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Abstract. We study the evolution of grain boundary networks by the mean-curvature
flow under the restriction that the networks are Voronoi diagrams for a set of points.
For such evolution we prove a rigorous universal upper bound on the coarsening rate.
The rate agrees with the rate predicted for the evolution by mean-curvature flow of the
general grain boundary networks, namely that the typical grain area grows linearly in
time. We perform numerical simulations which provide evidence that the dynamics
achieves the rate of coarsening that agrees with the upper bound in terms of scaling.

1. Introduction

The aim of this work is twofold. First, we describe the analogue of mean-curvature
flow of a network of curves in the restricted class of networks arising as the Voronoi
diagrams (for appropriate set of points). Second, we provide a rigorous, universal,
upper bound on the rate of coarsening for the system.

Since the pioneering work of Kohn and Otto [20], rigorous upper bounds on the rate
of coarsening have been established in various systems. For example, Kohn and Otto
considered the Mullins–Sekerka problem which is the gradient flow of the perimeter in
two-phase systems with respect to the H−1 norm of the vector field that transports the
phases. They show a weak form of the upper bound ℓ . t1/3 where ℓ is the typical
length scale of the system.

The evolution of interfaces by mean-curvature flow raises a number of interesting
questions. Heuristic arguments based on scaling suggest that if one considers the evo-
lution of labyrinthine patterns under the flow where the normal velocity is equal to the
mean curvature then the typical length scale of the system should scale like

(1) ℓ ∼ t1/2.

See Glazier [11] for the heuristic argument and a review of early work (prior to Kohn
and Otto) attempting to verify this conjecture by numerical, experimental, and mean
field approaches. However, if one starts with a family of disjoint balls, the coarsening is
over in finite time (independent of the system size), and thus a universal upper bound
on the rate cannot hold. Even if one considers the volume-preserving mean-curvature
flow (which, like the Mullins-Sekerka evolution, preserves the mass of the phases), the
universal upper bound on the coarsening does not hold. On the other hand, there have
been partial results on coarsening rates by Dai [7] and Mugnai and Seis [25] which hold
provided that the dynamics satisfies some assumptions (which are reasonable if one of
the phases is relatively sparse).

A related model of coarsening driven by mean curvature is the evolution of grain
boundary networks. Under this model, a system with many phases (instead of two)
evolves by mean curvature. This system is particularly relevant to materials science.
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Its investigation started with the works of Beck [4], Herring [14], Mullins [26] and von
Neumann [29]. Since then many interesting properties, generalizations and applications
have been investigated (see [3, 5, 17, 18, 23] and references therein), but fundamental
questions such as rigorous results on long-time existence remain open. Extensive numer-
ical simulations [1, 2, 8, 9, 30] in 2D and 3D show that for generic data the typical area
of grains scales linearly with time, but a proof of an upper bound on the rate remains
elusive.

Here we study a simplified system where the grain boundary networks are restricted
to be Voronoi diagrams for a set of points. We investigate it in two dimensions. We
remark that there are no fundamental obstacles to extending our approach to three or
more dimensions, only that defining the flow becomes more involved. For the evolution
of Voronoi diagrams by mean curvature we prove that a weak form of the bound

ℓ . t1/2

holds universally. Our work is inspired by the work of Henseler, Niethammer, and Otto
[12], who restricted the configuration space to be the set of planar grain boundary net-
works with straight edges. They show numerically that such system also has the rate
of coarsening ℓ . t1/2. In the extensive numerical simulations they carried out one can
observe that if the grains are initially convex they remain so. When the convexity of
grains holds the proof we present for Voronoi diagrams applies and implies an upper
bound on the coarsening rate for their model too. However, for special (carefully con-
structed) configurations the convexity can be violated; and furthermore, there can be
interpenetrations of grains. Thus one would need to modify the dynamics a bit to make
it well-defined. We do not attempt to do so in this paper. Instead, we further restrict
the configuration space to be the set of Voronoi diagrams. This leads to a well-defined
system, but also brings a number of challenges.

A Voronoi diagram is typically given by specifying the centers of the cells. However,
during the mean-curvature flow of Voronoi diagrams centers of the cells can (and do)
collide and remain collided. To allow for this we need to define the configuration space as
a manifold with corners and more generally address the issues arising from considering a
gradient flow on a manifold with corners. Another issue is that the network can undergo
topological changes. In particular, the cell neighborhood structure can change and cells
can disappear. Furthermore, the energy of a configuration (total perimeter) is not a
smooth function of the positions of the centers of the Voronoi cells when topological
changes occur. Finally we needed to modify the Kohn-Otto framework. Namely, we
define the length scale L(t), which plays a key role in the framework, not as a function
of the configuration at time t, but instead depending on the whole solution path up to
time t. The modification is general and can be applied to other coarsening systems.

Let us remark that there are different simplifications of the evolution of grain bound-
ary networks which have been sucessfully analyzed. Fradkov [10] introduced a mean-
field type model for the grain size distribution. Recently, Herrmann, Laurençot, and
Niethammer [15] showed that the system admits self-similar solutions.

The paper is laid out as follows: In Section 2, we describe the mean-curvature flow
for a general network of curves. The discussion of the restriction of the mean-curvature
flow to the subspace of the set of grain boundary networks which are Voronoi diagrams
is started in Section 3. In Section 4, we briefly review background on the differential
geometry of manifolds with corners, which is needed to describe the restricted config-
uration space. The description of the gradient flow for Voronoi diagrams is completed
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in Section 5. The universal upper bound on the coarsening rate for this flow is proved
in Section 6. Finally, numerical tests suggesting the correctness of our approach and
demonstrating agreement with the upper bound on the coarsening rate are presented in
Section 7.

2. Mean-curvature flow of grain boundary networks

We begin by defining a grain boundary network and the mean-curvature flow in two
dimensions. Let T2 be a flat two-dimensional torus of side length Λ. A grain boundary

network, G, is a finite collection of grains, that is, open connected sets, Gi, i ∈ I with
piecewise C1 boundaries, that are pairwise disjoint and whose closures fill the whole
space:

Gi ∩Gj = ∅ if i 6= j and
⋃

i∈I

Gi = T2.

We denote the grain boundaries by ∂G =
⋃

i∈I ∂Gi. We define junctions, J , to be the
points which belong to boundaries of three or more grains.

We define the energy of a grain boundary network to be the total length of grain
boundaries:

(2) E(G) = 1

2

∑

i∈I

Per(Gi).

The time evolution of grain boundary networks in which boundaries move continuously
and no new grains can be created is described by specifying the normal velocity of the
grain boundaries:

V(G) = {v ∈ L2(∂G,R2) : for a.e. x ∈ ∂G if x ∈ ∂Gi then v(x)⊥∂Gi}.
On V(G) we define the inner product g by

(3) g(v1, v2) =

∫

∂G
v1 · v2 dH1,

where v1 · v2 indicates the scalar product of vectors v1 and v2. We say that a family of
grain boundary networks {G(t) : t ∈ [t1, t2]} evolves by velocity v :

⋃

t∈[t1,t2]
{t}×∂G(t) →

R
2 if there exists a continuous family of homeomorphisms Φ(t) : ∂G(t1) → ∂G(t) such

that dΦ(t)
dt (x) = v(x, t) for all t and a.e. x.

Given a junction x ∈ J which is an intersection of m (closures of) grains, there exist
ε > 0 and m arc-length parameterized curves γi : [0, ε) → T2 such that γi(0) = x
and that ∂G ∩ B(x, r) =

⋃m
i=1 γi(([0, ε)) ∩ B(x, r), for r > 0 small enough. We define

b(x) =
∑m

i=1 γ
′
i(0).

Given a family of grain boundary networks {G(t) : t ∈ [t1, t2]} evolving by a continu-
ous velocity v it is known (and is straightforward to verify) that

diff E [v] := dE
dt

∣

∣

∣

∣

t=0

= −
∫

∂G(0)
v · κdH1 −

∑

x∈J (0)

v(x) · b(x).

where κ is the mean curvature vector of the grain boundary. The mean curvature
evolution of the grain boundary network is defined as the gradient flow of energy E with
respect to the metric g, defined in (3). That is, the normal velocity v by which the
network moves is the minimizer of the Rayleigh functional:

v ∈ argminw∈V
1

2
g(w,w) + diff E [w].
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We note that if b(x) 6= 0 at any junction x ∈ J , then the Rayleigh functional does not
have a minimizer, since by taking w to be larger and more localized around x, one can
make the functional arbitrarily small. In other words, if b(x) 6= 0 the junction moves at
infinite speed at that particular time so that for t > 0, b(x(t)) (here, x(t) is the time
evolution of the particular junction) must be zero. Thus, the gradient flow takes place
on the set of networks for which

(4) b(x) = 0 for all x ∈ J .

In such cases the minimizer of the Rayleigh functional is

(5) v = κ.

We note that if more than three boundaries meet at a junction then there is direction
which decreases the energy and splits the junction into several triple junctions, as proven
by Cahn [6]. Thus the grain boundary networks have only triple junctions for all but
finitely many times. The condition (4) is equivalent to the condition that all three angles
at the junction are 120◦, which is known as the Herring angle condition [13].

The presentation here is similar to the approach of Kinderlehrer and Lin [17], and
Kinderlehrer, Livshits, and Ta’asan [18], though here we consider only the isotropic
mean-curvature flow. On the other hand we indicate in more detail that the Herring
condition at triple junctions follows from the gradient flow structure.

3. Mean-curvature flow for Voronoi diagrams

We consider a simplified model of the evolution of grain boundary networks by mean
curvature. We restrict the configuration space from all grain boundary networks to ones
which are Voronoi diagrams. The energy is still the total length of boundaries (2) and
the inner product is still the integral over the boundaries of the dot product of normal
velocities (3). In the regular case the network is described by the position of the centers
of the Voronoi cells. For clarity, we first consider this case and furthermore assume that
all junctions are triple junctions.

Specifically, the set of Voronoi diagrams with N distinct centers is described as

M = {(x1, . . . , xN ) ∈ (T2)
N : xi 6= xj if i 6= j}/ ∼

where ∼ is the equivalence relation on (T2)
N describing the relabeling of points. That

is, (x1, . . . , xN ) ∼ (y1, . . . , yN ) if there exists a permutation σ of {1, . . . , N} such that
yi = σ(xi) for all i = 1, . . . , N .

We begin to define the gradient flow on the configuration space of Voronoi diagrams:
Let E(X) be the energy (the total perimeter). A tangent vector is given as a vector
of velocities of the centers of Voronoi cells: δx ∈ R

2N . The metric is, as before, given
by integrating over grain boundaries the square of the resulting normal velocity of the
boundaries. It can be described by a quadratic, symmetric, positive definite matrix Q:

g(δx, δx) = δxTQδx.

The gradient vector is given by

(6) grad E = Q−1(DxE)T

The gradient flow is given by

(7) Ẋ = − grad E(X).
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To compute grad E(X), we observe that it is natural to compute the energy (total
perimeter) not directly in terms of the centers; but rather, in terms of the Voronoi
diagram determined by these centers. We call line segments common to two cells edges,
while the points belonging to three (or more) cells are called vertices (these are analogous
to junctions in the general grain boundary networks). We denote the vertex that belongs
to boundaries of cells with centers xi, xj, and xk by vijk. Let V be them-tuple of vertices.
Define F to be the function that assigns the vertices to configurations of centers:

(8) V = F (X),

and let P denote the derivative of F :

(9) P = DF (X).

Define Ẽ(V ) to be the perimeter expressed as the function of vertices. Then E(X) =

Ẽ(F (X)). Note that perturbation of centers induces a perturbation of vertices via P :

δv = Pδx.

Furthermore, note that the manifold of Voronoi diagrams is a submanifold of all grain
boundary networks with straight edges. The metric on the larger manifold is described
by

g̃(δv, δv) = δvT Q̃δv,

for Q̃ to be determined subsequently. The metric on the submanifold of Voronoi dia-
grams is the inherited one and thus

g(δx, δx) = g̃(Pδx, Pδx).

Hence

Q = P T Q̃P,

and the gradient vector is then expressible as

(10) grad E = Q−1(DxE)T = (P T Q̃P )−1P T (Dv Ẽ)T .
We next determine the explicit forms of the terms arising in the right-hand side of (10).

3.1. Expressions for gradient flow. In order to make use of (10), we must provide

a prescription for computing DvẼ , P , and Q̃. Let δv ∈ R
2N . A straightforward com-

putation reveals that the directional derivative of the function Ẽ in the direction δv
is

(11) DvẼ · δv =
∑

α∈V

∑

{β: β∈V,(α,β)∈E}

vβ − vα
|vβ − vα|

δvα,

where E = E(V ) is the set of edges present in the Voronoi diagram with vertices V .

Next, we turn our attention to Q̃. The metric, which we introduced in (3), encodes
the dissipation mechanism. It is equal to the integral of the squared normal velocity
along the grain boundary network;

g̃(δv, δv) =
∑

(α,β)∈E

1

3

1

|vα − vβ|
(

(δvα · (vα − vβ)
⊥)2

+
(

δvα · (vα − vβ)
⊥
) (

δvβ · (vα − vβ)
⊥
)

+
(

δvβ · (vα − vβ)
⊥
)2
)



6 MATT ELSEY, DEJAN SLEPČEV

where we define

R =

(

0 −1
1 0

)

to be the matrix giving counterclockwise rotation of 90◦, and define v⊥ = Rv. Thus Q̃
is a block matrix with entries at the 2× 2 block corresponding to the vertices α and β
given by
(12)














1
3

1
|vα−bβ |

(vα − vβ)
⊥ ⊗ (vα − vβ)

⊥ if α 6= β and (α, β) is an edge,
1
3

∑

{β̃:(α,β̃) is an edge}
1

|vα−v
β̃
|(vα − vβ̃)

⊥ ⊗ (vα − vβ̃)
⊥ if α = β,

0 otherwise.

Finally, we need to describe the matrix P , the block matrix with entries Dlvijk. Let
v = vijk be the vertex for grains with centers xi, xj, and xk. Note that

|v − xi| = |v − xj| = |v − xk|

which is enough to describe v as a function of xi, xj , xk. We define increment and decre-
ment operators on the indices i, j, k so that i+ = j, i− = k, and so on. Furthermore,
we let

∑

h stand for
∑

h∈{i,j,k}. Then the expression for the position of a vertex vijk in

terms of the centers xi, xj, and xk is:

(13) vijk =

∑

h(x
T
h−

xh− − xTh+xh+)x⊥h
2
∑

h x
T
hx

⊥
h+

.

We note that if xi, xj, and xk were collinear then the denominator would be zero.
However xi, xj and xk cannot be collinear, since then the boundaries of cells would not
intersect and hence vijk would not exist. The fact that xi, xj, and xk are not collinear
implies that the denominator is not zero. A simple way to show it is to note that the
denominator is invariant under translation all points by the same vector. Thus we can
assume xi = 0, in which case the claim is trivial to verify. For the convenience of the
reader, a derivation of (13) is presented in Appendix A.

Differentiating (13) with respect to xj, we obtain
(14)

∂vijk
∂xj

=
(xTi xi − xTk xk)R+ 2(xk − xi)

⊥xTj

2
∑

h x
T
hx

⊥
h+

−
(
∑

h(x
T
h−

xh− − xTh+xh+)x⊥h
) (

(xk − xi)
⊥
)T

2
(
∑

h x
T
hx

⊥
h+

)2 .

Analogous expressions for derivatives with respect to xi and xk are obtained by applying
the decrement and increment operators to (14). Combined with (10) they fully describe
the gradient flow as long as points xi are distinct and as long as each vertex is at the
boundary of exactly three Voronoi cells.

Additional complications arise when the Voronoi centers collide, and also when one
vertex belongs to four or more Voronoi cells. To properly deal with the collisions we
extend the configuration space. It turns out that the natural setting for the configura-
tion space is a manifold with corners. Thus in the next section we briefly review the
differential geometry of manifolds with corners. We subsequently return to the specific
discussion of this complications for the Voronoi-constrained curvature flow.
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4. Manifolds with corners

We first recall notions of the differential geometry of manifolds with corners, following
the work of Joyce [16]. For 0 ≤ k ≤ d, let R

d
k = [0,∞)k × R

d−k. The only difference
between the definition of a manifold and a manifold with corners is that a manifold with
corners can have coordinate charts in R

d
k instead of Rd. We note that k is not fixed and

that charts at different points of M can map to R
d
k with different values of k. A point

x ∈ M is an interior point if there exists a chart into R
d, it is a boundary point if it

is not an interior point and there exists a chart into [0,∞) × R
d−1, and a corner point

otherwise.
Then for x ∈ M the tangent space is defined to be a vector space, even at boundary

and corner points. At x ∈ M the inward sector, ISx, is defined as the subset of the
tangent space isomorphic to the equivalence classes of smooth curves γ : [0, ε) → M
such that γ(0) = x. We note that IS is closed, and, since a convex combination of
curves in R

d
k is a curve in R

d
k, the set ISx is a convex cone for all x ∈ M. We also note

that the tangent space, TxM, is spanned by the vectors in ISx.

4.1. Gradient flow on a manifold with corners. Given a smooth energy E : M → R

we would like to consider the gradient descent on (M, g), where g is a metric on M
defined in the standard way as a positive definite quadratic form on TxM. If M is a
manifold without boundary and corners then the negative gradient vector of E at x is
defined by the requirement that

g(− grad E , v) = − diff E [v] for all v ∈ TxM.

The vector − gradx E can also be identified as the minimizer of the Rayleigh functional:

(15) diff E [v] + 1

2
g(v, v) over all v ∈ TxM.

We note that the above notions can be defined on a manifold with corners as well.
However, the gradient flow ẋ = − gradx E would not have a solution in general, since at
the boundary the negative gradient vector can point “outside” the manifold. We define
the constrained negative gradient of E on the manifold with corners, − cgradx E , to be
the minimizer of

diff E [v] + 1

2
g(v, v) over all v ∈ ISx.

Since IS is closed and convex, and the functional minimized is convex, a unique mini-
mizer exists.

We claim that the minimizer is nothing but the projection of − grad E onto ISx, that
is, for all v ∈ ISx

(16) g(v + grad E , v + grad E) ≥ g(− cgrad E + grad E ,− cgrad E + grad E).
To prove this claim, note that by definition of − cgrad E and grad E ,

g(grad E , v) + 1

2
g(v, v) ≥ g(grad E ,− cgrad E) + 1

2
g(− cgrad E ,− cgrad E),

from which the claim follows by adding g(grad E , grad E) to both sides, doubling, and
factoring.

We furthermore claim that

(17) g(cgrad E , grad E − cgrad E) = 0.
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Figure 1. The Voronoi diagram for the points x1(0) = e1, x2(0) =
x3(0) = −e1 (left, collided center marked with magenta circle) does not
agree with the Voronoi diagram for the limiting configuration x1(0) = e1,
x2(0) = −e1 (right). Here, e1 := (1, 0)T .

The reason is that IS is a cone, namely if v ∈ IS then sv ∈ IS for all s ≥ 0. To
show (17) we only need to consider the case − cgrad E 6= 0. By (16) we know that
s 7→ g(− grad E + s cgrad E ,− grad E + s cgrad E) is minimized when s = 1. Thus, the
derivative in s at s = 1 is zero, giving (17).

We define the gradient flow (descent) of the energy E on the manifold with corners
as the solution of

(18) ẋ = − cgrad E(x).
Lemma 1. Let x(t) be the gradient flow of a C1 energy E on the manifold with corners

(M, g). Then

dE(x(t))
dt

= −g(cgrad E , cgrad E).

Proof. Using the definitions of grad E , gradient flow of E and (17)

dE(x(t))
dt

= g(grad E , ẋ) = −g(grad E , cgrad E) = −g(cgrad E , cgrad E).
�

5. Collision of centers and topological changes

Now we return to the discussion of the major complicating factors in the evolution:
collisions of centers and changes in the topology of the Voronoi diagram. These com-
plications can occur separately or simultaneously. The collisions of centers in particular
raise new issues. To illustrate this consider a curve in (T2)

3 given by (x1(t), x2(t), x3(t)).
Assume that for t < 0 the points are distinct, but that for t = 0, x1(0) 6= x2(0) = x3(0).
The Voronoi diagrams with centers (x1(t), x2(t), x3(t)) do not converge to the diagram
with centers (x1(0), x2(0)) at t → 0−. See Figure 1 for a simple example. Thus consid-
ering the set of n-tuples of possibly nondistinct points in T2 is not the correct way to
compactify M in general. Another way to see this is to notice that when when centers
are sufficiently close, a small change in the location of centers (particularly, the angle
between them) can lead to (arbitrarily) fast motion of boundaries.

To be precise, we consider the three possible scenarios:

• Pure boundary event. An example is depicted in Figure 2(a). The limiting
Voronoi diagram is not the Voronoi diagram for the collided centers. A pure
boundary event always occurs when exactly two centers collide, but may happen
for the collision of any number of centers. The name “boundary event” is chosen
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(a)

(b)

(c)

Figure 2. (a) A boundary event occurs when two or more centers col-
lide. (b) During a change in topology, a vertex instantaneously belongs
to four Voronoi cells. (c) The disappearance of the central grain causes
the creation of a vertex belonging to four Voronoi cells corresponding to
the new collided center. This center typically breaks up following the
grain disappearance.

to indicate that to handle this case we need to extend M to a manifold with
boundary (in fact with corners too). This case is handled in Section 5.1.

• Pure topological change. It may also happen during the evolution that a vertex
belongs to four or more Voronoi cells. This typically happens during changes of
the topology of the Voronoi diagram; namely, when the neighborhood structure
of a cell changes. See Figure 2(b). This possibility is handled in Section 5.2.

• Boundary event with topological change. A grain disappearance event combines
a boundary event with a change in the topology of the Voronoi diagram. The
disappearance event is driven by the collision of centers of the disappearing grain
and all its neighbors. The collision event removes the Voronoi cell of the central
grain, as its area goes to zero, and gives rise to a boundary event involving all the
surrounding centers. Typically, the collided centers will again separate following
the grain disappearance. See Figure 2(c).

5.1. Collisions of centers. Returning to the model at hand, the issue is how to identify
the set of all possible limits of Voronoi diagrams during a boundary event and assign it
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the appropriate topology. In other words, the task is to find the correct compactification
of M. This problem was carefully considered by Lindenbergh in his doctoral thesis
[22] and together with van der Kallen and Siersma [21]. The way the manifold is
compactified is by introducing the set of directed angles between centers. Namely let
P = (TN

2 × (S1)N(N−1)))/ ∼ where the equivalence relation ∼ is defined by

((xi)i=1,...,N , (αi,j)i,j=1,...,N, i 6=j) ∼ ((yi)i=1,...,N , (βi,j)i,j=1,...,N,i 6=j)

if there exists a permutation σ such that yi = xσ(i) and βi,j = ασ(i),σ(j). Consider the
mapping

Ψ : M → P
defined by

Ψ((xi)i=1,...,N ) = (xi)i=1,...,N ×
(

xi − xj
|xi − xj |

)

i,j=1,...,N, i 6=j

.

In [22] the compactification M of M was defined as the closure of Ψ(M) in P. It was
shown that the continuous evolution of points in M produces continuous motion of cell
boundaries. It was furthermore remarked that M is a manifold with corners. Here we
provide a somewhat different, but equivalent description of M. We also provide explicit
local coordinates for M at the boundary and at the corners. Furthermore we express the
metric in terms of these coordinates and use them to express and compute the gradient
flow in the local coordinates.

Since the general coordinates are a bit involved we first present the cases when there
can be only one collision of (two of more) centers. Since the local coordinates for two
centers are particularly simple we present them first as a special case.

5.1.1. Local coordinates for 2 centers. These coordinates allow for the collisions of
two centers. By relabeling we can assume that the centers which we allow to col-
lide are the first two. Let A = {ȳ12, ȳ3, . . . , ȳN} be distinct points on T2. Let ε =
1
3 miny,ỹ∈A dist(y, ỹ). Let Iθ be an open interval of length less than π. We define local

coordinates on U = B(ȳ12, ε)× [0, ε)×S1 ×ΠN
i=3B(ȳi, ε). While U is not truly a subset

of R2N since some of the coordinates are in S1 and in T2 it is straightforward to provide
local coordinates in R

2N for U , so, for simplicity, we work directly with U .
We note that since d ∈ [0, ε) the chart on U is for a manifold with boundary. The

coordinate change from Ů = B(ȳ12, ε)× (0, ε)× Iθ ×ΠN
i=3B(ȳi, ε) to the standard coor-

dinates is as follows: To (z, d, f2, y3, . . . , yN ) ∈ Ů we associate

x1 = z + df1

x2 = z + df2

xi = yi for i = 3, . . . , N,

where f1 = −f2. We note that the inverse of this transformation gives z = 1
2(x1 + x2),

d = |x2 − z|, and f2 = (x2 − z)/d.
The grain boundary network that corresponds to (z, d, f2, y3, . . . , yn) ∈ U is as follows:

If d > 0, then it is just the Voronoi diagram corresponding to centers x1, . . . , xN . If
d = 0, consider the Voronoi diagram corresponding to centers x2, . . . , xN and denote
the cells by G̃i, i = 2, . . . , N . We need to define the cells Gj , j = 1, . . . , N of the full

configuration. For j = 3, . . . , N set Gj = G̃j and define

G1 = {w ∈ G̃2 : w · f2 < 0} and G2 = {w ∈ G̃2 : w · f2 > 0}.
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(a) (b) (c)

Figure 3. (a) The green center, z, has multiplicity 3. (b) The cells Si

are depicted with the center z. (c) An exemplar Gi = G̃1 ∩ Si is shaded
in gray.

5.1.2. Local coordinates for n > 2 centers. Again by relabeling we can assume that
the first n < N centers are allowed to collide. Let A = {ȳc, ȳn+1, . . . , ȳN} be a
set of N − n + 1 distinct points in T2. Let ε = 1

3 miny,ỹ∈A dist(y, ỹ). Let Wf =

{(f2, . . . , fn) ∈ R
2n−2 : (∀i = 2, . . . , n)(∀j = i + 1, . . . , n) |fi| > 1

2 and |fi − fj| > 1
2}

and Od = {(f3, . . . , fn) ∈ R
2(n−3) : (∀i = 2, . . . , n)|fi| < 1

d}. Let U = B(ȳc, ε) ×
(

⋃

d∈[0,ε){d} × (Wf ∩ (S1 ×Od))
)

× ΠN
j=n+1B(ȳj, ε). We note that U is diffeomor-

phic to [0, 1) × W where W is a open subset of R2N−1. The coordinate change from
(z, d, f2, . . . , fn, yn+1, . . . , yN ) in the interior of U to standard coordinates is

xi = z + d fi for i = 1, . . . , n(19)

xi = yi for i = n+ 1, . . . , N.(20)

where f1 = −f2. We remark that the fh ∈ R
2 are nondimensional quantities. One

should note that if d = 0 then all of the first n centers collide and if d > 0 then there
are no collisions of centers. Also since d ∈ [0, ε) the above is a chart at the boundary of
a manifold.

The grain boundary network which corresponds to (z, d, f2, . . . , fn, yn+1, . . . , yN ) is
defined as follows. If d > 0 then it is just the Voronoi diagram corresponding to
(x1, . . . , xN ). If d = 0 then consider the Voronoi diagram corresponding to centers

z, xn+1, . . . , xN and denote its cells by G̃1, G̃n+1, . . . , G̃N . Consider also the Voronoi
diagram with centers z + f1, . . . , z + fn, and denote its cells by Si. The cells in the full
configuration are given by

Gi = G̃1 ∩ Si for i = 1, . . . , n

Gi = G̃i for i = n+ 1, . . . , N

as depicted on Figure 3(c).

5.1.3. General coordinates with more than one collision. Here we describe the local
coordinates where m1,m2, . . . ,mk with mj ≥ 2 for j = 1, . . . , k centers are allowed
to collide. We can relabel the centers so that the first m1 centers may be colliding
together, the next m2 colliding together, and so on. Let m = m1 + · · · +mk. Let A =
{ȳc1, . . . , ȳck, ȳm+1, . . . , ȳN} be set of k+N−m distinct points in T2 and let as before ε =
1
3 miny,ỹ∈A dist(y, ỹ). For each j = 1, . . . , k we define coordinates (zj , dj , f1,j, . . . , fmj ,j)
as for a single collision discussed in Section 5.1.2. The coordinates for each of the
collision are concatenated and finally N − m coordinates for the non-colliding centers
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are added on. We note that since dj ∈ [0, ε) then if k ≥ 2 these local coordinates
correspond to a coordinate chart at a corner.

5.1.4. Expressing Voronoi vertex locations in terms of collided centers. Here we investi-
gate the correspondence F which gives the coordinates of vertices corresponding to the
configuration given in the new (“collided”) coordinates. This correspondence is analo-
gous to F in (8). More precisely we find the derivative of this correspondence P = DF ,
as in (9). We first consider the case that each junction is an intersection of precisely
three cells. Let xi, xj , and xk represent centers expressed in the local coordinates, (19),
and xℓ and xm represent centers expressed in the standard (Euclidean) coordinates,
(20). We use the notation we introduced in Subsection 3.1.

Vertices of the form viℓm. Let α be one of the new coordinates (z, d or fs). For
vertices of the form viℓm, we can simply use the chain rule to obtain

∂viℓm
∂α

=
∂viℓm
∂xi

∂xi
∂α

,

where ∂viℓm/∂xi is computed by (14), and ∂xi/∂α is easily read off from (19). Here, the
application of the chain rule is numerically stable as ∂viℓm/∂xi is not large.

Vertices of the form vijℓ. In contrast to the previous case, if d > 0 is small,
∂vijℓ/∂xi is expected to be large due to the proximity of xi and xj. To find the derivative
in a way which is numerically stable and allows for d = 0 we simplify the expression for
vijℓ in terms of the collapsed coordinates and take derivatives directly. The expression

vijℓ =
c1(z − xℓ)

⊥ + c2f
⊥
i + c3f

⊥
j

c0
:=

u

c0
,

where

c1 = 2 z · (fi − fj) + d(fi · fi − fj · fj),
c2 = xℓ · xℓ − z · z − 2d(z · fj)− d2(fj · fj),
c3 = −xℓ · xℓ + z · z + 2d(z · fi) + d2(fi · fi),

c0 = 2
(

d(fi · f⊥
j ) + (fi − fj) · (z − xℓ)

⊥
)

,

is obtained from (13), with the collapsed coordinates (19) substituted in. When d 6= 0,
c0 6= 0 since fi, fj, xℓ−z are not collinear. If d = 0 then the edge between cells described
by fi and fj is orthogonal to fi − fj, so again c0 = 0 if and only if fi, fj, and xℓ − z are
collinear.
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We determine the derivatives of vijℓ wrt. the new coordinates to be:

∂vijℓ
∂z

=
2

c0

(

− 1

c0
u⊗ (fj − fi)

⊥ + (z − xℓ)
⊥ ⊗ (fi − fj) +

c1
2
R− f⊥

i ⊗ xj + f⊥
j ⊗ xi

)

,

∂vijℓ
∂d

=
2

c0

(

−
fi · f⊥

j

c0
u+

1

2
(fi · fi − fj · fj)(z − xℓ)

⊥ − (xj · fj)f⊥
i + (xi · fi)f⊥

j

)

,

∂vijℓ
∂fi

=
2

c0

(

− 1

c0
u⊗ (xj − xℓ)

⊥ + (xj − xℓ)
⊥ ⊗ xi +

c2
2
R

)

,

∂vijℓ
∂fj

=
2

c0

(

− 1

c0
u⊗ (xℓ − xi)

⊥ + (xℓ − xi)
⊥ ⊗ xj +

c3
2
R

)

,

∂vijℓ
∂xℓ

=
2

c0

(

− 1

c0
u⊗ (fi − fj)

⊥ − c1
2
R+ (fi − fj)

⊥ ⊗ xℓ

)

.

Additional simplifications can be made in the n = 2 case. Then fi = −fj, so

vijℓ =
2(z · fi)(z − xℓ)

⊥ + (xℓ · xℓ − z · z − d2)f⊥
i

2fi · (z − xℓ)⊥
.

Vertices of the form vijk. With collided centers xi, xj and xk, (13) can be simpli-
fied. Using the coordinates xi = z + dfi (i.e. n ≥ 3), we obtain:

vijk = z + d

∑

h (fh− · fh− − fh+ · fh+) f⊥
h

2
∑

h fh · f⊥
h+

.

Observe that this expression is simply (13) translated into the frame of reference of the
collapsed coordinates.

Differentiating this expression, we obtain:

∂vijk
∂z

= I2

∂vijk
∂d

=

∑

h (fh− · fh− − fh+ · fh+) f⊥
h

2
∑

h∈{i,j,k} fh · f⊥
h+

∂vijk
∂fj

= d

(

(fi · fi − fk · fk)R+ 2(fk − fi)
⊥ ⊗ fj

2
∑

h fh · f⊥
h+

−
(
∑

h(fh− · fh− − fh+ · fh+)f⊥
h

)

⊗ (fk − fi)
⊥

2
(
∑

h fh · f⊥
h+

)2

)

and analogous expressions for the derivatives with respect to fi and fk.

5.1.5. Gradient flow in the “collided” coordinates. The correspondence, above, between
the collided coordinates and the vertices enables us to find the gradient of the energy
in the collided coordinates. More precisely, above we computed the coefficients of the
matrix P of derivatives of the location of vertices with respect to collided coordinates.
The gradient vector is then defined by (10) where Ẽ and Q̃ are given by (11) and (12),
as before. Finding the negative constrained gradient vector − cgrad E is then straight-
forward. If the d coordinate of the configuration in collided coordinates is positive then
− cgrad E = − grad E . If d = 0 then as we showed in Section 4, the vector − cgrad E is
the projection of − grad E to the inward sector IS. The inward sector IS of the configu-
ration is the set of tangent vectors whose d-coordinate is positive. So if the d-coordinate
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of − grad E is nonnegative then − cgrad E = − grad E ; otherwise − cgrad E is obtained
by changing the d coordinate of − grad E to 0.

5.2. High-order vertices. It may happen during the evolution that a vertex belongs
to four or more Voronoi cells. This typically happens during changes of the topology
of the network; namely, when the neighborhood structure of a cell changes or when a
cell disappears. See Figure 2. While the formulae for the vertex locations derived in
the Appendix A still hold at the given time, if a topological change occurs the vertex
may no longer be on the boundary of given centers for future times. Thus the gradient
computed under one assumption on the network is not valid if the future network is not
as assumed. Furthermore the energy is not a differentiable function of center positions
at the times of topological events. The way we resolve that is as follows. For each
inward tangent vector, corresponding to an infinitesimal perturbation of the centers,
the network develops a particular topology for small future times. This divides the
inward sector of the tangent space into cones of directions that lead to a particular
network topology. Under each geometric assumption we compute the steepest descent
vector within the closure of the cone, that is, the minimizer of the Rayleigh functional
(15) over the cone. If the minimizer exists (since some of the cones are not closed there
may be no minimizer) we call it an admissible vector. Then we set the gradient vector
to be the admissible vector which decreases the energy the most. We show that at least
one of the cones is closed and thus the Rayleigh functional has a minimizer over this
particular cone. So at least one admissible vector exists.

Let us first present the details in the quadruple vertex case. We denote by vijkℓ a
vertex for cells with centers xi, xj, xk, and xℓ, such that the centers xi and xk do not
share an edge meeting this vertex. The issue is that small variations in the positions of
the centers can lead to different network topology. For example, the network can have
the topology where vijkℓ splits into vijk and vikℓ (case 1), where it splits into vijℓ and
vjkℓ (case 2), and where vijkl remains at the boundary of four cells (case 3).

Define φ : X → G to be the mapping that assigns the grain boundary network to the
centers. Let Cq = {δx ∈ IS : ∃ε > 0 s.t.φ(x + hδx) has the topology of case q, ∀h ∈
(0, ε)} for q = 1, 2, 3. We note that each of the sets is a cone and that C1 and C2 are
open cones while C3 is a closed cone. Furthermore C3 = C1 ∩ C2. The gradient vector
is defined as follows. For q = 1, 2, 3, find the minimizer of the Rayleigh functional over
Cq. It can be shown (see Section 4 for details) that the minimizer is the projection of
gradq E , the gradient vector defined by (10) under the topology of case q, to the cone

Cq. If the minimizer belongs to Cq itself it is deemed admissible. We note that since C3

is closed there is always at least one admissible vector. We define the gradient vector to
be the admissible vector which decreases the energy the most. That is the admissible
vector v for which − diff E [v] is the largest (remembering that diff E is computed for
each v under the assumption of the appropriate network topology). As in Lemma 1 one
can show that the final gradient vector is the longest among the admissible vectors. If it
happens that there are two admissible vectors of the same length, then any one of them
can be chosen (and thus one cannot expect uniqueness of the evolution in general). An
example where this happens is when xi, xj , xk, and xℓ are vertices of a square. We
remark that our results on the upper bound on the rate of coarsening do not depend on
which admissible vector is chosen. We also note that generically the quadruple vertices
are energetically unstable and instantaneously break up.
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Before we define the evolution at the higher-order vertices, we remark that they too
are unstable. The approach to defining gradient flow is analogous to one for quadruple
vertices. For each possible local geometry that may arise there exists a cone of inward
tangent directions that take the dynamics into the given geometry. For regular geome-
tries (ones where all vertices are triple), the cones are open. The cones corresponding
to cases when some of the vertices are quadruple or of higher multiplicity have empty
interior and the one that preserves the multiplicity of the junction is closed. Again for
each possible geometry a “gradient” vector grad E is computed using (10). As before,
the projection of the vector − grad E to the closure of the cone is the minimizer of the
Rayleigh functional (15) over the closure of the cone. If this projection belongs to the
cone itself then it is an admissible vector. Since at least one of the cones is closed there
always exists an admissible vector. The negative constrained gradient vector is defined
to be the admissible vector which decreases the energy the most. As before it turns out
to be the longest of the admissible vectors.

Finally, if there is more than one junction of multiplicity at least four at the same
time the discussion is the same as above. The inward sector of the tangent space is still
divided into cones, etc. The only difference is that the combinatorics of the possible
geometries becomes quite complicated. One needs to consider all local geometries at
each cone simultaneously, so the number of possible cases (and thus cones) is in most
cases the product of the number of cones at each of the vertices.

6. Coarsening rate

We consider the gradient flow of Voronoi diagrams on torus T2 = [0,Λ]2 and define
E = E/Λ2 to be the energy density. We use the framework of Kohn and Otto [20] to
show a universal upper bound on the rate of coarsening of the evolution of Voronoi
diagrams by mean curvature. The framework uses an additional quantity L associated
to a configuration and proving two inequalities that relate E and L. An ODE argument is
then used to obtain a time-averaged lower bound on the energy, which provides an upper
bound on the rate of coarsening. For the mean-curvature flow natural interpolation
inequality would be of the form EL2 & 1 and a natural dissipation inequality would be

−dE
dt ≥

(

dL
dt

)2
. If they held they would imply a weak form of E & t−1/2 as desired. As

discussed in [27], when the coarsening system has a gradient flow structure there is a
natural choice of L: set L to be the distance in the configuration space, with respect to
metric of the gradient flow, to a fixed configuration. However the metric on the set of
grain boundary networks with respect to which the mean-curvature flow is a gradient
flow, namely the L2 inner product of velocities (3), is degenerate in the sense that the
distance between any two networks is zero. This follows from work of Mumford and
Michor [24].

To overcome that, we use the length of the solution curve, instead of using the distance
to a fixed configuration, to define L. This is made precise in (23) below. In this way L
depends not only on the given grain boundary network, but rather on its history during
the gradient flow. We note that a consequence of the definition is that the dissipation
inequality becomes an equality.
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We now provide the details of the approach and its proof. Using the energy defined
in (2) we define the characteristic length to be

(21) ℓ =
1

E :=
Λ2

E .

The quantity ℓ suggests what is the typical one-dimensional size of grains. First, we
show that only small proportion of the total area can be in grains with area much less
than ℓ2.

Lemma 2. Given a grain boundary network G = {G1, . . . , GN} let ℓ be defined by (21).
Consider δ ∈ (0, 1). Let Ismall = {i ∈ {1, . . . , N} : |Gi| < δℓ2}. Then

1

Λ2

∑

i∈Ismall

|Gi| <
√

δ

π
.

We remark that while we only state the lemma in 2D, analogous statements hold in
any dimension, and their proof relies on isoperimetric inequality, as does the one below.

Proof. Using the isoperimetric inequality, which states that 4π|G| ≤ Per(G)2, we obtain

1

ℓ
= E ≥ 1

2Λ2

∑

i∈Ismall

Per(Gi)

≥
√
π

Λ2

∑

i∈Ismall

√

|Gi| =
√
π

Λ2

∑

i∈Ismall

|Gi|
√

|Gi|

≥
√
π

Λ2

∑

i∈Ismall

|Gi|√
δ ℓ

.

Therefore
√

δ

π
≥ 1

Λ2

∑

i∈Ismall

|Gi|.

�

We recall that the first variation of volume gives that if {Gt}t is family of bounded
sets with C1 boundary moving by a continuous normal velocity v, then

d|Gt|
dt

=

∫

∂Gt

v · ν dH1x∂Gt
,

where ν is the unit outward normal vector. Using a straightforward smoothing argu-
ment the regularity requirements above can be relaxed to continuous and piecewise C1

boundaries moving continuously on the C1 parts. Let A be an open set with with
piecewise C1 boundary. Applying the above to A ∩Gt we obtain that

(22) |Gt2 ∩A| − |Gt1 ∩A| ≤
∫ t2

t1

∫

(∂Gt)∩A
|v| dH1x(∂Gt)∩A dt

Theorem 3. Let Gt, t ≥ 0 be a continuous evolution of a grain boundary network such

that at each time each grain is convex. The grains can disappear during the evolution
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but cannot reappear and no new grains are created. Assume that at t = 0 and for all

i = 1, . . . , N , |Gi| ≤ 1. Let v be the normal velocity of the grain boundaries. Let

(23) L(t) = 1 +
1

Λ

∫ t

0

√

∫

∂Gs

v(x, s)2dH1x∂Gs
(x) ds.

Then, for all t ≥ 0

E L2 ≥ 1

32
.

We remark that while we only consider this theorem in two dimensions it actually
holds in any dimension (with the constant on the right hand side depending on the
dimension).

Proof. If E(t) ≥ 1
2 the inequality is trivial, as L ≥ 1. Let us consider the case E(t) < 1

2 .

Take δ = 2/ℓ2. From Lemma 2 it follows that 1
Λ2

∑

I : |Gi(t)|<2 |Gi(t)| < 1
2 . Let J = {i :

|Gi(t)| ≥ 2}. Then

(24)
1

Λ2

∑

i∈J

|Gi(t)| ≥
1

2
,

that is, at least half of the total area lies in grains of area two or more.
It is well known that convex subsets of any set have lesser perimeter than the set

itself. In particular Cauchy’s surface-area formula (see Sec 5.5 in [19]) can be seen as a
quantitative form of this statement. Thus

(25) Per(Gi(s) ∩Gi(t)) ≤ Per(Gi(t)) for all s ≤ t.

To prove the interpolation inequality we estimate the dissipation only along the evo-
lution of the grains which are of area at least 2 to time t, namely grains Gi(s) with
i ∈ J . Furthermore we only need the dissipation which occurs within the end grains
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Gi(t), i ∈ J . We thus define ∂JGs =
⋃

i∈J (Gi(t) ∩ ∂Gi(s)).

L(t) ≥ 1

Λ

∫ t

0

√

∫

∂Gs

v(x, s)2dH1x∂Gs
(x) ds

≥ 1

Λ

∫ t

0

√

∫

∂JGs

v(x, s)2dH1x∂JGs
(x) ds,

using the Cauchy-Schwarz inequality we obtain

≥ 1

Λ

∫ t

0

1
√
∑

i∈J Per(Gi(t) ∩Gi(s))

∑

i∈J

∫

Gi(t)∩∂Gi(s)
|v(x, s)| dH1xGi(t)∩∂Gi(s)(x)ds,

using (25)

≥ 1

Λ

∫ t

0

1
√
∑

i∈J Per(Gi(t))

∑

i∈J

∫

Gi(t)∩∂Gi(s)
|v(x, s)| dH1xGi(t)∩∂Gi(s)(x)ds,

using (22)

≥ 1

Λ2

1
√

2E(t)

∑

i∈J

(|Gi(t)| − |Gi(0)|) ≥
1

Λ2

1
√

2E(t)

∑

i∈J

1

2
|Gi(t)|,

using (24)

≥ 1√
2

1
√

E(t)
1

4
,

which proves the desired estimate. �

Theorem 4. Let Gt, t ≥ 0 be the evolution of grains by the gradient flow of Voronoi

diagrams on the flat torus [0,Λ]2. Assume that at t = 0 for all i = 1, . . . , N , |Gi| ≤ 1.
Then for all σ ∈ (1, 2) there exists c1 > 0, c2 > 0, depending only on σ, such that for

all t ≥ c2
∫ T

0
E(Gt)

σdt ≥ c1

∫ T

0

(

t−
1

2

)σ
dt.

We note that this is a time averaged version of the claim that ℓ . t1/2.
Remark. We note that the proof of the theorem does not actually depend on how

the quadruple and higher-order vertices are resolved. In particular the result would
still apply if instead of the gradient vector any admissible vector (as defined in Section
5.2) is chosen. Moreover if we assume that there are only finitely many times at which
there are quadruple or higher-order vertices then the upper bound on coarsening is not
affected by how the vertices are resolved.

Proof. The theorem relies on the framework of Kohn and Otto [20]. In particular the in-
terpolation inequality needed is proved in Theorem 3. The desired dissipation inequality
is −Ė ≥ (L̇)2. If it can be shown, then the ODE argument of Kohn and Otto (and more
precisely the one used in the proof of Proposition 1 in [27]) implies the desired result.
Due to the length of the ODE argument and since we have nothing to add, we choose
not to present it here, but refer the reader to [27] (or [20]). Regarding the dissipation
inequality, we note that, due to the way L is defined, an energy dissipation equality
holds at all but finitely many times at which a grain disappears. More precisely, from
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the definition of the gradient flow of Voronoi diagrams and Lemma 1 it follows that if
t1 < t2 are such that there are no grain disappearances in the time interval [t1, t2] then

E(t1)− E(t2) =
∫ t2

t1

∫

∂Gt

v(x, s)2 dH1x∂Gt
(x)dt =

∫ t2

t1

(L̇(t))2dt.

At the times when a grain disappears it may happen that E is discontinuous. Namely
while the area of the disappearing gain goes to zero its perimeter may stay bounded
from below. When this grain disappears the total perimeter has a downward jump.
The function L(t) remains continuous. Fortunately the possibility of energy being dis-
continuous has been addressed in [28](Lemma 5). Namely, it was shown that elements
needed in the proof of Proposition 1 of [27] still hold if E is allowed to have downward
jumps. Consequently the conclusion of Proposition 1 holds and thus establishes the
desired coarsening bound. �

7. Numerics

To give additional insight into the coarsening dynamics, we performed a number of
numerical experiments. We evolved a Voronoi diagram from time 0 to time t. We start
by describing the procedure when the configuration is well described by the centers of the
Voronoi cells: (x1(s), . . . , xn(s)(s)). Each center xh(s) ∈ T2 lies on the two-dimensional

torus. We take T2 = [0, 1]2, with periodic boundary conditions.
Time is discretized by a temporally varying time step δtp, with tp =

∑p
q=1 δtq. This

approach is chosen because the numerical stability of the update depends strongly on
the configuration. When all centers are well separated, it is possible to take quite large
time steps. In contrast, when multiple centers are very close to each other, as is observed
to occur frequently in the simulation, small perturbations in the center positions may
give rise to very large changes in the positions of the Voronoi vertices, and thus in the
total interface length. The configuration X(tp) is advanced to the configuration X(tp+1)
by a forward Euler iteration for (7):

X(tp) = X(tp−1)− δtp grad E(X(tp−1)).

where grad E(X(tp−1)) is computed by (10), with DvE computed with respect to the
Voronoi vertices V (tp−1) = F (X(tp−1)).

After each time step, it is checked whether (1) the time step should be adjusted,
(2) any centers should be removed, (3) the representation of centers (in standard or
collapsed coordinates) needs to be changed, and (4) the connectivity of the Voronoi
diagram has changed. These checks are handled as follows:

(1) Change of time step. Once the updated centers X(tp) have been computed, it
is directly checked that E(X(tp)) < E(X(tp−1)). If energy does decrease, it is further
checked whether performing two iterations with half the time step gives a similar de-
crease in energy. Specifically, it is required that

|∆E1 −∆E2|
|∆E1|

< C,

where ∆E1 = E(X(tp))− E(X(tp−1)) and ∆E2 is the change in energy from E(X(tp−1))

following two steps of size (12δtp). If either of these checks fail, δtp is halved, and
the iteration is repeated. If ten consecutive steps are performed successfully, then the
subsequent time step is set as δtp+1 = 2δtp. Any time a center is removed, δt is reset to
its initial value, δt0. To prevent the time step from becoming infintesimally small and
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causing the evolution to get stuck, we also set a lower bound δtmin on the time step and
require δt ≥ δtmin at all times.

(2) Removal of centers. The area Ah(tp) associated with each center xh(tp) is com-
puted. If Ah(tp) < Amin, the center xh(tp) is removed. Observe that removing a center
xh(tp) (as long as Ah(tp) is small) is expected to decrease the energy E(X(tp)). In the
simulations performed, removal of small cells is never observed to increase the energy
E(X).

(3) Change in coordinates. It must be determined which centers, if any, need to be
represented by collapsed coordinates. Let

Σ =
⋃

h=1,...,N(tp)

Bρ(xh(tp)),

the union of balls of radius ρ centered at the centers xh(tp). Partition the centers by
membership in the connected components of Σ. Each part of the partition containing
n > 1 centers has its centers represented in the collapsed coordinates for n points. This
selection criteria allows for centers to change representation from standard to collapsed
coordinates and back through time, and also to change class of collapsed center (e.g.
from a collapsed 2-center to a collapsed 3-center or vice-versa).

(4) Voronoi diagram update. As the centers move from X(tp−1) to X(tp), the Voronoi
diagram also evolves. For example, vertices vijk(tp−1) and vijℓ(tp−1) may be replaced by
vikℓ(tp) and vjkℓ(tp) in a classical “edge-flipping” topological change. Thus the Voronoi
diagram is recomputed at each iteration and the updated vertex set V (tp) is used in the
subsequent step.

Six simulations are performed. Each is initialized with 500 centers placed uniformly
at random on T2. In these simulations, we set δt0 = 10−5 and set δtmin = 10−7. We
choose C = 1/10, Amin = 10−4, and ρ = 10−4. We require that d ≥ 10−8 in all collapsed
coordinates to prevent the numerical system from becoming overly stiff. The simulations
are run until only 40 centers remain.

Snapshots of the evolution from one of the simulations are shown in Figure 4. It can
be observed that centers frequently cluster together, requiring the use of the collapsed
coodinate systems locally. Collapse of four centers is a relatively rare event, and is not
seen in any of these snapshots. A collapse of more than four centers is never required
based on the change in coordinates criterion specified previously.

Refer to Figure 5 for the time evolution of the average grain area on linear and
logarithmic axes. The thick red line is the ensemble average of the five simulations,
while the thick black line is the linear function 〈A〉 = .1585t. The good fit of this guide
line to the data suggests that the average grain area grows linearly in time under this
evolution after a short transient period. These numerical results are in good agreement
with the coarsening rate upper bound of Section 6.
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(a) (b) (c)

(d) (e) (f)

Figure 4. The microstructure from one simulation is shown (a) initially,
and at (b) t = 2.87 × 10−3, (c) t = 1.86 × 10−2, (d) t = 4.04 × 10−2, (e)
t = 9.13× 10−2, (f) t = 1.21× 10−1, with 500, 449, 256, 127, 60, and 40
grains remaining, respectively. The Voronoi diagram is drawn in blue,
with isolated centers given by black dots. The location of two and three
collided centers are denoted by magenta and green circles, respectively.

Appendix A. Derivation of coordinates for vijk

Equation (13) may be derived as follows: The vertex vijk must satisfy

(xi − vijk) · (xi − vijk) = (xj − vijk) · (xj − vijk) = (xk − vijk) · (xk − vijk),

from which we subtract vijk · vijk to obtain

xi · xi − 2xi · vijk = xj · xj − 2xj · vijk = xk · xk − 2xk · vijk,
which can be combined to obtain

2(xj − xi) · vijk = xj · xj − xi · xi
and

2(xk − xj) · vijk = xk · xk − xj · xj .
In matrix form, this can be expressed as

(26)

(

(xj − xi)
T

(xk − xj)
T

)

vijk =
1

2

(

xj · xj − xi · xi
xk · xk − xj · xj

)

.
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Figure 5. (a) Linear and (b) log-log plots of mean grain area 〈A〉 as a
function of time, t. Six simulation runs are shown in shades of blue and
green (thin lines), with ensemble average given by thick red line. For
comparison, 〈A〉 = .1585t is shown as thick black line, suggesting that
〈A〉 ∝ t, as expected.

We compute

(27)

(

(xj − xi)
T

(xk − xj)
T

)−1

=

(

(xj − xk)
⊥ (xj − xi)

⊥
)

(xj − xi) · (xk − xj)⊥
.

(13) arises by left-multiplying (26) by (27), observing that a·b⊥ = −b·a⊥, and collecting
like terms.
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