On Shocks in a Collisionless Plasma

Jack Schaeffer
Department of Mathematics Sciences
Carnegie Mellon University
Pittsburgh, PA 15213
e-mail: js5m@andrew.cmu.edu

October 1, 2013

Abstract

Motivated by the problem of shocks in collisionless plasma, we consider the steady Vlasov-Maxwell system in one space dimension. It is assumed that as $x \rightarrow-\infty$ (upwind) the magnetic field approaches a nonzero constant and the particle density approaches a homogeneous state. Then under some assumptions (including that positive and negative ions have the same mass) it is shown that a steady solution must have the same behavior downwind as upwind, ruling out shock solutions.

1 Introduction

The Vlasov-Maxwell system models a collisionless plasma such as the solar wind. We will consider a plasma consisting of positive ions (with charge e, mass m_{+}, and number density f_{+}) and negative ions (with charge $-e$, mass m_{-}, and number density f_{-}). In the situation where $f_{ \pm}$depends on time t, the first component of position x_{1}, and the first two components of momentum v_{1}, v_{2}, and the electromagnetic fields are of the form

$$
\begin{aligned}
E & =\left(E_{1}\left(t, x_{1}\right), E_{2}\left(t, x_{1}\right), 0\right) \\
B & =\left(0,0, B_{3}\left(t, x_{1}\right)\right)
\end{aligned}
$$

we have

$$
\left\{\begin{array}{l}
\partial_{t} f_{ \pm}+m_{ \pm}^{-1} v_{1} \partial_{x_{1}} f_{ \pm} \pm e\left(E_{1}+c^{-1} m_{ \pm}^{-1} v_{2} B_{3}\right) \partial_{v_{1}} f_{ \pm} \tag{1.1}\\
\quad \pm e\left(E_{2}-c^{-1} m_{ \pm}^{-1} v_{1} B_{3}\right) \partial_{v_{2}} f_{ \pm}=0 \\
\rho=e \int\left(f_{+}-f_{-}\right) d v, j_{k}=e \int\left(m_{+}^{-1} f_{+}-m_{-}^{-1} f_{-}\right) v_{k} d v \\
\partial_{t} E_{1}=-4 \pi j_{1}, \partial_{x} E_{1}=4 \pi \rho \\
\partial_{t} E_{2}=-c \partial_{x_{1}} B_{3}-4 \pi j_{2} \\
\partial_{t} B_{3}=-c \partial_{x_{1}} E_{2}
\end{array}\right.
$$

Here c is the speed of light. As a matter of convenience we will set $c=$ $1, e=1, m_{+}=1$. More importantly we will also set $m_{-}=1$. This allows us to consider a simpler problem as follows. Suppose $f\left(x_{1}, v_{1}, v_{2}\right)$ and $B_{3}\left(x_{1}\right)$ satisfy

$$
\left\{\begin{array}{l}
v_{1} \partial_{x_{1}} f+v_{2} B_{3} \partial_{v_{1}} f+\left(E_{2}-v_{1} B_{3}\right) \partial_{v_{2}} f=0 \tag{1.2}\\
B_{3}^{\prime}=-8 \pi \int f v_{2} d v
\end{array}\right.
$$

where E_{2} is a constant. Then taking

$$
\left\{\begin{aligned}
f_{ \pm}\left(x_{1}, v_{1}, v_{2}\right) & =f\left(x_{1}, v_{1}, \pm v_{2}\right) \\
E\left(x_{1}\right) & =\left(0, E_{2}, 0\right)
\end{aligned}\right.
$$

yields a steady solution of (??). Although taking $m_{+}=m_{-}$is restrictive, this case is physically meaningful and allows for simpler analysis. Henceforth, we will drop unnecessary subscripts and write $x=x_{1}, v=\left(v_{1}, v_{2}\right), E=$ $E_{2}, B=B_{3}$.

Our interest here is in collisionless shocks. Hence, we seek steady solutions which have different behavior as $x \rightarrow-\infty$ and as $x \rightarrow+\infty$. Since the mean free path in this collisionless model is infinite, we expect the plasma behavior
to make a transition over an infinite interval. The simplest steady solution of (??) with a nonzero magnetic field is obtained by taking $E \neq 0$,

$$
B=\text { constant } \neq 0,
$$

and f of the form

$$
f(v)=F\left(\sqrt{\left(v_{1}-W\right)^{2}+v_{2}^{2}}\right)
$$

where

$$
W=E / B
$$

One might hope to find a solution of (??) with this behavior as $x \rightarrow-\infty$ and different behavior as $x \rightarrow+\infty$, but the following theorem seriously restricts this possibility.

Theorem 1.1. Let $B_{U}>0, B_{D}>0, E>0$ and let

$$
\begin{aligned}
W_{U} & =E / B_{U}, W_{D}=E / B_{D} \\
R_{U}(v) & =\sqrt{\left(v_{1}-W_{U}\right)^{2}+v_{2}^{2}}, \\
R_{D}(v) & =\sqrt{\left(v_{1}-W_{D}\right)^{2}+v_{2}^{2}} \\
B_{A}(x) & =\left\{\begin{array}{lll}
B_{U} & \text { if } & x \leq 0 \\
B_{D} & \text { if } & x>0
\end{array}\right.
\end{aligned}
$$

Assume that (f, B) is a continuously differentiable solution of (??). Assume there exists $C_{0}>0$ and $p>1$ such that

$$
\begin{equation*}
\left|B^{\prime}(x)\right|+\left|B(x)-B_{A}(x)\right| \leq C_{0}(1+|x|)^{-p} \text { for all } x \tag{1.3}
\end{equation*}
$$

Assume there exists $F_{U}:[0, \infty) \rightarrow[0, \infty)$ and $\mathcal{F}_{D}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
f \rightarrow F_{U} \circ R_{U} \text { uniformly as } x \rightarrow-\infty \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f \rightarrow \mathcal{F}_{D} \text { as } x \rightarrow+\infty \tag{1.5}
\end{equation*}
$$

Further assume there exists $r_{0}>0$ such that $F_{U}(r)>0$ if $r<r_{0}$ and $F_{U}(r)=0$ if $r \geq r_{0}$ and that F_{U} constant on an interval of positive length implies $F_{U}=0$ on that interval. Lastly define $(X(t, x, v), V(t, x, v))$ by

$$
\begin{cases}\frac{d X}{d t}=V_{1} & X(0, x, v)=x \\ \frac{d V_{1}}{d t}=V_{2} B(X) & \\ & V(0, x, v)=v \\ \frac{d V_{2}}{d t}=E-V_{1} B(X) & \end{cases}
$$

and assume there exists $C_{1}>0$ and $C_{2}>0$ such that if $f(x, v) \neq 0$ then

$$
\left\{\begin{align*}
X(t, x, v)-x & \leq C_{1} t+C_{2} & & \text { for } t \leq 0 \tag{1.6}\\
C_{1} t-C_{2} & \leq X(t, x, v)-x & & \text { for } 0 \leq t
\end{align*}\right.
$$

Then

$$
B_{D}=B_{U}, W_{D}=W_{U}
$$

and

$$
\mathcal{F}_{D}=F_{U} \circ R_{U} .
$$

Assumption (??) says that all charge came from "upwind" $(x \rightarrow-\infty)$ and ultimately continues "downwind" $(x \rightarrow+\infty)$. This is crucially important for relating F_{U} and \mathcal{F}_{D}. Note, though, that this does not require $v_{1} \geq 0$. In fact, when B is constant V_{1} can be negative but will have a positive time average (when $B>0$ and $E>0$).

Theorem 1.1 is in marked contrast to Theorem 3.1 of [?] where steady solutions of (??) are constructed with quite different behavior as $x \rightarrow+\infty$
and $x \rightarrow-\infty$. However, in [?] E_{2} is taken to be zero, whereas this work considers $E_{2} \neq 0$. Also, for the "flat-tail" solutions of [?], (??) does not hold.

Most modelling of collisionless shocks involves fluid equations, see [?] and [?] for example. References [?], [?], and [?] study collisionless shocks using kinetic models. In [?] an asymptotic expression for small amplitude soliton solutions is derived. In [?] shock solutions are assumed to exist and are approximated when $m_{-} \ll m_{+}$. Note that in Theorem 1.1 we take $m_{+}=m_{-}=1$. Aspects of unmagnetized plasma flowing into an applied field are studied in [?], [?], and [?]. When there is no magnetic field electrostatic shocks are obtained in [?]; see also [?] and [?] concerning the stability of the solutions found in [?].

The global existence in time of smooth solutions to a relativistic version of (??) was established in [?]. This was extended to two space dimensions in [?], [?], and [?]. In three dimensions global existence of smooth solutions for the relativistic Vlasov-Maxwell system is open, but it is shown in [?] that this could fail only if particle speeds approach the speed of light. For the related Vlasov-Poisson system, global existence is known in three dimensions ([?], [?]). We also mention that a variational approach to constructing steady solutions is developed in [?] and [?]. For further background on related problems see [?] and [?].

The proof of Theorem 1.1 is in Sections 2 and 3. Section 2 concerns the characteristics of the Vlasov equation. In particular, due to (??), their asymptotic behavior for $t \rightarrow-\infty(t \rightarrow+\infty)$ may be obtained by approximating B by $B_{U}\left(B_{D}\right)$. Then, since f remains constant on characteristics, this allows us to relate F_{U} and \mathcal{F}_{D}. Section 3 uses the fact that the flux of mass, momentum, and energy must be constant. These conservation laws are the primary ingredients of the proof. The main idea of the argument may be glimpsed most easily by reading only the statements of the lemmas in Section 2 (leaving the proofs for later) and then reading Section 3 fully.

The following notation will be used. The letter C denotes a positive generic constant which changes from line to line and may depend on the solution (f, B), but not on x or v. When a specific constant is chosen that must be referred to later, it will be given a subscript (for example, C_{0}, C_{1}, C_{2} in Theorem 1.1). Frequently the dependence of (X, V) on (x, v) will be suppressed, so for example we may write

$$
X(t)=X(t, x, v)
$$

We will write

$$
D_{x, v}\binom{X}{V}=\left(\begin{array}{lll}
\partial_{x} X & \partial_{v_{1}} X & \partial_{v_{2}} X \\
\partial_{x} V_{1} & \partial_{v_{1}} V_{1} & \partial_{v_{2}} V_{1} \\
\partial_{x} V_{2} & \partial_{v_{1}} V_{2} & \partial_{v_{2}} V_{2}
\end{array}\right)
$$

Also for a square matrix, M,

$$
\|M\|=\max \{|M u|:|u|=1\} .
$$

2 Characteristics

Many of the estimates of this section rely on the following:
Lemma 2.1. For each (x, v) with $f(x, v) \neq 0$ there is t_{0} such that

$$
|X(t, x, v)| \geq C_{1}\left|t-t_{0}\right|-C_{2}
$$

Hence
(2.1) $\left|B^{\prime}(X(t, x, v))\right|+\left|B(X(t, x, v))-B_{A}(X(t, x, v))\right| \leq C\left(1+\left|t-t_{0}\right|\right)^{-p}$.

Proof. From (??) it follows that there exists t_{0} such that $X\left(t_{0}, x, v\right)=0$. Let $z=V\left(t_{0}, x, v\right)$ and note that

$$
X(t, x, v)=X\left(t-t_{0}, 0, z\right)
$$

By (??)

$$
\begin{aligned}
|X(t, x, v)| & =\left|X\left(t-t_{0}, 0, z\right)-0\right| \\
& \geq C_{1}\left|t-t_{0}\right|-C_{2} .
\end{aligned}
$$

For $\left|t-t_{0}\right| \geq 2 C_{2} / C_{1}$

$$
|X(t, x, v)| \geq \frac{1}{2} C_{1}\left|t-t_{0}\right|
$$

so (??) follows from (??), completing the proof.

Lemma 2.2. There exists $C_{3}>0$ such that

$$
|V(t, x, v)|+\left\|D_{x, v}\binom{X}{V}(t, x, v)\right\| \leq C_{3}
$$

for all (t, x, v) with $f(x, v) \neq 0$.
Proof. Assume $f(x, v) \neq 0$ throughout. Choose $R_{A}(x, v)$ such that R_{A}^{2} is $C^{1}, R_{A}(x, v)=R_{U}(v)$ if $x \leq-1$, and $R_{A}(x, v)=R_{U}(v)$ if $x \geq 1$. Note that for $X(t, x, v) \notin(-1,1)$ we have

$$
\begin{aligned}
\left|\frac{d}{d t} R_{A}^{2}(X, V)\right| & =\left|2 E V_{2} \frac{B(X)-B_{A}(X)}{B_{A}(X)}\right| \\
& \leq C\left(1+R_{A}(X, V)\right)\left|B(X)-B_{A}(X)\right|
\end{aligned}
$$

By Lemma 2.1 it follows that

$$
\begin{equation*}
\left|\sqrt{R_{A}^{2}(X, V)+1}\right|_{t_{1}}^{t_{2}} \mid \leq C \quad \forall t_{1}, t_{2} \tag{2.2}
\end{equation*}
$$

and hence there is $r_{U} \geq 0$ such that

$$
R_{A}(X, V) \rightarrow r_{U} \text { as } t \rightarrow-\infty .
$$

Hence $F_{U}\left(R_{U}(V)\right) \rightarrow F_{U}\left(r_{U}\right)$ as $t \rightarrow-\infty$. Using (??) and (??) it follows that

$$
f(X, V) \rightarrow F_{U}\left(r_{U}\right) \text { as } t \rightarrow-\infty
$$

Since $f(X, V)=f(x, v)$ for all t, it follows that

$$
f(x, v)=f(X, V)=F_{U}\left(r_{U}\right)
$$

Since $F_{U}\left(r_{U}\right)=f(x, v) \neq 0, r_{U} \leq C$. By (??) for all t we have

$$
R_{A}(X, V) \leq r_{U}+C \leq C
$$

It follows that $|V| \leq C$.
Let

$$
M_{U}=\left(\begin{array}{ccl}
0 & 1 & 0 \tag{2.3}\\
0 & 0 & B_{U} \\
0 & -B_{U} & 0
\end{array}\right) \quad M_{D}=\left(\begin{array}{ccl}
0 & 1 & 0 \\
0 & 0 & B_{D} \\
0 & -B_{D} & 0
\end{array}\right)
$$

Consider first $x<-C_{2}$ and define

$$
T=\sup \{t: X(s, x, v)<0 \text { for all } s<t\}
$$

Note that by (??) it follows that $T>0$. For $t \leq T$ note that

$$
\frac{d}{d t} D_{x, v}\binom{X}{V}(t)=M_{U} D_{x, v}\binom{X}{V}(t)+a_{U}(t)
$$

where

$$
a_{U}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
V_{2} B^{\prime}(X) & 0 & B(X)-B_{U} \\
-V_{1} B^{\prime}(X) & B_{U}-B(X) & 0
\end{array}\right) D_{x, v}\binom{X}{V} .
$$

Since $\left\|e^{M_{U} t}\right\| \leq C$ we have

$$
\begin{aligned}
\left\|D_{x, v}\binom{X}{V}(t)\right\| & =\left\|e^{M_{U} t}+\int_{0}^{t} e^{M_{U}(t-s)} a_{U}(s) d s\right\| \\
& \leq C+C\left|\int_{0}^{t}\left(\left|B^{\prime}(X)\right|+\left|B(X)-B_{U}\right|\right)\left\|D_{x, v}\binom{X}{V}\right\| d s\right|
\end{aligned}
$$

By Gronwall's inequality and Lemma 2.1

$$
\left\|D_{x, v}\binom{X}{V}(t)\right\| \leq C \exp \left(C \int_{-\infty}^{T}\left(\left|B^{\prime}(X)\right|+\left|B(X)-B_{U}\right|\right) d s\right) \leq C
$$

for $t \leq T$. For $t>T$ let

$$
a_{D}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
V_{2} B^{\prime}(X) & 0 & B(X)-B_{D} \\
-V_{1} B^{\prime}(X) & B_{D}-B(X) & 0
\end{array}\right) D_{x, v}\binom{X}{V}
$$

and note that

$$
\begin{aligned}
\left\|D_{x, v}\binom{X}{V}(t)\right\| & =\left\|e^{M_{D}(t-T)} D_{x, v}\binom{X}{V}(T)+\int_{T}^{t} e^{M_{D}(t-s)} a_{D}(s) d s\right\| \\
& \leq C+C \int_{T}^{t}\left(\left|B^{\prime}(X)\right|+\left|B(X)-B_{D}\right|\right)\left\|D_{x, v}\binom{X}{V}\right\| d s
\end{aligned}
$$

Another use of Gronwall's inequality and Lemma 2.1 yields

$$
\left\|D_{x, v}\binom{X}{V}(t)\right\| \leq C
$$

for all t.
We may proceed similarly for $|x| \leq C_{2}$ and for $x>C_{2}$ so the proof is complete.

We may now bound the derivatives of f. Since $f(x, v)=0$ for $|v|>$ $C,\left|\nabla_{x, v} f(x, v)\right|$ is bounded on $(x, v) \in[-1,1] \times \mathbb{R}^{2}$. Consider any (x, v) with $f(x, v) \neq 0$. There exists t_{0} such that $X\left(t_{0}, x, v\right) \in(-1,1)$. Now by Lemma 2.2

$$
\begin{aligned}
\left|\partial_{x} f(x, v)\right| & =\mid \partial_{x}\left(f\left(X\left(t_{0}, x, v\right), V\left(t_{0}, x, v\right)\right) \mid\right. \\
& =\left.\left|\partial_{x} f(X, V) \partial_{x} X+\nabla_{v} f(X, V) \cdot \partial_{x} V\right|\right|_{t_{0}} \leq C
\end{aligned}
$$

Similarly,

$$
\left|\partial_{v_{1}} f(x, v)\right|+\left|\partial_{v_{2}} f(x, v)\right| \leq C .
$$

Since f is C^{1} it follows that:

Lemma 2.3. There exists $C>0$ such that

$$
\left|\nabla_{x, v} f(x, v)\right| \leq C
$$

for all (x, v).
To analyze the downwind limit define $(Y, Z)(t, y, z)$ by

$$
\left\{\begin{array}{llrl}
\frac{d Y}{d t} & =Z_{1} & & Y(0)=y \\
\frac{d Z_{1}}{d t} & =Z_{2} B_{D} & & Z_{1}(0)=z_{1} \\
\frac{d Z_{2}}{d t} & =E-Z_{1} B_{D} & & Z_{2}(0)=z_{2}
\end{array}\right.
$$

Note that $R_{D}(Z(t))=R_{D}(z)$ for all t and that (using the Vlasov equation and Lemma 2.3)

$$
\begin{aligned}
& \left|\frac{d}{d t}(f(Y, Z))\right| \\
= & \mid Z_{1} \partial_{x} f+Z_{2} B_{D} \partial_{v_{1}} f+\left(E-Z_{1} B_{D}\right) \partial_{v_{2}} f \\
& -\left(Z_{1} \partial_{x} f+Z_{2} B(Y) \partial_{v_{1}} f+\left(E-Z_{1} B(Y)\right) \partial_{v_{2}} f\right)| |_{(Y, Z)} \\
= & \left|\left(Z_{2} \partial_{v_{1}} f-Z_{1} \partial_{v_{2}} f\right)\left(B_{D}-B(Y)\right)\right| \\
\leq & |Z| C\left|B(Y)-B_{D}\right| \leq C\left(W_{D}+R_{D}(z)\right)\left|B(Y)-B_{D}\right| .
\end{aligned}
$$

With this we may prove:
Lemma 2.4. $f(x, v) \rightarrow \mathcal{F}_{D}(v)$ uniformly as $x \rightarrow+\infty$ and

$$
\mathcal{F}_{D}=F_{D} \circ R_{D}
$$

where F_{D} is defined by

$$
F_{D}(r)=\mathcal{F}_{D}\left(W_{D}+r, 0\right)
$$

for all $r \geq 0$.

Proof. Note that

$$
R_{D}(Z(t))=R_{D}(z) \geq|z|-W_{D}
$$

so $|z|$ sufficiently large implies

$$
f(Y(t), Z(t))=0
$$

for all t. For $|z| \leq C,(? ?)$ yields

$$
\begin{equation*}
|f(Y(t), Z(t))-f(y, z)| \leq C \int_{0}^{\infty}\left|B(Y(s))-B_{D}\right| d s \tag{2.5}
\end{equation*}
$$

for $t \geq 0$. Note (??) holds for all z. Since $Z\left(n 2 \pi B_{D}^{-1}\right)=z$ for all positive integers, n, we have

$$
\begin{aligned}
\left|\mathcal{F}_{D}(z)-f(y, z)\right| & =\lim _{n \rightarrow \infty}|f(Y, Z)|_{n 2 \pi B_{D}^{-1}}-f(y, z) \mid \\
& \leq C \int_{0}^{\infty}\left|B(Y(s))-B_{D}\right| d s
\end{aligned}
$$

By (??) it follows that $f(y, z) \rightarrow \mathcal{F}_{D}(z)$ uniformly.
Consider any $\varepsilon>0$. For y sufficiently large we have for all $t \in\left[0, \frac{2 \pi}{B_{D}}\right]$

$$
\begin{gathered}
\left|f(y, z)-\mathcal{F}_{D}(z)\right|<\varepsilon, \\
\left|f(Y(t), Z(t))-\mathcal{F}_{D}(Z(t))\right|<\varepsilon
\end{gathered}
$$

and

$$
|f(Y(t), Z(t))-f(y, z)|<\varepsilon
$$

Hence

$$
\left|\mathcal{F}_{D}(Z(t))-\mathcal{F}_{D}(z)\right|<3 \varepsilon
$$

for every $\varepsilon>0$ so

$$
\mathcal{F}_{D}(Z(t))=\mathcal{F}_{D}(z)
$$

for all $t \in\left[0, \frac{2 \pi}{B_{D}}\right]$. The lemma follows from this.

Next we describe the characteristics using their asymptotic behavior as $t \rightarrow \pm \infty$. Define

$$
\psi_{U}(t)=\int_{0}^{t} e^{M_{U}(t-s)}\left(\begin{array}{c}
0 \tag{2.6}\\
0 \\
E
\end{array}\right) d s, \psi_{D}(t)=\int_{0}^{t} e^{M_{D}(t-s)}\left(\begin{array}{c}
0 \\
0 \\
E
\end{array}\right) d s
$$

Lemma 2.5. Let

$$
\begin{equation*}
\binom{Y_{U}\left(t, x_{U}, v_{U}\right)}{Z_{U}\left(t, x_{U}, v_{U}\right)}=e^{M_{U} t}\binom{x_{U}}{v_{U}}+\psi_{U}(t) \tag{2.7}
\end{equation*}
$$

For any $\left(x_{U}, v_{U}\right)$ there is a unique solution of

$$
\left\{\begin{align*}
\frac{d Y}{d t} & =Z_{1} \tag{2.8}\\
\frac{d Z_{1}}{d t} & =Z_{2} B(Y) \\
\frac{d Z_{2}}{d t} & =E-Z_{1} B(Y)
\end{align*}\right.
$$

that satisfies

$$
\begin{equation*}
(Y, Z)-\left(Y_{U}, Z_{U}\right) \rightarrow 0 \text { as } t \rightarrow-\infty . \tag{2.9}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
f(Y(t), Z(t))=F_{U}\left(R_{U}\left(v_{U}\right)\right) \tag{2.10}
\end{equation*}
$$

for all t where (Y, Z) is defined. This unique solution will be denoted $\left(Y\left(t, x_{U}, v_{U}\right), Z\left(t, x_{U}, v_{U}\right)\right)$. We also have $\left(x_{U}, v_{U}\right) \mapsto(Y, Z)\left(t, x_{U}, v_{U}\right)$ is continuous.

Proof. For $T<0$ let

$$
\left\||(Y, Z) \||=\sup \left\{|(Y(t), Z(t))|(1+|t|)^{\frac{p-1}{2}}: t \leq T\right\}\right.
$$

and

$$
\mathcal{C}_{T}=\left\{(Y, Z):(Y, Z) \text { is continuous and }\left\|\left|(Y, Z)-\left(Y_{U}, Z_{U}\right) \|\right| \leq 1\right\} .\right.
$$

For $(Y, Z) \in \mathcal{C}_{T}$ define

$$
\left.\mathcal{F}(Y, Z)\right|_{t}=\binom{Y_{U}(t)}{Z_{U}(t)}+\int_{-\infty}^{t} e^{M_{U}(t-s)}\left(\begin{array}{c}
0 \\
Z_{2}\left(B(Y)-B_{U}\right) \\
-Z_{1}\left(B(Y)-B_{U}\right)
\end{array}\right) d s
$$

We claim that for T sufficiently negative, $\mathcal{F}: \mathcal{C}_{T} \rightarrow \mathcal{C}_{T}$ and \mathcal{F} is a contraction. The fixed point is then a solution of (??) on $(-\infty, T]$ that satisfies (??). Another solution of (??) that satisfies (??) must also be a fixed point of \mathcal{F} and hence the same as the previous solution.

By explicit calculation

$$
\binom{Y_{U}(t)}{Z_{U}(t)}=\left(\begin{array}{l}
x_{U}+W_{U} t+B_{U}^{-1}\left(v_{U 1} \sin \left(B_{U} t\right)+v_{U 2}\left(1-\cos \left(B_{U} t\right)\right)-W_{U} \sin \left(B_{U} t\right)\right) \\
v_{U 1} \cos \left(B_{U} t\right)+v_{U 2} \sin \left(B_{U} t\right)+W_{U}\left(1-\cos \left(B_{U} t\right)\right) \\
-v_{U 1} \sin \left(B_{U} t\right)+v_{U 2} \cos \left(B_{U} t\right)+W_{U} \sin \left(B_{U} t\right)
\end{array}\right)
$$

so for any $(Y, Z) \in \mathcal{C}_{T}$ we have

$$
Y(t) \leq Y_{U}(t)+1 \leq x_{U}+W_{U} t+C_{4}\left(1+\left|v_{U}\right|\right)
$$

and

$$
|Z(t)| \leq\left|Z_{U}(t)\right|+1 \leq C+\left|v_{U}\right|
$$

Requiring

$$
T \leq-2 W_{U}^{-1}\left(\left|x_{U}\right|+C_{4}\left(1+\left|v_{U}\right|\right)\right)
$$

we have, for $t \leq T$,

$$
\begin{equation*}
Y(t) \leq \frac{1}{2} W_{U} t \tag{2.11}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|B(Y(t))-B_{U}\right| \leq C_{0}(1+|Y(t)|)^{-p} \leq C(1+|t|)^{-p} \tag{2.12}
\end{equation*}
$$

Suppose $(\tilde{Y}, \tilde{Z}) \in \mathcal{C}_{T}$ also. For each $t \leq T$ there is ξ between $Y(t)$ and $\tilde{Y}(t)$ such that

$$
B(Y(t))-B(\tilde{Y}(t))=B^{\prime}(\xi)(Y(t)-\tilde{Y}(t))
$$

Since (??) applies to both Y and \tilde{Y}, it applies to ξ and hence

$$
\begin{align*}
|B(Y(t))-B(\tilde{Y}(t))| & \leq C_{0}(1+|\xi|)^{-p}|Y(t)-\tilde{Y}(t)| \tag{2.13}\\
& \leq C(1+|t|)^{-p}|Y(t)-\tilde{Y}(t)| \\
& \leq C(1+|t|)^{-p}| ||(Y, Z)-(\tilde{Y}, \tilde{Z}) \||(1+|t|)^{-\frac{p-1}{2}}
\end{align*}
$$

Now we may estimate

$$
\begin{aligned}
\left|\mathcal{F}(Y, Z)-\left(Y_{U}, Z_{U}\right)\right| & =\left|\int_{-\infty}^{t} e^{M_{U}(t-s)}\left(\begin{array}{c}
0 \\
Z_{2}\left(B(Y)-B_{U}\right) \\
-Z_{1}\left(B(Y)-B_{U}\right)
\end{array}\right) d s\right| \\
& \leq \int_{-\infty}^{t} C|Z|\left|B(Y)-B_{U}\right| d s \\
& \leq C\left(1+\left|v_{U}\right|\right) \int_{-\infty}^{t}(1+|s|)^{-p} d s \leq C\left(1+\left|v_{U}\right|\right)(1+|t|)^{1-p}
\end{aligned}
$$

so

$$
(1+|t|)^{\frac{p-1}{2}}\left|\mathcal{F}(Y, Z)-\left(Y_{U}, Z_{U}\right)\right| \leq C\left(1+\left|v_{U}\right|\right)(1+|T|)^{\frac{1-p}{2}}
$$

Thus for T sufficiently negative, $\mathcal{F}: \mathcal{C}_{T} \rightarrow \mathcal{C}_{T}$.
Next

$$
\begin{aligned}
|\mathcal{F}(Y, Z)-\mathcal{F}(\tilde{Y}, \tilde{Z})|_{t} & =\left|\int_{-\infty}^{t} e^{M_{U}(t-s)}\left(\begin{array}{c}
0 \\
Z_{2}\left(B(Y)-B_{U}\right)-\tilde{Z}_{2}\left(B(\tilde{Y})-B_{U}\right) \\
-Z_{1}\left(B(Y)-B_{U}\right)+\tilde{Z}_{1}\left(B(\tilde{Y})-B_{U}\right)
\end{array}\right) d s\right| \\
& \leq C \int_{-\infty}^{t}\left(|Z-\tilde{Z}|\left|B(Y)-B_{U}\right|+|\tilde{Z}||B(Y)-B(\tilde{Y})|\right) d s \\
& \leq C\left(1+\left|v_{U}\right|\right) \int_{-\infty}^{t}\left\||(Y, Z)-(\tilde{Y}, \tilde{Z}) \||(1+|s|)^{-\frac{p-1}{2}}(1+|s|)^{-p} d s\right. \\
& \leq C\left(1+\left|v_{U}\right|\right)\left\|\left|(Y, Z)-(\tilde{Y}, \tilde{Z}) \|| |(1+|t|)^{-\frac{3}{2}(p-1)}\right.\right.
\end{aligned}
$$

so

$$
\left\|\left|\mathcal{F}(Y, Z)-\mathcal{F}(\tilde{Y}, \tilde{Z})\left\|\left|\leq\left(C+\left|v_{U}\right|\right)\left\||(Y, Z)-(\tilde{Y}, \tilde{Z}) \||(1+|T|)^{1-p}\right.\right.\right.\right.\right.
$$

Hence, for T sufficiently negative, \mathcal{F} is a contraction and the claim is established.

Let (Y, Z) be the fixed point of \mathcal{F}. Then

$$
\begin{equation*}
\frac{d}{d t}(f(Y(t), Z(t)))=0 \tag{2.14}
\end{equation*}
$$

By explicit calculation

$$
R_{U}\left(Z_{U}(t)\right)=R_{U}\left(v_{U}\right)
$$

for all t, so by (??)

$$
F_{U}\left(R_{U}(Z(t))\right) \rightarrow F_{U}\left(R_{U}\left(v_{U}\right)\right) \text { as } t \rightarrow-\infty .
$$

But by (??) and (??) we also have

$$
f(Y(t), Z(t))-F_{U}\left(R_{U}(Z(t))\right) \rightarrow 0 \text { as } t \rightarrow-\infty
$$

so

$$
f(Y(t), Z(t)) \rightarrow F_{U}\left(R_{U}\left(v_{U}\right)\right) \text { as } t \rightarrow-\infty .
$$

By (??) it follows that

$$
\begin{equation*}
f(Y(t), Z(t))=F_{U}\left(R_{U}\left(v_{U}\right)\right) \tag{2.15}
\end{equation*}
$$

for all $t \in(-\infty, T]$.
Finally, we show the continuous dependence on $\left(x_{U}, v_{U}\right)$. For brevity let $(Y, Z)(t)=(Y, Z)\left(t, x_{U}, v_{U}\right)$ and $(\tilde{Y}, \tilde{Z})(t)=(Y, Z)\left(t, \tilde{x}_{U}, \tilde{v}_{U}\right)$, then

$$
\begin{aligned}
& \left.|(Y, Z)-(\tilde{Y}, \tilde{Z})|\right|_{t}=\left\lvert\, e^{M_{U} t}\binom{x_{U}-\tilde{x}_{U}}{v_{U}-\tilde{v}_{U}}\right. \\
& \left.+\int_{-\infty}^{t} e^{M_{U}(t-s)}\left(\begin{array}{c}
0 \\
Z_{2}\left(B(Y)-B_{U}\right)-\tilde{Z}_{2}\left(B(\tilde{Y})-B_{U}\right) \\
-Z_{1}\left(B(Y)-B_{U}\right)+\tilde{Z}_{1}\left(B(\tilde{Y})-B_{U}\right)
\end{array}\right) d s \right\rvert\, \\
\leq & C\left|\left(x_{U}, v_{U}\right)-\left(\tilde{x}_{U}, \tilde{v}_{U}\right)\right| \\
& +C \int_{-\infty}^{t}\left(|Z-\tilde{Z}|\left|B(Y)-B_{U}\right|+|\tilde{Z}||B(Y)-B(\tilde{Y})|\right) d s
\end{aligned}
$$

Working on $t \in(-\infty, T]$ with $\left|\left(x_{U}, v_{U}\right)-\left(\tilde{x}_{U}, \tilde{v}_{U}\right)\right| \leq 1$ and

$$
T \leq-2 W_{U}^{-1}\left(\left|x_{U}\right|+1+C_{4}\left(2+\left|v_{U}\right|\right)\right)
$$

we may apply (??), (??), and (??) to obtain

$$
\begin{aligned}
\mid(Y, Z) & -(\tilde{Y}, \tilde{Z})| |_{t} \leq C\left|\left(x_{U}, v_{U}\right)-\left(\tilde{x}_{U}, \tilde{v}_{U}\right)\right| \\
& +C \int_{-\infty}^{t}(1+|s|)^{-p}|(Y, Z)-(\tilde{Y}, \tilde{Z})| d s
\end{aligned}
$$

By adapting Gronwall's inequality to $(-\infty, T]$ it follows that

$$
\begin{aligned}
\left.|(Y, Z)-(\tilde{Y}, \tilde{Z})|\right|_{t} \leq & C\left|\left(x_{U}, v_{U}\right)-\left(\tilde{x}_{U}, \tilde{v}_{U}\right)\right| \\
& +\int_{-\infty}^{t} C\left|\left(x_{U}, v_{U}\right)-\left(\tilde{x}_{U}, \tilde{v}_{U}\right)\right| C(1+|s|)^{-p} e^{e_{s}^{t} C(1+|\tau|)^{-p} d \tau} d s \\
\leq & C\left|\left(x_{U}, v_{U}\right)-\left(\tilde{x}_{U}, \tilde{v}_{U}\right)\right| .
\end{aligned}
$$

The continuity on the full interval of existence now follows by Lemma 2.2, which completes the proof.

Lemma 2.6. Suppose $F_{U}\left(R_{U}\left(v_{U}\right)\right) \neq 0$. Then $(Y, Z)\left(t, x_{U}, v_{U}\right)$ is defined for all t. Also, there exists a unique $\left(x_{0}, v_{0}\right) \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
(Y, Z)-\left(Y_{D}, Z_{D}\right) \rightarrow 0 \text { as } t \rightarrow+\infty \tag{2.16}
\end{equation*}
$$

where we define

$$
\begin{equation*}
\binom{Y_{D}(t)}{Z_{D}(t)}=e^{M_{D} t}\binom{x_{D}}{v_{D}}+\psi_{D}(t) \tag{2.17}
\end{equation*}
$$

Moreover, $\left(x_{D}, v_{D}\right)$ depends continuously on $\left(x_{U}, v_{U}\right)$. Finally, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
F_{U}\left(R_{U}\left(v_{U}\right)\right)=f(Y(t), Z(t))=F_{D}\left(R_{D}\left(v_{D}\right)\right) \tag{2.18}
\end{equation*}
$$

Proof. Since

$$
f(Y(t), Z(t))=F_{U}\left(R_{U}\left(v_{U}\right)\right) \neq 0
$$

we may apply (??) to (Y, Z), hence (Y, Z) may be extended to $t \in \mathbb{R}$ with $Y(t) \rightarrow+\infty$ as $t \rightarrow+\infty$.

To construct $\left(x_{D}, v_{D}\right)$ note that

$$
\frac{d}{d t}\binom{Y}{Z}=M_{D}\binom{Y}{Z}+\left(\begin{array}{c}
0 \tag{2.19}\\
0 \\
E
\end{array}\right)+\beta_{D}(t)
$$

where

$$
\beta_{D}=\left(B(Y)-B_{D}\right)\left(\begin{array}{c}
0 \tag{2.20}\\
Z_{2} \\
-Z_{1}
\end{array}\right)
$$

Hence

$$
\binom{Y(t)}{Z(t)}=e^{M_{D} t}\binom{Y(0)}{Z(0)}+\psi_{D}(t)+\int_{0}^{t} e^{M_{D}(t-s)} \beta_{D}(s) d s
$$

Defining

$$
\begin{equation*}
\binom{x_{D}}{v_{D}}=\binom{Y(0)}{Z(0)}+\int_{0}^{\infty} e^{-M_{D} s} \beta_{D}(s) d s \tag{2.21}
\end{equation*}
$$

yields

$$
\begin{equation*}
\binom{Y(t)}{Z(t)}=e^{M_{D} t}\binom{x_{D}}{v_{D}}+\psi_{D}(t)-\int_{t}^{\infty} e^{M_{D}(t-s)} \beta_{D}(s) d s \tag{2.22}
\end{equation*}
$$

and (??) follows.
To show the uniqueness of $\left(x_{D}, v_{D}\right)$ suppose that

$$
\binom{Y}{Z}-e^{M_{D} t}\binom{x_{D}}{v_{D}}-\psi_{D} \rightarrow 0
$$

and

$$
\binom{Y}{Z}-e^{M_{D} t}\binom{\tilde{x}_{D}}{\tilde{v}_{D}}-\psi_{D} \rightarrow 0
$$

as $t \rightarrow+\infty$. Then

$$
e^{M_{D} t}\left(\begin{array}{ccc}
x_{D} & -\tilde{x}_{D} \\
v_{D} & -\tilde{v}_{D}
\end{array}\right) \rightarrow 0 \text { as } t \rightarrow+\infty
$$

and $\tilde{x}_{D}=x_{D}, \tilde{v}_{D}=v_{D}$ follows.
To show the continuity define

$$
\sigma(x, v)=\binom{x}{v}+\int_{0}^{\infty} e^{-M_{D} s}\left(B(X(s, x, v))-B_{D}\right)\left(\begin{array}{c}
0 \\
V_{2}(s, x, v) \\
-V_{1}(s, x, v)
\end{array}\right) d s
$$

Then by (??) and (??) we have

$$
\binom{x_{D}}{v_{D}}=\sigma\left(Y\left(0, x_{U}, v_{U}\right), Z\left(0, x_{U}, v_{U}\right)\right)
$$

so by Lemma 2.5 it suffices to show σ is continuous at $\left(Y\left(0, x_{U}, v_{U}\right), Z\left(0, x_{U}, v_{U}\right)\right)$.
Consider (x, v) with $f(x, v) \neq 0$ and (\tilde{x}, \tilde{v}) with $f(\tilde{x}, \tilde{v}) \neq 0$ and $\mid(\tilde{x}, \tilde{v})-$ $(x, v) \mid \leq 1$. Denote $(X, V)(t)=(X, V)(t, x, v)$ and $(\tilde{X}, \tilde{V})(t)=(X, V)(t, \tilde{x}, \tilde{v})$. By (??)

$$
\begin{equation*}
\tilde{X}(t) \geq \tilde{x}+C_{1} t-C_{2} \geq C_{1} t-\left(C_{2}+1+|x|\right) \tag{2.23}
\end{equation*}
$$

for $t \geq 0$. By the mean value theorem there is ξ between $X(t)$ and $\tilde{X}(t)$ such that

$$
B(X(t))-B(\tilde{X}(t))=B^{\prime}(\xi)(X(t)-\tilde{X}(t))
$$

For $t \geq T=2 C_{1}^{-1}\left(C_{2}+1+|x|\right),(? ?)$ forces $X(t), \tilde{X}(t)$, and hence ξ to exceed $\frac{1}{2} C_{1} t$ so by (??) we have

$$
\begin{aligned}
& \left|\left(B(X)-B_{D}\right)\left(\begin{array}{r}
0 \\
V_{2} \\
-V_{1}
\end{array}\right)-B\left(\tilde{X}-B_{D}\right)\left(\begin{array}{r}
0 \\
\tilde{V}_{2} \\
-\tilde{V}_{1}
\end{array}\right)\right| \\
\leq & |V-\tilde{V}|\left|B(X)-B_{D}\right|+|\tilde{V}||B(X)-B(\tilde{X})| \\
\leq & |V-\tilde{V}| C_{0}(1+|X|)^{-p}+C\left|B^{\prime}(\xi)\right||X-\tilde{X}| \\
\leq & C\left((1+X)^{-p}+(1+\xi)^{-p}\right)|(X, V)-(\tilde{X}, \tilde{V})| \\
\leq & C\left(1+\frac{1}{2} C_{1} t\right)^{-p}|(X, V)-(\tilde{X}, \tilde{V})| .
\end{aligned}
$$

Similarly, for $0 \leq t \leq T$ we have

$$
\begin{aligned}
& \quad\left|\left(B(X)-B_{D}\right)\left(\begin{array}{r}
0 \\
V_{2} \\
-V_{1}
\end{array}\right)-\left(B(\tilde{X})-B_{D}\right)\left(\begin{array}{c}
0 \\
\tilde{V}_{2} \\
-\tilde{V}_{1}
\end{array}\right)\right| \\
& \leq C|(X, V)-(\tilde{X}, \tilde{V})| .
\end{aligned}
$$

Hence, by Lemma 2.2, we have

$$
\begin{aligned}
& |\sigma(x, v)-\sigma(\tilde{x}, \tilde{v})|=\mid(x, v)-(\tilde{x}, \tilde{v}) \\
& \left.+\int_{0}^{\infty} e^{-M_{D} s}\left(\left(B(X)-B_{D}\right)\left(\begin{array}{c}
0 \\
V_{2} \\
-V_{1}
\end{array}\right)-\left(B(\tilde{X})-B_{D}\right)\left(\begin{array}{c}
0 \\
\tilde{V}_{2} \\
-\tilde{V}_{1}
\end{array}\right)\right) d s \right\rvert\, \\
\leq & |(x, v)-(\tilde{x}, \tilde{v})|+\int_{0}^{T} C|(X, V)-(\tilde{X}, \tilde{V})| d s \\
& +\int_{T}^{\infty} C\left(1+\frac{1}{2} C_{1} s\right)^{-p}|(X, V)-(\tilde{X}, \tilde{V})| d s \\
\leq & \left(1+C T C_{3}+C \int_{T}^{\infty}\left(1+\frac{1}{2} C_{1} s\right)^{-p} d s C_{3}\right)|(x, v)-(\tilde{x}, \tilde{v})|
\end{aligned}
$$

and the continuity follows.
Finally

$$
f(Y(t), Z(t))=F_{D}\left(R_{D}\left(v_{D}\right)\right)
$$

may be shown in the same manner as (??) and the proof is complete.
By reversing the roles of $\left(x_{U}, v_{U}\right)$ and $\left(x_{D}, v_{D}\right)$ in Lemmas 2.5 and 2.6 we immediately have:

Lemma 2.7. For any $\left(x_{D}, v_{D}\right)$ there is a unique solution of (??) that satisfies (??) where $\left(Y_{D}, Z_{D}\right)$ is defined by (??). It depends continuously on $\left(x_{D}, v_{D}\right)$. If $F_{D}\left(R_{D}\left(v_{D}\right)\right) \neq 0$ then this solution is defined for all t and there exists a
unique $\left(x_{U}, v_{U}\right) \in \mathbb{R}^{3}$ such that (??) holds where $\left(Y_{U}, Z_{U}\right)$ is defined by (??). $\left(x_{U}, v_{U}\right)$ depends continuously on $\left(x_{D}, v_{D}\right)$ and (??) holds.

Definition. Since the choice of $\left(x_{D}, v_{D}\right)$ in Lemma 2.6 is unique, we may define X_{D}, V_{D} by

$$
\left(X_{D}\left(x_{U}, v_{U}\right), V_{D}\left(x_{U}, v_{U}\right)\right)=\left(x_{D}, v_{D}\right)
$$

for $\left(x_{U}, v_{U}\right)$ with $F_{U}\left(R_{U}\left(v_{U}\right)\right) \neq 0$. Similarly for $\left(x_{D}, v_{D}\right)$ with $F_{D}\left(R_{D}\left(v_{D}\right)\right) \neq$ 0 we may define X_{U}, V_{U} by

$$
\left(X_{U}\left(x_{D}, v_{D}\right), V_{U}\left(x_{D}, v_{D}\right)\right)=\left(x_{U}, v_{U}\right)
$$

Then $\left(X_{D}, V_{D}\right)$ and $\left(X_{U}, V_{U}\right)$ are inverses.
Let us define

$$
A(x)=\int_{0}^{x} B(y) d y
$$

then

$$
\frac{d}{d t}\left(Z_{2}+A(Y)\right)=E
$$

This allows us to derive one equation relating $\left(x_{U}, v_{U}\right)$ and $\left(x_{D}, v_{D}\right)$.
Lemma 2.8. For any $\left(x_{U}, v_{U}\right)$ with $F_{U}\left(R_{U}\left(v_{U}\right)\right) \neq 0$ let $\left(x_{D}, v_{D}\right)=\left(X_{D}\left(x_{U}, v_{U}\right), V_{D}\left(x_{U}, v_{U}\right)\right)$. Then

$$
\left(v_{D 2}+B_{D} x_{D}\right)-\left(v_{U 2}+B_{U} x_{U}\right)=-\int\left(B(y)-B_{A}(y)\right) d y
$$

Proof. Let $0_{+}(1)\left(0_{-}(1)\right)$ denote terms which tend to zero as $t \rightarrow+\infty(t \rightarrow$ $-\infty)$. By explicit calculation on (??) and (??) we find that

$$
\begin{aligned}
Y(t)= & x_{D}+v_{D 1} B_{D}^{-1} \sin \left(B_{D} t\right)+v_{D 2} B_{D}^{-1}\left(1-\cos \left(B_{D} t\right)\right) \\
& +W_{D}\left(t-B_{D}^{-1} \sin \left(B_{D} t\right)\right)+0_{+}(1)
\end{aligned}
$$

and

$$
Z_{2}(t)=-v_{D 1} \sin \left(B_{D} t\right)+v_{D 2} \cos \left(B_{D} t\right)+W_{D} \sin \left(B_{D} t\right)+0_{+}(1)
$$

Also,

$$
A(x)=B_{D} x+\int_{0}^{\infty}\left(B-B_{D}\right) d y-\int_{x}^{\infty}\left(B-B_{D}\right) d y
$$

so it follows that

$$
Z_{2}(t)+A(Y(t))=v_{D 2}+B_{D} x_{D}+E t+\int_{0}^{\infty}\left(B-B_{D}\right) d y+0_{+}(1)
$$

A very similar computation yields

$$
\begin{equation*}
Z_{2}(t)+A(Y(t))=v_{U 2}+B_{U} x_{U}+E t-\int_{-\infty}^{0}\left(B-B_{U}\right) d y+0_{-} \tag{2.24}
\end{equation*}
$$

Hence, for $T>0$

$$
\begin{aligned}
2 E T= & \int_{-T}^{T} \frac{d}{d s}\left(Z_{2}+A(Y)\right) d s \\
= & \left(v_{D 2}+B_{D} x_{D}\right)-\left(v_{U 2}+B_{U} x_{U}\right)+2 E T \\
& +\int\left(B-B_{A}\right) d y+0(1)
\end{aligned}
$$

where $0(1)$ denotes terms that tend to zero as $T \rightarrow+\infty$. Letting $T \rightarrow+\infty$ completes the proof.

We now restrict the mapping between $\left(x_{U}, v_{U}\right)$ and $\left(x_{D}, v_{D}\right)$ to get a function of v only.

Definition. For $F_{U}\left(R_{U}\left(v_{U}\right)\right) \neq 0$ define

$$
\mathcal{D}\left(v_{U}\right)=V_{D}\left(-B_{U}^{-1} v_{U 2}, v_{U}\right) .
$$

For $F_{D}\left(R_{D}\left(v_{D}\right)\right) \neq 0$ define

$$
\mathcal{U}\left(v_{D}\right)=V_{U}\left(-B_{D}^{-1}\left(v_{D 2}+\int\left(B-B_{A}\right) d y\right), v_{D}\right)
$$

Comment. Given v_{U}, taking $x_{U}=-B_{U}^{-1} v_{U 2}$ forces $v_{U 2}+B_{U} x_{U}=0$. Given v_{D}, taking $x_{D}=-B_{D}^{-1}\left(v_{D 2}+\int\left(B-B_{A}\right) d y\right)$ forces $v_{D 2}+B_{D} x_{D}=-\int(B-$ $\left.B_{A}\right) d y$.

Lemma 2.9. \mathcal{D} and \mathcal{U} are continuous and are inverses. Also, if $v_{D}=\mathcal{D}\left(v_{U}\right)$ (with $F_{U}\left(R_{U}\left(v_{U}\right)\right) \neq 0$) then

$$
\begin{equation*}
F_{U}\left(R_{U}\left(v_{U}\right)\right)=F_{D}\left(R_{D}\left(v_{D}\right)\right) \tag{2.25}
\end{equation*}
$$

Proof. \mathcal{D} and \mathcal{U} continuous follows from Lemmas 2.5 and 2.7. Let v_{U} with $F_{U}\left(R_{U}\left(v_{U}\right)\right) \neq 0$ be given. Take

$$
\begin{aligned}
& x_{U}=-B_{U}^{-1} v_{U 2} \\
& x_{D}=X_{D}\left(x_{U}, v_{U}\right), v_{D}=V_{D}\left(x_{U}, v_{U}\right)
\end{aligned}
$$

Then by Lemma 2.8

$$
x_{D}=-B_{D}^{-1}\left(v_{D 2}+\int\left(B-B_{A}\right) d y\right)
$$

so

$$
v_{D}=V_{D}\left(x_{U}, v_{U}\right)=\mathcal{D}\left(v_{U}\right)
$$

But since $\left(X_{U}, V_{U}\right)$ and $\left(X_{D}, V_{D}\right)$ are inverses we have

$$
x_{U}=X_{U}\left(x_{D}, v_{D}\right), v_{U}=V_{U}\left(x_{D}, v_{D}\right) .
$$

Hence,

$$
\mathcal{U}\left(v_{D}\right)=V_{U}\left(-B_{D}^{-1}\left(v_{D 2}+\int\left(B-B_{A}\right) d y\right), v_{D}\right)=V_{U}\left(x_{D}, v_{D}\right)=v_{U}
$$

Finally, (??) follows from (??) and the proof is complete.
Lemma 2.10. If F_{D} is constant on an interval of positive length then F_{D} is zero on this interval.

Proof. Suppose F_{D} is a nonzero constant on some interval of positive length. Choose v_{D} so that $R_{D}\left(v_{D}\right)$ is in the interior of this interval and $v_{D} \neq$ $\mathcal{D}\left(W_{U}, 0\right)$. Let $v_{U}=\mathcal{U}\left(v_{D}\right)$ and note that $R_{U}\left(v_{U}\right) \neq 0$. For λ near one let

$$
v_{U}^{(\lambda)}=\left(W_{U}, 0\right)+\lambda\left(v_{U}-\left(W_{U}, 0\right)\right)
$$

and

$$
v_{D}^{(\lambda)}=\mathcal{D}\left(v_{U}^{(\lambda)}\right)
$$

then

$$
F_{D}\left(R_{D}\left(v_{D}^{(\lambda)}\right)\right)=F_{U}\left(R_{U}\left(v_{U}^{(\lambda)}\right)\right)=F_{U}\left(\lambda R_{U}\left(v_{U}\right)\right)
$$

must be constant on some interval with $\lambda=1$ in its interior. This contradicts an assumption on F_{U} made in Theorem 1.1 so the proof is complete.

Now we can show that $R_{D}\left(v_{D}\right)$ is determined by $R_{U}\left(v_{U}\right)$.
Lemma 2.11. Suppose that $r_{U} \geq 0$ with $F_{U}\left(r_{U}\right) \neq 0$. If $r_{U}=R_{U}\left(v_{U}\right)=$ $R_{U}\left(\tilde{v}_{U}\right)$ then $R_{D}\left(\mathcal{D}\left(v_{U}\right)\right)=R_{D}\left(\mathcal{D}\left(\tilde{v}_{U}\right)\right)$. Similarly, if $F_{D}\left(r_{D}\right) \neq 0$ and $r_{D}=$ $R_{D}\left(v_{D}\right)=R_{D}\left(\tilde{v}_{D}\right)$ then $R_{U}\left(\mathcal{U}\left(v_{D}\right)\right)=R_{U}\left(\mathcal{U}\left(\tilde{v}_{D}\right)\right)$.

Proof. Let

$$
v_{U}^{(\sigma)}=\left(W_{U}, 0\right)+\left(\begin{array}{rr}
\cos \sigma & \sin \sigma \\
-\sin \sigma & \cos \sigma
\end{array}\right)\left(v_{U}-\left(W_{U}, 0\right)\right)
$$

and note that

$$
R_{U}\left(v_{U}^{(\sigma)}\right)=r_{U}
$$

for all σ. Let $v_{D}^{(\sigma)}=\mathcal{D}\left(v_{U}^{(\sigma)}\right)$, then

$$
F_{D}\left(R_{D}\left(v_{D}^{(\sigma)}\right)\right)=F_{U}\left(R_{U}\left(v_{U}^{(\sigma)}\right)\right)=F_{U}\left(r_{U}\right)
$$

If there exists σ such that $R_{D}\left(v_{D}^{(\sigma)}\right) \neq R_{D}\left(\mathcal{D}\left(v_{U}\right)\right)$ then F_{D} would be constant on the interval with endpoints $R_{D}\left(v_{D}^{(\sigma)}\right)$ and $R_{D}\left(\mathcal{D}\left(v_{U}\right)\right)$. This would contradict Lemma 2.10, so

$$
R_{D}\left(v_{D}^{(\sigma)}\right)=R_{D}\left(\mathcal{D}\left(v_{U}\right)\right)
$$

for all σ. The first half of the lemma follows. The second is very similar and it's proof is omitted.

Comment. The mapping

$$
r_{U}=R_{U}\left(v_{U}\right) \mapsto r_{D}=R_{D}\left(v_{D}\right)=R_{D}\left(\mathcal{D}\left(v_{U}\right)\right)
$$

is a bijection between $\left\{r \geq 0: F_{U}(r)>0\right\}$ and $\left\{r \geq 0: F_{D}(r)>0\right\}$. From (??)

$$
\begin{equation*}
F_{U}\left(r_{U}\right)=F_{D}\left(r_{D}\right) \tag{2.26}
\end{equation*}
$$

Note that in the next lemma $f(x, v) \neq 0$ is not required and hence (??) may not be used. Also, C_{3} was chosen in Lemma 2.2.

Lemma 2.12. There exists $L_{-}<0$ such that for any (x, v) with $x \leq L_{-}$and $|v| \leq C_{3}$ there is a solution of (??), $t_{0} \in \mathbb{R}$, and $v_{U} \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\left(Y\left(t_{0}\right), Z\left(t_{0}\right)\right)=(x, v) \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
(Y, Z)-e^{M_{U} t}\binom{x_{U}}{v_{U}}-\psi_{U} \rightarrow 0 \text { as } t \rightarrow-\infty \tag{2.28}
\end{equation*}
$$

where

$$
x_{U}=-B_{U}^{-1} v_{U 2} .
$$

Also,

$$
\begin{equation*}
\left|R_{U}(v)-R_{U}\left(v_{U}\right)\right| \leq C\left|L_{-}\right|^{1-p} \tag{2.29}
\end{equation*}
$$

Similarly, there exists $L_{+}>0$ such that for any (x, v) with $x \geq L_{+}$and $|v| \leq C_{3}$ there is a solution of (??), $t_{0} \in \mathbb{R}$, and $v_{D} \in \mathbb{R}^{2}$ such that

$$
\left(Y\left(t_{0}\right), Z\left(t_{0}\right)\right)=(x, v)
$$

and

$$
(Y, Z)-e^{M_{D} t}\binom{x_{D}}{v_{D}}-\psi_{D} \rightarrow 0 \text { as } t \rightarrow+\infty
$$

where

$$
x_{D}=-B_{D}^{-1}\left(v_{D 2}+\int\left(B-B_{A}\right) d y\right)
$$

Also,

$$
\left|R_{D}(v)-R_{D}\left(v_{D}\right)\right| \leq C L_{+}^{1-p}
$$

Proof. Writing $(X, V)(t)=(X, V)(t, x, v)$ define

$$
(Y, Z)(t)=(X, V)\left(t-t_{0}\right)
$$

where

$$
t_{0}=E^{-1}\left(v_{2}+A(x)+\int_{-\infty}^{0}\left(B-B_{U}\right) d y\right) .
$$

Then (Y, Z) is a solution of (??) that satisfies (??). Also

$$
\frac{d}{d t}\binom{Y}{Z}=M_{U}\binom{Y}{Z}+\left(\begin{array}{c}
0 \\
0 \\
E
\end{array}\right)+\beta_{U}
$$

where

$$
\beta_{U}=\left(B(Y)-B_{U}\right)\left(\begin{array}{c}
0 \\
Z_{2} \\
-Z_{1}
\end{array}\right)
$$

so

$$
\binom{Y}{Z}(t)=e^{M_{U}\left(t-t_{0}\right)}\binom{X}{V}+\int_{t_{0}}^{t} e^{M_{U}(t-s)}\left(\left(\begin{array}{c}
0 \tag{2.30}\\
0 \\
E
\end{array}\right)+\beta_{U}(s)\right) d s
$$

Let

$$
S(t)=\left|\int_{t_{0}}^{t} e^{M_{U}(t-s)} \beta_{U}(s) d s\right|
$$

and

$$
T=\inf \left\{t<t_{0}: S \leq 1 \text { on }\left[t, t_{0}\right]\right\}
$$

Then on $\left[T, t_{0}\right]$

$$
Y(t) \leq C\left(t-t_{0}\right)+C_{5}+x \leq C\left(t-t_{0}\right)+C_{5}+L_{-}
$$

and

$$
|Z(t)| \leq C
$$

so taking $L_{-}<-2 C_{5}$

$$
\begin{align*}
S(t) & \leq \int_{t}^{t_{0}} C\left|\beta_{U}(s)\right| d s \leq C \int_{t}^{t_{0}}\left|B(Y)-B_{U}\right| d s \\
& \leq C \int_{t}^{t_{0}}(1+|Y|)^{-p} d s \tag{2.31}\\
& \leq C \int_{t}^{t_{0}}\left(1+C\left(t_{0}-S\right)+\frac{1}{2}\left|L_{-}\right|\right)^{-p} d s \leq C_{6}\left|L_{-}\right|^{1-p}
\end{align*}
$$

Taking $C_{6}\left|L_{-}\right|^{1-p}<1$ forces $T=-\infty$.
Next let

$$
\binom{x_{U}}{v_{U}}=e^{-M_{U} t_{0}}\binom{x}{v}-\int_{0}^{t_{0}} e^{-M_{U} s}\left(\begin{array}{c}
0 \\
0 \\
E
\end{array}\right) d s-\int_{-\infty}^{t_{0}} e^{-M_{U} s} \beta_{U}(s) d s
$$

then (??) may be written

$$
\begin{aligned}
\binom{Y}{Z}(t)= & e^{M_{U}\left(t-t_{0}\right)}\binom{x}{v}+\psi_{U}(t)-\int_{0}^{t_{0}} e^{M_{U}(t-s)}\left(\begin{array}{c}
0 \\
0 \\
E
\end{array}\right) d s \\
& -\int_{-\infty}^{t_{0}} e^{M_{U}(t-s)} \beta_{U}(s) d s+\int_{-\infty}^{t} e^{M_{U}(t-s)} \beta_{U}(s) d s \\
= & e^{M_{U} t}\binom{x_{U}}{v_{U}}+\psi_{U}(t)+\int_{-\infty}^{t} e^{M_{U}(t-s)} \beta_{U}(s) d s
\end{aligned}
$$

(??) now follows.
Next using (??) we have

$$
\begin{align*}
E\left(t_{0}-t\right) & =\int_{t}^{t_{0}} \frac{d}{d s}\left(Z_{2}+A(Y)\right) d s \\
& =v_{2}+A(x)-\left(Z_{2}(t)+A(Y(t))\right) \\
& =v_{2}+A(x)-\left(v_{U 2}+B_{U} x_{U}+E t-\int_{-\infty}^{0}\left(B-B_{U}\right) d s\right)+0_{-} \tag{1}
\end{align*}
$$

Using the definition of t_{0} it follows that

$$
x_{U}=-B_{U} v_{U 2} .
$$

Finally

$$
\frac{d}{d s}\left(R_{U}^{2}(Z)\right)=2 Z_{2} W_{U}\left(B_{U}-B(Y)\right)
$$

so by (??) it follows that for $t \leq t_{0}$

$$
\left|R_{U}(Z(t))-R_{U}(v)\right| \leq C\left|L_{-}\right|^{1-p}
$$

Let

$$
\binom{Y_{U}}{Z_{U}}=e^{M_{U} t}\binom{x_{U}}{v_{U}}+\psi_{U}
$$

then

$$
R_{U}\left(Z_{U}(t)\right)=R_{U}\left(v_{U}\right)
$$

for all t and by (??)

$$
R_{U}(Z(t)) \rightarrow R_{U}\left(v_{U}\right) \text { as } t \rightarrow-\infty .
$$

(??) now follows.

The other assertions of the lemma may be shown in a similar manner.

3 Conservation Laws

We first use the fact that the mass flux is constant for any solution of the Vlasov equation.

Lemma 3.1. Let $r_{U}>0$ with $F_{U}\left(r_{U}\right) \neq 0$ and define

$$
r_{D}=R_{D}\left(\mathcal{D}\left(v_{U}\right)\right)
$$

for any v_{U} with $R_{U}\left(v_{U}\right)=r_{U}$. Then

$$
W_{U} r_{U}^{2}=W_{D} r_{D}^{2}
$$

Proof. We claim first that if $g(x, v)$ is continuous, satisfies $g(X(t, x, v), V(t, x, v))=$ $g(x, v)$ for all t, x, v, and there is $C>0$ such that $|v|>C \Rightarrow g(x, v)=0$ then

$$
\int g(x, v) v_{1} d v=\text { constant. }
$$

To show this note that

$$
\frac{d}{d t}\left[V_{2}+A(X)\right]=E
$$

so for any (x, v) there is exactly one value of t when $V_{2}+A(X)=0$. Define

$$
G\left(x, v_{1}\right)=g\left(x, v_{1},-A(x)\right)
$$

and note that G is continuous and compactly supported. Let G_{ε} be a sequence of smooth functions with uniformly bounded support and $G_{\varepsilon} \rightarrow G$ as $\varepsilon \rightarrow 0^{+}$. Then define

$$
g_{\varepsilon}(x, v)=\left.G_{\varepsilon}\left(X(t, x, v), V_{1}(t, x, v)\right)\right|_{t=-E^{-1}\left(v_{2}+A(x)\right)} .
$$

Note that

$$
\left.\left(V_{2}+A(X)\right)\right|_{t}=v_{2}+A(x)+E t
$$

so

$$
\left.\left(V_{2}+A(X)\right)\right|_{t=-E^{-1}\left(v_{2}+A(x)\right)}=0 .
$$

Then g_{ε} is smooth and constant on the characteristics so

$$
v_{1} \partial_{x} g_{\varepsilon}+v_{2} B(x) \partial_{v_{1}} g_{\varepsilon}+\left(E-v_{1} B(x)\right) \partial_{v_{2}} g_{\varepsilon}=0
$$

Hence,

$$
\int g_{\varepsilon} v_{1} d v=\text { constant in } x .
$$

But

$$
\begin{aligned}
g_{\varepsilon}(x, v) & =\left.G_{\varepsilon}\left(X, V_{1}\right)\right|_{-E^{-1}\left(v_{2}+A(x)\right)} \\
& \left.\rightarrow G\left(X, V_{1}\right)\right|_{-E^{-1}\left(v_{2}+A(x)\right)}=g(x, v)
\end{aligned}
$$

as $\varepsilon \rightarrow 0$ so

$$
\int g_{\varepsilon} d v \rightarrow \int g d v \text { as } \varepsilon \rightarrow 0
$$

The claim now follows.
Next consider any $\varepsilon \in\left(0, r_{U}\right)$ with $F_{U}\left(r_{U}+2 \varepsilon\right) \neq 0$ (i.e. $\left.r_{U}+2 \varepsilon<r_{0}\right)$. Let $\sigma:[0, \infty) \rightarrow[0,1]$ be smooth with $\sigma(r)=1$ if $r \leq r_{U}$ and $\sigma(r)=0$ if $r \geq r_{U}+\varepsilon$. Define

$$
g(x, v)= \begin{cases}\sigma\left(R_{U}\left(v_{U}\right)\right) & \text { if } f(x, v) \neq 0 \\ 0 & \text { else }\end{cases}
$$

Then g is continuous and has bounded v support. We claim that g is constant on characteristics. To check this suppose that

$$
(x, v)=(X, V)(T, y, w)
$$

Then $f(x, v)=f(y, w)$. If $f(x, v)=0$ then $g(x, v)$ and $g(y, w)$ are both zero so consider $f(x, v) \neq 0$. We have

$$
\begin{equation*}
\binom{X}{V}(t, y, w)=e^{M_{U} t}\binom{y_{U}}{w_{U}}+\psi_{U}(t)+0 \tag{1}
\end{equation*}
$$

and

$$
\begin{aligned}
& e^{M_{U} t}\binom{x_{U}}{v_{U}}+\psi_{U}(t)+0_{-}(1)=\binom{X}{V}(t, x, v) \\
= & \binom{X}{V}(t+T, y, w)=e^{M_{U}(t+T)}\binom{y_{U}}{w_{U}}+\psi_{U}(t+T)+0_{-}(1) .
\end{aligned}
$$

But

$$
\begin{aligned}
\psi_{U}(t+T) & =\int_{0}^{t+T} e^{M_{U}(t+T-s)}\left(\begin{array}{c}
0 \\
0 \\
E
\end{array}\right) d s \\
& =\int_{0}^{T} e^{M_{U}(t+T-s)}\left(\begin{array}{c}
0 \\
0 \\
E
\end{array}\right) d s+\int_{T}^{t+T} e^{M_{U}(t+T-s)}\left(\begin{array}{c}
0 \\
0 \\
E
\end{array}\right) d s \\
& =e^{M_{U} t} \psi_{U}(T)+\psi_{U}(t)
\end{aligned}
$$

so

$$
e^{M_{U} t}\binom{x_{U}}{v_{U}}+\psi_{U}(t)=e^{M_{U}(t+T)}\binom{y_{U}}{w_{U}}+e^{M_{U} t} \psi_{U}(T)+\psi_{U}(t)+0_{-}(1)
$$

It follows that

$$
\begin{equation*}
\binom{x_{U}}{v_{U}}=e^{M_{U} T}\binom{y_{U}}{w_{U}}+\psi_{U}(T)+0_{-} \tag{1}
\end{equation*}
$$

and hence,

$$
\binom{x_{U}}{v_{U}}=e^{M_{U} T}\binom{y_{U}}{w_{U}}+\psi_{U}(T)
$$

By explicit calculation it follows that

$$
R_{U}\left(v_{U}\right)=R_{U}\left(w_{U}\right)
$$

so $g(x, v)=g(y, w)$. Therefore

$$
\begin{equation*}
\int g v_{1} d v=\text { constant. } \tag{3.1}
\end{equation*}
$$

By Lemma 2.12 for $|v| \leq C_{3}$ and x sufficiently negative we have

$$
\left|R_{U}(v)-R_{U}\left(v_{U}\right)\right|<\varepsilon
$$

So if $g(x, v) \neq 0$ then $\sigma\left(R_{U}\left(v_{U}\right)\right) \neq 0$, so $R_{U}\left(v_{U}\right)<r_{U}+\varepsilon$ and

$$
R_{U}(v)<R_{U}\left(v_{U}\right)+\varepsilon<r_{U}+2 \varepsilon .
$$

If $R_{U}(v)<r_{U}-\varepsilon$ then

$$
R_{U}\left(v_{U}\right)<R_{U}(v)+\varepsilon<r_{U}
$$

and hence, $g(x, v)=1$. Thus

$$
I_{\left\{v: R_{U}(v)<r_{U}-\varepsilon\right\}} \leq g(x, v) \leq I_{\left\{v: R_{U}(v)<r_{U}+2 \varepsilon\right\}} .
$$

It follows that

$$
\begin{align*}
& \int g v_{1} d v-\pi W_{U} r_{U}^{2} \\
= & \int g v_{1} d v-\int_{\left\{v: R_{U}(v)<r_{U}\right\}} v_{1} d v \rightarrow 0 \text { as } \varepsilon \rightarrow 0^{+} . \tag{3.2}
\end{align*}
$$

By a similar argument (using Lemma 2.12)

$$
\int g v_{1} d v \rightarrow \pi W_{D} r_{D}^{2} \text { as } \varepsilon \rightarrow 0^{+}
$$

The lemma now follows by (??) and (??).

Define

$$
\begin{equation*}
\lambda=\sqrt{\frac{W_{D}}{W_{U}}} \tag{3.3}
\end{equation*}
$$

If $F_{D}\left(r_{D}\right) \neq 0$ then by Lemma 3.1 and (??)

$$
F_{D}\left(r_{D}\right)=F_{U}\left(r_{U}\right)=F_{U}\left(\lambda r_{D}\right)
$$

If $F_{D}(r)=0$ then $F_{U}(\lambda r)=0$. Hence,

$$
\begin{equation*}
F_{D}(r)=F_{U}(\lambda r) \text { for all } r \geq 0 \tag{3.4}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
B_{D}=\frac{E}{W_{D}}=\frac{B_{U} W_{U}}{W_{D}}=B_{U} \lambda^{-2} \tag{3.5}
\end{equation*}
$$

Next we use the fact that the energy flux is constant.
Lemma 3.2. Let

$$
M_{k}=2 \pi \int_{0}^{\infty} F_{U}(r) r^{k+1} d r
$$

for $k=0,2$. Then

$$
\begin{equation*}
M_{0} W_{U}^{2}+2 M_{2}+\frac{1}{4 \pi} B_{U}^{2}=M_{0} W_{U}^{2} \lambda^{4}+\left(2 M_{2}+\frac{1}{4 \pi} B_{U}^{2}\right) \lambda^{-2} \tag{3.6}
\end{equation*}
$$

Proof. It is easy to check that

$$
\frac{d}{d x}\left(\int f|v|^{2} v_{1} d v+\frac{1}{4 \pi} E B\right)=0
$$

so

$$
\int f|v|^{2} v_{1} d v+\frac{1}{4 \pi} E B=\text { constant }
$$

Letting $x \rightarrow-\infty$ and letting $x \rightarrow+\infty$ and using (??), (??), and (??) yields

$$
\begin{align*}
& \int F_{U}\left(R_{U}(v)\right)|v|^{2} v_{1} d v+\frac{1}{4 \pi} E B_{U} \\
= & \int F_{D}\left(R_{D}(v)\right)|v|^{2} v_{1} d v+\frac{1}{4 \pi} E B_{D} .
\end{align*}
$$

Now using (??) and (??) we compute

$$
\begin{aligned}
& \int F_{D}\left(R_{D}(v)\right)|v|^{2} v_{1} d v=\int F_{U}\left(\lambda R_{D}(v)\right)|v|^{2} v_{1} d v \\
= & \int_{0}^{\infty} \int_{0}^{2 \pi} F_{U}(\lambda r)\left(\left(W_{D}+r \cos \theta\right)^{2}+(r \sin \theta)^{2}\right) \\
& \left(W_{D}+r \cos \theta\right) d \theta r d r \\
= & 2 \pi \int_{0}^{\infty} F_{U}(\lambda r)\left(W_{D}^{3}+2 W_{D} r^{2}\right) r d r \\
= & 2 \pi \int_{0}^{\infty} F_{U}(r)\left(W_{D}^{3}+2 W_{D}\left(\lambda^{-1} r\right)^{2}\right)\left(\lambda^{-1} r\right) \lambda^{-1} d r \\
= & 2 \pi \int_{0}^{\infty} F_{U}(r)\left(\left(W_{U} \lambda^{2}\right)^{3}+2\left(W_{U} \lambda^{2}\right) \lambda^{-2} r^{2}\right) \lambda^{-2} r d r \\
= & 2 \pi \int_{0}^{\infty} F_{U}(r)\left(W_{U}^{3} \lambda_{2}^{4}+2 W_{U} \lambda^{-2} r^{2}\right) r d r \\
= & M_{0} W_{U}^{3} \lambda^{4}+2 M_{2} W_{U} \lambda^{-2} .
\end{aligned}
$$

Similarly,

$$
\int F_{U}\left(R_{U}(v)\right)|v|^{2} v_{1} d v=M_{0} W_{U}^{3}+2 M_{2} W_{U}
$$

Now (??) becomes

$$
M_{0} W_{U}^{3}+2 M_{2} W_{U}+\frac{1}{4 \pi} E B_{U}=M_{0} W_{U}^{3} \lambda^{4}+2 M_{2} W_{U} \lambda^{-2}+\frac{1}{4 \pi} E B_{D}
$$

Using

$$
E=W_{U} B_{U}=W_{D} B_{D}
$$

it follows that

$$
M_{0} W_{U}^{3}+2 M_{2} W_{U}+\frac{1}{4 \pi} W_{U} B_{U}^{2}=M_{0} W_{U}^{3} \lambda^{4}+2 M_{2} W_{U} \lambda^{-2}+\frac{1}{4 \pi} W_{D} B_{D}^{2}
$$

Finally using (??) and (??) yield (??).
Next we use the fact that the momentum flux is constant.
Lemma 3.3. We have

$$
\begin{equation*}
M_{0} W_{U}^{2}+\frac{1}{2} M_{2}+\frac{1}{16 \pi} B_{U}^{2}=M_{0} W_{U}^{2} \lambda^{2}+\left(\frac{1}{2} M_{2}+\frac{1}{16 \pi} B_{U}^{2}\right) \lambda^{-4} \tag{3.8}
\end{equation*}
$$

Proof. We have

$$
\int f v_{1}^{2} d v+\frac{1}{16 \pi} B^{2}=\text { constant }
$$

so by (??) and (??) it follows that

$$
\begin{equation*}
\int F_{U}\left(R_{U}(v)\right) v_{1}^{2} d v+\frac{1}{16 \pi} B_{U}^{2}=\int F_{D}\left(R_{D}(v)\right) v_{1}^{2} d v+\frac{1}{16 \pi} B_{D}^{2} \tag{3.9}
\end{equation*}
$$

Using (??), (??), and (??) we compute

$$
\begin{aligned}
& \int F_{D}\left(R_{D}\left(v_{1}\right)\right) v_{1}^{2} d v=\int F_{U}\left(\lambda R_{D}(v)\right) v_{1}^{2} d v \\
= & \int_{0}^{\infty} \int_{0}^{2 \pi} F_{U}(\lambda r)\left(W_{D}+r \cos \theta\right)^{2} d \theta r d r \\
= & 2 \pi \int_{0}^{\infty} F_{U}(\lambda r)\left(W_{D}^{2}+\frac{1}{2} r^{2}\right) r d r \\
= & 2 \pi \int_{0}^{\infty} F_{U}(r)\left(W_{D}^{2}+\frac{1}{2}\left(\lambda^{-1} r\right)^{2}\right) \lambda^{-1} r \lambda^{-1} d r \\
= & 2 \pi \int_{0}^{\infty} F_{U}(r)\left(\left(W_{U} \lambda^{2}\right)^{2}+\frac{1}{2} \lambda^{-2} r^{2}\right) \lambda^{-2} r d r \\
= & M_{0} W_{U}^{2} \lambda^{2}+\frac{1}{2} M_{2} \lambda^{-4} .
\end{aligned}
$$

Similarly,

$$
\int F_{U}\left(R_{U}(v)\right) v_{1}^{2} d v=M_{0} W_{U}^{2}+\frac{1}{2} M_{2}
$$

Now (??) becomes

$$
M_{0} W_{U}^{2}+\frac{1}{2} M_{2}+\frac{1}{16 \pi} B_{U}^{2}=M_{0} W_{U}^{2} \lambda^{2}+\frac{1}{2} M_{2} \lambda^{-4}+\frac{1}{16 \pi} B_{D}^{2}
$$

Using (??) yields (??) completing the proof.
We may now prove Theorem 1.1. Let

$$
\alpha=\frac{\frac{1}{2} M_{2}+\frac{1}{16 \pi} B_{U}^{2}}{M_{0} W_{U}^{2}}
$$

then (??) and (??) may be written as

$$
\begin{equation*}
\lambda^{4}+4 \alpha \lambda^{-2}=1+4 \alpha \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{2}+\alpha \lambda^{-4}=1+\alpha \tag{3.11}
\end{equation*}
$$

Then (??) yields

$$
0=\lambda^{2}\left(\lambda^{4}-1\right)-4 \alpha\left(\lambda^{2}-1\right)=\left(\lambda^{2}-1\right)\left(\lambda^{2}\left(\lambda^{2}+1\right)-4 \alpha\right)
$$

and (??) yields

$$
0=\lambda^{4}\left(\lambda^{2}-1\right)-\alpha\left(\lambda^{4}-1\right)=\left(\lambda^{2}-1\right)\left(\lambda^{4}-\alpha\left(\lambda^{2}+1\right)\right)
$$

Suppose $W_{U} \neq W_{D}$. Then $\lambda^{2} \neq 1$ and we have

$$
\begin{equation*}
\lambda^{4}+\lambda^{2}-4 \alpha=0 \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{4}-\alpha \lambda^{2}-\alpha=0 \tag{3.13}
\end{equation*}
$$

Subtracting (??) from (??) yields

$$
\begin{equation*}
\lambda^{2}=\frac{3 \alpha}{1+\alpha} \tag{3.14}
\end{equation*}
$$

Multiplying (??) by 4 and subtracting (??) yields

$$
\lambda^{2}=\frac{4 \alpha+1}{3} .
$$

Hence,

$$
\frac{3 \alpha}{1+\alpha}=\frac{4 \alpha+1}{3}
$$

which implies $\alpha=\frac{1}{2}$. Now $\lambda^{2}=1$ follows from (??). This is a contradiction so

$$
W_{U}=W_{D}
$$

By (??)

$$
F_{U}=F_{D}
$$

References

[1] Bernstein, I., Greene, J., and Kruskal, M., Exact Non-Linear Plasma Oscilations, Phys. Rev. 2, 108 (1957), 546-550.
[2] Gardner, C. S. and Morikawa, G. K., The Effect of Temperature on the Width of a Small Amplitude, Solitary Wave in a Collision-Free Plasma, Comm. Pure Appl. Math., 18 (1965), 35-49.
[3] Glassey, R., "The Cauchy Problem in Kinetic Theory", SIAM: Philadelphia, 1996.
[4] Glassey, R. and Schaeffer, J., On the One and One-Half Dimensional Relativistic Vlasov-Maxwell System, Math. Meth. Appl. Sci., 13 (1990), 169-179.
[5] Glassey, R. and Schaeffer, J., The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part I, Arch. Rat. Mech. Anal., 141 (1998), 331-354.
[6] Glassey, R. and Schaeffer, J., The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part II, Arch. Rat. Mech. Anal., 141 (1998), 355-374.
[7] Glassey, R. and Schaeffer, J., The Two and One-Half Dimensional Relativistic Vlasov-Maxwell System, Comm. Math. Phys., 185 (1997), 257284.
[8] Glassey, R. and Strauss, W., Absence of Shocks in an Initially Dilute Collisionless Plasma, Comm. Math. Phys., 113 (1987), No. 2, 191-208.
[9] Guo, Y. and Ragazzo, C. G., On Steady States in a Collisionless Plasma, Comm. Pure and Applied Math., 49 (1996), 1145-1174.
[10] Guo, Y. and Rein, G., Isotropic steady states in galactic dynamics, Comm. Math. Phys., 219 (2001), 607-629.
[11] Guo, Y. and Strauss, W., Instability of Periodic BGK Equilibria, Comm. Pure Applied Math., 48 (1995), 861-894.
[12] Guo, Y. and Strauss, W., Unstable BGK Solitary Waves and Collisionless Shocks, Comm. Math. Phys., 195 (1998), 267-293.
[13] Lions, P. L. and Perthame, B., Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.
[14] Morawetz, C. S., Magnetohydrodynamical Shock Structure Without Collisions, Phys. Fluids, 4 (1961), 988-1006.
[15] Parks, G. K., "Physics of Space Plasmas", Addison-Wesley (1991).
[16] Pfaffelmoser, K., Global Classical Solutions of the Vlasov-Poisson System in Three Dimensions for General Initial Data, J. Diff. Eqns., 95 (1992), 281-303.
[17] Rein, G., Nonlinear Stability for the Vlasov-Poisson System - the Energy - Cashmir Method, Math. Meth. in the Appl. Sci., 17 (1994), 1129-1140.
[18] Rein, G., Collisionless Kinetic Equations from Astrophysics - The Vlasov-Poisson System, in Handbook of Differential Equations, Evolutionary Equations, 3, Eds. C. M. Dafermos and E. Feireisl, Elsevier (2007).
[19] Schaeffer, J., Steady States for a One Dimensional Model of the Solar Wind, Quart. of Appl. Math., 59 (2001), 507-528.
[20] Schaeffer, J., Slow Decay for a Linearized Model of the Solar Wind, Quart. of Appl. Math., 70 (2012), 181-198.
[21] Schaeffer, J., Steady States of the Vlasov-Maxwell System, Quart. of Appl. Math., 63 (4) (2005), 619-643.
[22] Tidman, D. and Krall, N., "Shock Waves in Collisionless Plasmas", Wiley-Interscience, (1971).

