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Abstract

DA RISCRIVERE Unlike previous recent contributions [20], the influence of the gas
pressure in pores and of local capillary stresses acting at the surface of one pore or par-
ticle (called interstitial stress or Laplace pressure) during sintering of pre-compacted
metallic (micro/nano)-powdered cylinders is here analyzed. In this paper, the isostatic
pressing loading mode, which also covers the case of free sintering, is considered.

The role of the Laplace pressure is twofold.

• First of all, during the sintering process such a pressure influences the evolution
of the porosity and, for instance, its residual value at a given time. It is worth
emphasizing that threshold pressures are determined below which the sintering
stress is actually not negligible; the duration of the process is indeed heavily
affected by such a stress whenever the residual porosity is prescribed. In turn,
such a duration would be underestimated otherwise. Furthermore, industrial
processes often entail loading pressures lower than the thresholds mentioned
above, especially of ”small” grain sizes.

• In the case of isostatic pressing with non-null external load, the loading pa-
rameter may be tuned in such a way that, at some stage of the process, i.e.
when a ”critical porosity” is reached, its value may equate the Laplace pressure.
Henceforth, the porosity would remain constant.

A stability analysis allows us to conclude that, the equilibrium is unstable at
such a value and hence the sintering may keep on going.

It follows that in order to have stability of sintering either the loading parameter
must be high enough with respect to the Laplace pressure or it must be zero,
which would give rise to (stable) free sintering.

Notation
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σij = components of the stress tensor
ε̇ij = components of the strain rate tensor
ε̇′ij = components of the deviatoric strain rate tensor
ė= first invariant of the strain rate tensor
pL= Laplace pressure (sintering stress)
pi=gas pressure in pores
w= effective equivalent strain rate
θ= porosity
ψ= normalized bulk modulus
φ= normalized shear modulus
γ̇= second invariant of the deviatoric strain rate tensor
p= first invariant of the stress tensor
τ= second invariant of the stress tensor
σr= radial stress
σz= axial stress
ε̇r= radial strain rate
ε̇z= axial strain rate
n∗= loading mode parameter
n= strain rate mode parameter
σ(w)= effective equivalent stress
σ0= reference stress
ε̇0= reference strain rate
A= time-dependent material constant
m= strain rate sensitivity
ρ= relative density
Vtot= total volume of sintered material
Vmatrix= matrix volume
Vpores= pores volume
τL= dimensionless specific time
S.E.P.= specific external pressure
α= surface tension
r0= characteristic radius of particles
pl0= reference value of the Laplace pressure
R1, R2= internal and external radius of the hollowed sphere considered as a schematic
for a pore, respectively
Vr= radial velocity
D= dissipation potential
θc= closure porosity
patm= atmospheric pressure
t= sintering time evaluated by accounting for the Laplace pressure
t0= sintering time evaluated by neglecting the Laplace pressure
p∗= external pressure for which a given value of the discrepancy between t and t0 is
obtained
θr= residual porosity at the end of the sintering process, evaluated by accounting for
the Laplace pressure
θr0= residual porosity at the end of the sintering process, evaluated by neglecting the
Laplace pressure
e= error on the evaluation on the residual porosity
θF= desired final porosity at the end of the sintering process
θ∗= limit value of the porosity
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λ= perturbation growth rate
•(0)= reference solution for (•)
δ•= perturbation of (•)

1. Introduction

In the last decades, powder technology has become one of the most important
technological processes for the production of metallic and ceramics components; free
sintering, hot isostatic pressing and hot forging are different ways to realize a key-phase
in which the primary mechanical properties of the final material are obtained. In order
to be able to predict the final structure of a body undergoing such a kind of process,
it is crucial to define an analytical theory of sintering allowing to follow the evolution
of the mechanical properties of the material (determined by this structure) during
sintering and to get the final features of the compound at the end of this process.
Since the foundations of the analytical study of sintering processes have been laid in
the seventies (see, for example, [26, 1, 6]) and many studies have given important new
impulses in the nineties [19, 4, 7], even in last years several paper have been improve the
knowledge of sintering processes, both from the analytical (see, among others, [21, 32,
15]) and the experimental (see, for example, [10, 23]) point of view; the latter is usually
many focused on new materials and techniques. An innovative sintering technique,
widely developed and used in last years, is the Spark Plasma Sintering (SPS), in
which materials are compacted and condensed into higher densities. Systems designed
for spark plasma sintering use direct current pulses to create spark energy between the
particles of the material. This technology achieves fast fusing between particles and,
unlike other sintering processes that are solely involved in metalworking, spark plasma
sintering can be applied to ceramics, composite materials, and nanostructures. The
compaction of the material can be achieved in a relatively short time period, making
the SPS a very promising technique to elaborate nanostructured materials and several
studies have been performed, in last years, about this technique [17, 28, 34].

The present work is focused on modeling the evolution of material properties dur-
ing sintering of axisymmetric samples, and it is a natural extension of [20], dealing with
an analysis of the kinetics and the stability of porous axially symmetric bodies under-
going sintering under different loading modes. In such a paper, besides an extensive
review of the available literature, both about modeling of sintered material obtained
by compacted powders and constitutive equations for porous media, the problem is
solved for the cases in which both the interstitial stress (due to the pressure exerted
by the gas in the pores) and the Laplace pressure (due to the surface tension at the
interfaces between matrix and pores) are negligible compared with the one due to
external loading. On the other hand, the strategy introduced in [20] appears to be the
most effective one among other possibilities in order to predict the kinetics of bodies
undergoing sintering (even for simple geometry mentioned above).

Even if sintering is an inhomogeneous process, thanks not only to inhomogeneity
of properties of the powder particles but also to internal stresses can arise from ex-
ternal constraint or from differential densification [9] or particle rearrangement during
sintering [31, 13], in this work only the average state of stress is considered. This
is motivated by the observation, pointed out by Olevsky and Molinari [20], that the
assumption of homogeneous plane stress through a sample is reasonable even in the
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case of non-uniform cross-section (see e.g. [11] for tensile tests). Incidentally, this
is equivalent to assuming that specimens undergo constant states of (plane) stresses
corresponding to the average of the actual stress fields. The approach suggested by the
assumptions above has the advantage of capturing the essentials of both kinetics and
stability, avoiding to search for the solution of complicated (initial) boundary value
problems. Nevertheless, in [20], this strategy has been employed only for the cases
in which the effect of the Laplace pressure is negligible with respect to the applied
stresses. Hence it needs to be extended to the case of moderate stresses in comparison
with the interstitial gas pressure.
evidenziare che qui consideriamo un processo a stress costante (e non a carico fittizio
esterno costante), che pi realistico
This paper may be outlined as follows.
In Section 2, the theory of sintering introduced in [18, 20] is essentially summarized
and specialized for the case of isostating pressing processes, emphasizing the role of the
Laplace pressure and the gas pressure in pores. In Sect. 2.3, the two most used ways
to get the relationship between the porosity and the Laplace pressure (also denoted
as sintering stress)are revisited; furthermore, the model for obtaining such a pressure
based on the microscopic dissipation is shown to be compatible with the incompress-
ibility of the matrix if and only if the material is nonlinearly viscous. Analogously, in
Sect. 2.4 a practical way to account for the interstitial stress (i.e.the gas pressure in
pores) is proposed.
In Section 3, the effect of the Laplace pressure on the evolution of the porosity in sin-
tering processes entailing isostatic-pressing is studied. An accurate comparison among
different models for the shear and bulk moduli of the material and between the two
different expressions for the sintering is performed. Furthermore, in 3.1, two issues
are investigated. First of all, thresholds on stresses cased by external loads are deter-
mined under which the influence of the interstitial pressure cannot be neglected. Such
thresholds may strongly be influenced by the strain rate sensitivity of the material and
the averaged radius of the particles; this feature may have a stronger impact for nano-
structured powders. Furthermore, the discrepancy between the values of the residual
porosity is evaluated by neglecting or accounting for the Laplace pressure in sintering
processes of a given time-duration. In Sect. 4, an analog analysis is perform regarding
the effect of gas pressure in pores in isostating pressing sintering processes. In per-
forming such analysis, two cases may arise through a comparison between the stress
caused by external loading and Laplace pressure (driving sintering) and gas pressure
in pores (opposing to the reduction of the porosity). In particular, the occurrence of
equality between such values can be reached at a definite (critical) porosity, which
remains constant at a limit value. It is clear that, if such value is major than the
desired porosity at the end of the process, this cannot be obtained.
Finally, in Section 5, the stability of the process, namely of the solution of the problem
in terms of time evolution of the porosity obtained in Sect. 2, is performed in two steps
along the lines traced in [20]. A lower order analysis is performed in Sect. 5.1, where
perturbations on the porosity alone are considered. In Sect. 5.2 and 5.3, a higher
order analysis is performed by perturbing, together with the porosity, the reference
value of the Laplace pressure and the gas pressure in pores; this more refined analysis
shows that effect of the latter is to reduce the stability of the process. Appendix A is
devoted to analyze free sintering processes. In particular, since no external stress is
applied, it is crucial to examine to what extend different ways to evaluate the laplace
pressure may influence the outcome in terms of evolution of the porosity. Henceforth,
a parametric analysis in terms of the given temperature is performed to estimate the
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sintering time for a prescribed target residual porosity.

2. Theory of sintering and kinetics of the porosity

The sintering process is classically divided into three phases ([4, 29, 30]):

• a first stage in which the particles are brought into contact and necks grow at the
particle contacts; in this phase, the material may be modeled as an aggregate
of individual particles with small contact; for crystalline materials, this phase
involves diffusion of vacancies in the crystal lattice, whereas noncrystalline ma-
terials sinter by viscous flow [25];

• an intermediate stage (second stage) in which the material can be idealized as
a porous material with connected porosity;

• a third (final) phase in which, usually for relative densities greater than 90% [6],
i.e. for porosity less than 10%, in which the pores are isolated and spherical. In
the sequel, such a value of porosity will be denoted by θc = closure porosity.

It is important to note that in the second phase the pores can be considered quasi-
spherical (see [1]).

theory

The mechanical response of a porous body with nonlinear-viscous behavior (stage
2 and 3) are strongly influenced by the presence of pores (see, for example, the recent
contribution by Wakai [32]) and it is described by a rheological constitutive relation,
namely:

σij =
σ(w)

w
[φε̇′ij + ψėδij ] + pLδij − piδij , (1) legame

inter-relating the components of the stress σij and the strain rate ε̇ij [18].

The quantity pL represents the Laplace pressure, whereas the term pi represent the
gas pressure in the pores. Obviously, pi = 0 during first and second phases, since the
porosity is open.

Here, ε̇′ij denotes the i-j-th component of the deviatoric strain rate tensor; w is the
effective equivalent strain rate, defined as follows:

w =
1√
1− θ

√
φγ̇2 + ψė2, (2) w

where
ė = ε̇ii (3) e

measures the local shrinking rate (whenever the sintering process entails a volume
reduction), and

γ̇ =
√
ε̇′ij ε̇

′
ij (4) gamma

measures the local rate of change in shape (i.e. it is the second invariant of the devi-
atoric strain rate tensor).
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The quantity pL represents the interstitial pressure produced by the gas contained
in the pores; in the sequel we shall refer to pL as either the ”Laplace pressure” or the
”sintering stress” (see [20, 19, 18]).

For further developments, it is convenient to introduce the stress quantities p, τ di-
rectly related to shrinking and change in shape, respectively, i.e.:

p =
1

3
trσ =

σ(w)

w
ψė+ pL − pi, (5) p

τ =
√
σ′
ijσ

′
ij =

σ(w)

w
φγ̇. (6) tau

The quantities φ, ψ, pL and their dependence upon the porosity will be treated in
sections 2.1 and 2.2.
Let us consider a cylindrical axisymmetric specimen, subject to an external load. The
porosity θ, defined as the ratio between the pores volume and the total volume (see
[20]), is supposed to be constant throughout the sample. This is equivalent to consider
the space-average of the porosity.

From now on, we shall consider averaged stress distributions of the following form:

[σij ] =

σr 0 0
0 σr 0
0 0 σz

 , (7) stresstensor

where z denotes the direction of the axis of the sample and r is any radial direction.
Furthermore, in the sequel, the corresponding averaged strain rate tensor will be con-
sidered.
Here, ε̇z and ε̇r denote the axial and radial strain rates, respectively. Henceforth, the
first and second invariants of the strain rate tensor turn out to be:

ė = ε̇z + 2ε̇r, γ̇ =

√
2

3
|ε̇z − ε̇r|. (8) egamma

Following Olevsky and Molinari [20], one can introduce a loading mode parameter
n∗ defined by:

n∗ =
τ

p
=

φγ̇

ψė+ pL − pi
. (9) n*

In analogy to the loading mode parameter, it is useful to define a strain rate mode
parameter n as follows:

n =
φγ̇

ψė
. (10) n

The parameter n assumes the following values for the corresponding loading modes:

1. n = 0 for isostatic pressing;

2. n→ ∞ for pure shear (p = 0);

3. n = −
√
6 for ”free” forging;

4. n =
√
6 for drawing;

5. n =
√

2
3
sgn(ε̇z)

φ
ψ

for constrained forging.
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In the sequel, we shall consider cases 1, 3 and 5 only.
We refer to ”free” forging as the loading mode represented in Fig. 1.a, a transverse
compressive force acting at the top and bottom faces of the sample with no lateral
confinement. Henceforth, the case of constrained forging, shown in figure 1.b, is noth-
ing but an axial compression of the sample in a rigid die.

Free Forging,

n= -    6

Constrained forging,

n= - 2y

3f

Isostatic Pressing,
n=0

Free Sintering,
n=0

Figure 1: Different loading modes: forging, costrained forging, isostatic pressing, free sintering modi

From (1), (8) and (10), can be obtained the following relation:

σz =
σ(w)

w
ψė

[
1 +

√
2

3
n sgn(ε̇z − ε̇r)

]
+ pL − pi; (11) sigma

the dependence of effective equivalent stress σ(w) on the effective equivalent strain
rate w determines the constitutive behavior of a porous material.

Following Ashby [2], a power-law mechanism of deformation is assumed:

σ(w)

σ0
= A

( w
ε̇0

)m
, (12) Apowerlaw

where A and m are material constants (A is temperature dependent, 0 < m < 1), σ0

and ε̇0 are the reference stress and the reference strain rate, respectively. Two limiting
cases corresponding to ideal plasticity and linear viscosity are given by m = 0 and
m = 1 respectively.
Equations (12) and (2) can be used to obtain an explicit expression for the ratio
between the effective equivalent stress σ(w) and the effective equivalent strain rate
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w in terms of the porosity, the shear and bulk moduli, the loading mode and the
shrinking rate:

σ(w)

w
=
σ0A

ε̇m0
wm−1 =

σ0A

ε̇m0
|ė|m−1

[ ψ

1− θ

(ψ
φ
n2 + 1

)]m−1
2
. (13) sigmaww

This paper is mainly devoted to study the influence of the interstitial pressure on the
overall stress; for this reason, it is essential to monitor the magnitude |σz − pL| for
each analyzed loading mode.

To this end, by substituting expression (13) into (11) the following relation can be
obtain :

σz − pL + pi =
Aσ0

ε̇m0
|ė|m

[ ψ

1− θ
(
ψ

φ
n2 + 1)

]m−1
2

[
1 +

√
2

3
n sgn(ε̇z − ε̇r)

]− 1
m
. (14) sigma2

In order to achieve an analytical expression for the evolution of the material behavior
during the sintering process, it is necessary now to introduce the porosity θ, defined as
the ratio of the volume of pores and the total volume. By denoting the total volume of
the sintered material as Vtot and the volume of the matrix and the one of the pores as
Vmatrix and Vpores = Vtot − Vmatrix, respectively, the relative density can be written
as:

ρ =
Vmatrix
Vtot

. (15)

The porosity reads:

θ =
Vpores
Vtot

= 1− ρ. (16) thetarho

Because of mass continuity and of the assumed incompressibility of the matrix
(the shrinkage is only due to the change of the porosity) [18], the evolution law for the
porosity is given by:

ė =
θ̇

1− θ
. (17) etheta

Taking into account expression (17) and and reminding that the shrinkage is ė < 0
and thus θ̇ < 0, relationship (14) leads to the following evolution equation for the
porosity:

θ̇ = sgn(θ̇)[sgn(θ̇)(σz−pL+pi)]
1
m

ε̇0

(Aσ0)
1
m

[ ψ

1− θ
(
φ

ψ
n2+1)

] 1−m
2m

[
ψ
(
1+

√
2

3
nsgn(ε̇z−ε̇r)

)]− 1
m
(1−θ),

(18) thetaP

which accounts for the contribution of the Laplace pressure and of the gas pressure in
pores. The analog of (18) by neglecting such contributions was obtained by Olevsky
and Molinari, [20] eq. 15.

2.1. Evolution-law for the porosity for isostatic pressing processes
IP

For the case of isostatic pressing, σz = σr and in the sequel their common value
will be denoted by σ. Furthermore, here the loading mode parameter n is zero and
the process antails a monotonically decrease of the porosity, i.e. θ̇ < 0; hence, relation
(18) reduces to the following expression:

θ̇ = −[−(σ − pL + pi)]
1
m

ε̇0

(Aσ0)
1
m

(1− θ)
3m−1
2m ψ

−(1+m)
2m . (19) thetaPIP
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Obviously, since γ̇ = 0, the shear modulus φ, has no influence on the process. The
bulk modulus ψ is a known function of the porosity θ; for such a function, here and
further, we shall use the expressions given in section 2.1.
Let us notice that, for this case, Mc Meeking’s and Castaneda’s models give the same
behavior. This is because of the expression of the bulk modulus ψ, which is indeed
the same for both models.

Eq. (19) may be normalized by using the dimensionless specific time defined as
follows:

τL =
[ pl0
σ0A

] 1
m
ε̇0, (20) tauL

so that the evolution law for the porosity (19) can be rewritten as:

∂θ

∂τL
= −(1− θ)

3m−1
2m [−(σ − pL + pi)]

1
mψ

−(1+m)
2m (21) thetaPIPadim

For further developments, it is useful to introduce a dimensionless pressure parameter,
called Specific External Pressure (S.E.P.) and defined as follows:

S.E.P. =
σ

α/r0
, (22) SEP

where α denotes the surface tension and r0 the averaged radius of the particles (for
further explanation, see Sect. 2.3).

2.2. Dependence of the shear and bulk moduli on the porosity
subsec:2.1

In the literature several studies relative to the determination of the bulk and shear
moduli are present.
In particular we shall use four different models:

•

{
φ = (1− θ)2

ψ = 2
3

(1−θ)3
θ

SSkorohod model [26];

•

 φ = (1−θ)
2

1+m

1+ 2
3
θ

ψ = 2
3
( 1−θ

m

mθm
)

2
m+1

CDCPonte Castaneda-Duva-Crow model [22, 7];

•

 φ =
(

1−θ
1+θ

) 2
1+m

ψ = 2
3
( 1−θ

m

mθm
)

2
m+1

MMc Meeking-Sofronis model [27];

•

 φ = (1−θ)
2

1+m

1+ 2
3
θ

ψ = m+1
3

(1+θ)(1−θ)
2

m+1

θ

CCocks model [5].

In figures 2 and 3 moduli ψ and φ are plotted as functions of the porosity for
different values of the parameter m.
The model delivered by Skorohod account for linear-viscous incompressible material
with voids only: indeed the moduli ψ e φ are independent from the parameter m.
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Figure 2: Bulk modulus ψ as function of porosity, for different values of the strain rate
sensitivity m. psi

2.3. Dependence of the Laplace pressure on the porosity
laplace

The effective Laplace pressure pL is the result of collective action of local capillary
stresses in a porous material. A variety of approaches can be found in the literature.
We shall consider two possible derivations of the expression for the Laplace pressure.

1. Sintering stress derived by using a stochastic approach
This derivation was employed by Skorohod [26], who obtained pL by calculating
the surface free energy per unit mass with respect to the specific volume of the
porous material by assuming spherical particles. The achieved result may be
stated as follows:

pL = pl0(1− θ)2 =
3α

r0
(1− θ)2, (23) p_L2

where α is the surface tension and r0 is the characteristic radius of particles.

2. Sintering stress derived by averaging of the dissipation
Here we summarize results shown in [19], Appendix A.2.2, about the derivation
of an expression for the Laplace pressure. A hollowed sphere is considered as
a schematic for a pore (see Figure 4); at its surface, namely for (r = R1), the
pressure pl0 = 2α

r0
is applied, whereas the external boundary (r = R2) is stress
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Figure 3: Shear modulus φ as function of porosity, for different values of the strain rate
sensitivity m. phi

free (where r denotes the radial coordinate).
The porosity is then determined by the volume fraction:

θ =
(R1

R2

)3

. (24) poro1

The introduction of standard compatibility conditions into the constitutive rela-
tion (1) yields the radial and circumferential stresses as functions of the unknown
radial velocity Vr(r) (and of pL). Finally, the stress balance (in the radial di-
rection) allows for determining:

Vr(r) = − pl0R
3
1R

3
2

2Aσ0
ε̇m0

φ(R3
2 −R3

1)r
2
, (25) V

for m = 1, namely in the case of linearly-viscous behavior.
Henceforth, the effective equivalent strain rate w (see (2)) appearing in (1), is
relevant for the expression of the dissipation potential proposed in [18], eqn.(26),
i.e.:

D =

Aσ0

ε̇
− 1

m
0

m+ 1
(1− θ)wm+1. (26) diss

Through the latter expression, the dissipation of the matrix and its average on
the volume of the hollowed sphere may be deduced.
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Figure 4: A representative element of porous medium poro

On the other hand, the dissipation of the effective porous material, subject to
free sintering, is evaluated; its connection with the volume averaged dissipation
through the Hill’s identity ([19], eqn. A29) allows for determining the following
expression for the Laplace pressure:

pL =
2α

r0

√
3

2
ψ(θ)

θ

1− θ
. (27) Pl1

The latter can be particularized to obtain the sintering stress associated to the models
cited above; in particular we get:

• pL = 2α
r0

(1− θ) for the Skorohod model,

• pL = 2α
r0

for the Castaneda and Mc Meeking models,

• pL = 2α
r0

√
1 + θ for the Cocks model.

Figure 5 shows the dependence of the Laplace pressure on the porosity θ.
The stochastic approach, yielding relation (23), gives a parabolic trend of the Laplace
pressure. This is increasing when the porosity decreases and it is independent on the
value of the parameter m, so that pL does not depend upon the material behavior. In
particular, the values of pressure calculated through (27) are compatible enough with
the ones obtained by (23) in the range of interest of porosity for common sintered
components (see the blow-up shown in fig. 5).

2.4. Gas pressure in pores and its dependence upon the porosity
gaspressure

During the sintering process, the porosity becomes isolated and the final stage of
sintering starts at a relative density ρ = 90%, i.e. at the closure porosity θc = 0, 1. At
this time, the gas pressure in pores is equal to the external pressure.; as the relative
density ρ increases, the gas pressure in closed pores also increases. The more natural
way to account for such a phenomenon is through the ideal gas law (see [33, 3]), i.e.
(pi + patm)Vpores = const, where pi is the gas pressure in the pores and patm the
atmospherical pressure.
Reminding that, thanks to the incompressibility of the matrix, Vmatrix = const during
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Figure 5: the Laplace pressure as function of porosity figurePl

the process, from ideal gas law it follows that the quantity (pi + patm) 1−ρ
ρ

= (pi +

patm)
Vpores

Vmatrix
remains constant. Recalling (16), the relationship can be rewritten as:

(pi + patm)
θ

1− θ
= const = (p0 + patm)

θc
1− θc

, (28)

where p0 is the external pressure (i.e. the gas pressure in the pores when the porosity
closes).
Thus, the evolution of the pressure in the pores during sintering process is given by:

pi =

{
0 if θ > θc
(p0 + patm) θc

θ
1−θ
1−θc − patm if θ < θc

(29) pi

It is noticeable that, in the case of isostatic pressing, the external pressure is equal to
the applied stress |σ|.

The effect of the Laplace pressure pL and of the gas pressure in pores pi are
investigated in Sect. 3 and 4, respectively.

3. Effect of the Laplace pressure on sintering processes entailing isostatic-
pressing

Laplaceeffect
In the present section, the effect of the Laplace Pressure on sintering processes

entailing isostatic-pressing is studied. To be precise, processes entailing, as driving
force, only the stress due to the external load are compared to process in which the
Laplace pressure are taken into account.

Figure 6 shows the time evolution of the porosity during an isostatic pressing
process that reduce the porosity from 30% to 5%, obtained by using the Castaneda-
Duva-Crow model for S.E.P. = 10, in two cases:
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• accounting for the sintering stress (continuous line), the driving force of the
process is σ − pL;

• neglecting the interstitial pressure (dashed line), the driving force is the stress
due to the external load, σ.

The latter describes the approximation adopted in [20]. Indeed, since |σ−pl| > |σ|, the
time decay of the porosity would be lower than the real one. Nevertheless, we record
that the time evolution of the porosity has a qualitative analog to the one obtained
by neglecting pL (see Figure 6).
When the strain rate sensitivity m decreases, the initial part of both graphs become
steeper. Indeed, for infinite slope, the material behavior would be perfectly plastic
(this would correspond to m = 0).
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Figure 6: ISOSTATIC PRESSING-Evolution of Porosity for S.E.P.=10 IP1

Moreover, it can be noticeable that the gap between the two curves is higher
for lower values of the strain rate sensitivity m, hence the Laplace pressure has more
influence on the sintering process when the material tends towards the plastic behavior.
This may be explained by the (Ashby) power-law (eq. (12)) relating the equivalent
strain rate w and the effective equivalent stress σ(w). Indeed, equation (12), displayed
in Figure 7, indicates that for lower values of the parameter m, the effective equivalent
strain rate is more sensitive to stress changes; in particular, for such values, it is
displayed the significant change of w by considering as driving force |σ − pL| instead
of |σ|.

Figure 8 is the analog of 6 for lower value of external pressure, i.e. S.E.P. = 1.
Here, the gap between the curves is remarkable because, in this case, the ”driving
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sintering force” is basically the Laplace pressure, simply because it is higher than the
externally imposed stress.
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Figure 9: ISOSTATIC PRESSING-Evolution of Porosity for S.E.P.=5 ,m=1, for different
models IP4

A comparison among the three different models for the shear and bulk moduli φ
ad ψ and between the two different expressions for pL (see (23) e (27)) is performed
in the sequel. Figure 9 shows such a comparison for S.E.P.=5 and for a material with
linear-viscous behavior (m=1).

Time-evolution diagrams shown by figures 9.a and 9.b are similar, because the value of
the Laplace pressure given by equations (23) e (27) are compatible enough for porosi-
ties between 30% and 5% (see the blow-up in Figure 5). The differences among curves
relative to the various considered models are due to the corresponding expressions of
the bulk modulus ψ.

3.1. Influence of the interstitial stress on industrial processes entailing isostatic
pressing

indIP
A specific metallic alloy (aluminum-zinc-magnesium-copper alloy) is examined in

this section. This is motivated by its extended use in industrial sintering processes.
The main features of this material are listed in table 1:

For aluminum alloys, the averaged sintering time is thirty minutes and usually the
applied external pressure is of the order of 100MPa [16, 24, 8].
It may be shown that the important parameters influencing the Laplace pressure are
the radius of the grains r0 and the surface tension α.
Values of powder grain size from 50 nm to 50 µm are here taken into account.

In the sequel, we shall examine the discrepancies on the estimate of the sintering
times evaluated by either neglecting or accounting for the sintering stress pL. Fur-
thermore, we shall also calculate the residual porosity in both of the cases mentioned
above.
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Young's modulus E 70,7 GPa

Poisson's ratio u 0,325

surface tension a 1,128 N/m

activation energy Q 14390 kJ

melting temperature Tm 659 °C

average radius of the particles r0 5-50 mm

sintering temperature Ts 100-350 °C

sintering pressure Pb 600-610 Mpa

Table 1: Characteristics of the considered aluminum-zinc-magnesium-copper alloy tab1

3.1.1. Threshold external loading pressures and sintering timesindIP1
Here, we are interested to compare the sintering times t and t0 employed to reduce

the porosity from 30% to 5% in cases in which the ”sintering driving force” is taken to
be either |σ − pL| or |σ| respectively. We are also interested into calculating the val-
ues of the external pressure p∗ for which the discrepancy between the sintering times,
i.e. t−t0

t
, attains the values 5%, 10% and 15% respectively. Obviously, whenever the

external pressure is less than p∗, for the given value of discrepancy, for example 5%,
an error greater than 5% occurs by neglecting the effect of the Laplace pressure.
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Figure 10: Threshold pressure p∗, for 5µm powder IPpressureCastaneda

In Figure 10 and 11 are shown the threshold pressures for 5µm and 50nm pow-
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Figure 11: Threshold pressure p∗, for 50nm powder IPpressureCastanedaNANO

ders (obtained by the model of Castaneda). It is immediate to note that the effect of
the Laplace pressure becomes more relevant for lower values of the powder grain size.
Henceforth, in this case the threshold pressures are considerably high.
The comparison between threshold pressures obtained by using the Castaneda and
Cocks models shows that they do not exhibit meaningful differences.

The result of these sections rely upon the model for the Laplace pressure based on the
stochastic approach (equation (23), discussed in section 2.3). Instead, equation (27),
derived by averaging of the dissipation, does not allow for evaluating pL for different
values of the strain rate sensitivity parameter m. However, the values of the threshold
pressure obtained by using the latter model are in complete agreement with the ones
obtained by using the former.

3.1.2. Residual porosityindIP2
The residual porosity is a fundamental feature of the actual material, because,

among others, determines the mechanical properties of a sintered specimen.
A thirty minutes sintering process with external loading pressure of 100MPa is now
considered. Here, we are interested to compare the residual porosities θr and θr0 after
thirty minutes, wherever the ”sintering driving force” is taken to be either:

• |σ − pL| or
• |σ|,

respectively.
For the different values of powder grain size mentioned above, we are able to calculate
the value of the strain rate sensitivity m that permits to have a sintering reference
time of the order of thirty minutes 30’. For the sake of convenience, without loss of
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generality, in the sequel a time range corresponding to a variation of ±30% of the
reference time is considered.
Figure 12 shows the sintering time as a function of m and highlights the values of
strain rate sensitivities m corresponding to the real sintering times.

With such values of the parameter m, we may calculate the error

e =
θr − θr0
θr

, (30) errore

occurring wherever the Laplace pressure pL is neglected. Figure 13 shows values of
such an error as a function of the strain rate sensitivity m, for grain sizes between
100nm and 5µm.
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Figure 12: Sintering time as a function of the strain rate sensitivity m tempiM

It is immediate to note that, for nano powders (i.e. for grain size less than 1µm)
the error becomes much higher than in the case of micro powders. In particular, for
sizes of the order of 100nm an error of about 40% may occur, while for 20nm the error
is even of the order of 80% (not shown in figure 13. For lower grain sizes, the gap
between θr and θr0 is higher than the previous cases.
The second parameter influencing the Laplace pressure is the surface tension α; there
are lots of uncertainties on the determination of its value [12]. Hence, because of
lack of reliability, the sensitivity of the model to variations of α in the range ±50% is
analyzed.
Figure 14 shows the error e (defined by (30)) as a function of the surface tension α,
for different values of the powder grain size.
For increasing values of α, the Laplace pressure grows and hence the gap between θr
and θr0 increases accordingly; this phenomenon turns out to be more relevant for lower
powder grain sizes.
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4. Effect of the gas pressure in pores on sintering processes entailing
isostatic-pressing

gaspressureeffect
In the present section, the effect of the gas pressure in the pores on sintering

processes entailing isostatic-pressing is studied through the comparison between results
obtained by accounting for pi and by neglecting it. Isostatic pressing processes that
reduce the porosity from 30% to 5% are considered.
The evolution of the pressure in the pores during sintering process is given by (29)
where, in the case of isostatic pressing, the external pressure p0 is equal to the absolute
value of the applied stress |σ|.
Figure 15 shows, for S.E.P. = 10, the absolute values of the stress due to the external
load, the gas pressure in the pores and the Laplace pressure.

Figure 16 shows the values of the total driving force, for different values of S.E.P.,
in two cases:

• accounting for the whole driving force (dashed line) σ − pL + pi;

• neglecting the gas pressure in the pores (dotted line), i.e. the driving force is
considered to be σ − pL.

The latter describes non-pressurized pores. Indeed, since no pressure could act against
stresses caused by external loading (and Laplace pressure), the time decay of the
porosity, in this case, would be faster than the real one. It is noticeable that, since
σ−pL < 0 and pi ≥ 0 during the whole sintering process (see equation (29)), the total
driving force σ − pL + pi may turn out to become null at a definite value of porosity.
Such a value will be denoted by θ∗ and it is given by the following condition:

|σ − pL(θ
∗)| = pi(θ

∗). (31) thetastar
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Figure 14: Errors e% on the residual porosity, for different values of the surface tension α IPvarioALPHA

In the limiting case for which condition (31), equation (21) yields θ̇ = 0 and hence
θ = const. Thus, whenever such condition is achieve the porosity remains constant at
the limit value θ∗.
It is evident that the value of θ∗ depends upon the external load and on the choice of
expression (23) or (27) for the Laplace pressure. Moreover, since pi = 0 for θ > θc,
that condition (31) can be verified only in the third phase of sintering, when pi > 0;
it leads to θ∗ < θc.

By denoting by θF the desired porosity at the end of the process and recalling
that θc denotes the closure porosity, i.e. the value of the porosity for which the pores
becomes isolated, we may now distinguish two cases:

• Case in which θF < θ∗ < θc.
Figure 17 shows the time evolution of the porosity, obtained by using the
Castaneda-Duva-Crow model, for different values of the strain rate sensitivity
m, for S.E.P. = 10, in two cases:

– accounting for the gas pressure in the pores pi (continuous line);

– neglecting it (dashed line).

It is evident that, since θ > θc (i.e. during first and second phase of sintering),
the evolution of the porosity obviously is not affect by the presence of pi and
hence the curves coincide. When the third phase begins, at porosity θ = θc, the
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dashed line moves away from the continuous one; as stated above, the sintering
time obtained by accounting for the gas pressure in pores is higher than the one
obtained by neglecting it.
The fundamental result, in the case under exam, is that the desired final value
of the porosity θF can not be obtained; the value of the porosity at the end of
the process is given by θ∗ > θF . Moreover, since whenever the condition (31) is
achieve the rate of change of the porosity goes to zero; in proximity of such a
condition, the time-porosity graph presents an horizontal plateaux. It leads to
a stretch of sintering times, as it is evident from figure 17.

• Case in which θ∗ < θF .
Figure 18 shows the time evolution of the porosity, obtained by using the
Castaneda-Duva-Crow model, for different values of the strain rate sensitivity
m, for S.E.P. = 1. It is evident from figure 16 that, for such a value of S.E.P.,
the critical porosity θ∗ is not achieve in the range of considered porosity, i.e.
θ∗ < θF . This allow to obtain, at the end of the process, the desired porosity
θF . The unique effect of the gas pressure in the pores is to stretch the sintering
times. Such a phenomenon will be studied in the following subsection.

In both cases, the gap between the two curves is higher for lower values of the strain
rate sensitivity m, hence the presence of gas pressure in the pores has more influence
on the sintering process whenever the material tends towards the plastic behavior.
this may be explained by the (Ashby) power-law (eq. (12)), that indicates that for
lower values of the parameter m, the effective equivalent strain rate is more sensitive
to stress changes.

A comparison among the three different models for the shear and bulk moduli φ
ad ψ and between the two different expressions for pL (see (23) e (27)) is performed
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in the sequel. Figure 19 shows such a comparison for S.E.P. = 1 and for a material
with linear-viscous behavior (m = 1).
Time-evolution diagrams shown by figures 19.a and 19.b are quite similar, because the
value of the Laplace pressure given by equations (23) e (27) are compatible enough
for porosities between 30% and 5% (see the blow-up in Figure 5). The differences
among curves relative to the various considered models are due to the corresponding
expressions of the bulk modulus ψ.
Figure 20 shows such a comparison for S.E.P. = 10, for m = 1.

Also in this case, diagrams shown by figures 20.a and 20.b are similar. The differ-
ences among curves relative to the various considered models are due to the correspond-

ing expressions of the bulk modulus ψ, leading, in the case of pL = 2α
r0

√
3
2
ψ(θ) θ

1−θ to

slightly different values of the critical porosity θ∗.
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Figure 17: ISOSTATIC PRESSING-Evolution of Porosity for S.E.P.=10 pi10

4.1. Influence of the interstitial stress on industrial processes entailing isostatic
pressing

indIP_PI
In analogy to the analysis performed in 3.1, we are interested in determine if it

is exists a threshold for the external pressure under (or over) which the effect of the
gas pressure in pores is negligible in a ”real” industrial process. The aluminum-zinc-
magnesium-copper alloy presented in section is here considered.

As discussed above, in the case of isostatic pressing, the gas pressure in the pores
at the beginning of the third phase of sintering (i.e. at the closure porosity θc) is equal
to the external pressure. Hence, whenever the external pressure increases, also the
pressure in the pores increases, acting ”against” the sintering process and allowing to
not reaching the desired final porosity. Figure 21 show the final porosity that can be
reached as a function of the applied external pressure, for different values of the strain
rate sensitivity m, for 5µm and 50nm powders, respectively.

Since the required final porosity can be reached only for low values of the exter-
nal pressure (and, hence, of the gas pressure in pores), it has no sense to look for
an external pressure threshold under which the effect of the gas pressure in pores is
negligible from the point of view of the sintering time, or the error on the evaluation
of the residual porosity, in analogy to 3.1.1 and 3.1.2.
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Figure 18: ISOSTATIC PRESSING-Evolution of Porosity for S.E.P.=1 pi1
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Figure 19: ISOSTATIC PRESSING-Evolution of Porosity for S.E.P.=1 PIconfronto1

5. Stability
stabIP

5.1. Lower order analysis
lowerstabIP

Here we may denote by θ(0)(t) the fundamental solution of the evolution law (19)
associated with an uniform distribution of the initial porosity. Following [20], Sect.
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Figure 20: ISOSTATIC PRESSING-Evolution of Porosity for S.E.P.=1 PIconfronto10
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Figure 21: Final porosity as a function of applied external pressure, for 5µm powder porFINALE

3.1.1, we assume that the perturbed solution has the form

θ(t) = θ(0)(t) + δθ(t) exp(λ(t− t0)), (32)

where the magnitude of the perturbation δθ(t) is taken to be much smaller than the
one of θ(0)(t) at all times. In [20], section 3.1.1, a normalized perturbation growth
rate with respect to the current rate of change of porosity is considered; this is done
in order to have a ”first” order information about the stability of the process.

The quantity λ = δθ̇
δθ

can be regarded as the perturbation growth rate. It is possible to
calculate the quantity λ

θ̇
as a function of θ, θ0, m, pL and the external pressure. This

can be done in the framework of the three different models considered in the previous
sections.

Because, during sintering, shrinkage occurs monotonically (θ̇ ≤ 0), the problem is
linearly stable if λ < 0, i.e. λ

θ̇
> 0, whereas linearly unstable if λ > 0, that is λ

θ̇
< 0.

In figure 22 the quantity λ

θ̇
δθ is plotted as a function of θ, for different values of the

strain rate sensitivity m, for S.E.P. = 10. It is evident from the graph that the process
is always linearly stable. The value of the applied external pressure does not change
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the stability condition.
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Figure 22: Normalized perturbation growth rate- Low order, S.E.P.=10 LOWorder

5.2. Higher order analysis - Effect of the Laplace pressurehigherstabIP
σ disaccoppiata dalla porosit, se perturbassi anche σ avrei un sistema di 2 equaz

in 3 incognite, che ammette sempre soluzione non banale
The former analysis was meant to explore the consequences of the perturbation of the
porosity on the rate of change θ̇, evaluated by equation (19).
Henceforth, a more refined method of producing perturbations is needed. To this
end, one may follow the procedure used in [20], Section 3.1.2, owning to account for
perturbation of the actual porosity and, in our case, of the Laplace pressure. It may
be noticed that the quantity pl0 (that can be written as a function of pL and of the
porosity through equations (23) or (27)) is a material property and it does not change
during the sintering process.

Two differences may be highlighted between the stability analysis performed in the
present work and the one introduced in [20]:

• unlike in [20], here the high order analysis entails a process with constant exter-
nal pressure;
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• the presence and the perturbation of the sintering stress pL is here considered.

A perturbed solution is considered in the following form:{
θ(t) = θ(0)(t) + δθ exp(λ(t− t0)),

pl(t) = pl
(0)(t) + δpl exp(λ(t− t0));

(33) pert

by substituting (33) in equations (19) and (23) (for the Laplace pressure derived by us-
ing stochastic approach), after linearization about the foundamental solution (θ(0)(t),
pl0

(0)) we have:[
1

θ̇

∂f(θ,σ,pl)
∂θ

− λ

θ̇

1

θ̇

∂f(θ,σ,pl)
∂pl

∂pl0(θ,pl)
∂θ

∂pl0(θ,pl)
∂pl

]
θ(0)(t),pl

(0)(t)

[
δθ
δpl

]
=

[
0
0

]
, (34) systemIP

where

f(θ, σ, pl) = ε̇0(1− θ)
3m−1
2m

( |σz − pL|
Aσ0

) 1
m
ψ

−(1+m)
2m (35)

and the matrix appearing in (34) is evaluated at (θ0(t), pl
0(t)), as specified. Eq. (34)

has non-trivial solutions if and only if the determinant of the matrix is equal to zero.
By imposing this condition, we obtain a characteristic first-order equation with respect
to the normalized perturbation growth rate λ

θ̇
. As in the low order case, The quan-

tity λ = δθ̇
δθ

can be regarded as the perturbation growth rate. Since, during sintering,

shrinkage occurs monotonically (θ̇ ≤ 0), the problem is linearly stable if the quantity λ

θ̇

(normalized perturbation growth rate) is negative, whereas linearly unstable if λ
θ̇
> 0.

This can be done in the framework of the three different models considered in the
previous sections.

Root of equation is shown in the following figure for the three principal cases de-
fined in section 2.1. It is evident that, since the normalized perturbation growth rate
λ

θ̇
is negative for the whole porosity range, the sintering process is always stable. By

carefully comparing figure 22 to figure 23 it can be detected that the effect of the
Laplace pressure is to slightly increase the absolute value of λ

θ̇
, i.e. to increase the

stability of the process.
Figure 23 shows the results obtained considering the Laplace pressure evaluated by
using the stochastic approach, leading to the following expression for the sintering
stress: pL = 3α

r0
(1− θ)2. Results obtained by using the other methodology (that leads

to pL = 2α
r0

√
2
3
ψ(θ) θ

1−θ ) are very similar.

5.3. Higher order analysis - Effect of the gas pressure in the pores
higherstabIP_PI

In the present subsection, a coupled perturbation of the porosity evolution rate,
Laplace pressure and gas pressure in the pores pi is introduced, in order to investigate
the effect of pi on the stability of the sintering process. A perturbed solution is
considered in the following form:

θ(t) = θ(0)(t) + δθ exp(λ(t− t0)),

pl(t) = pl
(0)(t) + δpl0 exp(λ(t− t0)),

pi(t) = pi
(0)(t) + δpi exp(λ(t− t0)).

(36) pertPI

Such a perturbed solution is substituted in the governing equations of the problem:
(19), (23) (for the Laplace pressure derived by using stochastic approach) or (27)
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(for Laplace pressure obtained through dissipative approach) and (29). Note that the
external pressure at the pore closure, p0, is a fixed parameter. After a linearization
about the foundamental solution (θ(0)(t), pi

(0), pl0
(0)), the following set of equations

can be obtained:
1

θ̇

∂f(θ,σ,pl)
∂θ

− λ

θ̇

1

θ̇

∂f(θ,σ,pl)
∂pl

1

θ̇

∂f(θ,σ,pl)
∂pi

∂pl0(θ,pl)
∂θ

∂pl0(θ,pl)
∂pl

0
∂p0(θ,pi)

∂θ
0 ∂p0(θ,pi)

∂pi


θ(0)(t),pl

(0)(t),pi
(0)(t)

[
δθ
δpl

]
=

 0
0
0

 .
(37) systemIP_PI

As in the previous subsection, in order to obtain non trivial solutions of (37), the
determinant of the matrix has to be null. By imposing such a condition, a first-order
equation with respect to the normalized perturbation growth rate λ

θ̇
. As in the previous

cases, the problem is linearly stable if the quantity λ

θ̇
(normalized perturbation growth

rate) is negative, whereas linearly unstable if λ

θ̇
> 0. The normalized perturbation

growth rate is plotted in figure 24 as a function of the porosity, for different values
of m and for Skorohod, Castaneda-Mc Meeking and Cocks models. Obviously, the
presence of pi influences just the third phase of the sintering process, for relative
densities greater than 90%, i.e. for θ < θC = 0.1. Moreover, the final porosity θ∗ is
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Figure 23: Normalized perturbation growth rate - High order stability analysis, S.E.P.=10 HIGHorderPL
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here greater than zero, and it depends upon the applied external pressure.
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Figure 24: Normalized perturbation growth rate - High order stability analysis, S.E.P.=2 HIGHorderPLPI

As it is evident from figure 24, the effect of the gas pressure in the pores is to
reduce the value of the normalized perturbation growth rate λ

θ̇
, i.e. to reduce the

stability of the sintering process. Nevertheless, the process turns out to be stable.
Figure 24 shows the results obtained considering the Laplace pressure evaluated

by using the stochastic approach, leading to the following expression for the sintering
stress: pL = 3α

r0
(1− θ)2. Results obtained by using the other methodology (that leads

to pL = 2α
r0

√
2
3
ψ(θ) θ

1−θ ) are qualitatively very similar.
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6. Conclusion

Appendix A. Free sintering
freeS

The case of free sintering corresponds to a condition frequently met in industrial pro-
cesses. In these cases, there is no applied external pressure, so that the shrinkage is due to
the sintering stress pL only.

In the case under examination, the stress and strain-rate tensors are purely hydrostatic.
Thus, free sintering can be seen as a particular case of isostatic pressing, with null external
loading stress. The evolution law for the porosity may be obtained from eq.(19), by substi-
tuting σ = 0:

θ̇ = −
(pL − pi

σ0A

) 1
m
ε̇0ψ

−(1+m)
2m (1− θ)

3m−1
2m . (A.1) thetafree

The introduction of the dimensionless specific time τL, defined by equation (20), yields the
following normalization of equation (A.1):

∂θ

∂τL
= (pL − pi)

1
m ψ

−(1+m)
2m (1− θ)

3m−1
2m . (A.2) thetafreeADIM

Appendix A.1. Effect of the Laplace pressure
Because for free sintering, since the gas pressure in the pores is neglected, the only force

driving the process is the Laplace pressure, it is worth noting that the choice of the approach
used to derive its expression (stochastic or dissipation averaging, see section 2.2) has a strong
influence on the result. This issue may be studied in the sequel.

1. Sintering stress by using a stochastic approach (pL = 3α
r0

(1− θ)2, see section 2.3.1)

By substituting the expression pL = 3α
r0

(1 − θ)2, equation (A.2) can be written as

follows:
∂θ

∂τL
=

(3α

r0

) 1
m
ψ

−(1+m)
2m (1− θ)3(

m+1
2m

). (A.3) thetafreeADIM2

In order to compare the evolution of the porosity, for such a case, for the three differ-
ent models considered in section 2.2 (Skorohod, Cocks, Castaneda-Duva-Crow and Mc
Meeeking; the latter two models coincide for isostatic pressing), Figure A.1 shows the
evolution of the porosity for different values of the strain rate sensitivity m.

It is worth noting that the result obtained for the three considered model are fairly
different. This is due to the different expressions of the bulk modulus ψ.
Figure 2 (section 2.2) shows that the model of Cocks, for m=1, gives the highest values
of ψ in all range of interesting porosities. For such values of ψ, equation (A.3) gives
lower values of the rate of change of the porosity θ̇ and it corresponds to higher sintering
times.
Because the model of Skorohod introduces the smaller values of ψ, the sintering times
obtained by adopting such a model are the shortest.
In Figure A.1 the different θ̇ are plotted for the models of Castaneda and Mc Meeking,
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Figure A.1: Free Sintering-Evolution of Porosity for different values of m , pL = 3α
r0

(1 − θ)2

.FS2

for different values of the parameter m.
Whenever m decreases, Figure 2 (section 2.2) shows that values of the bulk modulus
ψ obtained by using the model of Castaneda increase, whereas the ones coming from
the model of Cocks decrease. The same figure shows that, for lower values of m, the
model of Castaneda gives values of ψ lower than the ones obtained by using the Cocks
expression for the same item. Hence, the employment of the model of Cocks gives
sintering times lower than those ones obtained by using the approach of Castaneda.
From Figure A.1, it may also be worth noting that, when m tends to zero (ideal plastic
behavior), the time-porosity graph has a steep knee.

2. Sintering stress from dissipation averaging (i.e. pL = 2α
r0

√
3
2
ψ(θ) θ

1−θ , see section

2.3.2)
In this case, expression (A.1), which holds for m=1 only, reduces to

θ̇ = −
ε̇0

σ0A

2α

r0

√
3

2

θ(1− θ)

ψ
. (A.4) efree1

In the considered range of porosity, the resulting values of the Laplace pressure may
be shown to be lower than the ones obtained by virtue of the expression derived by the
stochastic approach (see Figure 5) and henceforth the sintering times are higher.

Appendix A.2. Effect of the gas pressure in the pores

In the case of free sintering, the stress due to the external (relative) pressure is σ = 0;
the total driving force of the problem is thus given by the sum of a positive contribute, the
Laplace pressure pL, and the gas pressure in the pores, that gives a ”negative” contribute.
Since the applied external pressure is equal to the standard atmospheric pressure, at the clo-
sure porosity θC , pi = 0. Hence, the gas pressure in the pores is usually negligible with respect
to the interstitial pressure pL and the condition (31) is not reached. More precisely, it can be
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Figure A.2: Free Sintering-Evolution of Porosity for different values of m

.freePI

attained for values of grain size not used in real sintering processes.

Figure A.2 shows the evolution of the porosity for a free sintering process in two cases:

• accounting for the whole driving force (dashed line) −pL + pi;

• neglecting the gas pressure in the pores (dotted line), i.e. the driving force is considered
to be only pL .

It is evident that the gap between the two curves is negligible.

Appendix A.3. Influence of the temperature on the free sintering time
In this paper, the sintering processes are assumed to be at constant temperature. In

fact, pre-heated electric oven are employed in industrial processes, whose thermal capacity
may be regarded infinitely large with respect to the one of any specimen under consideration.
Henceforth, the temperature remains constant during sintering.
In this section, temperatures are normalized by using the dimensionless specific temperature
T∗, defined as:

T ∗ :=
T

Tmelting
. (A.5)

There are two main phenomena that determine the influence of the temperature on free
sintering processes:

1. for lower values of m (m → 0), the material behavior is almost plastic and yet it feels
the effects of the temperature more than for higher values of the parameter m (see
Figure A.3).

2. the material behavior is affected by the temperature; thus the values of the parameter
m should be a function of the temperature.
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Figure A.3: Free sintering-Evolution of porosity for different values of the specific temperature. temperatura

The present model takes only into account the first phenomenon, and the implicit dependence
on the temperature is given by A = Ã(T ) (see [2]) and the material constant A, appearing in
equation (A.1), is raised to 1/m.
Figure A.3 shows the evolution of the porosity, evaluated by using the model of Castaneda
and for the expression of pL derived by the stochastic approach, for different values of the
strain rate sensitivity m and for different specific temperature T ∗. It is evident that, when
the temperature increases, the sintering time does decrease. This reduction becomes more
important for lower values of the parameter m.
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