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Abstract

For deblurring images corrupted by random valued noise, two-phase methods first

select likely-to-be reliables (data that are not corrupted by random valued noise)

and then deblur images only with selected data. The selective use of data in two-

phase methods, however, often causes missing data artifacts. In this paper, to

suppress these missing data artifacts, we propose a blurring model based reliable-

selection technique to select sufficiently many reliables so that all of to-be-recovered

pixel values can contribute to selected data, while excluding random value noised

data accurately. We also propose a normalization technique to compensate for non-

uniform rates in recovering pixel values. Simulation studies show that proposed

techniques effectively suppress missing data artifacts and, as a result, improve the

performance of two-phase methods.
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1 Introduction

The image deblurring is an ill-conditioned inverse problem, and the presence

of random valued noise makes the problem more difficult. The random value

noise corrupts some observed data with random values and leaves others un-

affected. This type of noise is often generated by malfunctioning pixels in

camera sensors, faulty memory locations in hardware, or erroneous transmis-

sion [1].

For the simplicity of the presentation, we use the term outliers to refer

data that are corrupted by random valued noise, and reliables to refer data

that are not corrupted by random valued noise.

Many methods have been proposed for deblurring images corrupted by

random valued noise. Depending on what kind of data are used in deblurring,

those methods can be categorized into following three groups: (a) ‘simul-

taneous outlier-smoothing and deblurring’ (data as observed) [2, 3, 4], (b)

‘outlier-smoothing followed by deblurring’ (smoothed data), and (c) ‘reliable-

selection followed by deblurring’ (selected data as reliables) [5, 6, 7, 8]. In

particular, methods in the ‘reliable-selection followed by deblurring’ group

are often called two-phase methods; they select likely-to-be reliables in the

first phase, and deblur images only with selected data in the second phase.
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It is well-known that methods in the ‘simultaneous outlier-smoothing and

deblurring’ group often produce very poor results, even in the presence of very

small amount of outliers [5]. Preprocessing outlier-smoothings might reduce

such artifacts. Improvements made by outlier-smoothings are, however, often

diminished out by errors made by outlier-smoothings themselves. For details,

see [5]

Recent research works [5, 6, 7, 8] show superior performance of two-phase

methods over ‘simultaneous outlier-smoothing and deblurring’ and ‘outlier-

smoothing followed by deblurring’ methods. Two-phase methods can use var-

ious deblurring algorithms in the second phase. For instance, the Mumford-

Shah regularization functional is used in [5] to achieve edge-preserving de-

blurring. In [6, 7], the L1-norm of wavelet or framelet transforms is used

to utilize sparse representations of images in wavelet or framelet transform

domains. The method in [8] uses iterative two-phase approaches to improve

the accuracy in reliable-selection.

Two-phase methods, however, often produce so-called missing data arti-

facts; the lack of data (caused by not filling gaps made by unselected data)

makes it difficult to recover some pixel values. Missing data artifacts can be

suppressed by various inpainting algorithms [9, 10, 11]. In fact, two-phase
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methods in [5, 6, 7, 8] can also do inpainting. Inpainting algorithms, how-

ever, do not suppress missing data artifacts effectively in case when the lack

of data is serious. We will explain such phenomenon in Section 3.1 of this

paper.

The objective of this paper is to improve the performance of two-phase

methods, by effectively suppressing missing data artifacts. For this purpose,

we propose blurring model based reliable-selection and normalization tech-

niques.

Previous reliable-selection techniques (e.g., median-type approaches [12]

and iterative projection comparison based reliable-selection [8]) tend to select

reliables more frequently from smooth region than near-edge region. Such

phenomenon often leads to the situation that no data are selected from a

wide region. This often causes missing data artifacts. To avoid this kind

of difficulty, the proposed blurring model based reliable-selection technique

selects sufficiently many reliables so that all of to-be-recovered pixel values

contribute to selected data, while excluding outliers accurately.

The proposed normalization technique is designed to compensate for the

non-uniformity in deblurring images; the selective use of data in two-phase

methods causes some pixel values to be recovered less accurately or more
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slowly than others in iterative deblurring. Such phenomenon often occurs

on pixel values that give less contribution to selected data. To suppress this

type of missing data artifacts, we suggest to use a weighted inner product

which treats pixel values accordingly to the degree of their contribution to

selected data. In this paper, the resulting algorithm derived from the use of

such weighted inner product will be called the normalization technique.

In this paper, we will explain the application of proposed techniques to

a total variation (TV) [13] based two-phase method. Extensions to other

two-phase methods in [5, 6, 7, 8] will be straightforward.

The outline of this paper is as follows. In Section 2, definitions, nota-

tions, and previous works are reviewed. In Section 3, proposed techniques

are explained. In Section 4, simulation studies are conducted to test the

performance of proposed techniques in Gaussian and diagonal deblurrings.

Conclusions and discussions are presented in Section 5.
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2 Definitions, Notations, and Backgrounds

2.1 Observation model

In this paper, we model the problem as

g = R(Hf + n), (1)

where H is the linear transform that represents the blurring process of the

problem, R is the nonlinear transform that represents the random value noise

process, g is the observed image on a rectangular pixel set

D = {(b1, b2) | 0 ≤ b1 < N1, 0 ≤ b2 < N2}, (2)

f is the true image to be recovered, and n is the mean zero Gaussian noise.

We use the notation D̄ to denote the domain where f is defined on.

The random value noise model in (1) means thatR(x) = one of {0, 1, . . . , 255}

with the probability r, while R(x) = x with the probability 1− r, for some

0 < r < 1. For future use, we consider the ‘salt-and-pepper’ noise model.

The salt-and-pepper noise with the probability s gives R(x) = x with the

probability 1−s, while R(x) = 0 or 255 with the probability s. In explaining

random value and salt-and-pepper noise models, we assumed that images are

gray scaled, so that their pixel values range over {0, 1, . . . , 255}.
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To denote the pixel, we use the single index in some cases or double indices

with the parenthesis in other cases. For instance, fv = f(v1,v2) is the value of

the image f at the pixel v = (v1, v2). With the single pixel index, we treat

images g and f as one dimensional vectors. Therefore, H in (1) is a |D|× |D̄|

matrix. We also use following convention throughout this paper: boldface

alphabets for images or matrices and normal alphabets for corresponding

pixel values or entries, as in f = (fv), g = (gb), and H = (Hb,v).

We use the notation L2(A) to denote the image space defined on a pixel

set A. For instance, f ∈ L2(D̄) and g ∈ L2(D). Here the notation L2

indicates that the usual dot product of two images (sums of pixel-by-pixel

multiplications) is used as the inner product.

We assume that the blurring transform represented by H is a truncated

convolution by a known finitely supported point spread function (PSF) k =

(kv). Thus, for any image p ∈ L2(D̄),

(Hp)b =
∑
v∈D̄

Hb,vpv =
∑

v∈(b−Sk)

kb−vpv. (3)

Here Sk, the support of k, is {v | kv > 0}. Throughout this paper, we assume

that the PSF k is nonnegative, its components have sum 1, and the point

(0, 0) ∈ Sk. In (3), the summation is well-defined only if b− Sk ⊆ D̄. Thus,

D ⊆ D̄.



Suppression of Missing Data Artifacts for Deblurring Images 9

2.2 Probabilistic interpretation

Assumptions imposed on the PSF k (non-negativity and total sum 1) imply

that

Hb,v ≥ 0,
∑
v∈D̄

Hb,v = 1, and
∑
b∈D

Hb,v ≤ 1 (4)

for all b ∈ D and v ∈ D̄. Thus, Hb,v can be regarded as a conditional

probability:

Hb,v = Prob(observed at b through H | supposed to be at v). (5)

This interpretation is based on the following observation: The pixel value

fv (supposed to be at v) contributes to (Hf)b =
∑

v∈D̄ Hb,vfv (observed at b

through H) by Hb,vfv.

This kind of probabilistic interpretation is not new. In emission tomogra-

phy, which has similar obstacles and models as image deblurring has, entries

Hb,v of the matrix H are regarded as conditional probabilities as in (5). In

emission tomography,
∑

b∈DHb,v are called normalization coefficients [14].

For a fixed pixel v,
∑

b∈D Hb,v is the probability for the photon emitted from

v to be detected by the tomograph modeled by the matrixH. Notice that the

same interpretation also holds for the image deblurring problem;
∑

b∈D Hb,v

represents the degree of contribution of the pixel v to the observation on D
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through the blurring transform H.

2.3 Two-phase methods

Let Λ ⊆ D be the set of selected pixels in the first phase, i.e.,

Λ = {b ∈ D | gb is selected as reliable}. (6)

Then, the problem to be solved in the second phase is

g̃ = H̃f + ñ, (7)

where

g̃ = g |Λ (restriction of g on Λ), (8)

and

H̃ = (Hb,v)b∈Λ (row-restricted matrix of H on Λ), (9)

Here note that the new noise term ñ in (7) is a mixed result of the original

noise n in (1) and the error in selecting reliables in the first phase.

For the deblurring method in the second phase, we consider the following

form of the TV-based method:

min
f

(
‖g̃ − H̃f‖pLp(Λ) + λ‖|L f |‖1

)
, p = 1 or 2, (10)
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where L f , defined by (L f)v = (fv+(0,1) − fv, fv+(1,0) − fv), is used as a

discretization of the smoothness quantity ∇f and

‖|L f |‖1 =
∑
v∈D̄

√
|fv+(0,1) − fv|2 + |fv+(1,0) − fv|2. (11)

The regularization term ‖|L f |‖1 in (10) encourages the solution to be

piecewise constant, and makes the resulting algorithm more robust to random

valued noise. The regularization parameter λ > 0 balances the data fidelity

term, ‖g̃ − H̃f‖pLp(Λ), and the regularization term in the formulation. We

use notations L1TV and L2TV to denote the TV-based regularization (10)

corresponding to p = 1 and p = 2, respectively.

The minimization of (10) can be carried out by split Bregman iteration.

The split Bregman iteration approximates the L1 minimization by a series of

L2 minimizations. This iterative algorithm is outlined here. For details, see

[6, 7].

2.3.1 L2TV

Starting from f̂0 = 0D̄ (all-zero image defined on D̄) and d0 = c0 = ~0D̄

(two-dimensional all-zero image defined on D̄), the split Bregman iteration

for (10) with p = 2 takes

f̂n+1 = argmin
f

(
‖g̃ − H̃f‖2L2(Λ) + µ‖L f − dn + cn‖22

)
, (12)
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where ‖L f − dn + cn‖22 =
∑

v∈D̄ |(L f − dn + cn)v|2 and

dn+1 = Tλ/µ(L f̂n+1 + cn),

cn+1 = cn + L f̂n+1 − dn+1,

(13)

where µ > 0 is a parameter of the algorithm, and Tλ/µ is the soft-shrinkage

operator defined by (Tθ(~x))v = (tθ(x
1
v), tθ(x

2
v)) for any two-dimensional image

~x defined on D̄, (i.e., ~xv = (x1
v, x

2
v)), where tθ(ξ) = sign(ξ)max(0, |ξ| − θ).

The first step (12) is to find the solution of

H̃tg̃ + µL t(dn − cn) =
(
H̃tH̃+ µL tL

)
f . (14)

It was noted in [7] that a very accurate solution of (14) is unnecessary at each

split Bregman iteration. In our simulations, we used 5 conjugate gradient

(CG) iterations for (14).

2.3.2 L1TV

For the case p = 1, both data fidelity and regularization terms in (10) are

based on L1-norm. Thus the split Bregman iteration in (12) and (13) should

be modified accordingly. Here we only state the result. For details, see [6, 7].

Starting from f̂0 = 0D̄, u
0 = w0 = 0Λ, and d0 = c0 = ~0D̄, the correspond-

ing split Bregman iteration for the case p = 1 takes

f̂n+1 = argmin
f

(
µ1‖g̃ − H̃f + un −wn‖2L2(Λ) + µ2‖L f − dn + cn‖22

)
, (15)
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where

dn+1 = Tλ/µ2(L f̂n+1 + cn),

cn+1 = cn + L f̂n+1 − dn+1,

un+1 = T1/µ1(H̃f̂n+1 − g̃ +wn),

wn+1 = wn + H̃f̂n+1 − g̃ − un+1,

(16)

where µ1, µ2 > 0 are parameters of the algorithm.

The first step (15) is to find the solution of

µ1H̃
t(g̃ + un −wn) + µ2L

t(dn − cn) =
(
µ1H̃

tH̃+ µ2L
tL

)
f . (17)

Similar to (14), a very accurate solution, i.e., f̂n+1, of (17) is unnecessary at

each split Bregman iteration. In our simulations, we used 5 CG iterations

for (17).

2.3.3 Wavelet frame based deblurring

The method in [7] uses the L1-norm of a wavelet frame transform as the

regularization term in (10). Thus, replacing L in (14) and (17) with the

wavelet frame transform leads to the wavelet frame based two-phase method

in [7].
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2.3.4 Selection of reliables

A large number of median filter based methods have been proposed for se-

lecting reliables from images corrupted by random valued noise. See [15] and

references therein for details. Variational approaches based reliable-selection

methods can be found in [16] and references therein.

In [8], iterative projection comparison based reliable-selection method was

proposed. To be specific, the method in [8] computes f with a given pixel

set Λ. Then the computed image f is projected (i.e., Hf is computed) and

compared with the observed data g to update Λ by

Λ = {b ∈ D | |gb −
∑
v∈D̄

Hb,vfv| < ε} (18)

for a threshold parameter ε > 0. This process continues to the next round

by computing the next f with the newly updated Λ by (18). For details, see

[8].

3 Proposed Method

3.1 Missing data artifacts

The selective use of data in (10) (recall that Λ is the set of selected pixels

from the whole pixel set D and data on D − Λ are not used in deblurring)
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often generates so called missing data artifacts. To explain these artifacts,

we conducted a following simulation.

Figure 1(a) shows the original true image that consists of four blocks,

where each block is an identical ‘clock’ image. Figure 1(b) shows the observed

image. The original true image was first blurred by 11 × 11 Gaussian PSF

and then corrupted by some damage and salt-and-pepper noise. The circular

region of the upper-left block in Figure 1(b) was damaged, and the circular

region of the upper-right block was also damaged except its center pixel. See

the zoomed image in Figure 1(d). Observed data in lower-left and lower-right

blocks were corrupted by salt-and-pepper noise with probability s = 60% and

s = 90%, respectively.

Figure 1(c) shows

∑
b∈Λ

Hb,v normalization coefficients associated with Λ. (19)

Following the argument in Section 2.2, we can regard
∑

b∈Λ Hb,v as the degree

of contribution of the pixel v to selected data on Λ through the blurring

transform H.

In this simulation, for better visual comparison, we assumed that ñ = 0Λ

in (7). In other words, the original Gaussian noise n = 0D in (1) and the

first phase selected reliables with the ‘perfect accuracy’ (all reliables were
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selected, while all outliers were excluded).

Figure 2 shows deblurred images by L2TV with selected data from Fig-

ure 1(b), with regularization parameters λ = 0.001, 0.01, 0.1 and iteration

numbers n = 20, 100, 500. Deblurred images in Figure 2 show that the lack

of data in the lower-right block and circular damaged regions in upper-left

and upper-right blocks causes missing data artifacts.

Results in Figure 2 show that missing data artifacts can be removed by

L2TV using long iterations and large regularization parameters. They also

show that having one single pixel (the undamaged pixel at the center of the

damaged circular region in the upper-right block) in Λ greatly help L2TV

in suppressing missing data artifacts; the comparison of the upper-left block

with the upper-right block in deblurred images supports this claim.

Figure 3 shows deblurred image by L1TV with selected data from Fig-

ure 1(b), with regularization parameters λ = 0.001, 0.01, 0.1 and iteration

numbers n = 20, 100, 500. Results in Figure 3 are almost identical to those

in Figure 2.

It is obvious that suppressing missing data artifacts by long iterations is

not a good approach. Deblurred images in Figure 2 and 3 had better image

quality as iteration numbers increased. This was because selected data did
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not contain any noise; recall that that the original Gaussian noise n = 0D

in (1) and reliables were selected with the perfect accuracy. In practical

examples, such perfect accuracy is impossible, and hence long iterations often

produce noisy deblurred images.

Suppressing missing data artifacts by large regularization parameters is

not a good approach, either. Large regularization parameters often give

over-smoothing in deblurred images. Over-smoothing by large regularization

parameters is very visible in deblurred images in the third row ((g), (h), (i))

of Figure 2 and 3.

3.2 Normalization technique

Let

Ω = {v ∈ D̄ |
∑
b∈Λ

Hb,v > 0}. (20)

Notice that Ω is determined by Λ and the pixel v /∈ Ω cannot give any con-

tribution to selected data on Λ. In Section 3.3 of this paper, we will propose

a reliable-selection method which chooses Λ satisfying Ω = D̄. Having this

in mind, we assume that Ω = D̄ in this section.

To deal with missing data artifacts, we consider a weighted inner product
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< ·, · >w defined by

< p, p̃ >w =
∑
v∈D̄

pvp̃vwv, (21)

for all images p and p̃ defined on D̄, where w = (wv) is the image formed by

normalization coefficients associated with Λ, i.e.,

wv =
∑
b∈Λ

Hb,v. (22)

The use of normalization coefficients based inner product < ·, · >w is moti-

vated by the principle that the pixel that gives less contribution to selected

data is to be treated less importantly.

Note that the equation (14) is the result of setting the derivative of the

functional (12) with respect to the standard inner product to the zero vector.

Similarly, setting the derivative of the functional (12) with respect to the

weighted inner product < ·, · >w to the zero vector leads to

W−1
(
H̃tg̃ + µL t(dn − cn)

)
= W−1

(
H̃tH̃+ µL tL

)
f , (23)

where W is the matrix defined by pixel-by-pixel multiplications

(Wp)v = wvpv (24)

for all images p defined on D̄, with w = (wv) in (22).

To verify (23), we generalize the definition of the derivative of a real-

valued differentiable function ϕ defined on a m-dimensional vector space
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Rm. Suppose Rm is equipped with the inner product < ·, · >Q defined by a

positive definite matrix Q ∈ Rm×m, i.e., < x,y >Q= xtQy for all x,y ∈ Rm.

The derivative of ϕ at x ∈ Rm with respect to the inner product < ·, · >Q is

the unique vector α ∈ Rm satisfying

limh→0
|ϕ(x+ h)− ϕ(x)− < α,h >Q |

< h,h >
1/2
Q

= 0, h ∈ Rm. (25)

The definition (25) implies that the derivative vector α depends on how

vectors are measured. A simple consideration shows that

derivative vector α of ϕ at x with respect to < ·, · >Q = Q−1∇ϕ(x). (26)

This verifies (23).

To suppress missing data artifacts, we suggest to use the normalized split

Bregman iteration that uses (23) and (13). By noting that this method is

derived from L2TV and normalization coefficients (22), we call it normalized

L2TV and denote it by NL2TV.

With a similar argument, setting the derivative of the functional (15)

with respect to < ·, · >w to the zero vector leads to

W−1
(
µ1H̃

t(g̃ + un −wn) + µ2L t(dn − cn)
)

= W−1
(
µ1H̃

tH̃+ µ2L tL
)
f .

(27)
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We call the normalized split Bregman iteration that uses (27) and (16) nor-

malized L1TV and denote it by NL1TV.

For the computation of (23) and (27), CG iterations can be used after

making main matrices in (23) and (27) to be symmetric. For example, after

multiplying W1/2 to the left, the right hand side of (23) can be rewritten as

[W−1/2
(
H̃tH̃+ µL tL

)
W−1/2]W1/2f (28)

to make the matrix to be symmetric. The same approach also holds for (27).

In [17], similar approach to (28) was used for suppressing boundary artifacts

in image deblurring.

Algebraically, (14) and (23) are identical. However, unless extremely long

iterations are used for (14) and (23), they produce noticeably different results.

Thus L2TV and NL2TV produce different results. The same argument proves

that L1TV and NL1TV also produce different results.

Figure 4 shows deblurred images by NL2TV and NL1TV from the ob-

served image in Figure 1(b). In this simulation, the regularization param-

eter λ = 0.001 was used both for NL2TV and NL1TV. The comparison of

Figure 4 with Figure 2 and 3 shows that the normalization technique (the

use of normalization coefficients based inner product < ·, · >w in analyz-

ing minimization problems (12) and (15) as in (23) and (27)) can suppress
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missing data artifacts without resorting to long iterations or large regulariza-

tion parameters. In Figure 4, missing data artifacts in the lower-right block

were clearly removed even from early iterations. Damaged regions were also

recovered well by NL2TV and NL1TV; much smaller region remained as

un-recovered in the upper-left block, so that it could be easily recovered by

post-inpainting methods. The damaged region in the upper-right block was

more easily recovered by NL2TV and NL1TV than L2TV and L1TV.

Before we close this section, it is worth to point out that vertical or

horizontal lines near boundaries in Figure 2(a), 2(b), 2(c), 2(d), 2(e), 3(a),

3(b), 3(c), 3(d), and 3(e) are boundary artifacts. Various methods have been

suggested for the suppression of boundary artifacts [17, 18, 19, 20]. Based

on simulation results in this section, we can conclude that the proposed

normalization technique suppresses boundary artifacts efficiently.

3.3 Blurring model based reliable-selection technique

In simulations in Figure 2, 3, and 4, reliables were assumed to be selected from

the observed image (Figure 1(b)), which is corrupted by some damage and

salt-and-pepper noise, with the perfect accuracy. In the random valued noise

model, however, it is impossible to select reliables with the perfect accuracy.
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Any reliable-selection methods are subject to make following two types of

errors; ‘selecting outliers as reliables’ (the first type error) and ‘excluding

reliables as outliers’ (the second type error).

Let

P1 = Prob(selected as reliables | outliers) (29)

and

P2 = Prob(excluded as outliers | reliables). (30)

Obviously, it is desirable for every reliable-selection method to have P1 (the

probability of the first type error) and P2 (the probability of the second

type error) as small as possible simultaneously. In all methods, however, the

attempt to make P1 smaller usually makes P2 bigger, vice versa.

The performance of two-phase methods greatly depends on the accuracy

of the reliable-selection in the first phase. Iterative projection comparison

based reliable-selection method in [8] generally produces better results than

median-type methods. As mentioned in Section 1, however, this iterative

projection comparison based method tends to select reliables more frequently

from smooth region than near-edge region, and hence often leads to missing

data artifacts; no data from certain region of the image could be selected

as reliables in some cases (see Figure 6). Such phenomenon can be reduced
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by performing the reliable-selection criterion (18) to blocks of the observed

image with block-specific threshold parameters. See (31). This block-wise

approach, however, often selects more unwanted data (i.e., outliers) than the

original approach in [8]. It is also true that, occasionally, the block-wise

approach still exhibits missing data artifacts by selecting no data as reliables

from certain region. For details, see Figure 6.

In this paper, we denote iterative projection comparison based reliable-

selection method in [8] by IPC and its block-wise version by BIPC.

The proposed reliable-selection method of this paper is based on BIPC.

Let Di, i = 1, 2, . . . , B be disjoint block partitions of D, i.e., D = ∪B
i=1Di. For

given Λ, we use NL2TV or NL1TV to compute the image f with selected

data on Λ. Then, we update Λ = ∪B
i=1Λi by combining

Λi = {b ∈ Di||gb −
∑
v∈D̄

Hb,vfv| < εi}, (31)

where εi > 0 are block dependent threshold parameters. At this point, we

check whether Ω = D̄ after computing Ω by (20) with newly updated Λ. In

case when Ω 6= D̄, we select more pixels for Λ to make Ω = D̄ as follows:

SelectMore: Given ν > 0, let Sv = {b ∈ D | Hb,v > 0}.

S1 for v ∈ D̄− Ω

S2 if Λ ∩ Sv = ∅
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S3 Add b̂ to Λ, where b̂ = argminb∈Sv |gb −
∑

v∈D̄ Hb,vfv|;

S4 if |gb̂ −
∑

v∈D̄ Hb̂,vfv| > ν

S5 Use Hb̂,vfv for gb̂;

S6 end

S8 Update Ω by adding {v ∈ D̄ | Hb̂,v > 0} to Ω;

S7 end

S9 end

Notice that Sv is the set of pixels that are under the influence of the pixel

v through the blurring transform H. Thus, the step S2 represents the case

that the pixel value at v does not contribute to selected data on Λ. In such

case, we find b̂ that is the pixel at which the projected value is the closest to

the observed value and add it to Λ. Steps from S4 to S6 use
∑

v∈D̄ Hb̂,vfv

for gb̂ in case when none of projected data are close enough to observed data

by ν. These steps are designed for extreme cases. In our simulations, we

set ν = 20. This choice made steps from S4 to S6 to be used only for very

extreme cases. The SelectMore routine adds more pixels to Λ until Ω = D̄.

This process continues to the next round by computing the next f with newly

updated Λ.

In this paper we denote the proposed blurring model based reliable-
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selection technique by BMRS.

The main objective of BMRS to make Λ to satisfy Ω = D̄. By doing so,

BMRS followed by the TV-based deblurring method (10) makes all pixel val-

ues on D̄ to be mainly recovered by the data fidelity term ‖g̃−H̃f‖pLp(Λ). This

approach is motivated by simulation results in Figure 4; the damaged region

in the upper-right block was recovered well since all pixels in the damaged

region are in Ω by having the undamaged center pixel in Λ (see Figure 1(d)),

while pixel values on D̄−Ω (un-recovered part in the upper-left block of Fig-

ure 4) were not recovered well. Simulation results in Figure 2 and 3 indicate

that the recovery of those pixel values requires large regularization parame-

ters, since those pixel values can be recovered only by the regularization term

in (10).

As IPC in [8] can be used both for the reliable-selection and the deblur-

ring, the proposed method, BMRS, can be also used both for the reliable-

selection and the deblurring.

4 Simulation

In previous section, we proposed normalization (NL2TV and NL1TV) and

BMRS techniques to improve two-phase methods in deblurring images cor-
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rupted by random valued noise. Results in Figure 2, 3, and 4 already showed

that the use of the normalization technique significantly improves results of

two-phase methods, by suppressing missing data artifacts effectively. In this

section, we conducted several simulations to support the claim that BMRS

also improves results of two-phase methods. Considering the superior per-

formance of normalized methods (NL2TV and NL1TV) over un-normalized

methods (L2TV and L1TV) and the fact that deblurred images by NL2TV

are similar to those by NL1TV, we used only NL2TV in simulations.

Simulation studies were conducted for Gaussian and diagonal deblurring

problems, where matrices H were modeled by 11 × 11 Gaussian PSF and

11 × 11 diagonal PSF, respectively, by (3). Here diagonal elements of the

diagonal PSF were 66−1 × {11, 10, . . . , 1}. Original true images, ‘girl’ and

‘house’ were first blurred and then noised by mean zero Gaussian noise n

with the standard deviation = 0.5% of their means. Finally, random valued

noise with the probability r = 40% was applied to blurred and Gaussian

noised images, Hf + n, in Figure 5(a) and 5(c). Figure 5(b) and 5(d) show

final outputs, g = R(Hf + n).

In simulation, we chose the iterates that had the smallest RSE (Relative

Square Error) in 300 iterations as the deblurred image by the tested method.
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Here the RSE is defined by

RSE =

∑
v |f̂v − fv|2∑

v |fv|2
, (32)

where f̂ = (f̂v) and f = (fv) are the deblurred image and the original true

image.

Figure 6 shows indicator images of selected pixels Λ by the center-weighted

median filter (denoted by CWM) in (a), (e), IPC in (b), (f), BIPC in (c), (g),

and BMRS in (d), (h), from observed images in Figure 5(b) and 5(d). In Fig-

ure 6, we presented unselected pixels by black color and selected pixels by

white color.

As being iterative reliable-selection methods, IPC, BIPC, and BMRS need

initial guess for Λ. We used CWM for this purpose.

Figure 7 shows deblurred images by NL2TV with data on selected pixels

in Figure 6(a), 6(b), 6(c), and 6(d) from the observed image in Figure 5(b).

In this simulation, the regularization parameter λ = 0.001 was used. Fig-

ure 8 shows deblurred images by NL2TV with data on selected pixels in

Figure 6(e), 6(f), 6(g), and 6(h) from the observed image in Figure 5(d). In

this simulation, the regularization parameter λ = 0.1 was used.

Table 1 summarizes the accuracy of tested reliable-selection methods and

their RSE results.
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Table 1. Accuracy of reliable-selection methods and RSE results. Here P =

Prob(selected) = 0.6× (1− P2) + 0.4× P1.

Gaussian deblurring (Figure 5(b))

CWM IPC BIPC BMRS

P1 × 100 2.04 1.12 1.39 1.28

P2 × 100 54.39 30.97 31.02 31.02

P × 100 28.18 41.87 41.94 41.90

RSE 0.01083 0.00883 0.01047 0.00712

(Fig. 7(a)) (Fig. 7(b)) (Fig. 7(c)) (Fig. 7(d))

Diagonal deblurring (Figure 5(d))

CWM IPC BIPC BMRS

P1 × 100 1.66 3.96 4.88 2.75

P2 × 100 61.04 22.77 22.58 20.87

P × 100 24.04 47.92 48.40 48.58

RSE 0.01736 0.05736 0.05386 0.00493

(Fig. 8(a)) (Fig. 8(b)) (Fig. 8(c)) (Fig. 8(d))
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4.1 Results by CWM

For CWM, we used a filter which takes the median of 5× 5 pixel values with

the weight 7 on the value at the center pixel.

Table 1 shows that CWM selected much smaller number of reliables than

iterative selection methods (IPC, BIPC, and BMRS). Figure 6(a) and 6(e)

show that CWM selected pixels non-uniformly; pixels from smooth region

tend to be selected more frequently than near-edge pixels. As a result, CWM

based NL2TV produced poor results as shown in Figure 7(a) and 8(a); in

Gaussian deblurring (Figure 7(a)), CWM based NL2TV suffered from some

artifacts at near-edge regions (e.g., regions near to left cheek and right hand).

In diagonal deblurring (Figure 8(a)), a wide part of the deblurred image was

over-smoothed, apparently, as a result of selecting no data from a wide region

(Figure 6(e)).

4.2 Results by IPC

Our experience in simulations showed that the diagonal deblurring seemed

to need more selected data than the Gaussian deblurring. In Figure 6(b)

and 6(f) (IPC), we used ε (in (18)) that can make |Λ| ≈ 0.42 × |D| for the

Gaussian deblurring and |Λ| ≈ 0.48× |D| for the diagonal deblurring.



Suppression of Missing Data Artifacts for Deblurring Images 30

Figure 6(b) and 6(f) show that IPC selected data non-uniformly, but

not as much as CWM. IPC based NL2TV produced poor results as shown

in Figure 7(b) and 8(b); in Gaussian deblurring (Figure 7(b)), IPC based

NL2TV suffered from similar artifacts to what CWM based NL2TV suffered

from at same near-edge regions. In diagonal deblurring (Figure 8(b)), a wide

part of the deblurred image was recovered poorly as a result of selecting no

data from a wide region (Figure 6(f)).

4.3 Results by BIPC

For the block-wise approach (31) in BIPC and BMRS, we used 13× 13 sized

blocks of observed images and εi that can make |Λi| ≈ 0.42 × |Di| for the

Gaussian deblurring and |Λi| ≈ 0.48× |Di| for the diagonal deblurring.

The comparison of Figure 6(c) and 6(g) with Figure 6(b) and 6(f) clearly

shows that the block-wise approach (31) helped BIPC to select data more

uniformly than IPC. Table 1, however, shows that the block-wise approach

also increased the chance of selecting outliers as reliable. This explains why

Figure 7(c) (deblurred by BIPC based NL2TV) had more artifacts and larger

RSE than Figure 7(b) (deblurred by IPC based NL2TV).

Figure 7(c) and 8(c) show missing data artifacts. This implies that the
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block-wise approach (31) in selecting data is still not sufficient for avoiding

missing data artifacts.

4.4 Results by BMRS

The only difference between BIPC and BMRS is the use of SelectMore (see

Section 3.3) in BMRS. For BMRS, we used same sized blocks and parameters

εi as BIPC.

The comparison of results by BMRS with those by BIPC in Table 1 shows

that SelectMore helped BMRS to reduce the chance of selecting outliers as

reliable. Figure 6(d) and 6(h) shows that BMRS selects data more uniformly

than IPC.

As shown in Figure 7(d) and 8(d), BMRS based NL2TV produced de-

blurred images in better image quality than other methods. In fact, Table 1

shows that deblurred images by BMRS based NL2TV had the smallest RMS.

These results show that BMRS improves results by two-phase methods by

selecting data more efficiently than other methods such as CWM, IPC, and

BIPC.
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5 Conclusion and Discussion

In this paper, we studied the problem of deblurring images corrupted by

random valued noise. We showed that the selective use of data in two-phase

methods causes missing data artifacts. To suppress those missing data arti-

facts, we proposed blurring model based reliable-selection and normalization

techniques. Simulation results showed that the proposed normalization tech-

nique greatly improves results of two-phase method based on total variational

approaches in Gaussian and diagonal deblurring problems. Simulation results

also showed that the proposed blurring model based reliable-selection tech-

nique excludes outliers accurately, while selecting sufficiently many reliables,

and, as a result, significantly improves results of two-phase methods.
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(a) Original image (b) Observed image (c) Normalization coeffi-

cients

(d) Zoomed part of observed image

Figure 1. (a) The original true image that consists of four identical ‘clock’

image blocks. (b) The observed image of size 310 × 310. The original true

image of size 320× 320 was first blurred by 11× 11 Gaussian PSF and then

corrupted by damages and salt-and-pepper noise. The circular region of the

upper-left block was damaged, while the circular region of the upper-right was

damaged except its center pixel. Observed data in lower-left and lower-right

blocks were corrupted by salt-and-pepper noise with probability s = 60% and

90%, respectively. (c) Normalization coefficients (of size 320×320) associated
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with the selected pixel set Λ with the perfect accuracy. (d) A zoomed part

of the observed image.
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(a) λ = 0.001, n = 20 (b) λ = 0.001, n = 100 (c) λ = 0.001, n = 500

(d) λ = 0.01, n = 20 (e) λ = 0.01, n = 100 (f) λ = 0.01, n = 500

(g) λ = 0.1, n = 20 (h) λ = 0.1, n = 100 (i) λ = 0.1, n = 500

Figure 2. Deblurred images by L2TV with accurately selected data from

the observed image in Figure 1(b), with regularization parameters λ =
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0.001, 0.01, 0.1 and iteration numbers n = 20, 100, 500.



Suppression of Missing Data Artifacts for Deblurring Images 40

(a) λ = 0.001, n = 20 (b) λ = 0.001, n = 100 (c) λ = 0.001, n = 500

(d) λ = 0.01, n = 20 (e) λ = 0.01, n = 100 (f) λ = 0.01, n = 500

(g) λ = 0.1, n = 20 (h) λ = 0.1, n = 100 (i) λ = 0.1, n = 500

Figure 3. Deblurred images by L1TV with accurately selected data from

the observed image in Figure 1(b), with regularization parameters λ =
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0.1, 0.01, 0.001 and iteration numbers n = 20, 100, 500.
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(a) NL2TV, n = 20 (b) NL2TV, n = 100 (c) NL2TV, n = 500

(d) NL1TV, n = 20 (e) NL1TV, n = 100 (f) NL1TV, n = 500

Figure 4. Deblurred images by NL2TV ((a), (b), (c)) and NL1TV ((d), (e),

(f)) with accurately selected data from the observed image in Figure 1(b),

with λ = 0.001 as the regularization parameter. Here n is the iteration

number.
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(a) Blurred ‘girl’ (b) Observed ‘girl’

(c) Blurred ‘house’ (d) Observed ‘house’

Figure 5. Blurred images and observed images. Original true images, ‘girl’

and ‘house’, were first blurred by Gaussian and diagonal PSFs, respectively,

added by mean zero Gaussian noise with the standard deviation = 0.5% of

mean of blurred images, and corrupted by random valued noise with the
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probability r = 40%. Images in (a) and (c) are blurred images, i.e., Hf + n,

and images in (b) and (d) are observed images, i.e., g = R(Hf + n) in (1).
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(a) CWM (b) IPC (c) BIPC (d) BMRS

(e) CWM (f) IPC (g) BIPC (h) BMRS

Figure 6. Indicator images of selected pixels Λ by CWM in (a), (e), IPC

in (b), (f), BIPC in (c), (g), and BMRS in (d), (h), where selected and un-

selected pixels are represented by white and black colors, respectively. Pixels

in (a), (b), (c), and (d) were selected from ‘girl’ image in Figure 5(b), while

pixels in (e), (f), (g), and (h) from ‘house’ image in Figure 5(d). In CWM,

the 7 times center-weighted 5× 5 median filter was used. In IPC, BIPC, and

BMRS, NL2TV in (23) and (13) was used for computing projections in the

reliable-selection. In BIPC and BMRS, the block size was set to be 13× 13.
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(a) CWM (b) IPC

(a) BIPC (b) BMRS

Figure 7. Deblurred images by NL2TV with selected data by (a) CWM, (b)

IPC, (c) BIPC, and (d) BMRS from the observed image in Figure 5(b). In

this simulation, the regularization parameter λ = 0.001 was used for NL2TV.
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(a) CWM (b) IPC

(c) BIPC (d) BMRS

Figure 8. Deblurred images by NL2TV with selected data by (a) CWM, (b)

IPC, (c) BIPC, and (d) BMRS from the observed image in Figure 5(d). In

this simulation, the regularization parameter λ = 0.1 was used for NL2TV.


