corners v1, v2 such
that V (v1) ∩ V (v2) 3 v.

Lemma 3.5 implies v /∈ {v1, v2}, V (v1) 6⊆ V (v2) and V (v2) 6⊆ V (v1). Lemma 3.1 gives Σ ⊆
{y < 1/3}, while B ⊆ {y > 2/3}.

v2

v1

v

V (v2)

V (v1)

Σ

Σ

FIGURE 4. This is a schematic representation of the configuration.

Since Σ is a simple curve, let f : [0, 1] −→ Σ be a constant speed bijective parameterization.
Let

t1 = f−1(v1), t2 = f−1(v2),

and assume t1 < t2. Note that the triangle 4v1vv2 is non degenerate, thus min{v̂2v1v, v̂v2v1} <
π/2. Assume (by symmetry) v̂2v1v < π/2. Thus

(13) {ε > 0 : (∀t ∈ (t1, t1 + ε))(∃z ∈ Jv1, v2K ∩ {x =
(
f(t)

)
x
}) : zy >

(
f(t)

)
y
} 6= ∅,

and let

ε∗ := sup{ε > 0 : (∀t ∈ (t1, t1 + ε))(∃z ∈ Jv1, v2K ∩ {x =
(
f(t)

)
x
}) : zy >

(
f(t)

)
y
}.

Clearly ε∗ ≤ t2 − t1. Consider the competitor

Σ̃ := Σ\f([t1, t1 + ε∗]) ∪ Jf(t1), f(t1 + ε∗)K.

By construction it holds H1(Σ̃) < H1(Σ). Let q ∈ B be an arbitrary point. Choose an arbitrary
tw ∈ (t1, t1+ε∗) such that |q−f(tw)| = d(q,Σ), and by definition there exists w̃ ∈ Jf(t1), f(t1+ε∗)K
satisfying w̃x =

(
f(tw)

)
x
, w̃y >

(
f(tw)

)
y
. Thus

z ∈ {y > (w̃y +
(
f(tw)

)
y
)/2} =⇒ |z − w̃y| < |z − f(tw)|.
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Since any point of f([t1, t1 + ε∗]) can only talk to masses supported in B ⊆ {y > 2/3}, while
Jf(t1), f(t1 + ε∗)K ⊆ {y < 1/2}, it follows

(∀z ∈ B)(∀t ∈ [t1, t1 + ε∗]) |z − f(t)| ≥ |z − w̃t|,
where w̃t is the unique point satisfying

(w̃t)x =
(
f(t)

)
x
, (w̃t)y >

(
f(t)

)
y
, w̃t ∈ Jf(t1), f(t1 + ε∗)K.

Thus it follows Fµ(Σ̃) ≤ Fµ(Σ). SinceH1(Σ̃) < H1(Σ), the minimality of Σ is contradicted. Thus
such a point v cannot exist. �

The next result is the core argument of our construction.

Lemma 3.7. Consider the family of measures {µj} defined in (5). Let λ be the parameter defined in (4).
Then for any sufficiently large index j and Σj ∈ argmin Eλµj , there exists a corner vj ∈ Σj such that
TM(µj , vj ,Σj) ≥ η/4. Moreover, TA(vj) ≥ η/6.

Since we will use Lemma 3.6, this proof cannot be used for measures considered in Theorem
12 of [15]. Note also that the choice of the denominator in TA(vj) ≥ η/6 is quite arbitrary (and
certainly not optimal), but acceptable for the purposes of this section.

Proof. Fix an index j, and choose a minimizer Σ ∈ argmin Eλµj . Let f : [0, 1] −→ Σ be a constant
speed bijective parameterization, and let {vi}Hi=1 be the set of corners receiving positive mass
from B. Recall that Corollary 3.2 implies that such {vi} can talk only to mass supported in B.

Let ti := f−1(vi) andMi := TM(µj , vi,Σ). If there exist two indices i1, i2 such thatMi1 +Mi2 ≥
η/2, then the proof is complete. Thus in the following we will assume

(14) (∀i1, i2, i1 6= i2) Mi1 +Mi2 ≤ η/2.
The goal is to prove that this assumption leads to a contradiction.

Lemma 3.4 gives
Mi

2λ
≤ TA(vi) ≤

Mi

λ
, i = 1, · · · , H,

and combining with Lemma 3.1 gives

(15) d(vi, B) ≥ 1

3
sin TA(vi) ≥

1

6
TA(vj).

Let l±i be the two half-lines forming the border ∂V (vi), Lemma 3.6 proves that V (vi1)∩V (vi2) = ∅
whenever i1 6= i2.

• Claim: for any corner vi, except at most two, both half-lines l±i must intersect the border
∂B.

Let vi1 , vi2 be the two corners for which (upon renaming) l+i1 ∩ ∂B = l+i2 ∩ ∂B = ∅ (clearly if such
a couple vi1 , vi2 does not exist, then the claim is true). The goal is to prove that it does not exist
a third corner vi3 for which (upon renaming) l+i3 ∩ ∂B = ∅.

Assume (upon renaming) i1 < i2, and both l−i1 and l−i2 intersect ∂B since:
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vi1

vi2

Σ

θ1

θ2

R1 R1

R2

FIGURE 5. This is a schematic representation of the configuration.

• vi1 and vi2 receive mass from B, thus V (vi1) ∩B and V (vi2) ∩B are both non empty,
• l+i1 and l+i2 do not intersect ∂B,
• if l−i1 (resp. l−i2) does not intersect ∂B, then B ⊆ V (vi1) (resp. B ⊆ V (vi2)) and Lemma 3.6

implies B ∩ V (vi2) = ∅ (resp. B ∩ V (vi1) = ∅). This is a contradiction.

Thus there exist half-lines θ1 ⊆ V (vi1) (resp. θ2 ⊆ V (vi2)) starting in v1 (resp. v2) and tangent
to ∂B. Note that

R2\(f([ti1 , ti2 ]) ∪ θ1 ∪ θ2)

is divided in two connected components R1 and R2, of which (upon renaming) R1 contains B.
Note also that any half-line contained in R1 must intersect ∂B.

Choose another corner vi3 : since it talks to some mass in B, the intersection V (vi3) ∩ B is not
empty, thus there exists a half-line φ ⊆ V (vi3). Lemma 3.5 implies V (vi3) ∩ Σ = {v3}, and since
V (vi3) is connected, it intersects B, but not θ1∪ θ2 (Lemma 3.6). Thus it holds V (vi3)\{vi3} ⊆ R1.
Since any half-line contained in R1 must intersect ∂B, we conclude that both l±i3 intersect ∂B,
and the claim is proven.

Using (15) gives that any corner vi such that both l±i intersect ∂B satisfies

(16) min
z∈l−i , |z−vi|≥1/3

d(z, l+i ) ≥ 1

3
sin TA(vi)≥

1

6
TA(vi),

since Lemma 3.4 gives TA(vi) ≤ πη2λ. Since for any index i except at most two (which will be
denoted by i′ and i′′), both l±i intersect ∂B, choose w±i ∈ l

±
i ∩ ∂B, and clearly V (vi) ∩ ∂B is an

arc connecting w−i and w+
i . Combining with (16) gives

H1(V (vi) ∩ ∂B) ≥ min
z∈l−i , |z−vi|≥1/3

d(z, l+i ) ≥ 1

6
TA(vi),

and using Lemma 3.4 gives TA(vi) ≥
Mi

2λ
, i.e.

(17) H1(V (vi) ∩ ∂B) ≥ 1

6
TA(vi) ≥

1

6

Mi

2λ
≥ 1

12
Mi.
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Recalling that V (vi1)∩V (vi2) = ∅whenever i1 6= i2, summing over indices i ∈ {1, · · · , H}\{i′, i′′}
gives

H1(∂B) ≥
H∑
i=1

i 6=i′,i′′

H1(V (vi) ∩ ∂B)
(17)
≥

H∑
i=1

i 6=i′,i′′

1

12
Mi

(14)
≥ η

24

(C1)
> 2πr = H1(∂B),

which is a contradiction.

Thus there exist indices i′, i′′ such that Mi′ + Mi′′ ≥ η/2, i.e. max{Mi′ ,Mi′′} ≥ η/4 indepen-
dently of j. Using Lemma 3.4, we conclude that max{TA(vi′),TA(vi′′)} ≥ η

8λ , and since 8λ < 6,
the proof is complete. �

Passing to the limit. Now we can pass to the limit j → ∞. The arguments we use are quite
standard, and similar to those used in [15] (mainly Step 8 of Theorem 12). For any j choose
Σj ∈ argmin Eλµj , and since µj

∗
⇀µ, upon subsequence it holds (using Lemma 2.4)

Σj
dH→Σ ∈ argmin Eλµ .

Let
(j = 1, 2, · · · ) fj : [0, 1] −→ Σj , f : [0, 1] −→ Σ

be constant speed bijective parameterizations, such that fj → f uniformly. Lemma 3.7 proves
that for any j there exists a corner vj = f−1

j (tj) such that TA(vj)≥η/6. In other words, the
measure f ′′j has an atom of measure at least η/6 in tj . Note that conditions of Lemma 2.4 are
satisfied:

• supj ‖f ′j‖TV ≤ 1/λ in view of [11, Theorem 5.1],
• the minimality condition Σj ∈ argminλµj , j = 1, 2, · · · implies supj H1(Σj) < +∞ (since

the opposite would imply the existence of a subsequence {Σj(k)} satisfying λH1(Σj(k))→
∞) and the existence of a compact set K containing

⋃
j Σj (since the opposite, i.e. there

exists a subsequence {Σj(k)} “escaping to infinity”, would imply Fµj(k)
(Σj(k))→∞).

Thus upon subsequence tj → t, and the convergence f ′′j
∗
⇀f ′′ (given by Lemma 2.4), implies that

the measure f ′′ has an atom of size at least η/6 in t. Corollary 3.2 gives f(t) ∈ {−0.01 ≤ x ≤
0.01}, thus t 6= 0, 1. Since an atom for the measure f ′′ corresponds to a jump for the tangent
derivative f ′, we conclude that Σ admits a corner in f(t), with TA(f(t)) ≥ η/6.

Thus we have proven:

Theorem 3.8. Let µ be the measure defined in (3) and λ the parameter defined in (4). Then there exists a
minimizer Σ ∈ argmin Eλµ containing a corner v with TA(v) ≥ η/6.

Corollary 3.9. The minimizer Σ from Theorem 3.8 is also minimizer for the constrained problem

(18) min
H1(·)≤H1(Σ)

∫
R2

d(x, ·)dµ.
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Proof. In [2] it has been proven that any minimizer Σ̃ of (18) satisfies H1(Σ̃) = H1(Σ), thus if Σ
is not a minimizer of (18), choosing Σ∗ minimizer of (18) would give∫

R2

d(x,Σ∗)dµ <

∫
R2

d(x,Σ)dµ, H1(Σ∗) = H1(Σ),

contradicting Σ ∈ argmin Eλµ . �

4. AVERAGE DISTANCE PROBLEM AMONG CONVEX SETS

The aim of this section is to analyze regularity properties of minimizers of Problem 1.2. In
particular we construct a minimizer failing to be C1 regular, under perimeter penalization only.
Unfortunately, the arguments we use cannot be extended to the case of volume penalization. We
recall if both perimeter and volume are penalized, it has been proven in [9] that minimizers can
fail to be C1.

The considered energy will be

E = E(µ, λ) : C −→ [0,∞), E(µ, λ)(K) :=

∫
R2

d(x,K)dµ+ λPer(K),

where C and Per(·) have been defined in Problem 1.2, µ is a given measure and λ > 0 a given
parameter. For the sake of brevity, we will omit writing the dependencies on µ, λ when no risk
of confusion arises. Existence of minimizers, as proven in [9], follows from Blaschke and Goł̨ab
theorems.

Let
p1 := (−δ/2, 0), p2 := (δ/2, 0), p := (0, a), δ := 10−100

(19) µr,a,η :=


1− η

2

(
1

πr2
L2
xB(p1,r)

+
1

πr2
L2
xB(p2,r)

)
+ η

(
1

πr2
L2
xB(p,r)

)
if r > 0

1− η
2

(δp1 + δp2) + ηδp if r = 0.

Here for given point q, the notation “δq” denotes the Dirac measure in q, and a, η, r are parame-
ters to be determined later. Note that for r < δ/4 the balls B(p1, r), B(p2, r), B(p, r) are mutually
disjoint. The construction of the counterexample will be achieved over two steps:

(1) first, prove that for suitable choices of parameters λ, η, a, any minimizer of E(µ0,a,η, λ)
contains {p1, p2} but not p (Lemma 4.1),

(2) then, choose sufficiently small r, approximate µr,a,η with a sequence of discrete mea-
sures µj

∗
⇀µr,a,η, and prove that minimizers of E(µj , λ) contain a corner with uniformly

bounded amplitude (Lemma 4.7),
(3) finally, take the limit j →∞.

The choice to approximate µr,a,η is advantageous since:

(i) given a measure ν, sum of finitely many Dirac measures, and parameter λ, there exists a
polygon K ∈ argminC E(ν, λ),
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(ii) given sequences νj
∗
⇀ν, {Cj ∈ argminC E(νj , λ)}, it holds (upon subsequence)

Cj
dH→C ∈ argminC E(ν, λ).

The proof is identical to the case of average distance problem among trees (Problem 1.1), noting
that the convex hull of finitely many points is a convex polygon.

Basic configuration. A key result is:

Lemma 4.1. Consider the family of measures {µr,a,η} defined in (19). Then there exist λ, η > 0 and
a > 1 such that the unique minimizer of E(µ0,a,η, λ) is an isosceles triangle4p1p2q, with base Jp1, p2K
and q = (0, qy) ∈ R2, qy ∈ (0, a).

The proof will be split over several lemmas.

Lemma 4.2. Consider the family of measures {µr,a,η} defined in (19). Then for any a ≥ 1, there
exist λ0, η0 > 0 such that for any λ ∈ (0, λ0), η ∈ (0, η0), satisfying λ > η/2, any minimizer
K ∈ argmin E(µ0,a,η, λ) contains {p1, p2}.

Condition λ > η/2 will be crucial for the proof of Lemma 4.4.

Proof. Note that
E(µ0,a,η, λ)(Jp1, p2K) = aη + λδ,

thus for any minimizer K it holds

(20) λPer(K) ≤ E(µ0,a,η, λ)(K) ≤ E(µ0,a,η, λ)(Jp1, p2K) = aη + λδ.

Let π : R2 −→ K be the projection map, and assume (for the sake of contradiction) p1 /∈ K, i.e.

π(p1) 6= p1. Let e1 :=
p1 − π(p1)

|p1 − π(p1)|
, and let e2 be a unit vector orthogonal to e1. Consider the

family of linear applications

Tε : R2 −→ R2, Tεei = (1 + ε)ei, i = 1, 2.

By construction it holds

(∀ε > 0)(∀E ⊆ R2) E convex =⇒ TεE convex.

Moreover

(21) Fµ0(K)− Fµ0(TεK) ≥ µ0(p1)ε =
1− η

2
ε, Per(TεK)− Per(K)=εPer(K)+o(ε)

This yields
λPer(TεK)− λPer(K) ≤ λεPer(K) ≤ (aη + λδ)ε,

thus for sufficiently small λ, η it holds

(22) (aη + λδ)ε ≤ 0.3ε,

Combining (22) and (21) contradicts the minimality of K, concluding the proof. �

Corollary 4.3. Consider the family of measures {µr,a,η} defined in (19). Then for suitable choice of
parameters η, λ, a, satisfying λ > η/2, any minimizer K ∈ argmin E(µ0,a,η, λ) is an isosceles triangle
with base Jp1, p2K.
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Proof. Lemma 4.2 implies that for suitable choice of parameters η, λ, a, any minimizer K ∈
argmin E(µ0,a,η, λ) contains {p1, p2}. Since for any convex set E the projection map πE : R2 −→
E is well defined, it follows that any minimizer K ∈ argmin E(µ0,a,η, λ) should be the convex
hull of three points (namely p1, p2 and πK(p)), i.e. a triangle with an edge Jp1, p2K. Since p lies on
the axis of Jp1, p2K, and for any triangle with fixed base and height the isosceles one minimizes
the perimeter, the proof is complete. �

Lemma 4.4. Consider the family of measures {µr,a,η} defined in (19). Then for suitable choice of param-
eters η, λ, a, satisfying λ > η/2 and (22), any minimizer K ∈ argmin E(µ0,a,η, λ) is a non degenerate
triangle not containing the point p = (0, a).

Before the proof, note that condition (22) is satisfied if

aη < 0.15, λδ < 0.15,

and since δ = 10−100 is fixed, while λ < 1, condition λδ < 0.15 is satisfied. A potential issue can
be present when choosing η and a, since it is required that “choosing η small does not force to
choose a large”. This will be essentially the main point of this lemma.

Proof. Corollary 4.3 implies that for suitable choice of parameters η, λ, a, any minimizer K ∈
argmin E(µ0,a,η, λ) is a non degenerate isosceles triangle with base Jp1, p2K. Let h be its height
(relative to the base Jp1, p2K), and let qh := (0, h) ∈ R2. Direct computation gives

ψ(h) := E(µ0,a,η, λ, α)(4p1p2qh) = (a− h)η + λ(δ +
√
δ2 + 4h2)

and

(23)
d

dh
ψ(h) = −η +

4hλ√
δ2 + 4h2

,

thus the optimal value for h is

h∗ = 4δ

(
4λ2

η2
− 1

)
.

Condition λ > η/2 guarantees h∗ > 0. Note that further imposing 4λ2/η2 ≤ 100 yields h∗ ≤
400δ, thus any choice a ∈ [3, 5] is acceptable (the extremes 3 and 5 are arbitrary, but acceptable
for the purposes of the proof), and the compatibility with (22) can be satisfied (upon choosing
sufficiently small η). �

Proof. (of Lemma 4.1) The proof follows by combining Lemmas 4.2, 4.4 and Corollary 4.3, and
noting that these are valid if λ, η, a satisfy:

aη < 0.15, λδ < 0.15, 3 ≤ a ≤ 5, 0.7 ≤ λ

η
≤ 5 <

1

2

√
1 +

1

2δ
.

Since there exist triplets (λ, η, a) satisfying these conditions, the proof is complete. �

Remark I. Note that it is possible to further impose that parameters λ, a, η must satisfy
η

8λ
∈

(0, π). This condition will be used in Lemma 4.7. Moreover, note that it is possible to choose
η > 0 arbitrarily small.
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Construction of the counterexample. Choose parameters λ, η, a such that any minimizer K ∈
argmin E(µ0,a,η, λ) satisfies 0 < d(p,K) =: b (this choice is possible due to Lemma 4.1). Choose
sufficiently small radius r ∈ (0, 10−10η) such that for any minimizer K ∈ argmin E(µr,a,η, λ) it
holds:

• distance estimate:

(24) dH(B(p, r),K) ≥ b/4,
• for any minimizer Cj ∈ argminC E(µj , λ), the sets⋃

z∈B(p,r)

argminw∈∂K |z − w|,
⋃

z′∈B(p′,r)

argminw∈∂K |z
′ − w|,

⋃
z′′∈B(p′′,r)

argminw∈∂K |z
′′ − w|

are mutually disjoint. This is possible in view of Lemma 4.1.
Choose λ, η, a, r such that all the conditions and results mentioned (until now) in this section
hold. Upon choosing sufficiently small r, assume also

(25) 2πr <
bη

48λ
.

This condition will be useful for Lemma 4.7. From now parameters λ, η, a, r will be fixed.
Similarly to (5), let

µj :=
1− η

2

( 1

](B(p′, r) ∩ 1
jZ2)

∑
x∈B(p′,r)∩ 1

j
Z2

δx

)
+

1− η
2

( 1

](B(p′′, r) ∩ 1
jZ2)

∑
x∈B(p′′,r)∩ 1

j
Z2

δx

)

+ η
( 1

](B(p, r) ∩ 1
jZ2)

∑
x∈B(p,r)∩ 1

j
Z2

δx

)
.(26)

The results we use to analyze minimizers of E(µj , λ) are adapted versions of Lemmas 3.4, 3.6
and 3.7.

Lemma 4.5. Consider the family of measures {µj} defined in (26). Then for any index j, there exists a
convex polygon K minimizing E(µj , λ) and satisfying

(∀v ∈
⋃

z∈B(p,r)

argminw∈∂K |z − w|)
Mv

2λ
≤ TA(v) ≤ π

2

Mv

λ
,

where Mv := TM(µ, v, ∂K).

Proof. The proof is done by adapting the arguments from Lemma 3.4, to deal with the convexity
constraint. Let K be a convex polygon minimizing E(µj , λ), v ∈ K be an arbitrary corner receiv-
ing mass from B(p, r). Choose v1, v2 ∈ ∂K such that Jv1, vK, Jv2, vK are straight segments and
|v1 − v| = |v2 − v| > 0. Note that it is possible to choose such points v1, v2 exactly because K is a
convex polygon.

• Upper bound estimate TA(v) ≤ πMv

2λ
.
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K

∂K

v2v1

v−s

v

FIGURE 6. This is a schematic representation of the considered variation. The
green dash-dotted line is the bisector of the angle v̂1vv2.

Consider the modification in Figure 6. The point v−s ∈ K is chosen on the bisector of the angle
v̂1vv2 such that |v − v−s | = s (s is a free parameter). Define the competitor

Ks := conv
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

−
s K ∪ Jv2, v

−
s K
)
,

where conv(·) denotes the convex hull. By construction

(27) ∂Ks = ∂K\(Jv1, vK ∪ Jv2, vK) ∪ (Jv1, v
−
s K ∪ Jv2, v

−
s K).

Direct computation gives

Per(K)− Per(Ks)=s sin
TA(v)

2
+o(s),

∫
R2

d(x,Ks)dµj ≤
∫
R2

d(x,K)dµj +Mvs,

and using the minimality of K gives the upper bound estimate.

• Lower bound estimate TA(v) ≥ Mv

2λ
.

Consider the modification in Figure 7. The point v+
s /∈ K is chosen on the bisector of the angle

v̂1vv2 such that |v − v+
s | = s (s is a free parameter). Let

K̃s := conv
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

+
s K ∪ Jv2, v

+
s K
)
.

For the sake of brevity, given points w, z ∈ ∂K, the notation Jw, zK∂K will denote the unique
clockwise (this is well defined since we endowed R2 with an orthogonal coordinate system, and
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K

∂K

v2v1

v+
s

v

w2

w1

FIGURE 7. This is a schematic representation of the considered variation. The
quantity |v+

s − v| = s has been purposely exaggerated for the sake of clarity. The
green dash-dotted line is the bisector of the angle v̂1vv2.

∂K is homeomorphic to the unit circle S1) path in ∂K with endpoints in w and z. In this case

∂K̃s = ∂K\(Jw1, vK∂K ∪ Jv, w2K∂K) ∪ Jw1, v
+
s K∂K ∪ Jv+

s , w2K∂K ,

where w1 and w2 are the intersections between ∂K and the two half-lines lines starting in v+
s

and tangent to K. Direct computation gives

(28)
∫
R2

d(x, K̃s)dµj ≤
∫
R2

d(x,K)−Mvs cos
TA(v)

2
.

By construction it holds

(29) Per(K̃s) ≤ H1
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

+
s K ∪ Jv2, v

+
s K
)
,

and direct computation gives

(30) H1
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

+
s K ∪ Jv2, v

+
s K
)
− Per(K)=s sin

TA(v)

2
+o(s).
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Combining (28), (29), (30) with the minimality of K (compared against K̃s) gives the desired
inequality. �

Lemma 4.6. Consider the family of measures {µj} defined in (26). Then for any sufficiently large index
j, there exists a polygon Kj ∈ argminC E(µj , λ) satisfying:

• given distinct corners v1, v2 ∈
⋃
z∈B(p,r) argminw∈∂Cj |z−w|, i.e. v1, v2 receive mass only from

B(p, r), it holds V (v1) ∩ V (v2) = ∅.

Proof. Note that
• r has been chosen (sufficiently small) such that (24) holds,
• for any sequence of minimizers {Cj ∈ argminC E(µj , λ)} it holds (upon subsequence)

Cj
dH→C ∈ argminC E(µr,a,η, λ).

Thus for sufficiently large j, any minimizer Cj ∈ argmin E(µj , λ) satisfies dH(Cj , B(p, r)) ≥
b/8 (for the definition of b, see the arguments immediately before (24)). Note also that (upon
choosing sufficiently large index j), for any minimizer Cj ∈ argmin E(µj , λ), the sets⋃
z∈B(p,r)

argminw∈∂Cj |z − w|,
⋃

z′∈B(p′,r)

argminw∈∂Cj |z
′ − w|,

⋃
z′′∈B(p′′,r)

argminw∈∂Cj |z
′′ − w|

are mutually disjoint. Intuitively, this implies that any point of ∂Cj receives mass from at most
one of the balls B(p, r), B(p′, r), B(p′′, r). Then the conclusion follows by using the same con-
struction from the proof of Lemma 3.6, which preserves convexity. �

Lemma 4.7. Consider the family of measures {µj} defined in (26). Then for any sufficiently large index
j, there exists a minimizer Kj ∈ argmin E(µj , λ) satisfying:

• there exists a corner vj ∈ ∂Kj , receiving mass from B(p, r), such that TA(vj) ≥ η/(8λ).

Again the denominator 8λ is quite arbitrary, but sufficient for the purposes of this section
(indeed any positive lower bound to TA(vj) independent of j is sufficient). The proof follows
by applying straightforwardly the same argument from the proof of Lemma 3.7, with the roles
of Lemmas 3.4 and 3.6 replaced by Lemmas 4.5 and 4.6. However, since this result is crucial for
the purposes of this section, we will report its proof.

Proof. Let B := B(p, r). Consider an index j, a polygon Kj ∈ argminC E(µj , λ), and let {vi}i∈I ⊆
Kj be the (finite) set of corners receiving mass from B, with I a suitable set of indices. Similarly
to the proof of Lemma 3.7, for any index i ∈ I let V (vi) be the wedge of vi, and let l±i the two
half-lines (the order is not relevant) forming the border ∂V (vi).

Again it holds (with the same proof from Lemma 3.7):
• for any index i ∈ I, except at most two, both half-lines l±i must intersect ∂B.

Let Mi := TM(µj , vi, ∂Kj) (i ∈ I). If there exists a couple of indices i′, i′′ ∈ I such that
Mi′ +Mi′′ ≥ η/2, then the proof is complete. Thus assume:

(31) (∀i′, i′′ ∈ I, i′′ 6= i′′) Mi′ +Mi′′ ≤ η/2.
The goal is to prove that (31) gives a contradiction.
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Let J ⊆ I be the set of indices i such that both half-lines l±i intersect ∂B. This implies that
there exist points p±i ∈ l±i ∩ ∂B; for any index i ∈ J choose an arc of minimal length φi ⊆
∂B ∩ V (vi) connecting p−i and p+

i . ClearlyH1(φi) ≥ |p−i − p
+
i |. However, since dH(Kj , B) ≥ b/8

and TA(vi) ≥ Mi/(2λ) (Lemma 4.5), elementary geometry (combined with the fact that Mi and
TA(vi) are very small) gives

|p−i − p
+
i | ≥ |vi − p

−
i | sin TA(vi) ≥

b

8
sin TA(vi) ≥

b

12
TA(vi) ≥

bMi

24λ
.

Lemma 4.6 gives that the wedge of distinct corners are disjoint, and in particular the arcs φi
(i ∈ J ) are mutually disjoint. Thus summing over indices i ∈ J gives

(32)
∑
i∈J
H1(φi) ≥

b

24λ

∑
i∈J

Mi

(31)
≥ bη

48λ
,

while by construction it holds φi ⊆ ∂B (i ∈ J ⊆ I), yielding

(33)
∑
i∈J
H1(φi) ≤ 2πr.

Combining inequalities (32) and (33) gives

2πr = H1(∂B) ≥
∑
i∈J
H1(φi) ≥

bη

48λ
,

which contradicts condition (25). Thus there exists a couple of indices i′, i′′ ∈ I such that Mi′ +
Mi′′ ≥ η/2, and using Lemma 4.5 concludes the proof. �

Now it is possible to pass to the limit: for any j choose a minimizer Kj ∈ argmin E(µj , λ)
such that the conclusion of Lemma 4.7 holds. Let ϕj : [0, 1] −→ ∂Kj be a constant speed param-
eterization, and it is clear that

sup
j
‖ϕj‖L1 <∞, sup

j
‖ϕj‖TV <∞,

since the former follows from the minimality of Kj , and the latter follows from the convexity

of Kj . Upon subsequence Kj
dH→K, with K convex, thus ∂Kj

dH→∂K. Lemma 2.4 gives (upon
subsequence) the existence of a limit curve ϕ = limj ϕj (this limit is taken in the C0 topology)
parameterizing ∂K. Since for any j, the measure ϕ′′j (which does not change sign due to the
convexity ofKj) has an atom of measure at least η/(8λ) at some time tj , and (upon subsequence)
tj → t, the convergence (upon subsequence) ϕ′′j

∗
⇀ϕ′′ implies that the measure ϕ′′ has an atom of

size at least η/(8λ) at time t. Since an atom for the curvature measure ϕ′′ is equivalent to a jump
for the tangent derivative ϕ′, it follows:

Theorem 4.8. Let µr,a,η be the measure defined in (19). Then for suitable choice of parameters λ, a, η, r,
there exists a minimizer K ∈ argmin E(µr,a,η, λ) whose border ∂K is not C1 regular.
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