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Abstract. The continuous and discontinuous Galerkin time stepping methodologies are combined to develop
approximations of second order time derivatives of arbitrary order. This eliminates the doubling of the number of
variables that results when a second order problem is written as a first order system. Stability, convergence, and
accuracy, of these schemes is established in the context of the wave equation. It is shown that natural interpolation
of non–homogeneous boundary data can degrade accuracy, and that this problem can be circumvented using
interpolants matched with the time stepping scheme.
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1. Introduction. Numerical approximations the wave equation are developed which com-
bine the continuous and discontinuous time stepping methodologies to obtain natural discretiza-
tions of the second time derivative of arbitrary order. This contrasts with the traditional approach
where the equation is first decomposed into a first order system [2, 9] which has the disadvantage
of doubling the number of spatial variables. This later approach can be expensive for vector val-
ued problems, such as elastic wave propagation. Unlike schemes based upon first order systems,
stability is not immediate for the new schemes; properties of Legendre polynomials established
in Theorem 4.3 below are used to establish a discrete energy estimate.

In addition to the analysis of these time stepping schemes, a major focus of this work is
the implementation of non–homogeneous boundary conditions and the associated error analysis.
This contrasts with the majority of papers where homogeneous boundary data is considered
“for simplicity”. Numerical experiments are presented in Section 3 which illustrate that naive
specification of boundary data degrades the rate of convergence and that this problem can be
circumvented with proper treatment of the boundary terms. These technical issues are not specific
to the wave equation; for example, similar treatment of non–homogeneous boundary data will be
required to achieve optimal rates of convergence for parabolic problems.

1.1. Related Results. Implicit time stepping schemes are commonly used for the wave
equation to avoid restrictive CFL constraints on the time step that result when local mesh re-
finement and higher time stepping schemes are employed. Dupont [4] developed optimal rates of
convergence for an implicit scheme using the natural second order finite difference approximation
of the second time derivative. While this gives a multi–step scheme, the analysis in [4] is canon-
ical. Following the technique developed for parabolic equations, the elliptic projection is first
used to estimate the error of the semi–discrete scheme where time is continuous and the spatial
variables discretized. Errors due to temporal discretization are then estimated, and rates for the
fully discrete scheme then follow from the triangle inequality. Using the property that temporal
differentiation commutes with the elliptic projection eliminates the need to develop regularity
estimates for the semi–discrete scheme. The schemes considered below are of arbitrarily high
order, so regularity of the solution will be assumed as required; we note that Rauch [11] showed
that derivation of the minimal regularity required to obtain optimal rates for the wave equation
can be subtle.
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Subsequent to Dupont’s paper, most of the time stepping schemes proposed for the wave
equation were constructed by writing it as a first order system. In this context many of the time
stepping schemes developed for parabolic equations, and much of the analysis, could be used for
the wave equation. In particular, both continuous Galerkin (CG) and discontinuous Galerkin
(DG) time stepping schemes have be proposed and analyzed for the wave equation [2, 5, 6, 9].
The CG method preserves energy equality exhibited by solutions of the wave equation [7] while
the penalty term of the DG scheme is dissipative. Since the DG schemes are discontinuous it
easy to formulate and analyze schemes which adapt the spatial mesh to the solution at each time
step; adaptivety for the CG scheme was considered in [10].

The CG time stepping scheme involves fewer unknowns than the DG counterpart. Specifically,
if approximate solutions have polynomial time dependence of degree ` and take values in a finite
element subspace Uh, then the number of unknowns for the CG scheme is 2`dim(Uh) while the
DG scheme will have 2(` + 1)dim(Uh); the factor of two arising since the equation is posed as a
first order system with twice as many variables. The time stepping scheme considered here has
`dim(Uh) unknowns; moreover, the accuracy is similar. Letting τ and h denote the time and space
step sizes, solutions the CG and DG schemes exhibit rates of convergence of order O(τ `+1 +hk+1)
for both the error, ‖e(t)‖L2(Ω), and and its derivative, ‖et(t)‖L2(Ω), when the finite element space
contains the piecewise polynomials of degree k. For the scheme analyzed below this rate is
achieved for ‖e(t)‖ at all times, and for ‖et(tn−)‖L2(Ω) at the partition points. It is well known
that the CG and DG time stepping schemes have a natural correspondence with collocation
methods which use Gauss Lobatto and Gauss Radau quadrature points respectively. When
used for ordinary differential equations these schemes have formal order O(τ2`) and O(τ2`+1)
respectively [8]. French and Peterson [6] show that these super convergence rates may be achieved
at the partition points by the CG time steeping scheme for the wave equation. While the time
stepping scheme proposed below is not obviously a collocation scheme, it is of formal order
O(τ2`−1). Example 5.6 illustrates that super convergence at this rate is observed the partition
points when the solution is smooth.

Non–homogeneous boundary conditions complicate the error analysis since temporal deriva-
tives of the boundary data appear in the stability estimate for the wave equation. Naive implemen-
tation of the boundary conditions then results in consistency errors containing time derivatives
of the boundary data which converge at reduced rates; Example 3.2 illustrates this. Except for
Dupont’s paper [4], this issue has not been addressed; that is, homogeneous boundary data is
considered ubiquitously. The time stepping scheme analyzed by Dupont was derived using finite
difference methodology, and in this situation it is clear how to specify the boundary data to avoid
the introduction of additional consistency errors. This issue is taken up in Section 5 where it is
shown that the consistency error will not involve temporal derivatives of the boundary data if a
“semi–Hermite” interpolant is used. We note that an unusual numerical schemes for the wave
equation with non–smooth Dirichlet data was considered in [3]; the discrete solutions always
vanished on the boundary, uh(t) ∈ H1

0 (Ω). Since the exact solution does not vanishes on the
boundary convergence is not possible in H1(Ω) even when the solution is smooth; instead the
authors prove convergence in weaker dual norms.

1.2. Overview and Notation. The next section introduces the abstract setting where weak
and strong solutions of the wave equation are well posed, and Section 3 introduces the discrete
weak statement. Stability and convergence of the numerical schemes are then established in
Sections 4 and 5 respectively.
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Standard notation is used for the Lebesgue spaces, Lp(Ω), and Sobolev spaces, Wm,p(Ω),
H1(Ω) = W 1,2(Ω). Solutions of the wave equation will be functions from [0, T ] into these spaces
and the usual notation, L2[0, T ;H1(Ω)], C[0, T ;L2(Ω)], is used to indicate the temporal regularity
of such functions. Function spaces where the abstract wave equation is posed are introduced at
the beginning of the next section, and notation for the discrete function spaces appears at the
beginning of Section 3. In general, a super script is used to index time, un ' u(tn), and subscripts
indicate spatial approximation, uh(t) ∈ Uh ⊂ U .

2. Wave Equations. We consider wave equations of the form

utt +Au = f, on (0, T ), (2.1)

supplemented with initial conditions for u(0) and ut(0), and boundary conditions. Here A :
D(A) → H is a linear, self adjoint, operator on a Hilbert space H with domain D(A) ⊂ H. To
accommodate the canonical example where Au = −∆u on a bounded domain Ω ⊂ Rd with with
boundary conditions

u|Γ0 = u0, (∂u/∂n)|Γ1 = g, where ∂Ω = Γ0 ∪ Γ1,

we introduce spaces U0 ↪→ U ↪→ U ↪→ H corresponding to [12]

U0 = H1
0 (Ω), U = {u ∈ H1(Ω) | u|Γ0 = 0}, U = H1(Ω), H = L2(Ω).

In the general setting A : D(A) → H is determined from a continuous bilinear function a :
U × U → R as1

D(A) = {u ∈ U | |a(u, v)| ≤ C(u)‖v‖H , v ∈ U0}, (Au, v)H = a(u, v), v ∈ U0.

If u ∈ D(A) the function v 7→ a(u, v)− (Au, v)H is continuous on U and vanishes on U0 so there
exists ∂A(u) ∈ (U/U0)′ such that

a(u, v)− (Au, v)H = ∂A(u)(v), v ∈ U.

Strong solutions of the wave equation satisfy (2.1) with each term in H, and satisfy the initial
and boundary conditions

u(0) = u0, ut(0) = u0
t , u ∈ u0 + U, ∂A(u) = g,

where the initial values u0 ∈ D(A), u0
t ∈ U and boundary values u0(t) ∈ U and g(t) ∈ (U/U0)′

are specified. Weak solutions of the wave equation satisfy

u(t)− u0(t) ∈ U, (utt, v) + a(u, v) = (f, v)H + (g, v), v ∈ U, (2.2)

and the initial conditions. The weak statement is meaningful when utt(t) ∈ U ′ and u(t) ∈ U , in
which case the first and last terms in the weak statement are parings between U ′ and U .

The usual translation argument may used to establish existence for the problem with non–
homogeneous boundary data. If u0(t) ∈ D(A), u0tt(t) ∈ H, and ∂A(u0) = g, then ũ(t) ≡
u(t)− u0(t) ∈ U satisfies the wave equation with homogeneous boundary data,

(ũtt, v) + a(ũ, v) = (f − u0tt −Au0, v)H , v ∈ U.

1When functions in the domain of the operator are required to satisfy homogeneous Dirichlet and Neumann
boundary conditions, D0(A) is typically used to denote the domain defined here.
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A proof that weak solutions of this equation are strong solutions with ∂A(ũ) = 0 when the initial
data and right hand side are sufficiently regular is given in [12]. The following hypotheses on
a(., .) and the data were implicit in this discussion, and will be assumed below.

Assumption 2.1. The operators and data satisfy the following continuity and coercivity
properties.

1. (Continuity) a : U × U → R is bilinear and continuous and the restriction to U × U is
symmetric. Specifically, there exists a constant Ca > 0 such that

|a(u, v)| ≤ Ca‖u‖U‖v‖U , u ∈ U , v ∈ U,

and a(u, v) = a(v, u) for u, v ∈ U .
2. (Coercivity) There exists a constant ca > 0 such that

a(u, u) ≥ ca‖u‖2U , u ∈ U.

The arguments below readily extend to the situation where a(u, u)1/2 is a semi–norm and
a(u, u) + ‖u‖2H ≥ ca‖u‖2U .

3. The right hand side of the strong from satisfies f ∈ L1[0, T ;H].
4. The Neumann data satisfies g ∈ W 1,1[0, T ;U ′]. A necessary condition for weak solutions

to be strong is g ∈W 1,1[0, T ; (U/U0)′]; this later condition is implicit when strong solutions
are assumed.

5. The Dirichlet boundary data satisfies u0 ∈W 2,1[0, T ;U ] ∩ L1[0, T ;D(A)].

Adopting a(., .) to be the inner product on U shortens many of the estimates, so below we
write ‖u‖U = a(u, u)1/2. With this convention dual norms will be independent of a(., .) when
scaled by (Ca/ca).

2.1. Estimates. Setting v = ut in the weak statement (2.2) and integrating over (0, t) gives
the estimate

(1/2)
(
‖ut(t)‖2H + ‖u(t)‖2U

)
= (1/2)

(
‖u0

t ‖2H + ‖u0‖2U
)

+

∫ t

0

{
(f, ut)− (gt, u)

}
+ (g, u)|t0

≤ (1/2)
(
‖u0

t ‖2H + ‖u0‖2U
)

+ ‖g(0)‖U ′‖u0‖U
+
(
‖f‖L1[0,t;H] + ‖gt‖L1[0,t;U ′] + ‖g(t)‖U ′

)
max
0≤s≤t

(
‖ut(s)‖2H + ‖u(s)‖2U

)1/2
. (2.3)

Selecting t ∈ [0, T ] where the maximum on the right occurs shows

max
0≤s≤T

(‖ut(s)‖H + ‖u(s)‖U ) ≤ C
(
‖u0

t ‖H + ‖u0‖U + ‖f‖L1[0,T ;H] + ‖g‖W 1,1[0,T ;U ′]

)
. (2.4)

In the context of a numerical scheme an estimate of the form (2.3) only holds for discrete times
tn on the left. For a low order scheme where u(s) and ut(s) at times s ∈ (tn−1, tn) are determined
from the values at their end points an estimate of the form (2.4) is immediate for the discrete
scheme.

Estimates for the higher order schemes will use a discrete version of the following estimate
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obtained by setting the test function v = exp(−λt)ut(t) in equation (2.2),

(e−λt/2)
(
‖ut(t)‖2H + ‖u(t)‖2U

)
+ (λ/2)

∫ t

0
e−λ·

(
‖ut‖2H + ‖u‖2U

)
= (1/2)

(
‖u0

t ‖2H + ‖u0‖2U
)

+

∫ t

0
e−λ·

(
(f, ut) + (λg − gt, u)

)
+ e−λ·(g, u)|t0

≤ (1/2)
(
‖u0

t ‖2H + ‖u0‖2U
)

(2.5)

+
(
‖f‖L1[0,t;H] + (2 + λt)‖g‖C[0,t;U ′] + ‖gt‖L1[0,t;U ′]

) (
‖ut‖L∞[0,t;H] + ‖u‖L∞[0,t;U ]

)
.

When λt = O(1), so λ = O(1/t), inverse estimates for polynomials show that the norms
λ‖.‖2L2[0,t;H] and ‖.‖2L∞[0,t,H] are comparable, and the energy estimate (2.4) will follow.

3. Numerical Scheme. Let 0 = t0 < t1 < . . . < tN = T be a partition of [0, T ], Uh ⊂ U
be a subspace and set Uh = Uh ∩ U . If u0h(t) ∈ Uh is an approximation the Dirichlet data, and
gτ (t) ∈ U ′h is an approximation of the Neumann data, we consider approximate solutions of the
wave equation in the space

uh ∈ u0h + {uh ∈ C[0, T ;Uh] | uh|(tn−1,tn) ∈ P`[tn−1, tn, Uh]} ≡ u0h + U`h

which, on each interval, satisfy∫ tn

tn−1

{
(uhtt, vh) + a(uh, vh)

}
+ ([uht], vh+)n−1

H =

∫ tn

tn−1

(f, vh)H + (gτ , vh), (3.1)

for all vh ∈ P`−1[tn−1, tn;Uh]. Here [uht] denotes the jump in the time derivative at the partition
point, so this scheme can be viewed as a continuous Galerkin time stepping scheme for u coupled
with a discontinuous Galerkin time stepping scheme for ut.

Example 3.1. If ` = 1 the solution is piecewise linear in time so uhtt = 0 and ut =
(un− un−1)/τ on (tn−1, tn) where τ is the time step. Letting Ahuh ∈ Uh and Fh ∈ Uh denote the
discrete spatial operator and data characterized by

(Ahuh, wh) = a(uh, wh), (Fh, wh) = (1/τ)

∫ tn

tn−1

(f, wh) + (g, wh), wh ∈ Uh,

the scheme may be written as

un − 2un−1 + un−2

τ
+ τAh

(
un + un−1

2

)
= τF

n−1/2
h .

Clearly this scheme is first order in time; however, this is atypical. For ` > 1 the time stepping
scheme is of order `+ 1 for the wave equation, and is of order 2`− 1 for ode’s of the form u′′ =
f(t, u, ut). The second order scheme analyzed by Dupont [4] has the same temporal discretization
but different spatial discretization:

un − 2un−1 + un−2

τ
+ τAh

(
un + 2un−1 + un−2

4

)
=
τ

4

(
Fnh + 2Fn−1

h + Fn−2
h

)
.
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e ≡ u− uh ‖e(1)‖L2(Ω) ‖et−(1)‖L2(Ω) |e(1)|H1(Ω)

Homogeneous BC 2.9180 3.0026 2.9331
NonHomegenous BC, Lagrange interpolant 3.0084 2.5840 2.6251
NonHomegenous BC, projected data 3.0027 2.9964 3.0274

Fig. 3.1. Rates of convergence with k = 3, ` = 2 when τ ∈ {1/8, 1/16, 1/32, 1/64, 1/128, 1/256}.

The next example shows that specifying u0h to be the usual Lagrange interpolant of the
boundary data u0 and setting gτ = g results in a loss of accuracy. This motivated the analysis
below which shows that this problem can be eliminated if the Dirichlet data for the numerical
scheme is the spatial interpolant of Pτ (u0) and the Neumann data is taken to be Pτ (g), where Pτ
is the temporal projection introduced Definition 5.1 below.

Example 3.2. Numerical approximation of the scalar wave equation utt − ∆u = 0 with
solution

u(t, x, y) = cos(
√

2πt) cos(πx) sin(πy)

is considered on the domain Ω = (−1, 1)2. Notice that
• u|y=±1 = 0 and ∂u/∂n|x=±1 = 0, but
• u|x=±1 6= 0 and ∂u/∂n|y=±1 6= 0,

so homogeneous boundary data will result if Γ0 = {(x, y) ∈ ∂Ω | y = ±1} and Γ1 = {(x, y) ∈
∂Ω | x = ±1}, and interchanging the two gives non–homogeneous boundary data.

Approximate solutions were computed on uniform square meshes with fixed time steps. To
illustrate the role of the time stepping scheme, serendipity elements containing the piecewise
polynomials of degree k = 3 were used for for the spatial variables, and piecewise polynomials of
degree ` = 2 were used for the time dependence.

The solution was evolved until a time T = 1 using the same number of elements in space and
time (h = 2τ) and rates of convergence for the errors ‖(u− uh)(1)‖L2(Ω), ‖(u− uh)t(1−)‖L2(Ω),
and |(u − uh)(1)|H1(Ω), tabulated in Figure 3.1. The middle row shows the rates of convergence
when the Dirichlet data for the numerical scheme on each interval (tn−1, tn) was the Lagrange
interpolant using the end points and the mid point, and boundary integrals for the Neumann data
were computed “exactly” (high order quadrature). This implementation of the non–homogeneous
boundary data clearly results in a degradation of the rate. The third row of the table illustrates
that there is no degradation of the rates when the Dirichlet data for the numerical scheme is the
spatial interpolant of Pτ (u0) ∈ P`[tn−1, tn,U ] and Neumann data gτ = Pτ (g) ∈ P`[tn−1, tn, U ′] is
specified.

4. Stability. Setting vh = uht in the discrete weak statement (3.1) and summing, and
integrating the last term by parts, shows

E(un, unt−) + (1/2)
n−1∑
m=0

‖[uht]‖2H = E(u0, u0
t ) +

∫ tn

0
{(f, uht)− (gτt , uh)}+ (gτ , uh)|tnt=0 (4.1)

≤ E(u0, u0
t ) +

(
‖f‖L1[0,tn;H] + ‖gτt ‖L1[0,tn;U ′] + 2‖gτ‖C[0,tn;U ′]

)
max

0≤t≤tn
E
(
uh(t), uht(t)

)1/2
.

This is the analog of equation (2.3); however, it does not immediately bound the solution since
the left hand side only estimates the energy at the discrete times {tn}Nn=0, while the right hand
side involves the energy at all times 0 ≤ t ≤ T . This issue is circumvented by developing an
analog of equation (2.5).
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4.1. Preliminaries. To develop a discrete analog of (2.5) properties of polynomials will be
exploited. When the target space is a polynomial subspace the L2 projection is well defined for
all integrable functions.

Definition 4.1. Let U be a Banach space, 0 = t0 < t1 < . . . < tN = T be a partition of
[0, T ], and ` ≥ 1 an integer. For w ∈ L1[0, T ;U ], let w̄ denote the function in

{w̄ ∈ L1[0, T ;U ] | w̄|(tn−1,tn) ∈ P`−1[tn−1, tn;U ], 1 ≤ n ≤ N},

satisfying on each interval∫ tn

tn−1

p(t)w̄(t) dt =

∫ tn

tn−1

p(t)w(t) dt, p ∈ P`−1(tn−1, tn).

Stability and approximation properties of this projection follow from elementary parent ele-
ment arguments.

Lemma 4.2. Let U be a Banach space, ` ≥ 1 be an integer, and 0 = t0 < t1 < . . . tN = T be a
partition of [0, T ]. Then there exists C = C(`) > 0 depending only upon ` such that the projection
u 7→ ū characterized in Definition 4.1 satisfies

‖ū‖Lr[tn−1,tn;U ] ≤ C‖u‖Lr[tn−1,tn;U ], u ∈ Lr[0, T ;U ],

‖ū′‖Lr[tn−1,tn;U ] ≤ C‖u′‖Lr[tn−1,tn;U ], u′ ∈ Lr[0, T ;U ],

for all 1 ≤ r ≤ ∞, and

‖ū− u‖C[tn−1,tn;U ] ≤ C‖u′‖L1[tn−1,tn;U ], and ‖[ūn]‖U ≤ C‖u′‖L1[tn−1,tn+1;U ],

when u′ ∈ L1[0, T ;U ].

The construction of test functions presents a major difficulty for the analysis of Galerkin
schemes. The following lemma shows that the (in)equality∫ τ

0
(1− λt)(ut, u)U ≥ (1/2)(1− λτ)‖u(τ)‖2U − (1/2)‖u(0)‖2U + (λ/2)

∫ τ

0
‖u(t)‖2U dt,

remains valid when u ∈ P`[0, τ ;U ] is replaced by ū ∈ P`−1[0, τ ;U ] on the left; the later being a
valid test function for the numerical scheme.

Theorem 4.3. Let U be a (semi) inner product space, ` ≥ 1 be an integer, and τ > 0. Let
p`(t) =

√
2`+ 1L`(−1 + 2t/τ) where L`(ξ) is the Legendre polynomial on [−1, 1] normalized so

that L(1) = 1.

Let u ∈ P`[0, τ ;U ] and ū be the projection of u onto P`−1[0; τ ;U ] given in Definition 4.1, and
let

u` = (1/τ)

∫ τ

0
p`(t)u(t) dt.

Then for any λ ∈ R,∫ τ

0
(1−λt)(ut(t), ū(t))U dt = (1/2)(1−λτ)‖u(τ)‖2U−(1/2)‖u(0)‖2U+λτ`‖u`‖2U+(λ/2)

∫ τ

0
‖u(t)‖2U dt.
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Before starting the proof, we recall that the Legendre polynomial L`(ξ) is orthogonal to
P`−1(−1, 1), and when when normalized by L`(1) = 1 = ‖L`‖C[−1,1] has norm ‖L`‖2L2(−1,1) =

2/(2`+1). The scaled Legendre polynomial p`(t) in the theorem then has norm ‖p`‖L2(0,τ) =
√
τ .

Proof. By construction, p`(t) is orthogonal to P`−1(0, τ) and ‖p`‖L2(0,τ) =
√
τ . It follows

from Definition 4.1 that u(t) = ū(t) + p`(t)u`.

Using the identity (ut, u)U = d/dt(‖u‖2U/2), integration by parts shows∫ τ

0
(1− λt)

(
ut(t), ūh(t)

)
U
dt =

∫ τ

0
(1− λt)

(
ut(t), u(t)− p`(t)u`

)
U
dt

= (1/2)(1− λτ)‖u(τ)‖2U − (1/2)‖u(0)‖2U +

∫ τ

0
(λ/2)‖u(t)‖2U − (1− λt)

(
ut(t), p`(t)u`

)
U
dt,

It remains to show that the last term takes the form stated. First,∫ τ

0
(1− λt)

(
ut(t), p`(t)u`

)
dt =

∫ τ

0
(−λt)

(
ut(t), p`(t)u`

)
dt,

since ut ∈ P`−1[0, τ ;U ] and p` is orthogonal to P`−1(0, τ). Next, write ut(t) = ūht(t) + p′`u`, and
use the property that tūt(t) has degree bounded by `− 1 so is orthogonal to p`, to conclude that
the last term may be written as∫ τ

0
t
(
ut(t), p`(t)u`

)
U
dt =

∫ τ

0
t
(
p′`(t)u`, p`(t)u`

)
U
dt

= (τ/2)p`(τ)2‖u`‖2U − (1/2)

∫ τ

0
p`(t)

2 dt ‖u`‖2U

= (τ/2)(p`(τ)2 − 1)‖u`‖2U .

The lemma now follows since p`(τ)2 = 2`+ 1.

It now follows that the projection of (1−λt)ut(t) onto P`−1[0, τ ;U ] will give a discrete analog
of the test function v = exp(−λt)ut(t) used in the derivation of equation (2.5).

Corollary 4.4. Let U ↪→ H be an embedding of Hilbert spaces, u ∈ P`[0, τ ;U ], v =
(1−λt)ut(t), and v̄ be the projection of v onto P`−1[0, τ ;U ] characterized in Definition 4.1. Then∫ τ

0
(utt, v̄)H = (1/2)

(
(1− λτ)‖ut(τ)‖2H − ‖ut(0)‖2H

)
+ (λ/2)

∫ τ

0
‖ut‖2H ,

and ∫ τ

0
(u, v̄)U = (1/2)

(
(1− λτ)‖u(τ)‖2U − ‖u(0)‖2U

)
+ λ`τ‖u`‖2U + (λ/2)

∫ τ

0
‖u‖2U ,

where u` ∈ U is as in the theorem. Moreover,

‖ut(0)− v̄(0)‖H ≤ |λ|
√

(2`+ 1)τ‖ut‖L2[0,τ ;H].

Proof. Since utt ∈ P`−2[0, τ ;U ] it follows that∫ τ

0
(utt, v̄)H =

∫ τ

0
(utt, v)H =

∫ τ

0
(1− λt)(utt, ut)H dt =

∫ τ

0
(1− λt)(‖ut‖2H/2)t dt,
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and the first identity follows upon integration by parts. To establish the second identity write∫ τ

0
(u, v̄)U =

∫ τ

0
(ū, v)U =

∫ τ

0
(1− λt)(ū, ut)U dt,

and apply of the theorem. For the final estimate write v(t) − v̄(t) = p`(t)v`. Then v(0) = ut(0)
and

ut(0)− v̄(0) = p`(0)(1/τ)

∫ τ

0
p`(t)(1− λt)ut(t) dt = p`(0)(1/τ)

∫ τ

0
−p`(t)λtut(t) dt,

where the second equality follows since p` is orthogonal to P`−1(0, τ) and ut ∈ P`−1[0, τ ;U ]. Then

‖ut(0)− v̄(0)‖H ≤ |p`(0)|λ‖p`‖L2(0,τ)‖ut‖L2[0,τ ;H] =
√

2`+ 1|λ|
√
τ‖ut‖L2[0,τ ;H].

4.2. Stability. Stability of the numerical scheme (3.1) with homogeneous Dirichlet data
can now be established. The usual translation argument then bounds solutions with non–
homogeneous Dirichlet data.

Theorem 4.5. Let U ↪→ H be an embedding of Hilbert spaces, Uh ⊂ U be a subspace, and
0 = t0 < t1 < . . . tN = T be a partition of [0, T ] with maximal time step τ = max1≤n≤N ∆tn ≤ 1.
Assume that the bilinear function a : Uh × Uh → R satisfies Assumptions 2.1, f ∈ L1[0, T ;H],
and gτ ∈ W 1,1[0, T ;U ′]. Then there exists C = C(`) > 0 such that solutions of the numerical
scheme (3.1) with initial data u0

h and u0
ht− ∈ Uh satisfy

max
0≤t≤T

E(unh, u
n
ht−) +

n−1∑
m=0

‖[umht]‖2H ≤ E(u0
h, u

0
ht−) + C

(
‖f‖L1[0,T ;H] + ‖gτ‖W 1,1[0,T ;U ′]

)2
,

where E(u, v) ≡ (1/2)
(
‖u‖2U + ‖v‖2H

)
, unh = uh(tn) and [umt ] = umt+ − umt−.

Proof. Fix λ = 1/(4(2`+ 1)∆tn) and set vh(t) = (1− λ(t− tn−1))uht(t) in the discrete weak
statement (3.1) to obtain

(1− λ∆tn)E(un, unt−) + (λ/2)

∫ tn

tn−1

(
‖ut‖2H + ‖uh‖2U

)
+ λ∆tn`‖un+1/2

` ‖2U + (1/2)‖[un−1
t ]‖2H

= E(un−1, un−1
t− ) + ([un−1

t ], un−1
t+ − vn−1

+ )H +

∫ tn

tn−1

(1− λ(.− tn−1))
(
(f̄ , ut) + (ḡ, ut)

)
. (4.2)

Here and below the subscript on uh and superscript on gτ are omitted. Corollary 4.4 was used to

write the left hand side in the form shown with u
n+1/2
` denoting the “hight frequency” component

of uh. We consider each of the terms on the right.
1. The jump term is bounded using Corollary 4.4.

([un−1
t ], un−1

t+ − vn−1
+ )H ≤ ‖[un−1

t ]‖H‖un−1
t+ − vn−1

+ ‖H
≤ λ

√
(2`+ 1)∆tn‖[un−1

t ]‖H‖ut‖L2[tn−1,tn;H]

≤
√

(2`+ 1)λ∆tn
(

(1/2)‖[un−1
t ]‖2H + (λ/2)‖ut‖2L2[tn−1,tn;H]

)
= (1/2)

(
(1/2)‖[un−1

t ]‖2H + (λ/2)‖ut‖2L2[tn−1,tn;H]

)
;

the last step following since λ = 1/(4(2` + 1)∆tn). This shows the jump term can be
absorbed into the left hand side of (4.2).

9



2. Since λ∆tn ≤ 1/4 ≤ 1 the term involving f is bounded as∫ tn

tn−1

(1− λ(.− tn−1))(f̄ , ut) ≤ ‖f̄‖L1[tn−1,tn;H]‖ut‖L∞[tn−1,tn;H]

≤ C‖f‖L1[tn−1,tn;H]‖ut‖L∞[tn−1,tn;H],

where C = C(`) is the constant from Lemma 4.2.
3. The term involving g is integrated by parts to give∫ tn

tn−1

(1− λ(.− tn−1))(ḡ, ut)

=

∫ tn

tn−1

{
λ(ḡ, uh)− (1− λ(.− tn−1))(ḡt, uh)

}
+ (1− λ(.− tn))(ḡ, uh)|t

n
−
t=tn−1

+

≤
(
(2 + λ∆tn)‖ḡ‖C[tn−1,tn;U ′] + ‖ḡt‖L1[tn−1,tn;U ′]

)
‖uh‖C[tn−1,tn;U ]

≤ C
(
‖g‖C[tn−1,tn;U ′] + ‖gt‖L1[tn−1,tn;U ′]

)
‖uh‖C[tn−1,tn;U ].

The last step used Lemma 4.2 to bound the terms involving ḡ by the corresponding
quantities in g and the property λ∆tn ≤ 1/4.

Collecting the above gives the estimate

(3/4)(E(un, unt−) + (λ/4)

∫ tn

tn−1

(
‖ut‖2H + ‖uh‖2U

)
+ (1/4)‖[un−1

t ]‖2H

≤ (E(un−1, un−1
t− ) + C

(
‖f‖L1[tn−1,tn;U ′] + ‖g‖C[tn−1,tn;U ′] + ‖gt‖L1[tn−1,tn;U ′]

)
max

tn−1
+ ≤t≤tn−

E(uh(t), ut(t))
1/2,

where the constant on the right depends only upon `. Combining this with the estimate of
equation (4.1) then shows

(3/4)E(un, unt−) + (λ/4)

∫ tn

tn−1

(
‖ut‖2H + ‖uh‖2U

)
+ (1/4)

n−1∑
m=0

‖[umt ]‖2H

≤ E(u0
h, u

0
t ) + C

(
‖f‖L1[0,tn;H] + ‖g‖C[0,tn;U ′] + ‖gt‖L1[0,tn;U ′]

)
max

0+≤t≤tn−
E(uh(t), ut(t))

1/2.

Since λ = 1/(4(2`+ 1)∆tn) = O(1/∆tn) the inverse inequality for polynomials of degree ` shows
there exists c = c` > 0 such that

c` max
tn−1
+ ≤t≤tn−

E(uh(t), ut(t)) + (1/4)

n−1∑
m=0

‖[umt ]‖2H

≤ E(u0
h, u

0
t ) + C

(
‖f‖L1[0,tn;U ′] + ‖g‖C[0,tn;U ′] + ‖gt‖L1[0,tn;U ′]

)
max

0+≤t≤tn−
E(uh(t), ut(t))

1/2.

The theorem then follows upon selecting n to be the interval where E(uh(t), ut(t)) achieves its
maximum on [0, T ].

5. Error Estimate. The numerical experiments in Section 3 showed that numerical so-
lutions of the wave equation do not exhibit optimal rates of convergence if classical Lagrange
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interpolation is used to approximate the boundary data. This section introduces a temporal
interpolant,

Pτ : C1[0, T ]→ {w ∈ C[0, T ] | w|(tn−1,tn) ∈ P`(tn−1, tn)},

and establishes optimal rates when the Neumann data is approximated by Pτ (g) and the Dirichlet
data is approximated as u0h = Pτ ◦ Ih(u0), where Ih : D(Ih) ⊂ U → Uh is a spatial interpolation
operator.

When gτ = Pτ (g) the orthogonality condition for the error e = u− uh takes the form∫ tn

tn−1

(ett, vh) + a(e, vh) + ([et], v+)n−1 =

∫ tn

tn−1

〈g − Pτ (g), vh〉, vh ∈ P`−1[tn−1, tn;Uh],

where the continuity of the time derivative, [ut(t
n−1)] = 0, was used to write the jump term in

the form shown. Letting up ∈ u0h + U`h be a projection of the solution into the discrete space,
write e = u− uh as e = (u− up) + (up − uh) ≡ ep − eh to get∫ tn

tn−1

{(ehtt, vh)H + a (eh, vh)}+ ([eht], v+)n−1
H (5.1)

=

∫ tn

tn−1

{
− (eptt, vh)H − a (ep, vh) + 〈g − Pτ (g), vh〉

}
− ([ept], v+)n−1

H .

This equation shows that the consistency error eh ∈ U`h satisfies the scheme (3.1) with homoge-
neous Dirichlet data so can be estimated using Theorem 4.5 upon establishing bounds for the
right hand side.

5.1. Temporal Projection. The temporal projection defined next is well defined for func-
tions w ∈ C1[0, T ;W ] taking values in an arbitrary Banach space W ; for example, Pτ (g) where g
takes values in (U/U0)′ and Pτ (u) where u takes values in U .

Definition 5.1. Given a partition 0 = t0 < t1 < . . . < tN = T of [0, T ], an integer ` ≥ 2,
and a Banach space W , the projection

Pτ : C1[0, T ;W ]→ {u ∈ C[0, T ;W ] | u|(tn−1,tn) ∈ P`[tn−1, tn;W ]}

is characterized by by Pτ (w)(0) = w(0), and on each interval (tn−1, tn)

Pτ (w)t(t
n
−) = wt(t

n),

∫ tn

tn−1

p(wt − Pτ (w)t) = 0, p ∈ P`−2(tn−1, tn). (5.2)

Also, define Pτ (w)t(0−) = wt(0) so that the jumps in the derivative, [Pτ (w)t](t
n), are defined for

n = 0, 1, . . . , N − 1.

This projection, which is only defined for ` ≥ 2, will be used to establish estimates for the
high order schemes which do not to hold for the lowest order scheme. Similar projections have
been used in the context of continuous and discontinuous Galerkin schemes [1, 13]. Note too that
Pτ (w) can be computed explicitly when ` = 2 and quadrature is required if ` ≥ 3; this topic is
taken up in Section 5.3.

The following properties of Pτ are immediate.
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1. Setting p(t) = 1 in the definition shows Pτ (w)(tn) = w(tn) at each partition point. Inte-
gration by parts then shows that an alternative (local) characterization of the projection
is: Pτ (w)(tn−1) = w(tn−1), Pτ (w)(tn) = w(tn), Pτ (w)t(t

n
−) = wt(t

n), and∫ tn

tn−1

p (w − Pτ (w)) = 0, p ∈ P`−3(tn−1, tn), n = 1, 2, . . . , N,

where the last condition is omitted if ` = 2.
2. If p ∈ P`−1(tn−1, tn), integration by parts, and the identity Pτ (u)(tn−1

− ) = u(tn−1), shows

∫ tn

tn−1

p(utt − Pτ (u)tt) = −p(tn−1)(u− Pτ (u))t+(tn−1) = p(tn−1)[Pτ (u)t]
n−1,

so ∫ tn

tn−1

putt =

∫ tn

tn−1

pPτ (u)tt + p(tn−1)[Pτ (u)t]
n−1, p ∈ P`−1(tn−1, tn).

Similarly, if utt ∈ L1[0, T ;U ′] then u ∈ C1[0, T ;U ′] and∫ tn

tn−1

(utt, v) =

∫ tn

tn−1

(Pτ (u)tt, v) + ([Pτ (u)t], v+)n−1, v ∈ P`−1[tn−1, tn;U ]. (5.3)

This is a crucial identity; it will be used to show that the temporal error vanishes in the
corresponding terms of the orthogonality relation (5.1).

3. If A : D(A) → H is linear and closed and u ∈ C1[0, T ;D(A)], then Pτ (Au) = APτ (u);
that is, closed spatial operators compute with the temporal operator Pτ .

The following lemma summarizes the stability and approximation properties of Pτ . The proof
of these properties is standard; Pτ (u) = u when u piecewise polynomial of degree ` so the usual
parent element construction is applicable.

Lemma 5.2. Let W be a Banach space, 0 = t0 < t1 < . . . < tN = T be a partition of [0, T ],
` ≥ 2 an integer, and let

Pτ : C1[0, T ;W ]→ {u ∈ C[0, T ;W ] | u|(tn−1,tn) ∈ P`[tn−1, tn;W ]}

be the projection in Definition 5.1. Then there exists a constant C = C(`) depending only upon
` such that

‖Pτ (u)t‖Lp[0,T ;W ] ≤ CT 1/p‖ut‖C[0,T ;W ],

‖Pτ (u)‖Lp[0,T ;W ] ≤ CT 1/p
(
‖u‖C[0,T ;W ] + τ‖ut‖C[0,T ;W ]

)
,

for all 1 ≤ p ≤ ∞, where τ = max1≤n≤N (tn − tn−1). Moreover,

‖(I − Pτ )(u)‖Lp[0,T ;W ] ≤ C|u|Wm+1,p[0,T ;W ] τ
m+1,

‖(I − Pτ )(u)t‖Lp[0,T ;W ] ≤ C|u|Wm+1,p[0,T ;W ] τ
m,

whenever u ∈Wm+1,p[0, T ;W ] with 1 ≤ m ≤ `.
12



5.2. Estimate. It will be assumed that the Dirichlet data for the scheme takes the form
u0h = Pτ ◦ Ih(u0) where Ih : D(Ih) ⊂ U → Uh is a projection or an interpolant with the property
that it also maps the subspace U ⊂ U to itself; that is, Ih : D(Ih) ∩ U → Uh ∩ U ≡ Uh. Let
Πh : U → Uh denote the elliptic projection,

Πh(u) ∈ Uh, a(Πh(u), vh) = a(u, vh), vh ∈ Uh. (5.4)

The proof of the following lemma uses the projection up = u0p + Pτ ◦ Πh(u − u0p) of u where
u0p = Pτ ◦ Ih(u). Since (u− u0)(t) ∈ U it follows that Pτ ◦ Ih(u− u0) ∈ U`h, so

u0h + U`h = Pτ ◦ Ih(u) + Pτ ◦ Ih(u0 − u) + U`h = u0p + U`h,

which shows uh and up have the same Dirichlet boundary data; in particular eh ≡ up − uh ∈ U`h,
so

eh = (u0p − uh) + Pτ ◦Πh(u− u0p) = Pτ ◦Πh(u− uh).

Lemma 5.3. Let U0 ⊂ U ⊂ U be subspaces of the Hilbert space U and U ↪→ H ↪→ U ′

be continuous embeddings, and assume that U0 is dense in H. Assume that the bilinear form
a : U × U → R and data f , g, and u0 satisfy Assumptions 2.1.

Let Uh ⊂ U be a closed subspace, Uh = U ∩ Uh, and 0 = t0 < t1 < . . . tN = T , be a
partition of [0, T ] with maximal time step τ = max1≤n≤N (tn− tn−1). Let Πh : U → Uh denote the
elliptic projection characterized in equation (5.4) and Pτ be the temporal projection characterized
in Definition 5.1, and let Ih : D(Ih) ⊂ U → U be linear and assume that its restriction to U takes
values in Uh.

Let u ∈ L2[0, T ;U ] ∩ H2[0, T ;U ′] be a solution of the wave equation with data (f, g, u0)
and utt ∈ L1[0, T ;D(Ih)] and u ∈ C1[0, T ;D(A)]; in particular, u0 ∈ C1[0, T ;U ] and g ∈
C1[0, T ; (U/U0)′]. Let uh denote the approximate solution of the wave equation computed us-
ing the scheme (3.1) with ` ≥ 2, Dirichlet data u0h = Pτ ◦ Ih(u0), and Neumann data g = Pτ (g).
Then there exists a constant C = C(`, ca, Ca) > 0 such that the error eh = Pτ ◦Πh(u−uh) satisfies

max
0≤t≤T

E(eh(t), eht−(t)) +

n∑
m=1

‖[emht]‖2H

≤ E(eh(0), eht−(0)) + C
(
‖(I −Πh)(I − Ih)utt‖L1[0,T ;H] + ‖(I − Pτ )Au‖L1[0,T ;H]

)2
,

where E(u, v) = (1/2)(‖u‖2U + ‖v‖2H).

Proof. The lemma will follow from the orthogonality condition upon selecting up = u0p+Pτ ◦
Πh(u−u0p), where u0p = Pτ ◦Ih(u). Using the property that the spatial and temporal projections
commute, the projection error ep = u− up may be written as

ep = (u− u0p)−Πh ◦ Pτ (u− u0p) = u− Pτ
(
Ih(u) + Πh(u− Ih(u))

)
.

The first expression for ep will be used to simplify the spatial terms, and the second to simplify
the temporal terms.
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1. Substituting the above expression of ep into equation (5.1) the spatial terms become∫ tn

tn−1

a (ep, vh)− (g − Pτ (g), vh) =

∫ tn

tn−1

a
(
(I −Πh ◦ Pτ )(u− u0p), vh

)
− ((I − Pτ )(g), vh)

=

∫ tn

tn−1

a
(
(I − Pτ )(u− u0p), vh

)
− ((I − Pτ )(g), vh)

=

∫ tn

tn−1

a
(
(I − Pτ )(u), vh

)
− ((I − Pτ )(g), vh)

=

∫ tn

tn−1

((I − Pτ )(Au), vh)H .

The term involving u0p vanishes since it has polynomial time dependence of degree `;
(I−Pτ )(u0p) = 0. The last step used the assumption u ∈ C1[0, T ;D(A)] which guarantees
a(u, v) = (Au, v)H + (g, v) and Pτ (Au) is well defined.

2. Equation (5.3) shows that (operationally) Pτ becomes the identity operator when acting
on the temporal terms,

ep = u− Pτ
(
Ih(u) + Πh(u− Ih(u))

)
7→ u− Ih(u)−Πh(u− Ih(u)) = (I −Πh)(I − Ih)(u).

The corresponding terms in the orthogonality relation (5.1) then become∫ tn

tn−1

(eptt, vh)H + ([ept], v+)n−1
H

=

∫ tn

tn−1

((I −Πh)(I − Ih)(u)tt, vh)H + ([ut], v+)n−1
H

=

∫ tn

tn−1

((I −Πh)(I − Ih)(utt), vh)H .

The last step used the property that the spatial operators commute with temporal differ-
entiation when utt(t) ∈ D(Ih) ⊂ U , and the jump term vanishes since ut is continuous.

Using these identities the orthogonality relation (5.1) becomes∫ tn

tn−1

{
(ehtt, vh)H + a (eh, vh)

}
+ ([eht], v+)n−1

H

=

∫ tn

tn−1

(
(I −Πh)(I − Ih)(utt), vh

)
H

+
(
(I − Pτ )(Au), vh

)
H
.

The estimate for eh now follows from the stability estimate, Theorem 4.5.
When Uh is a classical finite element space, approximation theory for Sobolev spaces provides

rates of convergence for the numerical approximations of the spatial error (I − Πh)(I − Ih)(utt).
In this setting the Aubin Nitche technique establishes stability of the elliptic projection in the
pivot space; ‖Πh(u)‖L2(Ω) ≤ C(‖u‖L2(Ω) + h‖u‖H1(Ω)).

Theorem 5.4. Let U0 = H1
0 (Ω), U0 ⊂ U ⊂ U ≡ H1(Ω), and H = L2(Ω) (or H1

0 (Ω)
d
,

H1(Ω)
d

and L2(Ω)
d
). Assume that the bilinear form and data satisfy Assumptions 2.1 and that

solutions u ∈ U of the elliptic problem, a(u, v) = (f, v)H for each v ∈ U , exhibit H2 regularity;
‖u‖H2(Ω) ≤ C‖f‖L2(Ω).
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Let and {Uh}h>0 ⊂ U be classical finite element spaces containing the piecewise polynomials
of degree less than or equal to k ≥ 1 constructed over a family of regular meshes indexed by the
maximal element diameter h, and let 0 = t0 < t1 < . . . tN = T , be a partition of [0, T ] with
maximal time step τ = max1≤n≤N (tn − tn−1) and ` ≥ 2. Assume that Ω is piecewise polygonal
and the mesh resolves interfaces where the boundary data changes type.

Let u ∈ W `+1,1[0, T ;H2(Ω)] ∩W 2,1[0, T ;Hk+1(Ω)] be a solution of the wave equation and uh
be the solution of the numerical scheme (3.1) with initial data (u0

h, u
0
ht) = (Πh(u(0)), Ih(ut(0))),

Dirichlet data Pτ ◦Ih(u0), and Neumann data Pτ (g), where where Ih : C(Ω̄)→ Uh is the Lagrange
interpolant, Πh : H1(Ω) → Uh is the elliptic projection, and Pτ is the temporal projection of
Definition 5.1. Then the discrete error eh = Πh ◦ Pτ (u− uh) satisfies

max
0≤t≤T

E(eh(t), eht−(t)) +

n−1∑
m=0

‖[emht]‖2H ≤ C
(
τ `+1 + hk+1

)2
.

If in addition u ∈ C`+1[0, T ;H1(Ω)] ∩ C1[0, T ;Hk+1(Ω)] the error e = u− uh satisfies

‖e‖C[0,T ;U ] ≤ C
(
τ `+1 + hk

)
,

‖e‖C[0,T ;H] ≤ C
(
τ `+1 + hk+1

)
,

‖et‖L∞[0,T ;H] ≤ C
(
τ ` + hk+1

)
,

max
1≤n≤N

‖ent−‖H ≤ C
(
τ `+1 + hk+1

)
.

Proof. The rate of convergence for eh follows by bounding each term on the right hand side
of the estimate in Lemma 5.3.

1. Using the stability estimate ‖Πh(u)‖H ≤ C(‖u‖H + h‖u‖U ), the first term is bounded as

‖(I −Πh)(I − Ih)utt‖L1[0,T ;H] ≤ C
(
‖(I − Ih)utt‖L1[0,T ;H] + h‖(I − Ih)utt‖L1[0,T ;U ]

)
≤ C|utt|L1[0;T ;Hk+1(Ω)]h

k+1.

2. The estimates for I − Pτ in Lemma 5.2 show

‖(I − Pτ )Au‖L1[0,T ;H] ≤ C‖Au(`+1)‖L1[0,T ;H]τ
`+1 ≤ C|u|W `+1,1[0,T ;H2(Ω)]τ

`+1,

since A commutes with time differentiation, (Au)(`+1) = A(u(`+1)).
3. By assumption, uh(0) = Πhu(0) = up(0), and u0

pt− = Πhut(0), so

E(eh(0), eht−(0)) = (1/2)‖(Πh − Ih)ut(0)‖2H ≤
(
C|ut(0)|Hk+1(Ω)h

k+1
)2
.

This establishes the rates of convergence for eh.
Estimates on the error e now follow from the triangle inequality and estimates for ep. Notice

that ep = (I − Pτ ◦Πh)(I − Pτ ◦ Ih)(u) vanishes when u ∈ P`[tn−1, tn;Uh] so

‖ep‖C[0,T ;H] ≤ C
(
τ `+1 + hk+1

)
, ‖ep‖C[0,T ;U ] ≤ C

(
τ `+1 + hk

)
, ‖ept‖L∞[0,T ;H] ≤ C

(
τ ` + hk+1

)
.

Super–convergence of ent− with respect to τ follows since Pτ (u)t−(tn) = ut(t
n) which shows

enpt− =
(
(I − Pτ ◦Πh)(I − Pτ ◦ Ih)(u)

)
t− (tn) = (I −Πh)(I − Ih)(ut(t

n)),

is independent of the time step τ .
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5.3. Computing the Projection Pτ . Optimal rates of convergence of the numerical scheme
were established under the assumption that the Dirichlet data for the scheme was u0h = Pτ ◦ Ih,
where Ih : U → Uh is a spatial interpolant, and the Neumann data for the scheme was Pτ (g). The
temporal projection Pτ can only be computed explicitly when ` = 2; in this section we discuss
the construction of approximations of Pτ which do not degrade the rate of convergence.

If Iτ is a temporal interpolation operator and if the Dirichlet and Neumann data are approx-
imated by Iτ ◦ Ih(u0) and Iτ (g) respectively, additional terms involving Pτ − Iτ appear in the
analysis of the error.

1. The Neumann data on right hand side of the orthogonality condition (5.1) becomes∫ tn

tn−1

((I − Iτ )g, vh) =

∫ tn

tn−1

((I − Pτ )g + (Pτ − Iτ )g, vh) .

This term gets integrated by parts which gives rise to an additional error of the form
‖(Pτ − Iτ )(g)t‖L1[tn−1,tn;U ′]. This term will be of order O(τ `+1) provided Pτ − Iτ vanishes
on polynomials of degree `+ 1.

2. The additional temporal term (Iτ − Pτ )(u)tt and jumps in (Iτ − Pτ )(u)t will be of order
O(τ `+1) when the difference vanishes on polynomials of degree `+ 2.

This motivates development of a “semi-Hermite” interpolant

Iτ : C1[0, T ;U ]→ {u ∈ C[0, T ;U ] | u|(tn−1,tn) ∈ P`[tn−1, tn;U ]}.

which, on each interval (tn−1, tn) of the partition, satisfies

1. Iτu(tn−1) = u(tn−1), Iτu(tn) = u(tn), (Iτu)t−(tn) = u(tn).

2.

∫ tn

tn−1

p
(
u− Iτ (u)

)
= 0, p ∈ P`−3(tn−1, tn), u ∈ P`+2(tn−1, tn).

These two conditions guarantee that Pτ (u) = Iτ (u) for u ∈ P`+2(tn−1, tn). If Q : C[tn−1, tn]→ R
is a quadrature rule exact on P`+1(tn−1, tn), then (2) will be satisfied if the ` − 2 coefficients of
Iτ (u) not determined by (1) are selected so that

Q(pIτ (u)) = Q(pu), p ∈ P`−3(tn−1, tn).

The following example illustrates this.

Example 5.5. For the cubic case ` = 3 on the interval [−1, 1], selecting the internal inter-
polation point to be ξ = −1/5 (the root of the linear polynomial orthogonal to constants with
respect to the weight (ξ + 1)(ξ − 1)2) gives the interpolant

Iτ (u)(t) = − 5

16
(ξ + 1/5) (ξ − 1)2 u (−1) + (ξ + 1) (ξ + 1/5)

(
35

36
− 5

9
ξ

)
u (1)

+
5

12
(ξ + 1) (ξ + 1/5) (ξ − 1)u′ (1) +

125

144
(ξ + 1) (ξ − 1)2 Iτ (u)(−1/5).

The value of Iτ (u)(−1/5) is determined from the condition that u and Iτ (u) have the same
average when u ∈ P5(−1, 1). Integrating the expression expression for Iτ (u) shows∫ 1

−1
Iτ (u)(ξ) dξ =

1

4
u (−1) +

16

27
u (1)− 1

9
u′ (1) +

125

108
Iτ (u)(−1/5).
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τ ‖e(1)‖L2(Ω) ‖et(1−)‖L2(Ω) |e(1)|H1(Ω) ‖e‖L∞[0,T ;L2(Ω)] |e|L∞[0,T ;H1(Ω)] ‖et‖L∞[0,T ;L2(Ω)]

1/8 4.66251e-05 7.17469e-04 1.64095e-03 2.777284e-04 5.247327e-03 2.493516e-02
1/16 1.62419e-06 2.55427e-05 1.14498e-04 1.688954e-05 3.667632e-04 3.137673e-03
1/32 5.06401e-08 7.91559e-07 7.14651e-06 1.045848e-06 2.287154e-05 3.933005e-04
1/64 1.50948e-09 2.34317e-08 4.33516e-07 6.524833e-08 1.386393e-06 4.917484e-05
1/128 2.25954e-10 1.30960e-09 2.64466e-08 4.154366e-09 8.434562e-08 6.148737e-06
Norm 0.995993 5.963905 3.826756 1.127867 3.826755 6.137173
Rate 4.9748 4.9719 3.9887 4.0073 3.9897 2.9967

Fig. 5.1. u(t, x) = φ(r − ct)/r, h = 2τ : k = 4, ` = 3.

The quadrature rule using the function values and derivatives at ξ = −1, 1,−1/5 is

Q(u) =
13

24
u (−1) +

1

12
u′ (−1) +

40

81
u (1)− 2

27
u′ (1) +

625

648
u (−1/5) +

25

108
u′ (−1/5) ,

and is exact on P5(−1, 1). Equating the above gives

Iτ (u)(−1/5) =
63

250
u (−1) +

9

125
u′ (−1)− 32

375
u (1) +

4

125
u′ (1) +

5

6
u (−1/5) +

1

5
u′ (−1/5)

= u(−1/5) +
24

15625
u(5)(−1/5) + . . .

Using this formula gives an interpolant Iτ which agrees with Pτ (u) for u ∈ P5[0, T ;U ]. Setting
Iτ (−1/5) = u(−1/5) gives an interpolant which agrees with Pτ on P4(−1, 1) which could be used
to interpolate the Neumann data.

The following example illustrates that using this interpolation scheme for the boundary val-
ues will yield the optimal rates predicted by Theorem 5.4 and super convergence of the errors
‖e(tn)‖L2(Ω) and ‖et(tn)‖L2(Ω) at the partition points.

Example 5.6. Setting u(t, x) = φ(r − ct)/r where r = |x − x0| and x0 = (1/2, 3/2), a
solution of the wave equation was manufactured on Ω = (−1, 1)2 by setting the right hand side
to be f = utt − ∆u with φ(ξ) = cos(πξ + π/3) and c =

√
3. Dirichlet data is specified on

Γ0 = {(x, y) ∈ ∂Ω | y = ±1} and Neumann data is specified on the complement, Γ1 = {(x, y) ∈
∂Ω | x = ±1}.

Approximate solutions were computed on uniform square meshes with fixed time steps.
Serendipity elements containing the piecewise polynomials of degree k = 4 were used for for
the spatial variables, and piecewise polynomials of degree ` = 3 were used for the time depen-
dence. The solution was evolved until a time T = 1 using the same number of elements in space
and time (h = 2τ). Rates of convergence for the errors at time t = 1 and the L∞[0, T ;L2(Ω)]
space–time errors are tabulated in Figure 5.1. The predicted fourth order rates of convergence are
achieved for ‖e(1)‖H1(Ω), ‖e‖L∞[0,T ;L2(Ω)], and ‖e‖L∞[0,T ;H1(Ω)], and the predicted third order rate
of convergence observed for ‖et‖L∞[0,T ;L2(Ω)]. A super convergent fifth order rate of convergence
is achieved by ‖e(1)‖L2(Ω) and ‖et(1−)‖L2(Ω) until the square of error becomes comparable with
the machine precision at τ = 1/128. This illustrates the effectiveness of high order methods; very
accurate approximations of smooth solutions are achieved on modest meshes.
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