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Abstract

Several methods have been proposed to reduce boundary artifacts

in image deblurring. Some of those methods impose certain assump-

tions on image pixels outside the field-of-view; the most important of

these assume reflective or anti-reflective boundary conditions. Bound-

ary condition methods, including reflective and anti-reflective ones,

however, often fail to reduce boundary artifacts, and, in some cases,

generate their own artifacts, especially when the image to be deblurred

does not accurately satisfy the imposed condition. To overcome these

difficulties, we suggest using free boundary conditions, which do not

impose any restrictions on image pixels outside the field-of-view, and

preconditioned conjugate gradient methods, where preconditioners are

designed to compensate for the non-uniformity in contributions from

image pixels to the observation. Our simulation studies show that the

proposed method outperforms reflective and anti-reflective boundary

condition methods in removing boundary artifacts. The simulation

studies also show that the proposed method can be applicable to arbi-

trarily shaped images and has the benefit of recovering damaged parts

in blurred images.

Keywords: Boundary artifacts, Image deblurring, Convolution, Precon-

ditioner
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1 Introduction

1.1 The problem of deblurring

For an image f = (fj1,j2) defined for (j1, j2) in some rectangular domain Ω,

we assume that we can observe only a noisy, blurred image

g = T f + n. (1)

Here T , sometimes called a projector, is a linear transform that determines

the blurring process acting on the image f . We assume that T can be

expressed as a truncated convolution with a point spread function (PSF)

k = (kj1,j2),

(T f)i1,i2 =
∑

(j1,j2)∈suppk

kj1,j2fi1−j1,i2−j2 . (2)

Here suppk, the support of k, is {(j1, j2) | kj1,j2 > 0}. The PSF k is non-

negative, its components have sum 1, and the point (0, 0) ∈ suppk; T f is

defined on Λ, where (i1, i2) ∈ Λ if and only if (i1, i2)− suppk ⊆ Ω.

So T : L2(Ω) → L2(Λ); the notation L2(Ω) is the inner product space

equipped with the inner product defined by

〈p, p̃〉 =
∑

(j1,j2)∈Ω

pj1,j2 p̃j1,j2

for any images p and p̃ that are defined on Ω. We sometimes use a weighted

inner product on Ω; the notation L2(Ω,w) means the space equipped with

the weighted inner product defined by

〈p, p̃〉w =
∑

(j1,j2)∈Ω

pj1,j2 p̃j1,j2wj1,j2 , (3)
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where the weight w = (wj1,j2) is defined on Ω.

The result T f is further contaminated by noise n, which we assume to be

independent and identically distributed mean zero Gaussian.

Note that T is not an invertible operator—there are more pixels in f than

there are in T f .

The deblurring problem is: Assuming that we have data g, observed from

a true image f by the observation model (1), determine an approximation f̂

to f . Because T is not invertible, this problem is ill posed.

1.2 Previous work: minimizing boundary artifacts

Much attention has been given to the general deblurring problem, and re-

searchers have developed many techniques to approach this problem because

there are a number of obstacles to obtaining satisfactory solutions, see [15].

From among these obstacles, we focus here mainly on the problem of bound-

ary artifacts [9].

Some authors have used so-called boundary condition methods [11, 14, 5,

6]. In these methods, it is assumed for computational purposes that fj1,j2

in Ω − Λ is related to f in Λ via a fixed formula. Among boundary condi-

tion methods, we shall compare our method with reflective and anti-reflective

boundary condition methods. To do so, we assume that the extension oper-

ator E : L2(Λ) → L2(Ω) satisfies (Ef)j1,j2 = fj1,j2 for (j1, j2) ∈ Λ. Outside Λ,

f is extended either symmetrically (these are reflective boundary conditions)

or anti-symmetrically (these are anti-reflective boundary conditions); precise
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definitions will be given later.

For boundary condition methods, the Tikhonov regularization approach

is to find f̂ that minimizes over all q ∈ L2(Λ)

‖g − T Eq‖2L2(Λ) + λ‖q‖2L2(Λ), (4)

where λ is a positive regularization parameter.

Some authors have suggested that not imposing a boundary condition

may lead to a better reconstruction f̂ [3, 4]. We call this a free bound-

ary method; Calvetti et al. calls this an Aristotelian approach [4]. When

combined with Tikhonov regularization, we find f̂ that minimizes over all

p ∈ L2(Ω)

‖g − T p‖2L2(Λ) + λ‖p‖2L2(Ω). (5)

Later, we shall propose to put a weight w on the domain Ω, and so

consider the space L2(Ω,w).

In all these cases, Tikhonov regularization leads to a linear problem, which

can be written in general in the form of normal equations

Ax = y, (6)

where A is a positive definite operator and x is the minimizer of either (4) or

(5) (with either L2(Ω) or L2(Ω,w)). In practice, it is important that these

normal equations are not solved exactly; most practitioners use iterative

methods, often Conjugate Gradient, with a small number of iterations.

In this paper we consider an incompletely-iterated Conjugate Gradient

(CG) method to find an approximate solution to these equations. Mathe-
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matically, if there are N iterations of the CG method, then the image that

approximately solves (6) is

x̂ = ΠA
span{y,Ay,...,ANy}A

−1y, (7)

where ΠA
Xh is the projection of h onto the space X with the inner product

defined as 〈u,v〉A = 〈u,Av〉.

1.3 Our approach

We combine a number of previous approaches to this problem. In particular,

we propose combining Tikhonov regularization, free boundary conditions,

and incomplete CG iterations. To be specific, we propose the Tikhonov

regularization to find f̂ that minimizes over all p ∈ L2(Ω,w)

‖g − T p‖2L2(Λ) + λ‖p‖2L2(Ω,w); (8)

here w = T ∗IΛ, where T ∗ is the adjoint operator of T and IX is the image

of all 1s on X . Thus, the suggested normal equation is

(T ∗T + λW)p = T ∗g, (9)

or

Ax = y, where A = T ∗T + λW , y = T ∗g, and x = p; (10)

here W is the diagonal operator defined by the the weight w, that is, Wp =

w .∗p for p ∈ L2(Ω,w), where .∗ is the pixel-by-pixel multiplication.

Additionally, we shall find that a better reconstruction occurs when we

precondition the CG iteration with W . Mathematically, this is equivalent to
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applying un-preconditioned CG iterations to the modified problem

[W−1/2 (T ∗T + λW)W−1/2](W1/2p) = W−1/2T ∗g (11)

or

Ãx̃ = ỹ, (12)

where ỹ = W−1/2T ∗g, Ã = W−1/2 (T ∗T + λW)W−1/2, and x̃ = W1/2p.

We have the relationship x = W−1/2x̃. However, after N iterations,

preconditioned CG computes the image

W−1/2ΠÃ
span{W−1/2T ∗g,ÃW−1/2T ∗g,...,ÃNW−1/2T ∗g}Ã

−1W−1/2T ∗g, (13)

which is in general different from the image computed without precondition-

ing

ΠA
span{T ∗g,AT ∗g,...,ANy}A

−1T ∗g. (14)

We shall show through experiments that this combination of techniques re-

sults in reduced boundary artifacts compared to the other methods men-

tioned.

1.4 Outline

This paper is outlined as follows. In Section 2 we review notation, ter-

minology, and background material, including reflective and anti-reflective

boundary conditions. In Section 3 we suggest free boundary conditions and

preconditioned CG iteration as a method for boundary artifact removal. In

Section 4 we present simulation results of the proposed method with compar-

ison to methods using reflective and anti-reflective boundary conditions, and
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applications of the proposed method. Finally, we present some discussion

and conclusions in Section 5.

2 Background

2.1 Notation and terminology

In this paper, we shall use following notations, conventions, and terminology.

• g = T f + n: the observation model, where f is the true image to

be recovered, T is the projector that represents the space-invariant

blurring of a given problem, g is the observed image, and n is Gaussian

noise.

• f = (fj1,j2): the image, f , will be denoted in a bold-faced alphabet,

while its image pixel value, fj1,j2 at (j1, j2), will be denoted in a normal

alphabet with subscripted indices. The same rule will hold for other

images and PSFs throughout this paper.

• Λ: the set of image pixels where g is defined.

• Ω: the set of image pixels where f is defined.

• Ω− Λ: the set of “unseen” image pixels across the boundary of Λ.

• L2(Λ): the set of images defined on Λ; for instance, g ∈ L2(Λ).

• L2(Ω): the set of images defined on Ω; for instance, f ∈ L2(Ω).
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• IΛ: the identity map on the image space defined on Λ.

• IΩ: the identity map on the image space defined on Ω.

• IΘ: the all-one image on a pixel set Θ ⊆ Λ (or Ω),

(IΘ)i1,i2 =

 1, if (i1, i2) ∈ Θ,

0, if (i1, i2) /∈ Θ.
(15)

• k: the PSF that defines the projector T by (2).

• k̄: the reverse ordered PSF of k = (ki1,i2),

k̄ = (k̄i1,i2) and k̄i1,i2 = k−i1,−i2 . (16)

• suppk: the support of k, the set of (i1, i2) such that ki1,i2 6= 0.

• Standard backprojector T ∗: the adjoint transform T ∗ : L2(Λ) → L2(Ω)

associated with the projector T : L2(Ω) → L2(Λ), which is uniquely

determined by the relation

(q, T p) = 〈T ∗q,p〉, (17)

for all q ∈ L2(Λ) and p ∈ L2(Ω). Here (·, ·) and 〈·, ·〉 are the inner

products of two images in L2(Λ) and L2(Ω), respectively.

Throughout this paper, we assume that the PSF k is non-negative with

positive origin,

ki1,i2 ≥ 0 and k0,0 > 0, (18)

and normalized to 1, i.e., ∑
(i1,i2)∈suppk

ki1,i2 = 1. (19)
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2.2 Projector and backprojector

The relation between the PSF k and the projector T is defined by (2). In

this paper, the right hand side of (2) will be denoted by k ∗V f , i.e.,

T p = k ∗V p for all p ∈ L2(Ω), (20)

and called the valid convolution of k and f . For future use, let the full

convolution of k̄ and q in L2(Λ) be defined by

(k̄ ∗F q)j1,j2 =
∑

(i1,i2)∈suppk∩((j1,j2)+Λ)

ki1,i2qi1−j1,i2−j2 . (21)

Here (k̄∗F q)j1,j2 is defined for (j1, j2) if and only if suppk∩((j1, j2)+Λ) 6= ∅.

In the previous section, we defined Ω to be the set of image pixels where

the true image f is defined. Since we cannot recover f on image pixels that

do not give any contribution to the observed image g, we can redefine Ω to

be the set of image pixels that actually contribute to the observed image g

through the blurring by the PSF k. Following this rule, we have

Ω = {(j1, j2) | (k̄ ∗F IΛ)j1,j2 > 0}. (22)

Here we note that this result implies Λ ⊂ Ω, since k0,0 > 0. The proof of

(22) immediately follows from the definition of the full convolution.

Previously, we defined the standard backprojector T ∗ abstractly by the

basic theory of linear algebra. When T is defined by the valid convolution

by the PSF k, a more practical definition of the standard backprojector T ∗

is based on following result:

(∀p ∈ L2(Ω)) T p = k ∗V p ⇐⇒ (∀q ∈ L2(Λ)) T ∗q = k̄ ∗F q. (23)
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The proof of (23) also immediately follows from the definition of valid and

full convolutions.

The computation of T p (or k∗V p) and T ∗q (or k̄∗F q) can be performed

either by pixel-wise definitions (2) and (21) or by the fast Fourier transform

(FFT) with zero-paddings. Pixel-wise computations are preferred for PSFs

with small support, while FFT-based computations are needed for PSFs with

large support.

2.3 Boundary condition methods

In this section, we shall explain three boundary conditions (reflective, anti-

reflective, and free), which have been studied by many researchers [3, 11, 14,

5, 6, 4].

Reflective and anti-reflective boundary condition methods are virtually

limited to rectangular shaped images. To present them, we assume that

Λ = {(i1, i2) | 0 ≤ iν < Nν (ν = 1, 2)} (24)

for some positive integers N1 and N2. To avoid some technical difficulty, we

also assume that

suppk = {(i1, i2) | −Lν ≤ iν ≤ Mν (ν = 1, 2)} (25)

for some positive integers L1, L2, M1, and M2. In this case,

Ω = {(j1, j2) | −Mν ≤ jν ≤ Nν + Lν − 1 (ν = 1, 2)}. (26)
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We divide the true image f into 9 parts as follows:

f =


fnw fn fne

fw fc fe

fsw fs fse

 , (27)

where fc = (fi1,i2), 0 ≤ iν < Nν (ν = 1, 2) represents the image part defined

on Λ; each of the other eight parts, fnw, fn, fne, fw, fe, fsw, fs, and fse in (27),

represents part of the image defined on Ω−Λ, the set of unseen image pixels

across the boundary of Λ.

Boundary condition methods impose certain restrictions on fnw, fn, fne,

fw, fe, fsw, fs, and fse in (27). For example, the i-th row of the reflective

boundary condition imposed image is

(fi,M2−1, · · · , fi,1, fi,0,

fi,0, fi,1, · · · , fi,N2−2, fi,N2−1,

fi,N2−1, fi,N2−2, · · · , fi,N2−L2),

(28)

and similarly for the column, while the i-th row of the anti-reflective bound-

ary condition imposed image is

(2fi,0 − fi,M2 , · · · , 2fi,0 − fi,2, 2fi,0 − fi,1,

fi,0, fi,1, · · · , fi,N2−1, fi,N2−1,

2fi,N2−1 − fi,N2−2, · · · , 2fi,N2−1 − fi,N2−L2−1),

(29)

and similarly for the column.

Any set of boundary conditions introduces an extension operator E : L2(Λ) →

L2(Ω) such that

Efc =


f̃nw f̃n f̃ne

f̃w fc f̃e

f̃sw f̃s f̃se

 , (30)
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where f̃nw, f̃n, f̃ne, f̃w, f̃e, f̃sw, f̃s, and f̃se represent parts of the image imposed

by the boundary condition. The operators E associated with reflective and

anti-reflective boundary conditions can be defined by (28) and (29), respec-

tively.

In [11, 14, 5], reflective and anti-reflective boundary condition methods

take the form (4) as Tikhonov regularization [7]. In this work, to test the

performance of reflective and anti-reflective boundary condition methods, we

shall apply CG iterations to the normal equation

(E∗T ∗T E+ λIΛ)q = E∗T ∗g, (31)

derived from (4). We denote by RBC reflective boundary condition–based

CG iterations, and we denote by ABC anti-reflective boundary condition–

based CG iterations.

For explanatory purpose, we use the term free boundary condition to refer

to the method suggested in [3, 4], even though the suggested method does

not impose any boundary conditions whatsoever.

In [4], Calvetti et al. claim that, “In an Aristotelian approach to knowl-

edge, when it is not known a priori which boundary conditions should be

chosen, by admitting our lack of information it is possible to let the data itself

determine them.” Thus, free boundary conditions do not need an extension

operator to impose boundary conditions, and hence, this approach can be

applied to arbitrarily shaped images. The proposed method in this paper

will show that such flexibility in dealing with boundary artifacts gives sev-

eral advantages to free boundary conditions over reflective and anti-reflective

boundary conditions, which can be applied only to rectangular shaped im-
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ages.

To test the performance of free boundary conditions, we shall apply the

CG method to the linear system

(T ∗T + λIΩ)p = T ∗g, (32)

which is derived from the Tikhonov regularization (5). Form now on, we

shall denote the standard CG iterations applied to (32) by FBC.

3 Proposed Method

3.1 Free boundary condition

The use of the free boundary conditions begins with determining Ω from (22).

We use Figure 1 to explain this process: Notice that the observed image g

in Figure 1(a) has a non-rectangular boundary, where the dark background

indicates the region where no observation is available. In Figure 1(a), the

blurring is performed by 17× 17 Gaussian PSF with standard deviation the

width of 3 pixels. Figure 1(b) shows the pixel set Ω, which consists of two

parts: one is the observed region Λ, indicated in white, and the unseen region

Ω − Λ, indicated in gray. Note that the border line between the white and

the gray colored regions in Figure 1(b) is the boundary of the observed image

g. This process clearly shows that free boundary conditions can be applied

to arbitrarily shaped images. Note also that this kind of flexibility of free

boundary conditions to boundary shapes is not available to reflective and

anti-reflective boundary conditions, which are limited to rectangular shaped
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images only.

The free boundary condition alone, or equivalently FBC, does not remove

boundary artifacts, as we can see in Figure 2(a), which is the deblurred

image by FBC (the image is obtained by 100 CG iterations). Despite FBC

failing to remove boundary artifacts, we suggest using FBC as the first step

to avoid boundary artifacts caused by the use of inappropriate boundary

conditions, by noting in the next section that boundary artifacts in FBC can

be suppressed by using CG preconditioning.

3.2 Preconditioned CG iterations

To deal with boundary artifacts, we propose a weight w defined by

w = T ∗IΛ = k̄ ∗F IΛ, (33)

on the domain Ω. The inner product defined by this weight as in (3) de-

termines L2(Ω,w). FBCW will denote CG iterations applied to the normal

equation (9) derived from the L2(Ω,w)–based Tikhonov regularization (8).

Notice that the pixel value wj1,j2 of w represents the degree of the con-

tribution of the image pixel at (j1, j2) to the observed image on Λ, through

the blurring transform T . For example, wj1,j2 = 1 (the maximum value wj1,j2

can have, by (19)) implies that the information at the image pixel (j1, j2) is

spread out (by the blurring transform T ) to other image image pixels (i1, i2),

all of which belong to Λ. In other words, none of the information at (j1, j2)

is lost by the blurring. On the other hand, 0 < wj1,j2 < 1 implies that

(1 − wj1,j2) × 100% of information at the image pixel (j1, j2) is missing, or
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equivalently, not observed in the observed image on Λ, due to the truncation

in observation.

The suggestion of the w based inner product in FBCW is motivated by

the principle that the image pixel that gives less contribution to the observa-

tion should be treated less importantly. FBCW, however, does not remove

boundary artifacts. See Figure 14.

The failure of FBCW to remove boundary artifacts is expected, as the

regularization parameter λ in FBCW must be set very small (in our simu-

lation, λ = 0.0001), in order not to have over-smoothed results. In other

words, the use of the w-based inner product in FBCW cannot be effective

since λ is very small in FBCW. In fact, differences between the results of

FBC and FBCW are hardly noticeable for any practical choice of λ.

To make the use of the w-based inner product effective, we consider the

preconditioned CG iteration to (9) by a diagonal operator W defined by

(Wp)j1,j2 = wj1,j2pj1,j2 for any image p defined on Ω. (34)

Preconditioned conjugate gradient iterations of FBCW are equivalent to stan-

dard conjugate gradient iterations applied to

[W−1/2 (T ∗T + λW)W−1/2](W1/2p) = W−1/2T ∗g, . (11′)

We shall denote by FBCWP conjugate gradient iterations applied to (11).

Figure 2(b) shows the deblurred image by FBCWP (the image is obtained

by 100 CG iterations). The boundary artifacts in Figure 2(a) are completely

removed in Figure 2(b).
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To make clear, the exact solutions of the two linear systems

W−1/2 (T ∗T + λW)W−1/2W1/2p = W−1/2T ∗g

and

(T ∗T + λW)p = T ∗g

are the same; nonetheless, the sequence of conjugate-gradient iterates for

both linear systems generally differ until they converge to the exact solution

(assuming exact arithmetic) at the final, dim(L2(Ω))th, iterate. Because the

best results are obtained after a relatively small number of iterates, our result

images differ.

4 Simulation Results

We conducted simulation studies to compare incomplete CG iterations ap-

plied to the following normal equations in boundary artifact removal in image

deblurring:

• RBC: Reflective boundary conditions and incomplete CG iteration

applied to

(E∗T ∗T E+ λIΛ)q = E∗T ∗g, (31′)

where E is the extension operator associated with the reflective bound-

ary condition.

• ABC: Anti-reflective boundary conditions and incomplete CG itera-

tion applied to (31) with the extension operator E that is associated

with the anti-reflective boundary condition.
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• FBC: Free boundary conditions and incomplete CG iteration applied

to

(T ∗T + λIΩ)p = T ∗g. (32′)

• FBCW: Free boundary conditions, L2(Ω,w)–weighted norm, and in-

complete CG iteration applied to

(T ∗T + λW)p = T ∗g. (9′)

• FBCWP: Free boundary conditions, L2(Ω,w)–weighted norm, and

incomplete CG iteration applied to

[W−1/2 (T ∗T + λW)W−1/2](W1/2p) = W−1/2T ∗g. (11′)

• FBCP: Free boundary conditions and incomplete CG iteration applied

to

[W−1/2 (T ∗T + λIΩ)W−1/2](W1/2p) = W−1/2T ∗g. (35)

In most case, we shall omit results by FBCW and FBCP, since they are

almost identical to results by FBC and FBCWP, respectively. Here we note

that the “incomplete CG iteration” is a necessary requirement to avoid noise

amplification that would be generated by “complete CG iteration”.

In simulation studies, we used the “Airfield”’ image in Figure 3(a), as

the true image f , and three different PSFs (uniform, Gaussian, and diagonal

gradient) as our image blurring models.

For noise model, we used a noise n such that such as

n ∼ Normal(0, σ2I|Λ|), (36)
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where 0 is the all zero image defined on Λ and I|Λ| is the |Λ| × |Λ| identity

matrix. Throughout his paper, we assume that the standard deviation σ in

(36) is set to be 0.5% of the average value of T f . We use such little noise so

that changes in boundary artifacts will be visually noticeable.

We chose the deblurred image that had the smallest RSE (Relative Square

Error) in 200 iterations for each simulation. Here the RSE is defined by

RSE =

∑
i1,i2

|f̃i1,i2 − fi1,i2 |2∑
i1,i2

|fi1,i2 |2
, (37)

where f̃i1,i2 and fi1,i2 are pixel values of the deblurred image and the true

image, respectively, at the pixel (i1, i2) ∈ Λ. This restriction is made for

fair comparison. Notice that RBC and ABC recover images that are the

same size as the observed image, while FBC, FBCW, and FBCWP recover

images with all pixels that give any contributions to the observed image.

For instance, in the simulation with the 11 × 11 uniform PSF and the true

image of size 500 × 500, the size of deblurred images by FBC, FBCW, and

FBCWP is 500× 500, while the size of deblurred images by RBC and ABC

is 490× 490. For fair visual comparison, however, our figures present image

results from FBC, FBCW, and FBCWP after removing unseen image pixels.

4.1 Summary of claims and supporting figures

In this section we give a list of our claims with the figures that support them.

• The proposed method FBCWP removes boundary artifacts better than

the other methods (RBC, ABC, FBC) when images are blurred with a

uniform point spread function. Figures 4 and 5 support this claim.
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• While FBCWP removes boundary artifacts better than the other meth-

ods when images are blurred with a Gaussian point spread function, the

differences, while noticeable, are not as large as with uniform blurring.

Figures 7 and 8 support this claim.

• Figures 10 and 11 show that FBCWP works significantly better than

the other methods when the point spread function is a one-dimensional

diagonal gradient blur.

• Boundary artifacts can occur even when there are no “unseen” pixels

across the boundary (pixels on Ω− Λ). The bottom and right bound-

aries of the images in Figures 10 and 11, which are blurred with a

diagonal gradient point spread function, illustrate this claim.

• Our proposed method FBCWP removes boundary artifacts better than

the other methods over a wide range of regularization parameters λ.

Figures 4, 12, and 13 illustrate the truth of this claim for uniform

blurring.

• Preconditioning byW is essential—using a weighted norm is not enough

to achieve good boundary artifact removal. Figure 14 supports this

claim.

• Our FBCWP method recovers certain blurred, damaged images better

than previous methods that use median filtering to recover missing data

pixels before deblurring. Figures 15 and 16 illustrate this point.

• The FBCWP method can recover blurred images with salt-and-pepper

noise. This is shown in Figures 17 and 18.
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The following sections discuss these claims in more detail.

4.2 Reduction of boundary artifacts

In this simulation, we used λ = 0.001 as the regularization parameter for all

PSFs. We will discuss simulation results with other regularization parameters

in Section 4.3.

4.2.1 Uniform blurring

Figure 3(b) shows a noisy blurred image g = T f + n, where T is the blur-

ring transform defined by the 11 × 11 uniform PSF, f is the true image in

Figure 3(a), and n is the Gaussian noise in (36). Figure 4 shows deblurred

images by RBC, ABC, FBC, and FBCWP, using the image in Figure 3(b) as

input. In this simulation, RBC, ABC, FBC, and FBCWP attain their RSE

minimums, 1.16%(43), 1.13%(89), 1.06%(57), and 0.98%(53), respectively.

Here the number in the parenthesis is the iteration number that attains the

smallest RSE for each method.

Figure 4 shows that all methods (RBC, ABC, FBC, and FBCWP) pro-

duce almost identical results in the center part in deblurred images, but they

are very different in boundary artifact removal. The boundary artifacts in

RBC (Figure 4(a)) are less annoying than those in ABC (Figure 4(b)); they

appear only in some parts, while the boundary artifacts in ABC appear all

over image pixels near boundaries. A similar phenomenon also holds for FBC

(Figure 4(c)). On the other hand, FBCWP does not show any noticeable
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boundary artifacts. See zoomed images in Figure 5 for detailed comparison.

In our simulation, the trends described in this section also held for other

test images; FBCWP outperformed RBC, ABC, and FBC objectively, by

having smaller RSE than RBC, ABC, and FBC, and subjectively, by not

showing boundary artifacts for all test images.

4.2.2 Gaussian blurring

Figure 6 shows a noisy blurred image g, where the blurring is computed by a

17×17 Gaussian PSF with standard deviation equal to the width of 3 pixels.

Figure 7 shows deblurred images by RBC, ABC, FBC, and FBCWP, from

the image in Figure 6. In this simulation, RBC, ABC, FBC, and FBCWP at-

tain their RSE minimums, 1.29%(82), 1.49%(99), 1.29%(90), and 1.22%(77),

respectively. Here the number in the parenthesis is, again, the iteration

number that attains the smallest RSE for each method.

In this simulation, all methods produce almost identical results in the

center part in deblurred images, and they show some difference in boundary

artifact removal. Again, FBCWP does not show any noticeable boundary

artifacts, while RBC, ABC, and FBC show mild boundary artifacts. Unlike

the simulation with the uniform blurring, however, the boundary artifacts

in RBC, ABC, and FBC do not propagate into center parts of deblurred

images. Zoomed images in Figure 8 show detailed comparison.

In our simulation, the trends described in this section also held for other

test images; RBC, ABC, and FBC do not severely suffer from boundary
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artifacts under Gaussian blurring in the sense that those non-propagating

boundary artifacts can easily be removed by cropping out a few rows and

columns of image pixels near the boundary, while FBCWP does not show

any sign of boundary artifacts.

We speculate that boundary artifacts do not propagate to the interior

of the image when using RBC and ABC in this example because of some

special property of Gaussian blurring, perhaps because the Gaussian PSF we

use decays quickly away from its center. We also note that FBC does not

propagate boundary artifacts under Gaussian blurring, even though it does

not impose any boundary conditions.

4.2.3 Diagonal gradient blurring

Figure 9 shows a noisy blurred image g = T f + n, where the blurring trans-

form T is computed by the 11× 11 diagonal gradient PSF represented by a

matrix whose main diagonal elements are { 30
275

, 29
275

, . . . , 20
275

}, where the first

diagonal element 30
275

is k0,0.

Figure 10 shows deblurred images by RBC, ABC, FBC, and FBCWP,

from the image in Figure 9. In this simulation, RBC, ABC, FBC, and

FBCWP attain their RSE minimums, 0.78%(20), 0.46%(155), 0.45%(38),

and 0.31%(34), respectively. Here the number in parentheses is, again, the

iteration number that attains the smallest RSE for each method.

RBC (Figure 10(a)) shows boundary artifacts in some regions near the

left boundary and at the whole region along the lower and right boundaries.

Boundary artifacts near the lower and right boundaries in Figure 10(a) form
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straight lines that are parallel to the boundary line. Similar pattern are also

shown near the lower and right boundaries in ABC (Figure 10(b)) and FBC

(Figure 10-c), but they are not as severe as those in RBC (Figure 10(a)).

On the other hand, FBCWP does not show any sign of boundary artifacts.

Zoomed images in Figure 11 show detailed comparison.

The assumption that the first diagonal element of k is k0,0 indicates that

Ω = {(j1, j2) | −10 ≤ jν < 490, ν = 1, 2} and Λ = {(i1, i2) | 0 ≤ iν <

490, ν = 1, 2}, and hence there are no unseen image pixels across the lower

and right boundaries in Figure 9, while ten rows and ten columns of image

pixels are across the upper and left boundaries, respectively. Based on this

observation, one might expect that RBC, ABC, and FBC would not suffer

from artifacts near the lower and right boundaries, since there are no unseen

image pixels across the lower and right boundaries. The simulation results in

this section, however, clearly show that such an expectation would be wrong.

In other words, the existence of unseen image pixels is not the source of

boundary artifacts.

Again, the trends described in this section held for other test images

in our simulation. In all test images, RBC, ABC, and FBC suffered from

propagating boundary artifacts, while FBCWP showed no sign of boundary

artifacts. Moreover, in all test images, FBCWP outperformed RBC, ABC,

and FBC in the RSE criterion.



Preconditioned CG for Image Deblurring 25

4.3 Selection of regularization parameter

The simulation results in Section 4.2 showed that, when the fixed regulariza-

tion parameter λ = 0.001 was used, FBCWP outperformed RBC, ABC, and

FBC in deblurring of uniform, Gaussian, and diagonal gradient PSFs in the

presence of Gaussian noise n. In the previous section, we used λ = 0.001 as

the single regularization parameter for all methods (RBC, ABC, FBC, and

FBCWP), despite the difference in PSFs, test images, and methods, by not-

ing that λ = 0.001 produced the smallest RSE result among various λ’s (0.0,

0.1, 0.01, 0.001, 0.0001, 0.00001) for RBC, ABC, FBC, and FBCWP, in the

simulation with the true image, “Airfield”(Figure 3(a)), the 11× 11 uniform

PSF, and the Gaussian noise n in (36). Since the optimal regularization pa-

rameter depends on the true image f , the PSF k, the method, and the noise

n, one might suspect that different λ’s would give a chance for RBC, ABC,

or FBC to outperform FBCWP. The simulation results, however, show that

this does not happen.

In our simulation studies, for any reasonable choice for the regularization

parameter λ, FBCWP outperformed RBC, ABC, and FBC without excep-

tions in test images or blurring PSFs, by having the smallest RSE and not

showing any sign of boundary artifacts. Moreover, the regularization param-

eter λ did not give noticeable differences in RBC, ABC, FBC, and FBCWP.

These are well expected results, since RBC, ABC, FBC, and FBCWP are

virtually identical CG iterations; the only differences are made on ways of

treating image pixels near boundaries. Based on this argument, we can con-

clude that the superior performance of FBCWP over RBC, ABC, and FBC,
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which was shown in simulations with λ = 0.001 as the regularization param-

eter, also holds for any other reasonable regularization parameters.

To support this claim, we present Figures 12 and 13, which show deblurred

images from Figure 3(b), with regularization parameters λ = 0.0001 and

λ = 0.01, respectively. Again, we selected deblurred images which attains

the smallest RSE for given methods. The results in Figures 12 and 13 show

that FBCWP outperforms RBC, ABC, and FBC with both rather small

and large regularization parameters, and the regularization parameter give

almost identical effect on each method.

4.4 Effect of preconditioning

Up to now, we did not present results by FBCW and FBCP. The excuse for

doing so is that results by FBCW and FBCP were almost identical to results

by FBC and FBCWP, respectively. To verify this, we conducted a deblurring

simulation by FBCW and FBCP.

Figure 14(b) shows the deblurred image by FBCW with λ = 0.001, from

Figure 9 (blurred by the 11×11 diagonal gradient PSF). The result is almost

identical to Figure 14(a), which is obtained by FBC with λ = 0.001. Fig-

ure 14(c) shows the deblurred image by FBCP with λ = 0.001 from Figure 9.

The result is almost identical to Figure 14(d), which is obtained by FBCWP

with λ = 0.001.

The comparison between Figures 14(a) and 14(b) shows that the use of the

weighted norm L2(Ω,w) is not sufficient to remove boundary artifacts. The
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comparison between Figures 14(b) and 14(d) confirms our earlier mention

that FBCW and FBCWP produce different results, even though they are

based on two equivalent linear systems (9) and (11), due to incomplete CG

iterations in FBCW and FBCWP.

Notice that FBCP and FBCWP are preconditioned FBC and FBCW,

respectively, by W . The comparison between Figures 14(a) and 14(c), and

14(b) and 14(d) shows that the use of the preconditioning by W removes

boundary artifacts. The difference between FBCP and FBCWP is hardly

noticeable.

The results in this section show that in removing boundary artifacts, the

use of the preconditioner W is the most essential factor.

4.5 Applications of free boundary conditions

As mentioned in Section 3.1, the proposed method, FBCWP, can be used for

arbitrarily-shaped images and it can recover unseen image pixels across the

boundary. Combining these two advantages, we can apply FBCWP to other

interesting applications in image deblurring.

In this paper, we consider the recovery of damaged parts in noisy blurred

images as an application of FBCWP. Let g be a damaged version, as seen in

Figure 15(a), of the noisy blurred image in Figure 3(b), i.e., the true image is

sequentially corrupted by 11×11 uniform blurring, Gaussian noise n in (36),

and damage. With the assumption that the damaged parts in Figure 15(a)

are relatively small so that every image pixel in the damaged parts gives
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some contribution to our observation, we can use FBCWP to recover image

pixels in the damaged parts by treating them as unseen image pixels across

the boundary. Figure 15(b) shows the recovered image by FBCWP.

This approach is different from methods that are commonly used in so

called inpainting applications, in which image pixels in damaged parts are

filled up possibly by applying a smoothing transform that resembles a diffu-

sion process[2]. On the other hand, FBCWP treats damaged parts as unseen

image parts and recovers them, as a result of deblurring, by using the hidden

information (of damaged parts) in undamaged image pixels through blurring.

RBC and ABC cannot be applied to this problem, since RBC and ABC

are virtually limited to rectangular images only, and they do not attempt to

recover unseen image pixels across the boundary. Another possible approach

might take the process of recovering damaged image pixels first and the pro-

cessing of deblurring after that. Figure 15(c) shows the result of recovering

damaged image pixels by applying three-round 3×3 median filtering on Fig-

ure 15(a), and Figure 15(d) shows the result of deblurring by FBCWP from

Figure 15(c). Even though Figure 15(c) is almost identical to Figure 3(b),

Figure 15(d), deblurred from Figure 15(c), suffers from artifacts all over the

image, while Figure 15(b), directly deblurred from Figure 15(a), does not

show any noticeable artifacts. Zoomed images in Figure 16 show detailed

comparisons.

The success of FBCWP in the recovery of damaged pixels can be extended

to image recovery in the presence of ‘salt and pepper’ noise. Figure 17(a)

shows the observed image, which is blurred by 11 × 11 uniform PSF, and
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corrupted by salt and pepper noise, where a randomly selected subset of

60% of the image pixels change to black or white pixels. In other words,

the Gaussian noise in Figure 3(b) is replaced by salt and pepper noise in

Figure 17(a). Figure 17(b) shows the deblurred image by FBCWP from

Figure 17(a), by regarding salt and pepper noised image pixels, which can

be easily detectable by checking intensities at image pixels, as unseen image

pixels across the boundary. Figure 17(b) was obtained at the iteration 99 with

RSE = 1.0%. This result is compatible with the result in Figure 4(d), which

is obtained at iteration 53 with RSE = 0.98%, even though Figure 17(b) used

only 40% of of the pixels in the observed image. Zoomed images in Figure 5,

Figure 8, and Figure 18 show detailed comparisons.

5 Conclusion and Discussion

In this paper we propose using free boundary conditions, which do not im-

pose any restrictions on unseen image pixels, and the preconditioned CG

method, where the preconditioner is designed to compensate for the non-

uniformity in contributions from image pixels to the observation, in image

deblurring. In simulation studies with uniform, Gaussian, and diagonal gra-

dient PSFs, the proposed method, FBCWP, outperforms RBC (the reflective

boundary condition–based CG method) and ABC (the anti-reflective bound-

ary condition–based CG method) in all test images objectively, by having

smaller RSE, and subjectively, by not showing boundary artifacts. Simula-

tion results in Section 4.5 show that FBCWP can be used for the recovery

of damaged regions in noisy blurred images by treating damaged regions as
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unseen image pixels across the boundary. Based on these simulation results,

we can conclude that FBCWP is more efficient in removing boundary arti-

facts, more flexible in dealing with boundaries, and more applicable in image

deblurring than RBC and ABC.

Simulation results in this paper show that the non-uniformity in contribu-

tions from image pixels to the observation, instead of the existence of unseen

image pixels across the boundary, is the main source of boundary artifacts

in image deblurring. Therefore, the use of the preconditioner W (34) exactly

as suggested in FBCWP is an essential step in removing boundary artifacts.

The non-negativity of the PSF is an essential requirement for the success

of FBPWP. For example, if the PSF is not non-negative, then the precondi-

tioner W (34) may not be defined, since the weight (T ∗IΛ)i1,i2 in (33) could

be zero for some image pixel (i1, i2). This would violate the invertibility of

the preconditioner W in (34).

Acknowledgments

The work of the first author was supported by the Inje Research and Scholar-

ship Foundation in 2012 and conducted while the first author was a visiting

scholar at the Center for Nonlinear Analysis, Department of Mathematical

Sciences, Carnegie Mellon University. The work of the second author was

supported in part by grants from the Simons Foundation (Awards #209418

and #229816).



Preconditioned CG for Image Deblurring 31

References

[1] Aghdasi F and Ward R K 1996 Reduction of boundary artifacts in image

restoration IEEE Trans. Image Processing 5(4) 611–618

[2] Bertalmio M, Sapiro G, Caselles V, and Ballester C 2000 Image Inpaint-

ing SIGGRAPH, 417–424

[3] Bertero M and Boccacci P 2005 A simple method for the reduction of

boundary effects in the Ricardson-Lucy approach to image deconvolu-

tion Astron. Astrophys. 437 369–374

[4] Calvetti D, Kaipio J P, and Someralo E 2006 Aristotelian prior boundary

conditions Inter. J. Mathematics and Computer Science 63–81

[5] Donatelli M, Estatico C, Martinelli A, and Serra-Capizzano S 2006 Im-

proved image deblurring with anti-reflective boundary conditions and

re-blurring Inverse Problems 22(6) 2035–2053

[6] Fan Y W and Nagy J G 2009 Synthetic boundary conditions for image

deblurring Linear Algebra Appl. doi:10.1016/j.laa.2009.12.021

[7] Groetsch CW 1984 The Theory of Tikhonov Regularization for Fredholm

Integral Equations of the First Kind (Pitman, Boston)

[8] Hestenes M R and Stiefel E 1952 Methods of conjugate gradients for

solving linear systems Journal of Research of the National Bureau of

Standards, 49(6) 409–436



Preconditioned CG for Image Deblurring 32

[9] Jain A K 1989 Fundamentals of digital image processing (Prentice-Hall,

Englewood Cliffs, NJ)

[10] Lucy L B 1974 An iterative techniques for the rectification of observed

distributions Astronomical Journal 79(6) 745–754

[11] Ng M K, Chan R H, Tang W-C 1999 A fast algorithm for deblurring

models with Neumann boundary conditions SIAM J. Sci. Comput. 21(3)

851–866

[12] Richardson W H 1972 Bayesian-based iterative method of image restora-

tion J. Opt. Soc. Am. 62(1) 55–59

[13] Saad Y 2003 Iterative methods for sparse linear systems 2nd ed. (SIAM

Publications, Philadelphia)

[14] Serra-Capizzano S 2003 A note on anti-reflective boundary conditions

and fast deblurring models SIAM J. Sci. Comput. 25(4) 1307–1325

[15] Tekalp A M and Sezan M I 1990 Quantitative analysis of artifacts in

linear space-invariant image restoration Multidimensional Syst. Signal

Processing 1 143–177

[16] Woods J W, Biemond J, and Kekalp A M 1985 Boundary value prob-

lem in image restoration in Proc. Sixth Int. Conf. Acoust. Speech Signal

Processing 18.11.1–18.11.4



Preconditioned CG for Image Deblurring 33

(a) Blurred image with a non-
rectangular boundary

(b) Images pixels on Λ (white) and
Ω− Λ (gray)

Figure 1. (a) A blurred image with a non-rectangular boundary. Here

the blurring is generated by a 17×17 Gaussian PSF with standard deviation

equal to the width of 3 pixels. The black background represents the region

where no observation is available. (b) The set Ω of image pixels that can

contribute to the observation through the 17× 17 Gaussian PSF. The set Ω

consists of two regions; observed image pixels, Λ, represented in white, and

the unseen image pixels across the boundary, Ω−Λ, represented in gray. The

border line between white and gray colored regions is the boundary of the

observed image.
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(a) FBC (b) FBCWP

Figure 2. (a) The deblurred image by FBC from Figure 1(a). Those

ripples are propagating into the center area as the iteration proceeds. (b) The

deblurred image by FBCWP from Figure 1(a). The deblurred image shows

no boundary artifacts at all. This result shows that FBCWP can deblur

arbitrarily shaped images, without causing boundary artifacts.
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(a) True image (b) Blurred by uniform PSF

Figure 3. (a) The true “Airfield” image f of size 500 × 500. (b) The

observed image g = T f + n, where T is defined by the 11 × 11 uniform

PSF k as in (2) and n is Gaussian noise defined in (36). The size of g is of

490× 490 pixels.
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(a) RBC (b) ABC

(c) FBC (d) FBCWP

Figure 4. Deblurred images from Figure 3(b). All images are of size

490 × 490. (a) The deblurred image by RBC, with RSE = 1.16% at the

43rd iteration. RBC suffered from boundary artifacts in the region where

the reflected boundary did not provide a sufficient similarity in image pixels

across the boundary. (b) The deblurred image by ABC, with RSE = 1.13%

at the 89th iteration. ABC suffered from boundary artifacts at all regions
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near boundary. (c) The deblurred image by FBC, with RSE = 1.06% at

the 57th iteration. FBC suffered from boundary artifacts at all regions near

boundary. (d) The deblurred image by FBCWP, with RSE = 0.98% at the

53rd iteration. FBCWP did not show any noticeable boundary artifacts.
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(a) True image (b) Blurred by uniform PSF

(c) RBC (d) ABC

(e) FBC (f) FBCWP
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Figure 5. The zoomed parts of the “Airfield” images. All images are of

size 120 × 120. In deblurred images by RBC, ABC, and FBC, propagating

boundary artifacts appear, while no boundary artifacts appear in FBCWP.

(a) A part of the true image in Figure 3(a). (b) A part of the observed image

in Figure 3(b). (c) A part of the deblurred image by RBC in Figure 4(a).

(d) A part of the deblurred image by ABC in Figure 4(b). (e) A part of the

deblurred image by FBC in Figure 4(c). (f) A part of the deblurred image

by FBCWP in Figure 4(d).



Preconditioned CG for Image Deblurring 40

Blurred by Gaussian PSF

Figure 6. The observed image g, which is blurred by a 17× 17 Gaussian

PSF with standard deviation equal to the width of 3 pixels and corrupted

by Gaussian noise n defined in (36). The size of the observed image g is of

484× 484.
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(a) RBC (b) ABC

(c) FBC (d) FBCWP

Figure 7. Deblurred images from Figure 6. All images are of size 484×484.

(a) The deblurred image by RBC, with RSE = 1.29% at the 82nd iteration.

RBC generated mild non-propagating boundary artifacts in the region where

the reflected boundary was not similar to the true image pixels across the

boundary. (b) The deblurred image by ABC, with RSE = 1.49% at the 99th

iteration. ABC generated mild non-propagating boundary artifacts in all
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regions near boundary. (c) The deblurred image by FBC, with RSE = 1.29%

at the 90th iteration. FBC showed a similar result as ABC. (d) The deblurred

image by FBCWP, with RSE = 1.22% at the 77th iteration. FBCWP did

not show boundary artifacts.
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(a) True image (b) Blurred by Gaussian PSF

(c) RBC (d) ABC

(e) FBC (f) FBCWP
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Figure 8. The zoomed parts of the “Airfield” images. All images are of

size 120×120. In deblurred images by RBC, ABC, and FBC, non-propagating

boundary artifacts appear, while no boundary artifacts appear in FBCWP.

(a) A part of the true image in Figure 3(a). (b) A part of the observed

image in Figure 6. (c) A part of the deblurred image by RBC in Figure 7(a).

(d) A part of the deblurred image by ABC in Figure 7(b). (e) A part of the

deblurred image by FBC in Figure 7(c). (f) A part of the deblurred image

by FBCWP in Figure 7(d).
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Blurred by diagonal gradient PSF

Figure 9. The observed image g = T f + n, where T is defined by an

11 × 11 diagonal gradient PSF with diagonal elements { 30
275

, 29
275

, . . . , 20
275

} as

in (2), where the first diagonal element 30
275

is k0,0, and n is Gaussian noise

defined in (36). The size of the observed image g is of 490× 490.
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(a) RBC (b) ABC

(c) FBC (d) FBCWP

Figure 10. Deblurred images from Figure 9. All images are of size 490×

490. (a) The deblurred image by RBC, with RSE = 0.78% at the 20th

iteration. RBC generated propagating boundary artifacts at some part near

the left boundary an propagating boundary artifacts in all regions near the

lower and right boundaries. (b) The deblurred image by ABC, with RSE =

0.46% at the 155th iteration. ABC generated propagating boundary artifacts
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at some part near the left boundary and propagating boundary artifacts in

all regions near the lower and right boundaries, as RBC did. The severity of

boundary artifacts in ABC is weaker than that of RBC, however. (c) The

deblurred image by FBC, with RSE = 0.45% at the 38th iteration. FBC

generated propagating boundary artifacts in all regions near all boundaries.

Boundary artifacts near the upper and left boundaries look more severe than

those near the lower and right boundaries. (d) The deblurred image by

FBCWP, with RSE = 0.31% at the 34th iteration. FBCWP did not show

boundary artifacts.
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(a) True image (b) Blurred by diagonal PSF

(c) RBC (d) ABC

(e) FBC (f) FBCWP
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Figure 11. The zoomed parts of ‘Airfield’ images. All images are of size

120 × 120. (a) A part of the true image in Figure 3(a). (b) A part of the

observed image in Figure 9. (c) A part of the deblurred image by RBC in

Figure 10(a). (d) A part of the deblurred image by ABC in Figure 10(b).

(e) A part of the deblurred image by FBC in Figure 10(c). (f) A part of the

deblurred image by FBCWP in Figure 10(d).
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(a) RBC (b) ABC

(c) FBC (d) FBCWP

Figure 12. Deblurred images from Figure 3(b) with λ = 0.0001 as the

regularization parameter. (a) The deblurred image by RBC, with RSE =

1.2% at the 29th iteration. (b) The deblurred image by ABC, with RSE =

1.14% at the 64th iteration. (c) The deblurred image by FBC, with RSE =

1.07% at the 41th iteration. (d) The deblurred image by FBCWP, with RSE

= 0.99% at the 38th iteration.
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(a) RBC (b) ABC

(c) FBC (d) FBCWP

Figure 13. Deblurred images from Figure 3(b) with λ = 0.01 as the

regularization parameter. (a) The deblurred image by RBC, with RSE =

1.46% at the 34th iteration. (b) The deblurred image by ABC, with RSE =

1.69% at the 73th iteration. (c) The deblurred image by FBC, with RSE =

1.54% at the 36th iteration. (d) The deblurred image by FBCWP, with RSE
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= 1.42% at the 43th iteration.
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(a) FBC (b) FBCW

(c) FBCP (d) FBCWP

Figure 14. Deblurred images by FBC, FBCW, FBCP, and FBCWP from

the image in Figure 9 (blurred by diagonal gradient PSF). Here results by

FBC (Figure 10(c)) and FBCWP (Figure 10(d)) are presented again for bet-

ter visual comparison. (a) Deblurred image by FBC. (b) Deblurred image by

FBCW. This result is almost identical to that by FBC. (c) Deblurred image
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by FBCP. This result is almost identical to that by FBCWP. (d) Deblurred

image by FBCWP.
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(a) Damaged image (b) FBCWP

(c) Median filtering (d) Median filtering + FBCWP

Figure 15. (a) The damaged version of the observed image in Figure 3(b).

(b) The deblurred image by FBCWP from the damaged image, by regarding

the damaged part, represented by black colored pixels in (a), as part of

unseen image pixels across the boundary, i.e., the damaged image in (a) has

non-rectangular inner boundaries. (c) The image obtained by applying three-

round 3× 3 median filtering on the damaged image in (a). Here the median
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filtering is applied to the image pixel that is not determined in the previous

round due to the absence of determined image pixels in 3× 3 neighborhood.

The median filtered image looks almost identical to the image in Figure 3(b).

(d) The deblurred image by FBCWP from the median filtered image in (c).

The comparison with the image in (b) shows that a small difference made by

mis-filling in median filtering causes severe artifacts in deblurring.
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(a) FBCWP (b) Median filtering + FBCWP

Figure 16. (a) A part of Figure 15(b). (b) A part of Figure 15(d).
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(a) Corrupted by salt-and-pepper
noise

(b) FBCWP

Figure 17. (a) The observed image g, which is blurred by a 11 × 11

uniform PSF, and corrupted by “salt and pepper” noise, where 60% of pixels

change to the darkest or brightest pixels. In other words, the Gaussian noise

in Figure 3(b) is replaced by salt and pepper noise here. (b) The deblurred

image by FBCWP from the heavily noised image in (a), by ignoring heavily

noised image pixels. FBCWP deblurred the image with RSE = 1.0% at

the 99-th iteration. The deblurred image is compatible with the image in

Figure 4(d), even though the former only use 40% of the pixel data that is

used in the latter.
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(a) FBCWP (to be compared
with Figure 5)

(b) FBCWP (to be compared
with Figure 8)

Figure 18. Parts of Figure 17(b), which is deblurred by FBCWP from the

“salt-and-pepper” image in Figure 17(a). (a) The comparison with images in

Figure 5 shows that FBCWP can deblur the images using only with 40% of

the observed pixels. (b) The comparison with images in Figure 8 shows that

FBCWP can deblur the images using only with 40% of the observed pixels.


