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ABSTRACT. The average-distance problem, in the penalized formulation, involves minimizing

Eλµ(Σ) :=

∫
Rd

inf
y∈Σ
|x− y|dµ(x) + λH1(Σ),

among path-wise connected, closed sets Σ with finite H1-measure, where d ≥ 2, µ is a given
measure and λ a given parameter. Regularity of minimizers is a delicate problem. It is known that
even if µ � Ld, C1 regularity does not hold in general. An interesting question is whether the
set of corners, i.e. points where C1 regularity does not hold, is closed. The aim of this paper is
to provide an example of minimizer whose set of corners is not closed, with reference measure µ
absolutely continuous with respect to Lebesgue measure.
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1. INTRODUCTION

The average-distance problem, in the penalized formulation, was introduced by Buttazzo,
Mainini and Stepanov in [1]:

Problem 1.1. Given d ≥ 2 a measure µ, and a parameter λ > 0, minimize

Eλµ : A −→ R, Eλµ(Σ) := Fµ(Σ) + λH1(Σ),

where
Fµ : A −→ R, Fµ(Σ) :=

∫
Rd
d(x,Σ)dµ,

A := {Σ ⊆ Rd : Σ compact, path-wise connected,H1(Σ) <∞},
d(x,Σ) := dH({x},Σ) and dH denotes the Hausdorff distance.

Existence of minimizers follows (see for instance [1, 2, 3]) from Blaschke selection theorem
and Goł̨ab theorem. The functional Fµ will be often referred as “average-distance functional”,
and Problem 1.1 as “average-distance problem”. In the following, any considered measure will
be assumed nonnegative, compactly supported, probability measures. The choice to work with
probability measures is done for the sake of simplicity, and it is not restrictive since results
proven in this paper can be easily extended to finite measures.

The average-distance problem originally stemmed from mathematical modeling of optimiza-
tion problems. A classic application is found in urban planning: let

• µ be the distribution of passengers in a given region,
1
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• Σ (the unknown) be the transport network to be built.

In this case Fµ(Σ) is the “average distance” of passengers from the network (thus smaller values
of Fµ(Σ) means that Σ is “easily accessible”), and λH1(Σ) is the cost to build such network.
Thus minimizing Eλµ is determining the network which “best serves” the passengers, under cost
considerations.

A recent application is found in data approximation: let

• µ be the distribution of data points,
• Σ (the unknown) be a one dimension set which approximates the data.

In this case Fµ(Σ) is the approximation error, while λH1(Σ) is the cost associated to its complex-
ity. Thus minimizing Eλµ is determining the “best” approximation, which balances approxima-
tion error and cost. In data approximation the regularity of Σ is important: indeed it has been
proven (Slepčev [12]) that a positive amount of mass is projected on any point for which C1

regularity fails. This corresponds to a loss of information, and it is undesirable.
Regularity of minimizers is quite a delicate problem. It is known that minimizers are finite

union (Slepčev et al. [10], Lemma 3.1) of Lipschitz curves (Buttazzo, Oudet, Paolini, Stepanov
[2, 3, 11]), but even when µ� Ld, C1 regularity is not true in general (Slepčev [12]). However a
curvature estimate still holds (Slepčev et al. [10]).

For future reference, given Σ ∈ A, a point p ∈ Σ of degree two (i.e. Σ\{p} has exactly two con-
nected components, see Definition 2.3) for which C1 regularity fails will be referred as “corner”.
Since the approach used in [12] is only suited for constructing minimizers with finitely many
corners, it is unclear if (for minimizers) the set of corners is generally closed, or even finite. The
aim of this paper is to provide an example of minimizer whose set of corners is not closed.

This paper will be structured as follows:

• in Section 2 we will recall preliminary results,
• in Section 3 we will construct an explicit example of minimizer of Problem 1.1 whose set

of corners is not closed.

2. PRELIMINARY RESULTS

The main goal of this section is to introduce some notations and recall well known results
which will be used in Section 3. The average-distance functional satisfies the following well
known properties:

(1) given a measure µ and λ > 0, the mapping Σ 7→ Eλµ(Σ) is lower semicontinuous w.r.t.
dH;

(2) given Σ ∈ A and λ > 0, the mapping µ 7→ Eλµ(Σ) is continuous w.r.t. weak* convergence
of measures,

(3) if {µn}
∗
⇀µ, then for any λ > 0, it holds Eλµn

Γ→ Eλµ ,
(4) consider a sequence {µn}

∗
⇀µ and for any n choose Σn ∈ argmin Eλµn . Then there exists

Σ ∈ argmin Eλµ such that (upon subsequence) {Σn}
dH→Σ.

For further details (including proofs), we refer to [2, 3, 4, 12].
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Recall that given a set of points Π := {P1, · · · , Pj} ⊆ Rd, the Steiner graph of Π is a path-wise
connected set with minimal length containing Π. The next result proves an intrinsic connection
between Steiner graphs and minimizers of the average distance functional.

Proposition 2.1. Given a discrete probability measure µ :=
∑n

i=1 aiδxi on Rd, with a1, · · · , an ≥ 0 and
δ denoting the Dirac measure supported on the subscripted point, a parameter λ > 0, then any minimizer
Σ ∈ argminA Eλµ is a Steiner graph.

Proof. For the proof we refer to [12]. �

Definition 2.2. Given a discrete probability measure µ :=
∑n

i=1 aiδxi on Rd, λ > 0, and a minimizer
Σ ∈ argminA Eλµ , a point v ∈ Σ is a “vertex” if there exists x ∈ supp(µ) such that d(x,Σ) = |x− v|.

Next we define the notion of “degree” of a point.

Definition 2.3. Given Σ ∈ A, consider a point v ∈ Σ such that Σ\{v} has finitely many connected
components. Then the “degree” of v is defined as the number of connected components of Σ\{v}.

Note that the degree of a v depends also on Σ. However for the sake of brevity we will omit
writing such dependency if no risk of confusion arises. Moreover we recall that it is possible to
define the degree of v even when Σ\{v} has infinitely many connected components (see Defini-
tion 2.2 of [4]), but for our purposes this is not required. For the sake of brevity, in the following
given two points p and q, the symbol Jp, qK will denote the straight segment between p and q.

In view of Proposition 2.1, a segment having endpoint in two vertices and containing no other
vertices will be referred as “edge”. The following classic result (see for instance [5, 6]) proves
several geometric properties about Steiner graphs:

Proposition 2.4. Given a Steiner graph G, it holds:
• G is a tree,
• if Ju, vK and Jv, wK are edges, with a common vertex v, then ûvw ≥ 2π/3,
• the maximal degree of any vertex is 3,
• if v is a vertex of degree 3, denoting by Jui, vK, i = 1, 2, 3 the 3 different edges containing v, then

the angle between any two such edges is 2π/3, and these edges are coplanar.

As done in [12], in view of Propositions 2.1 and 2.4, the following definition will be useful:

Definition 2.5. Given a discrete measure µ, a parameters λ > 0, and Σ ∈ argminA Eλµ , a vertex v ∈ Σ
is called:

• “endpoint” if has degree 1,
• “corner point” if has degree 2,
• “triple junction” if has degree 3.

If v is a corner point, denoting by w, z the two vertices for which Jw, vK and Jv, zK are edges, the “turning
angle” in v is defined as:

TA(v) := π − ŵvz.
Similarly, given a subset A ⊆ Σ, the turning angle of A is defined as

TA(A) :=
∑

u∈A, u corner point

TA(u).
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Recall that the turning angle TA(v) describes the curvature of Σ at v. Lemma 3.7 proves that
(in our case) corner points coincide with corners (defined as points where C1 regularity does
not hold). Thus in the following we will identify corner points with corners. Given a discrete
measure µ and Σ ∈ A, for the sake of brevity, the following expressions will be used. Here v ∈ Σ,
while x is a generic point.

• “v is tied to x”: the vertex v coincides with some point x ∈ supp(µ),
• “v is free”: the vertex v coincides with no point x ∈ supp(µ),
• “x talks to v”, “x projects on v”, “v talks to x”: all these mean d(x,Σ) = |x− v|,
• “v talks to some mass”, “mass talking to v”: v talks to some point in supp(µ),
• TM(µ, v,Σ) (TM(v) when there is no risk of confusion) denotes the total mass of pro-

jecting on v. For a detailed discussion see Lemma 2.1 of [10].
• “H mass projects on v”, where H ≥ 0: this means TM(µ, v,Σ) = H .

The last three expressions will be used even for non discrete measures µ.
The following conditions are the main tools used to analyze minimizers, when the reference

measure is discrete.

Proposition 2.6. Given a discrete measure µ, a parameter λ > 0, and Σ ∈ argminAE
λ
µ , it holds:

(1) if v ∈ Σ is a triple junction, then TM(µ, v,Σ) = 0,
(2) if some point y ∈ supp(µ) talks to different vertices v, v′, then there exist x, x′ ∈ supp(µ) such

that v is tied to x and v′ is tied to x′,
(3) if v ∈ Σ is an endpoint then TM(µ, v,Σ) ≥ λ,
(4) if v ∈ Σ is a corner, denoting by w, z the two vertices such that Jw, vK and Jv, zK are edges, then

(1) TA(v) ≤ π

2λ
TM(µ, v,Σ).

For the proof we refer to Lemma 9, Corollary 10 and Lemma 11 of [12]. Note that given a
subset A ⊆ Σ, inequality (1) holds for any corner v ∈ A, and summing over all such corners
yields

(2) TA(A) ≤ π

2λ

∑
v∈A, v corner

TM(µ, v,Σ).

If Σ is itself a curve, then
TA(Σ) ≤ π

2λ

∑
v corner

TM(µ, v,Σ);

using Proposition 2.6, zero mass projects on triple junctions, thus all the mass projects on end-
points or corners. Denoting by P0 and P1 the two endpoints of Σ (the case Σ being a singleton is
trivial), it holds

TA(Σ) ≤ π

2λ

∑
v corner

TM(µ, v,Σ)

≤ π

2λ
(1− TM(µ, P0,Σ)− TM(µ, P1,Σ))

≤ π

2λ
(1− 2λ),
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where the last inequality follows from point (3) of Proposition 2.6.
An similar result has been proven (in [10], to which to refer for the proof) for generic measures:

Lemma 2.7. Given a measure µ, a parameter λ > 0 and Σ ∈ argmin Eλµ , for an subset A ⊆ Σ (A can
be a singleton) it holds ∑

j

‖α′j‖TV ≤
π

2λ
TM(A),

with TM(A) denoting the mass projected on A, and αj : [0, 1] −→ A denoting the constant speed
parameterizations of branches making A.

Finally we recall a classic convergence result:

Lemma 2.8. Given a sequence of curves {γk} : [0, 1] −→ K, with K ⊆ R2 a given compact set,
satisfying

sup
k
‖γ′k‖BV <∞, sup

k
H1(γk([0, 1])) <∞,

then there exists a curve γ : [0, 1] −→ K, such that (upon subsequence) it holds:
(1) {γk} → γ in Cα for any α ∈ [0, 1),
(2) {γ′k} → γ′ in Lp for any p ∈ [1,∞),
(3) {γ′′k}

∗
⇀γ′′ in the space of signed Borel measures.

For the sake of brevity, we will never relabel subsequences if no risk of confusion arises.

3. COUNTEREXAMPLE

The aim of this section is to construct an explicit example of minimizer whose set of corners
is not closed.

The reference measure will be:

(3) µ := µheavy + µlight

where

µheavy :=
1− η

2

( 1

L2
(
B((−L, h), ρ)

)L2
xB((−L,h),ρ)

)
+

1− η
2

( 1

L2
(
B((L, h), ρ)

)L2
xB((L,h),ρ)

)
(4)

=
1− η
2πρ2

(
L2
xB((−L,h),ρ) + L2

xB((L,h),ρ)

)
,

(5) µlight :=
∞∑
n=1

mn

L2(Bn)
L2
xBn =

∞∑
n=1

mn

πr2n
L2
xBn ,

Bn := B((cn, 0), rn), cn := m−n, mn := m−(1010n)!, rn := m−((10100n)!)!.

Here by construction η =
∑∞

n=1 mn is the total mass of µlight. By definition µ depends on
several parameters appearing in (4) and (5). Choosing such parameters will be the main aim
of subsection 3.1. For the sake of brevity (unless otherwise specified) we omit writing such
dependencies.
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FIGURE 1. This is a representation (highly not to scale) of the supports of µheavy (red)
and µlight (green). The represented lines will be relevant for our construction.

Intuitively, supp(µheavy) is union of two “small, massive and distant” balls, each of which
contains “almost one half” of mass; supp(µlight) is union of balls Bn, n ≥ 1, each of which con-
taining mass mn. As will be clear in the following, µlight is the measure that “generates corners”,
while the role of µheavy is to force minimizers to have “large length” and “little curvature”. Note
that for µlight the distance between two distinct balls Bn1 and Bn2 (assume n2 > n1) is much
larger than

∑n2
n=n1

mn (which is roughly “the combined masses of the balls in between”); and for
each ball Bn, the mass supported on it (mn) is much larger than its own radius (rn). This will be
crucial for our construction.

3.1. Choosing parameters. Let

L := 10300, h := 1, m := 10100.

The aim of this subsection is to choose suitable parameters λ and ρ.

Lemma 3.1. For any λ ∈ (1−3η
2 , 1−2η

2 ) there exists ρ0 > 0 such that for any ρ ∈ (0, ρ0), any minimizer
of Eλµ is a simple curve with positive length.

Proof. Choose an arbitrary λ ∈ (1−3η
2 , 1−2η

2 ). The proof will be split in two parts.
• Claim 1: any minimizer has at most 2 endpoints.

Proposition 2.6 proves that any minimizer contains at most [1/λ] (here [·] denotes the integer
part mapping) endpoints, and hypothesis λ ∈ (1−3η

2 , 1−2η
2 ) implies [1/λ] < 3, thus the claim is

proven.

• Claim 2: for sufficiently small ρ, any minimizer of Eλµρ has positive length.
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Consider the measure

(6) µ0 := µlight +
1− η

2
(δ(−L,h) + δ(L,h))

and clearly {µρ}
∗
⇀µ0 as ρ → 0 (here we highlighted the dependency on ρ). For any arbitrary

point P := (x0, y0) it holds

Eλµ0
({P}) ≥ 1− η

2
(|P − (−L, h)|+ |P − (L, h)|) ≥ (1− η)L.

Let

(7) Λ := J(−L, h), (L, h)K.

It holds (since by hypothesis 2λ < 1− η)

Eλµ0
(Λ) ≤ 2λL+ 2hη < (1− η)L ≤ Eλµ0

({P})

Thus any minimizer of Eλµ0
has positive length.

Since {µρ}
∗
⇀µ0 as ρ → 0, for sequences {ρn} → 0, {Σn ∈ argmin Eλµρn}, there exists Σ∞ ∈

argmin Eλµ0
such that (upon subsequence) {Σn}

dH→Σ∞, and we just proved that such a Σ∞ has
positive length. Thus the proof is complete. �

Lemma 3.2. For any λ ∈ (1−3η
2 , 1−2η

2 ), ε > 0 there exists ρ0 > 0 such that for any ρ ∈ (0, ρ0), any
minimizer of Eλµ contains points p, q such that

max{|p− (−L, h)|, |q − (L, h)|} < ε.

Proof. Choose an arbitrary λ ∈ (1−3η
2 , 1−2η

2 ). Let µ0 be the measure defined in (6), and let Σ be
an arbitrary minimizer of Eλµ0

.

• Claim: any minimizer Σ ∈ argmin Eλµ0
contains {(±L, h)}.

Choose an arbitrary point p′ ∈ argminz∈Σ |z − (−L, h)|, and consider the competitor

Σ̃ := Σ ∪ Jp′, (−L, h)K.

By construction

Fµ0(Σ)− Fµ0(Σ̃) ≥ |p′ − (−L, h)|1− η
2

, H1(Σ̃) ≤ H1(Σ) + |p′ − (−L, h)|.

The minimality of Σ implies

1− η
2
|p′ − (−L, h)| ≤ λ|p′ − (−L, h)|,

and since λ < (1− η)/2, it follows |p′ − (−L, h)| = 0. Thus the claim is proven.

Assume (for the sake of contradiction) that the thesis is false, i.e. there exists ε > 0 and a
sequence {ρn} → 0 such that for any n there exists a minimizer Σn ∈ argmin Eλµρn satisfying
d((−L, h),Σn) ≥ ε.
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Since {µρn}
∗
⇀µ0 as n → ∞, there exists Σ∞ ∈ argmin Eλµ0

such that it holds (upon subse-

quence, which will not be relabeled) {Σn}
dH→Σ∞. Thus we have

• d((−L, 0),Σn) ≥ ε for any n,
• (−L, 0) ∈ Σ∞,

• {Σn}
dH→Σ∞,

which gives a contradiction. The proof for (L, h) is analogous. �

Lemma 3.3. For any λ ∈ (1−3η
2 , 1−2η

2 ) there exists ρ0 > 0 such that for any ρ ∈ (0, ρ0), any minimizer
of Eλµ is contained in the half-plane {y > 0}.

Proof. Using Lemmas 3.1 and 3.2 gives the existence of ρ0 > 0 such that for any ρ ∈ (0, ρ0) and
λ ∈ (1−3η

2 , 1−2η
2 ), any minimizer Σ ∈ argmin Eλµρ satisfies:

• Σ is a simple curve with positive length,
• upon reducing the value of ρ0, Σ contains points p, q with

|p− (−L, h)| ≤ h/4, |q − (L, h)| ≤ h/4.
Choose an arbitrary minimizer Σ. Let f : [0, 1] −→ Σ be a constant speed bijective parameteriza-
tion, and let tp := f−1(p), tq := f−1(q). Since the mass projecting on each endpoint (i.e. f(0) and
f(1)) is at least λ, the mass projecting on f((0, 1)) is at most 1− 2λ. Moreover, the existence of p
implies that any point z ∈ B((−L, h), ρ) satisfies |z−p| ≤ 2ρ+h/4. Since at least λ mass projects
on f(0), this forces (upon using parameterization g : [0, 1] −→ Σ, g(t) := f(1 − t) instead of f )
d(f(0), (−L, h)) ≤ h/4 + ρ, thus (upon further imposing ρ0 ≤ h/24)

d(f(0), (−L, h)) ≤ h/4 + ρ ≤ h/3.
Analogously d(f(1), (L, h)) ≤ h/3. In particular f(0) and f(1) belong to the half-plane {y ≥
2h/3}.

If f(0, 1) contains a point v = f(T ) ∈ {y = 0}, then

‖f ′‖TV ≥ π − ̂f(0)f(T )f(1).

Combining with conditions

d(f(0), (−L, h)) ≤ h/3, d(f(1), (L, h)) ≤ h/3,

elementary geometry gives that the amplitude of angle ̂f(0)f(T )f(1) is bounded from above by
the amplitude of angle p̂−pp+ where

p− := (−L− h

3
,
2

3
h), p := (0, 0), p+ := (+L+

h

3
,
2

3
h).

Direct computation gives

p̂−pp+ = 2 arctan
L+ h/3

2h/3
,

thus

‖f ′‖TV ((0,1)) ≥ π − ̂f(0)f(T )f(1) ≥ π − 2 arctan
L+ h/3

2h/3
.
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Proposition 2.6 gives

‖f ′‖TV ((0,1)) ≤
π

2λ
(1− 2λ),

thus a necessary condition (for Σ ∩ {y = 0} 6= ∅) is

π − 2 arctan
L+ h/3

2h/3
≤ π

2λ
(1− 2λ).

This is a contradiction for any λ ∈ (1−3η
2 , 1−2η

2 ), since the left hand side term is roughly compa-
rable with 4

3L , while the right hand side term is roughly comparable with πη � 1/L. As both
f(0) and f(1) are contained in the half-plane {y > 0}, this ensures that the entire set f([0, 1]) = Σ
is contained in the half-plane {y > 0}. �

Note that the same argument proves that there exists λ0 <
1−2η

2 such that:

• for any λ ∈ (λ0,
1−2η

2 ), there exists ρ0 > 0 such that for any ρ ∈ (0, ρ0), any minimizer of
Eλµρ (here we highlighted the dependency on ρ) is contained in the half-plane {y > h/10}.

The same argument also proves that for such λ, ρ, any minimizer is contained in the half-plane
{y < 2h}. Thus we have proven:

Lemma 3.4. There exist ρ, λ < 1−2η
2 such that any minimizer of Eλµ is contained in the strip {h/10 <

y < 2h}. Thus any point of supp(µlight) has lower y coordinate than points of Σ.

Note that (in view of Lemma 3.2 and for suitable choice of ρ) since L has been chosen suffi-
ciently large, the mass supported in B((−L, h), ρ) cannot project on any point z ∈ Σ ∩ {−10 <
x < 10}, since for any x ∈ B((−L, h), ρ), z ∈ {−10 < x < 10} it holds |x− z| ≥ L− h− 10, while
|x − p| ≤ ρ + h/4. The same argument proves that the mass supported in B((L, h), ρ) cannot
project to any point in {−10 < x < 10}.

Until now we have proven (for suitable choice of parameters):

• for any minimizer Σ, any point inB((−L, h), ρ)∪B((L, h), ρ) cannot project on Σ∩{−10 <
x < 10},
• any minimizer contains points p, q satisfying

|p− (−L, h)| ≤ h/4, |q − (L, h)| ≤ h/4,

• any minimizer is contained in the strip {h/10 < y < 2h}.
Combining these facts, only the mass supported in supp(µlight) is projected on Σ ∩ {−10 <
x < 10}. Recall that by construction the total mass in supp(µlight) is η. Choose parameters
ρ� 1, λ ∈ (1−3η

2 , 1−2η
2 ) such that the conclusions of Lemmas 3.1, 3.2, 3.3 and 3.4 hold. Note that

after fixing ρ, the measure µ is uniquely determined. From now, and for all future reference, the
measure µ and λ are fixed.

Note that in our construction, there are values which are “large” (e.g. m,L), and values which
are “small” (e.g. ρ, 1− 2λ, η, h/L). In particular the value h/L will often appear as angle. The
next definition is useful.
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Definition 3.5. Let v1, v2 be non zero vectors of R2. The “angle between” v1 and v2, which we will
denote by ∠v1v2, is defined as

∠v1v2 := arccos
〈v1, v2〉
|v1||v2|

∈ [0, π],

where 〈, 〉 denotes the standard Euclidean scalar product of R2. Given segments/half-lines/lines l1 and l2,
the “angle between l1 and l2” (which we denote by ∠l1l2) is defined as

min
v1‖l1, v2‖l2,
|v1|=|v2|=1

∠v1v2.

For the sake of simplicity, we will say that two segments/half-lines/lines are:
• “almost parallel” is the angle between them has form c1h/L, with −10 < c1 < 10.
• “almost orthogonal” is the angle between them has form π/2 + c1h/L, with−10 < c1 < 10.

The parameter ρ will have little importance in the following, as its “role” is to ensure that min-
imizers contain points “close to” (±L, h) (i.e. p and q from Lemma 3.2). In the following, it
will be clear that corners will arise due to measure µlight. Since supp(µlight) is contained in a
narrow strip near {x = 0}, we will tacitly assume (unless explicitly stated) we will work only in
{−10 < x < 10}, and all statements will tacitly assume that entities involved are contained in
{−10 < x < 10}.

3.2. Discrete measures. The first step involves approximating µ with discrete measures. Simi-
larly to [12], given three points v1, v2, v3, define the “wedge” V (v2) as follows:

(1) if v1, v2, v3 are collinear, then V (v2) is the unique line passing through v2 and orthogonal
to v3 − v2,

(2) otherwise, let θi := vi+1−vi
|vi+1−vi| (i = 1, 2), ξ := θ2+θ1

|θ2+θ1| , b := θ2−θ1
|θ2−θ1| , β := TA(v2)/2, and

V (v2) := v2 + {x ∈ R2 : |〈ξ, x〉| ≤ 〈b, x〉 tanβ},

where 〈, 〉 denotes the standard Euclidean scalar product of R2.
Note that if TA(v) > 0, by definition the wedge V (v) is itself an angle (intended as part of

the plane contained between two half-lines starting at the same point). Thus expressions like
“bisector of V (v)”, “amplitude of V (v)”, etc. will be used. Note also that its border ∂V (v) is union
of two half-lines; while ∂V (v) will play an important role in many proofs, it is rarely important
to “distinguish” the half-lines forming it, thus in the following we will often use expressions like
“∂V (v) is union of two half-lines l±”, without stating precisely which half-line corresponds to l−
(nor which half-line corresponds to l+).

Let

µj :=
∑
i

1− η

2 · ]
(
B((−L, h), ρ) ∩ rn

j Z2
)δ

qji
+
∑
i

1− η

2 · ]
(
B((L, h), ρ) ∩ rn

j Z2
)δ

q̃ji

+
∞∑
n=1

∑
i

mn

](Bn ∩ rn
j Z2)

δ
pji,n

,(8)
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where {pji,n} (resp. {qji }, {q̃
j
i }) are the (finitely many) points of the lattice Bn ∩ rn

j Z (resp.
B((−L, h), ρ)∩1

jZ
2,B((L, h), ρ)∩1

jZ
2). Intuitively, the mass supported in Bn (resp. B((−L, h), ρ),

B((L, h), ρ)) is being uniformly distributed on the (uniform) lattice Bn∩ rn
j Z

2 (resp. B((−L, h), ρ)∩
1
jZ

2, B((L, h), ρ) ∩ 1
jZ

2).
We will first work with discrete measures µj , then take the limit j →∞. For future reference,

any measure µj will refer to the (family of) measures defined in (8). Recall that µ and λ were
fixed towards the end of subsection 3.1.

The first result is an analogous of Lemma 3.4 for minimizers of Eλµj :

Lemma 3.6. For any index j, any minimizer of Eλµj is contained in the strip {h/10 < y < 2h}.

Proof. The same argument used in the proof of Lemma 3.4 can be applied without any modifi-
cation to minimizers of Eλµj . �

The next result proves that only corners can talk to positive mass.

Lemma 3.7. For any index j, minimizer Σ ∈ argmin Eλµj , if a point v ∈ Σ satisfies TM(µj , v,Σ) > 0,
then TA(v) > 0. In particular v is a corner.

Proof. Note that Lemma 3.6 implies Σ ⊆ {y ≥ h/10}, while supp(µlight) ⊆ {y ≤ h/100}.

v1 v2v

vs

Bn

V (v)

FIGURE 2. This is a schematic representation of the variation. Here (v1 −
v2)⊥(vs − v), and |vs − v| = s.

Assume for the sake of contradiction TA(v) = 0, thus V (v) is a line. Hypothesis TM(µj , v,Σ) >
0 implies the existence of an index n such that v receives mass from Bn. Let

Σs := (Σ\Jv1, v2K) ∪ (Jv1, vsK ∪ Jv2, vsK).
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Then the same argument from Lemma 3.3 of [9] holds: indeed for s � 1 it holds Fµj (Σs) ≤
Fµj (Σ)− sTM(µj , v,Σ),H1(Σs)−H1(Σ) ≈ O(s2), thus the minimality of Σ is contradicted. �

The next result is a simple geometric observation, which will be very useful in the following.

Lemma 3.8. Let p, p′, p′′ be a triple of points satisfying:
(1) p′, p′′ ∈ {y = 0}, p ∈ {0 < y ≤ 2h},
(2) p̂′pp′′ = 2θ, where θ � 1 is a given parameter,
(3) ∠β{x = 0} = τ̃ , where β denotes the bisector of p̂′pp′′) and τ̃ � 1 is a given parameter.

Then it holds
|p′ − p′′| ≤ 4h sin θ

sin(τ − θ) sin τ
, τ :=

π

2
− τ̃ .

Note that since |τ − π/2| � 1, |θ| � 1, this gives

|p′ − p′′| ≤ 5hθ.

Proof. Assume without loss of generality p ∈ {x = 0}. Simple geometric considerations give
that |p′ − p′′| is maximized (see Figure 3) when p ∈ {y = 2h}.

p′ p′′

p

qβ

p′′′0 x

y

FIGURE 3. This is a schematic representation of the configuration if τ̃ ≥ θ. The
proof for case τ̃ ≤ θ is identical.

Let q ∈ Jp, p′′K satisfying |p− p′| = |p− q|, and denote by p′′′ the intersection Jp, p′K ∩ β. Direct
computation gives:

q̂p′p = π/2− θ, p̂p′′′p′ =
π

2
− τ̃ = τ, p̂′qp′′ = π/2 + θ, p̂′′p′p = π − τ − θ,



13

|p− p′′′| = 2h

sin τ
, |p′ − q| = 2|p− p′′′| sin τ, |p′ − p′′|

sin(π/2 + θ)
=
|p′ − q|

sin(τ − θ)
,

thus

|p′ − p′′| ≤ |p′ − q|
sin(τ − θ)

=
2 sin θ

sin(τ − θ)
2h

sin τ
,

concluding the proof. �

Lemma 3.9. For any index j, minimizer Σ ∈ argmin Eλµj and corner v ∈ Σ, it holds V (v) ∩ Σ = {v}.

Proof. Note that since any point of Σ∩{−10 ≤ x ≤ 10} can receive mass only from
⋃∞
n=1 Bn, and

µj

(⋃∞
n=1 Bn

)
= η � 1. It follows TA(v) ≤ π

2λη. Thus any half-line in V (v) is almost orthogonal
to {y = 0}, and any point w ∈ (V (v) ∩ Σ)\{v} would imply that the curvature of Σ is at least
π/4. Lemma 2.7 gives that the curvature of Σ is bounded from above by π

2λ(1− 2λ), thus such a
point w cannot exist. �

Lemma 3.10. Let j be a given index, and Σ ∈ argmin Eλµj a given minimizer. Let v1, v2 ∈ Σ be corners
such that vi receives mass from Bni (i = 1, 2) with n1 > n2. Then xv1 < xv2 , where xp denotes the x
coordinate of the point p.

Proof. Let j be an arbitrary index, and Σ a minimizer. Let f : [0, 1] −→ Σ be a constant speed
bijective parameterization. Assume the thesis does not hold, i.e. there exist corners v1, v2 ∈ Σ
such that vi receives mass from Bni (i = 1, 2) with n1 > n2 and xv1 ≤ xv2 . This implies the
existence of points z1 ∈ Bn1 , z2 ∈ Bn2 (thus hypothesis n1 > n2 gives xz2 > xz1), such that
d(zi,Σ) = |zi − vi|, i = 1, 2.

Case xv1 = xv2 . Curvature considerations give

‖f ′‖TV ≥
π

3
>

π

2λ
(1− 2λ),

which is a contradiction in view of Proposition 2.6.

Case xv1 > xv2 . Denote by yp the y coordinate of the point p. Note that curvature bounds
(Lemma 2.7) impose ]({x = x0} ∩ Σ) = 1 for any x0 ∈ [−10, 10]. Clearly Jz1, v1K ∩ Σ = {v1} and
Jz2, v2K∩Σ = {v2}. Direct computation on the slope of L(z2, v2) (defined as the half-line starting
in z2 and containing v2) gives

Jz1, v1K ∩ (Jz2, v2K ∪ {(x, y) : x = xz2 , y < yz2}) 6= ∅.
If there exists a point

w′ ∈ Jz1, v1K ∩ {(x, y) : x = xz2 , y < yz2},
then direct computation (using elementary analytic geometry) gives that the slope of L(z1, w

′)
(defined as the half-line starting in z1 and passing through w′) forces L(z1, w

′) ∩ {xz1 < x <
10} 63 v1, which is a contradiction. Thus Jz1, v1K ∩ Jz2, v2K contains a point w, and z1, w, v1 are
collinear. Since v2 6= v1, the points z1, w, v2 are not collinear: indeed since Σ ∩ {−10 ≤ x ≤ 10}
is finite union of segments, each of which almost parallel to {y = 0}, and any corner v′ satisfies
TM(µj , v

′,Σ) ≤ η, i.e. its wedge V (v′) has amplitude TA(v′) ≤ π
2λη, and it follows that Jz1, v1K
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z2 ∈ Bn2z1 ∈ Bn1

v2

v1

Σ

w

{(x,y):x=xz2 ,
y<yz2}

x0

y

FIGURE 4. This is a schematic representation of the configuration, if contradiction as-
sumption holds. Note that by assumption v1 /∈ B(z2, |z2 − v2|).

is almost orthogonal to {y = 0}. Thus if z1, w, v2 were collinear then the total curvature of Σ
would exceed π/4, which is a contradiction. Thus it follows |z1 − v2| < |z1 −w|+ |w− v2|. Since
by assumption

|z2 − w|+ |v2 − w| = |z2 − v2| ≤ |z2 − v1| ≤ |z2 − w|+ |v1 − w|,
it follows |v2 − w| ≤ |v1 − w|. This in turn gives

|z1 − v2| < |z1 − w|+ |w − v2| ≤ |z1 − w|+ |v1 − w| = |z1 − v1|,
which is a contradiction. �

Lemma 3.11. For any index j and minimizer Σ ∈ argmin Eλµj , no corner v ∈ Σ satisfies V (v) 3 (0, 0).

Proof. Assume (for the sake of contradiction) there exists an index j, a minimizer Σ ∈ argmin Eλµj
and a corner v ∈ Σ satisfying (0, 0) ∈ V (v). Lemma 2.7 forces v to talk to positive mass, and let

n0 := inf{n : V (v) ∩Bn 6= ∅}.
The y coordinate of v is at most 2h (due to Lemma 3.4), and τ := ∠β{y = 0} (here β denotes the
bisector of V (v)) is valued in [π2 −

π
2λ(1− 2λ)− 2h

L ,
π
2 + π

2λ(1− 2λ) + 2h
L ] in view of the following

facts:
• the curvature of Σ does not exceed π

2λ(1− 2λ) (Lemma 2.7 and Proposition 2.6),
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• Σ ⊆ {h/10 < y < 2h} (Lemma 3.6), while supp(µlight) ⊆ {y ≤ h/100}.
Thus V (v) ∩ {y = 0} contains a point with x coordinate at least cn0/2. Let θ := TA(v)/2,

Lemma 3.8 gives
cn0

2
≤ 5h sin θ,

i.e.

(9) θ =
TA(v)

2
≥ sin θ ≥ 1

5h

cn0

2
.

By construction, v talks only to masses supported in the union
⋃
n≥n0

Bn, which satisfies

(10) µj

( ⋃
n≥n0

Bn

)
≤
∑
n≥n0

mn.

Combining estimate (9), (10) with Lemma 2.7 gives

1

5h

cn0

2
≤ θ ≤ π

4λ

∑
n≥n0

mn,

which is a contradiction. �

The next result proves that no corner receives mass from distinct balls Bn1 , Bn2 , n1 6= n2.

Lemma 3.12. For index j and minimizer Σ ∈ argmin Eλµj , there exists no corner v ∈ Σ and indices
n1 < n2 such that the intersections V (v) ∩Bn1 6= ∅ and V (v) ∩Bn2 6= ∅ are both non empty.

Proof. Assume the opposite, i.e. there exists a corner v ∈ Σ and indices n1 < n2 such that

V (v) ∩Bn1 6= ∅, V (v) ∩Bn2 6= ∅.

Let
n− := inf{n : V (v) ∩Bn 6= ∅}, n+ := sup{n : V (v) ∩Bn 6= ∅}.

The contradiction assumption ensures n− < n+. Note that this gives L1(V (v) ∩ {y = 0}) ≥
(cn− − cn+)/2. Lemma 3.8 gives

(11) 2hTA(v) ≥ 4h sin
TA(v)

2
≥ 4

5
L1(V (v) ∩ {y = 0}) ≥ 2

5
(cn− − cn+).

However, since by construction only masses supported in
n+⋃

n=n−

Bn can talk to v, Lemma 2.7

gives

(12) TA(v) ≤ π

2λ
µj

( n+⋃
n=n−

Bn

)
=

π

2λ

n+∑
n=n−

mn,
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Σ

v

V (v)

{y = 0}

Bn−

Bn+

θ̃ θ̃

θ

FIGURE 5. If v talks to masses in two distinct balls, L1(V (v) ∩ {y = 0}) is “large”, thus
the turning angle TA(v) is “large”. But there is not enough mass to allow for such large
turning angle. Here we omitted representing the balls (if these exist) Bn with n− < n <

n+. The relation between θ and θ̃ is θ = π/2− θ̃ = (π − TA(v))/2.

thus
π

λ

n+∑
n=n−

mn = 2h
π

2λ

n+∑
n=n−

mn

(12)
≥ 2hTA(v)

(11)
≥ 2

5
(cn− − cn+),

which is a contradiction for any n− and n+. �

Combining Lemmas 3.11 and 3.12, we obtain:
• for any index j, any minimizer Σ ∈ argmin Eλµj contains infinitely many corners.

Consider an index j and a minimizer Σ ∈ argmin Eλµj : letCn be the set of corners (of Σ) receiving
mass from Bn. Combining Lemmas 3.10 and 3.12 gives:

• for any indices n−, n+ with n− ≤ n+, the set
⋃n+
n=n−

Cn can receive mass only from⋃n+
n=n−

Bn.

Recall that Lemma 3.6 proves that any minimizer Σ ∈ argmin Eλµj is contained in the strip
{h/10 < y < 2h}, while all the mass supported within the strip {−10 < x < 10} is contained in
the half-plane {y ≤ h/100}.

The next result proves that given two corners v1 6= v2, then their wedges are disjoint.

Lemma 3.13. For any index j and minimizer Σ ∈ argmin Eλµj , and distinct corners v1, v2 ∈ Σ, the
intersection V (v1) ∩ V (v2) is empty.

Proof. Note that Lemma 3.6 gives v1, v2 ∈ Σ ⊆ {y ≥ h/10}, while supp(µlight) ⊆ {y ≤ h/100}.
Then the same argument from Lemma 3.6 of [9] follows. �
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The next result estimates the optimal turning angle in relation to the mass projected on a
corner. In particular it gives a lower bound estimate.

Lemma 3.14. For any index j, minimizer Σ ∈ argmin Eλµj and corner v ∈ Σ, let M := TM(µj , v,Σ).
Then

TA(v)→ 0+ =⇒ TA(v)

M/λ
→ 1.

In particular, if TA(v) ≤ 0.01 then
TA(v)

M/λ
≥ 1/2.

Proof. Lemmas 3.10, 3.11 and 3.12 give the existence of an unique index n such that v receives
mass from Bn. Recall that v ∈ Σ ⊆ {y ≥ h/10}, while Bn ⊆ {y ≤ h/100}. Then the same
argument from Lemma 3.4 of [9] follows. �

The next result is the core argument of the paper, proving that there exist infinitely many
indices n for which there exists a corner vn receiving a positive fraction of the mass supported
in Bn.

Lemma 3.15. For any index j and Σ ∈ argmin Eλµj it holds:
• there exists an index n0 independent of j, such that for any index n ≥ n0 there exists a corner
vn ∈ Σ satisfying TM(µj , vn,Σj) ≥ mn/4. Moreover, TA(vn) ≥ mn/4.

The proof uses the construction from Lemma 3.7 of [9].

Proof. Fix an index j and a minimizer Σ ∈ argmin Eλµj . Let f : [0, 1] −→ Σ be a constant speed
bijective parameterization, consider an index n, and let {vi}Hi=1 be the (finitely many) corners
receiving mass from Bn. Recall that by construction µj(Bn) = mn.

Let ti := f−1(vi) and Mi := TM(µj , vi,Σ). Assume

(13) (∀i1, i2 ∈ {1, · · · , H}, i1 6= i2) Mi1 +Mi2 ≤ mn/2.

The goal is to prove that assumption (13) cannot hold for sufficiently large n. Lemma 3.12 im-
plies that any vi talks only to masses in Bn, thus the turning angle TA(vi) can be assumed not
exceeding 10−10 since Lemma 2.7 implies TA(vi) ≤

π

2λ
mn < 10−10. Lemma 3.14 implies

Mi

2λ
≤ TA(vi) ≤

Mi

λ
, i = 1, · · · , H.

Lemma 3.4 gives Σ ⊂ {h/10 < y < 2h}, while Bn ⊆ {y < h/100}, thus

(14) d(vi,Bn) ≥ h/20, i = 1, · · · , H.

Let l±i be the two half-lines which form the border ∂V (vi) (the exact order is not relevant), and
Lemma 3.13 proves that V (vi1) ∩ V (vi2) = ∅whenever i1 6= i2.

• Claim: for any index i, except at most two, both l±i must intersect the border ∂Bn.
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vi
vi′ vi′′

Bn

V (vi′) V (vi′′)

V (vi′)

w+
i w−i

Σ

FIGURE 6. A schematic representation of the construction. For the sake of clarity,
only three corners (and their wedges) are represented.

This is proven by using the same arguments in the proof of Lemma 3.7 of [9], without any
modification.

Using (14), direct computation gives

min
z∈l−i , |z−vi|≥h/20

d(z, l+i ) ≥ h

20
sin TA(vi),

thus (since TA(vi) ≤ 10−10)

(15) min
z∈l−i , |z−vi|≥h/20

d(z, l+i ) ≥ h

20
sin TA(vi) ≥

h

40
TA(vi).

Since for any index i, except at most two (which we denote by i′ and i′′), both l±i intersect ∂Bn,
choose points

w±i ∈ l
±
i ∩ ∂Bn i = 1, · · · , H, i /∈ {i′, i′′}.
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Clearly V (vi) ∩ ∂Bn contains an arc connecting w−i and w+
i . Thus

(16) H1(V (vi) ∩ ∂Bn) ≥ min
z∈l−i , |z−vi|≥h/20

d(z, l+i )
(15)
≥ h

40
TA(vi)

Lemma 3.14
≥ h

40

Mi

2λ

λ<1/2

≥ h

40
Mi,

Lemma 3.13 gives V (vi1)∩V (vi2) = ∅whenever i1 6= i2. Summing over indices i ∈ {1, · · · , H}\{i′, i′′}
gives

(17) H1(∂Bn) ≥
H∑
i=1

i 6=i′,i′′

H1(V (vi) ∩ ∂Bn)
(16)
≥

H∑
i=1

i 6=i′,i′′

h

40
Mi

(13)
≥ hmn

80
.

Let n0 := inf{n ∈ N : hms/80 > 2πrs for any s ≥ n}. Clearly (due to the very definition of ms

and rs) n0 is independent of j (explicit computation would give n0 = 1, but this is not relevant
for our construction). Thus for any index n ≥ n0 holds

H∑
i=1

i 6=i′,i′′

H1(V (vi) ∩ ∂Bn)
(17)
≥ hmn

80
> 2πrn = H1(∂Bn),

which is a contradiction.

Thus for any n ≥ n0 assumption (13) cannot hold, and (for any n ≥ n0) there exist indices
i∗, i∗∗ such that Mi∗ + Mi∗∗ ≥ mn/2, i.e. max{Mi∗ ,Mi∗∗} ≥ mn/4. Since λ < 1/2, using Lemma
3.14 gives

max{TA(vi∗),TA(vi∗∗)} ≥
max{Mi∗ ,Mi∗∗}

2λ
≥ mn

4
,

and the proof is complete. �

3.3. Passing to the limit. Now we have to take the limit j → ∞. The crucial step is to prove
that corners are “far apart”. This will be achieved over two lemmas.

Lemma 3.16. For any index j and minimizer Σ ∈ argmin Eλµj , there exists n0 (independent of j) such
that for any corner v talking to some positive mass in Bn, n ≥ n0, it holds:

• V (v) ∩ {y = 0} does not contain points q with |xq − cn| > cn/10, where xq denotes the x
coordinate of q.

Proof. If v talks to positive mass supported in Bn, it follows

V (v) ∩Bn 6= ∅.

Lemma 2.7 gives that the total curvature of Σ does not exceed
π

2λ
(1 − 2λ) � 1. Combining

with Lemmas 3.2 and 3.6 gives that the bisector of V (v) is almost orthogonal to {y = 0}. Since
v receives mass only from Bn, Lemma 3.14 implies that the amplitude of V (v) does not exceed
π
2λmn. Elementary geometry proves that V (v) ∩ {y = 0} contains a point q1 with x coordinate
xq1 ∈ [cn−4rn, cn+4rn]. Thus Lemma 3.8 implies that for any sufficiently large n, the intersection
TA(v) ∩ {y = 0} does not contain points with x coordinate outside [0.9cn, 1.1cn]. �
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Lemma 3.17. For any index j, minimizer Σ ∈ argmin Eλµj , and corners vni (i = 1, 2) talking to some
positive mass supported in Bni (i = 1, 2), it holds:

• there exists a positive constant C independent of j and max{n1, n2} such that |vn1 − vn2 | ≥ C.

Proof. Assume (by symmetry) n1 < n2, let f : [0, 1] −→ Σ be a constant speed parameterization,
and let tni := f−1(vni), i = 1, 2. Lemma 2.7 gives

‖f ′|[tn1 ,tn2 ]‖TV ≤
π

2λ

n2∑
n=n1

mn.

Let βi be the bisectors of V (vni), i = 1, 2. The angle between β1 and β2 is bounded from above
by π

2λ

∑n2
n=n1

mn since any point f(t), t ∈ (tn1 , tn2), can only receive mass from
⋃n2
n=n1

Bn. Let
qi := βi ∩ {y = 0}, and if β1 and β2 were parallel (note that in general β1 and β2 are not parallel),
then |vn1 − vn2 | ≥ |q1 − q2|/2 (since vn1 − vn2 and {y = 0} are almost parallel). Since the angle
between β1 and β2 is at most π

2λ

∑n2
n=n1

mn, the error (done by assuming β1 and β2 are parallel)
is at most hπλ

∑n2
n=n1

mn � |cn1 − cn2 |.
By construction cn2 < 10−10cn1 . Denote by xp the x coordinate of the point s. Since by defini-

tion qi ∈ V (vni) ∩ {y = 0} (i = 1, 2), Lemma 3.16 gives |xqi − cni | ≤ cni/10 (i = 1, 2), thus

xq1 ≥ 0.9cn1 , xq2 ≤ 1.1cn2 ,

i.e. |q1 − q2| ≥ 0.8cn1 . Letting C := 0.8cn1 concludes the proof. �

Now we can pass to the limit j → ∞: for any index j choose a minimizer Σj ∈ argmin Eλµj ,

and let fj : [0, 1] −→ Σj a constant speed bijective parameterization. Since {µj}
∗
⇀µ, upon

subsequence it holds (using Lemma 2.8) {fj} → f uniformly, for some Σ ∈ argmin Eλµ and
parameterization f : [0, 1] −→ Σ. Thus

{Σj}
dH→Σ ∈ argmin Eλµ .

Lemma 3.15 proves the existence of n0 (independent of j) such that for any n ≥ n0, each mini-
mizer Σj contains a corner vjn satisfying TA(vjn) ≥ mn/4. In other words, the measure f ′′j has an
atom of measure at least mn/4 at time tjn := f−1

j (vjn). Again passing to the limit j →∞, it holds
(upon subsequence) {tjn} → tn, thus f ′′ has an atom of measure at least mn/4 in tn. Note that an
atom for the measure f ′′ corresponds to a jump for the tangent derivative f ′, i.e. a corner for Σ.

Lemma 3.17 ensures that vn1 6= vn2 whenever n1 6= n2. Thus passing to the limit j →∞, Σ has
infinitely many corners. Let v be an accumulation point of {vn}, v /∈ {vn}. It remains to prove
that such v is not a corner itself.

Lemma 3.18. Such accumulation point v is not a corner itself.

Before the proof, a preliminary lemma is required.

Lemma 3.19. For any sequence of corners {vs} ⊆ Σ (not definitely constant), the sequence {xvs} admits
a strictly decreasing subsequence {xvg(s)}, where xp denotes the x coordinate of the point p.
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Proof. The proof is similar to the proof of Lemma 3.10. Assume (for the sake of contradiction)
that there exist indices n,N with n < N , distinct corners vn, vN ∈ Σ and points zn ∈ Bn,
zN ∈ BN , such that

|vn − zn| = d(zn,Σ), |vN − zN | = d(zN ,Σ), xvn ≤ xvN .

zn ∈ BnzN ∈ BN

vn

vN

Σ∗

w

{(x,y):x=xzn ,
y<yzn}

x0

y

FIGURE 7. This is a schematic representation of the configuration, if contradiction as-
sumption holds. Note that by assumption vN /∈ B(zn, |zn − vn|).

Denote by yp the y coordinate of the point p. Let Σ∗ := Σ∩{x ≤ xvn}, and note that curvature
bounds (Lemma 2.7) impose ]({x = x0} ∩Σ) = 1 for any x0 ∈ [−10, 10], and Jzn, vnK∩Σ = {vn}.
Case xvn < xvN remains. Clearly

JzN , vN K ∩ Σ∗ = ∅
since the opposite would contradict either |zN − vN | = d(zN ,Σ) or xvN > xvn . Similarly to
the proof of Lemma 3.10, direct computation of the slope of L(zn, vn) (defined as the half-line
starting in zn and containing vn) forces

JzN , vN K ∩ (Jzn, vnK ∪ {(x, y) : x = xzn , y < yzn}) 6= ∅.
If there exists a point w′ ∈ JzN , vN K ∩ {(x, y) : x = xzn , y < yzn}, then direct computation
gives that the slope of L(zN , w

′) (defined as the half-line starting in zN and passing through w′)
satisfies L(zN , w

′) ∩ {−10 ≤ x ≤ 10} 63 vN , which is a contradiction. Thus JzN , vN K ∩ Jzn, vnK



22 XIN YANG LU

contains a point w, and zN , w, vN are collinear. Since vn 6= vN , the points zN , w, vn are not
collinear: indeed JzN , vN K is almost orthogonal to {y = 0}, thus if zN , w, vn were collinear, the
total curvature of Σ would exceed π/4, prohibited by Lemma 2.7. Thus |zN − vn| < |zN − w| +
|w − vn|. Since by assumption

|zn − w|+ |vn − w| = |zn − vn| ≤ |zn − vN | ≤ |zn − w|+ |vN − w|,
it follows |vn − w| ≤ |vN − w|. This in turn gives

|zN − vn| < |zN − w|+ |w − vn| ≤ |zN − w|+ |vN − w| = |zN − vN |,
which is a contradiction. Since for any ball Bs there exists a corner vs talking to positive mass
supported on Bs, the proof is complete. �

Proof. (of Lemma 3.18) For the sake of brevity, the notation xp (resp. yp) will denote the x (resp.
y) coordinate of p.

Choose a sequence {vs} → v, and assume (in view of Lemma 3.19) {xvs} strictly decreasing.
Assume (for the sake of contradiction) there exists an index n such that v talks to some point

z ∈ Bn. Choose an index N > n, and a corner vN talking to some point zN ∈ BN . Such
points exist due to our construction. Let l be the line through vN and zN , and let l′ := Jv, zK. By
construction l is almost orthogonal to {y = 0}. Recall that Σ ⊆ {h/10 ≤ y ≤ 2h} (Lemma 3.4),
while all balls Bn are contained in {y ≤ h/100}. By construction xv < xvN , xzn > xzN . Since l
is almost orthogonal to {y = 0}, and the total curvature of Σ ∩ {−10 ≤ x ≤ 10} does not exceed
π
2λη � 1, this implies the existence of a point w ∈ l ∩ l′. Let

• l− := be half-line (contained in l) starting from zN and not containing vN ,
• l+ := be half-line (contained in l) starting from vN and not containing zN ,
• l◦ := JzN , vN K.

z ∈ Bn

v vN

zN ∈ BN

l+

l−

l◦

l′

w

Σ
{y = h/10}

{y = h/100}

x

y

0

FIGURE 8. This is a schematic representation of the configuration.

The following possibilities arise:
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(1) w ∈ l−: in this case the slope of L(z, w) (defined as the half-line starting in z and passing
through w) prohibits l′ ∩ {y > h/10} ∩ {−10 ≤ x ≤ 10} 3 v, which is a contradiction,

(2) w ∈ l+: this would give |z− v| ≥ |z−w| ≥ |z− vN |, with equality holding only if v = vN ,
prohibited by our assumptions,

(3) w ∈ JvN , zN K: note that zN , w, vN are collinear, while zN , w, v are not: indeed if zN , w, v
were collinear, since JzN , vN K is almost orthogonal to {y = 0}, then the total curvature of
Σ would exceed π/4, prohibited by Lemma 2.7. Thus

|zN − v| < |zN − w|+ |v − w|, |zN − vN | = |zN − w|+ |vN − w|,

and |v − w| > |vN − w|. This yields

|z − vN | ≤ |z − w|+ |vN − w| < |z − w|+ |v − w| = |z − v|,

i.e. z cannot talk to v, which is a contradiction.

Thus all three cases lead to a contradiction, i.e. such point v cannot talk to any mass in any ball
Bn. Using Lemma 2.7 finally gives TA(v) = 0, i.e. v is not a corner. �

Thus we have proven:

Theorem 3.20. There exists a measure µ and a parameter λ, such that there exists Σ ∈ argmin Eλµ
containing a sequence of corners {vn} satisfying:

• for any n TA(vn) ≥ mn/4, i.e. vn is a corner,
• {vn} → v ∈ Σ, TA(v) = 0, i.e. v is not a corner.

Corollary 3.21. The minimizer Σ from Theorem 3.20 is also minimizer for the constrained problem

(18) min
H1(·)≤H1(Σ)

∫
R2

d(x, ·)dµ.

Proof. In [2] it has been proven that any minimizer Σ̃ of (18) satisfies H1(Σ̃) = H1(Σ), thus if Σ
is not a minimizer of (18), choosing Σ∗ minimizer of (18) would give∫

R2

d(x,Σ∗)dµ <

∫
R2

d(x,Σ)dµ, H1(Σ∗) = H1(Σ),

contradicting Σ ∈ argmin Eλµ . �
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