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Abstract. Functionalized energies, such as the Functionalized Cahn-Hilliard, model phase separa-
tion in amphiphilic systems, in which interface production is limited by competition for surfactant
phase, which wets the interface. This is in contrast to classical phase-separating energies, such as
the Cahn-Hilliard, in which interfacial area is energetically penalized. In binary amphiphilic mix-
tures, interfaces are characterized not by single-layers, which separate domains of phase A from
those of phase B via a heteroclinic connection, but by bilayers, which divide the domain of the
dominant phase, A, via thin layers of phase B formed by homoclinic connections. Evaluating the
second variation of the Functionalized energy at a bilayer interface yields a functionalized opera-
tor. We characterize the center-unstable spectra of functionalized operators and obtain resolvent
estimates to the operators associated with gradient flows of the Functionalized energies. This is an
essential step to a rigorous reduction to a sharp-interface limit.

1. Introduction

Since its introduction in 1958, [7], the Cahn-Hilliard energy and associated gradient flows have been a
fundamental model for diffusive interfaces and their dynamics in binary phase-separated systems which
seek to minimize interfacial surface area. However, many systems of physical significance, including
amphiphilic mixtures, [19], ionic membranes, [29], and membranes case within ionic liquids, [1], have
the tendency to self-assemble interface, subject to the constraint imposed by limitation of surfactant.
In binary interface-minimizing systems the interfacial structure is dominated by single-layers which
connect phase A to phase B across a thin heteroclinic front. In contrast, interface assembling systems
generate a variety of network type structures which the minority (surfactant) phase interpenetrates
the majority phase. In some systems, such as lipid bilayers in solvent, the preferred network structure
is dominated by thin, co-dimension one sheets of phase B which are surrounded on either side by
phase A. In other regimes pore like networks or spherical, micellular inclusions are preferred.

Since a closed bilayer structure separates the physical domain into an inside and an outside,
there is a tendency to view bilayer interfaces as equivalent to single-layer interfaces, with phase A
representing the inside and phase B the outside of the bilayer. There are situations where this identifi-
cation is reasonable, but there are also significant distinctions between single-layer and bilayers. First,
a single-layer interfaces has no volume to conserve. For a bilayer interface, the surfactant phase lies
principally upon the interface and the growth of interface is restricted by the availability of surfactant.
Second, a single-layer interface cannot be pierced – it is defined by the two phases that lie on either
side. Bilayer interfaces, which separate the same phase, can open up connections, just as the lipid
bilayer forming a cell membrane can open a pore to connect the inside and outside of the cell. These
distinctions are seen in the geometric flows derived as sharp interface limits of bilayer interfaces in
amphiphilic models, [12], which belong in a different class of evolution problems than the Stefan and
Mullin-Sekerka type flows derived for the single-layer evolution of the Cahn-Hilliard equation, [42].
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The Cahn-Hilliard energy represents the free energy of a binary mixture in terms of the phase
function u : Ω ⊂ Rd → R, via the functional

E [u] =

∫
Ω

ε

2
|∇u|2 +

1

ε
W (u) dx, (1.1)

where Ω ⊂ Rd is bounded, ε � 1 is an interfacial width, and W is a double-well potential which
assigns energies to the mixture u of the two phases. It is well known that the critical points of the
Cahn-Hilliard energy, that is the solutions of

δE
δu

:= −ε∆u+
1

ε
W ′(u) = 0, (1.2)

are interfacial structures and that the Γ-limit of the Cahn-Hilliard energy is proportional to surface
area, [39, 37, 50]. The Functionalized Cahn-Hilliard (FCH) energy, introduced in [45],

EF [u] =

∫
Ω

1

2

(
−ε∆u+

1

ε
W ′(u)

)2

− εη
(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx, (1.3)

balances the square of the variational derivative of the Cahn-Hilliard energy against a small multiple
of the original energy. Energy formulations in the form (1.3) have been derived from experimental
data for amphiphilic mixtures, see [19]. For ε � 1, the squared variational derivative term demands
that minimizers of the FCH be close to any critical point of the Cahn-Hilliard energy, including saddle
points. At the next order in ε, for η > 0 lowering the energy requires an increase in surface area.
Indeed at this order the energy balances the η term against the residual of the first term, which for co-
dimension one interfaces reduces to the square of the mean curvature of the interfacial surface. It has
been shown, [46] that the FCH is bounded from below over reasonable function spaces, and possesses
global minima which are distinct from those of the Cahn-Hilliard energy. Fourth order energies which
resemble the FCH with η < 0 and an equal-depth well W , have been proposed, see, [35] and [54].
Indeed, the De Giorgi conjecture, which concerns the Γ-limit of the FCH energy for η < 0 with an
equal-depth well has been established, [47]. Extensions of these models to address deformations of
elastic vesicles subject to volume constraints, [14], and multicomponent models which incorporate a
variable intrinsic curvature have been investigated, [36]. However, it is the single-layer interface which
underpins all of the analysis for η < 0. In this work we address the linear structure of bilayer interfaces,
which are dominant for η > 0.

We consider mass-preserving gradient flows of the form

ut = −ε2G δEF
δu

= −G
(
−ε2∆ +W ′′(u)− ε2η

) (
−ε2∆u+W ′(u)

)
, (1.4)

subject to various boundary conditions, where the gradient, G, is a self-adjoint, non-negative operator
with a simple kernel comprised of the constant functions. In [16] a formal sharp-interface reduction
was obtained for the G := Π0, the L2(Ω) projection off of the constant functions – the zero-mass
projection over Ω. For the case of an equal-depth well W the authors derived the evolution of a bilayer
dressed interface Γ ⊂ Rd in terms of its normal velocity

Vn =

(
∆s − β(|Γ|) +

H2

2
− tr(A2)

)
H, (1.5)

where H is the mean curvature of Γ, ∆s is the surface diffusion or Laplace-Beltrami operator, A
is the Weingarten map whose eigenvalues are the curvatures of Γ, and the function β couples the
surface area of the bilayer interface to its geometric evolution. Indeed, as the interface grows in
length, conservation of surfactant requires that the interface becomes thinner; thus β expresses the
cost of surfactant scarcity, arresting further interfacial growth as the bilayer thins. Normal velocity
relations were also derived for the single-layer interfaces which the FCH supports, however the single-
layer geometric evolution generically leads to self-intersection while the bilayer interfaces support large
families of stable equilibria. Somewhat surprisingly, the sharp-interface reductions for bilayer interfaces
subject to the H−1 gradient flow, equivalent to (1.4) with G := −∆, do not reproduce the familiar
Stefan and Mullen-Sekerka for single-layer interfaces of Cahn-Hilliard, [42]. Rather, for a potential W
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Figure 1. Caricature of spectrum verses the in-plane wave number j for the 1D
operator, L0, its extension, AΓ, to H2(Rd), and the linearization, LΓ, given in (1.10),
about a bilayer dressed interface, Γ, for a well with unequal-depth minima. Eigenval-
ues Λi,j denote the spectra of LΓ associated to the i-th 1D eigenvalue λi and the j-th
Laplace-Beltrami eigenvalue. The spectrum of AΓ which is O(ε) (blue boxes of center
frame) are mapped onto the smallest eigenvalues of LΓ ∼ A2

Γ + O(ε), (blue boxes
of right frame). The center-unstable spectrum of LΓ drives the geometric dynamics
(near j = 0) and modulational or pearling instabilities (for |j| ∈ [m0,M0]) of bilayer
interfaces.

with un-equal depth wells, one obtains a quenched mean-curvature driven flow on an intermediate
time-scale, while the slow time-scale yields a high-order curvature and surface diffusion driven flow
with normal velocity

Vn = σbΠΓ

(
∆s +

H2

2
− tr(A2)

)
H, (1.6)

where ΠΓ is a curvature weighted projection associated to the interface Γ which insures that the
evolution preserves total interfacial surface area, and σb > 0 depends only upon the well, W , [12].
Indeed, up to the value of the constant σb, this result also holds for G = Π0 for W with unequal depth
wells. In this paper we consider only the gradient G = Π0.

An important step towards a rigorous sharp-interface reduction of the gradient flows (1.4) is to
characterize the small-eigenvalue spectrum of the functionalized operators LΓ: the second variational
derivative of the FCH energy evaluated at the bilayer solution associated to the admissible interface
Γ, see Definition 2.1. This paper gives a rigorous justification to the heuristic images of the spectra
of functionalized operators as depicted in Figures 1 and 2. The spectra of Cahn-Hilliard operators,
the second variations of the Cahn-Hilliard energy about single-layer interfaces, was characterized first
in two dimensions, [3], and subsequently in Rd, [10]. These works showed that the eigenfunctions
corresponding to small eigenvalues of the Cahn-Hilliard operators admit a leading-order separation of
variables decomposition into normal and tangentially varying functions. This characterization played
an instrumental role in the rigorous sharp-interface reduction, carried out in [2], of the Cahn-Hilliard
equation to a Mullens-Sekerka flow on short time windows [0, T ] as ε→ 0.

While the FCH gradient flows engender mergings, buddings, and other morphological rearrange-
ments, [17], they also support large classes of stable equilibria which are typically local minima of
the energy landscape, [13]. Correspondingly, the gradient flows of the FCH energy support important
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classes of solutions which evolve without topological singularity for all time. The small-time restric-
tion which appears in the Cahn-Hilliard reduction, seems particularly unnatural in this context. The
removal of this restriction is complicated by the fact that the interface Γ evolves on a slow time-scale,
rendering the full linearization, LΓ := GLΓ, of the FCH gradient flow weakly time-dependent. The
renormalization group techniques developed in [44, 6], yield uniform semi-group estimates for the
time-dependent operators arising from the linearization about the slowly evolving structures. This
can be achieved if, roughly speaking, each time-frozen operator is coercive off of an approximately
invariant set, and these sets are sufficiently insensitive to the evolution of the underlying structure.
While these statements have been made rigorous for families of multi-pulses, quantifying them for
evolving interfaces remains future work. In this light it is natural to study not the evolution of in-
dividual eigenfunctions, but the collective evolution of the center-unstable space of LΓ as Γ evolves.
The main result, Theorem 5.2, shows that for each U > 0, sufficiently small but independent of ε,
the associated functionalized operator, LΓ, possesses an approximately invariant, finite-dimensional
center-unstable space ZU such that LΓ is coercive on Z⊥U with a bounded resolvent.

1.1. Overview of the Sharp Interface Reduction

For the FCH energy, we consider a smooth well W : R → R with two local minima, which may be
taken at u = ±1, and assume that the u = −1 state is the majority phase, while the minority phase
has the lower self-energy: W (−1) = 0 > W (1). We consider functionalized operators arising from
two classes of well W : the unequal-depth well case for which the two minima of W (−1) −W (1) > 0
is independent of ε, and the asymptotically equal-depth well case for which the two minima differ
by O(ε). Fixing an admissible hypersurface Γ, see Definition 2.1 we introduce the co-dimension one
variables in terms of the scaled, signed distance z = z(x) to Γ, see (2.1) and (6.37). For unequal wells
the bilayer profile, φ(z), is the leading-order solution of the rescaling of (1.2),

∂2
zφ = W ′(φ), (1.7)

which is homoclinic to the majority phase, u = −1. The existence of φ follows from a simple phase-
plane analysis. As an operator on H2(R), the linearization, L0, of (1.7) about φ

L0 := −∂2
z +W ′′(φ), (1.8)

has a translational eigenvalue, λ1, at the origin, and an O(1) ground state eigenvalue, λ0 < 0, see the
left panel of Figure 1. Extending φ = φ(z(x)) to Ω, see Definition 2.2, we introduce the second-order,
scaled Cahn-Hilliard operator

AΓ := ε
δ2E
δu2

(φ) := −ε2∆ +W ′′
(
φ(x)

)
. (1.9)

Heuristically, the small-eigenvalue eigenfunctions of AΓ, acting on H2(Ω), take the leading order
separated-variables form ψi(z)Θj(s) where ψi is the i’th eigenfunction of L0 and Θj is an eigenfunction
of the Laplace-Beltrami operator, ∆s, associated to Γ. The corresponding eigenvalues take the form
λi + ε2µj , where µj is the eigenvalue of ∆s associated to Θj . This is the situation depicted in the
center panel of Figure 1.

The full linearization, LΓ := GLΓ, arising from the linearization of (1.4) about the bilayer
interface φ associated to Γ is expressed in terms of the functionalized operator,

LΓ :=
(
ε2∆−W ′′(φ) + ε2η

) (
ε2∆−W ′′(φ)

)
−W ′′′(φ)

(
ε2∆φ−W ′(φ)

)
. (1.10)

However, the second term of LΓ is small for φ solving (1.7), and formally the operator admits the
expansion

LΓ = A2
Γ +O(ε). (1.11)

Since Γ is admissible, it is far from ∂Ω in the scaled distance, and the small-eigenvalue eigenfunctions
of AΓ are localized near the surface. This suggests that the spectrum of LΓ is given, to O(ε), by
the square of the spectrum of AΓ. This is the situation depicted in the right panel of Figure 1. The
coercivity of AΓ on the set Z⊥U largely follows the construction in [10], we boot-strap this coercivity
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Figure 2. Caricature of the spectrum (real) verses the wave number n for the 1D
operator, L0, its Cahn-Hilliard extension, AΓ, to Rd, and the functionalized operator,
LΓ, given in (1.10), about a bilayer dressed interface, Γ, in the case of an asymptoti-
cally equal-depth well. Eigenvalues Λi,n indicate the spectrum of LΓ arising from the
i-th 1D eigenvalue λi. Theorem 2.7 characterizes the spectrum of L where U indicates
the location of the cut-off of the spectrum in the definition of SU . In the center and
right frames, the blue boxes depict the spectrum which is O(ε). In the right frame,
the small spectrum of L arises from the square of the small spectrum of AΓ. It is this
spectrum which drives the geometric dynamics ({Ψ1,n}) and the modulations to the
width of the bilayer ({Ψ0,n}).

to LΓ, which requires bounds on the differential structure of the underlying manifold Γ, and extend
the coercivity to LΓ.

The sharp interface reduction follows from the decomposition, u = φ(x; Γ)+w where the interface
Γ = Γ(t) is parameterized by a large, but finite dimensional set of parameters ~p = ~p(t) which are
connected to w through the condition w ∈ Z⊥U (Γ). Formally Taylor expanding the gradient flow (1.4)
in w yields the form

wt +∇~p φ · ~pt = R(~p) + LΓw +Q(w), (1.12)

where the residual R denotes the right-hand side of (1.4) evaluated at φ = φ(~p), and Q denotes terms
which are formally quadratic or higher in w. Denoting the projection onto ZU , in an appropriate inner

product, by ΠU , and its complement by Π̃U := I − ΠU the gradient flow we project (1.12) with ΠU

and Π̃U , obtaining the evolution

wt = Π̃U (R−∇~p φ · ~pt) + Π̃ULΓΠ̃Uw + Π̃UQ(w), (1.13)

ΠU∇~p φ · ~pt = ΠUR+ ΠULΓΠ̃Uw + ΠUQ(w). (1.14)

The goal of this paper is to identify a set ZU = ZU (Γ) and a norm for which Π̃ULΓΠ̃U has a uniformly
bounded resolvent which generates a contractive semi-group, and for which LΓ is approximately in-

variant in the sense that ‖ΠULΓΠ̃U‖ � 1. These two steps, which form the fulcrum of the sharp
interface reduction, are presented in Theorem 5.2 for the gradient G = Π0.

For the case of asymptotically equal-depth wells, W (−1) = 0 > W (1) = O(ε), the spectra of
the functionalized operator are characterized in Figure 2. Following see [16], the bilayer structures are
taken from a one-parameter family, φ(z; τ), defined as the homoclinic solutions to

∂2
zφ = G′(φ; τ), (1.15)



6 Hayrapetyan and Promislow

where the “tilted-well”, G is obtained by adjusting value of G at the minority phase, u = 1, according
to,

G(u; τ) := W (u)− ετ
∫ u

−1

√
W (s) ds. (1.16)

The linearization L0 of (1.15) about φ(·, τ)

L0(τ) := −∂2
z +G′′(φ(z; τ)), (1.17)

has a translational eigenvalue, λ1, at the origin, and an O(ε) ground state eigenvalue, λ0(τ), which
is associated to the dynamic evolution of the spatially varying width of the bilayer structure. In
particular, in the normal z and tangential coordinates, s ∈ Rd−1, defined in a neighborhood of the
interface Γ, it is natural to take the well-tilt parameter τ = τ(s) to depend upon the tangential variable,
and construct the leading order ansatz by dressing the interface Γ with φ(z; τ(s)). This corresponds to
a bilayer structure with a variable width. In Cartesian coordinates this yields an anasatz of the form
φ(x) = φ

(
z(x); τ(s(x))

)
, where the geometry of the interface Γ is imbedded in the (s, z) coordinate

system. The d dimensional, second-order linearized operator depends both upon the choice of interface
Γ and upon the choice of dependence τ = τ(x) = τ(s(x)) of the tilt upon position s along the interface

AΓ := −ε2∆ +G′′(φ(x; Γ, τ(x))). (1.18)

The full linearization LΓ and the functionalized operator LΓ are defined via (1.10), where φ = φ(z, τ(s))
varies at an O(1) rate in x over the surface of the interface Γ.

In Section 2 we present a general framework and precise statements of the main results, in
particular Theorems 2.2 and 2.4 which yield the coercivity of the functionalized operators for equal
and asymptotically unequal well depths. We also provide an overview of the proof of the main results
and present the decomposition (2.39) which motivates the definition of the small-energy space ZU . In
Section 3 we obtain upper bounds on the elements of the decomposition, proving Theorem 3.2 for the
case of unequal depth wells. The proof of the main theorems is presented in Section 4, including the
extension to the functionalized operators of the case of equal depth wells, and the extension of the
coercivity results from the functionalized operator LΓ to the full linearization, LΓ. Section 5 provides
background material on the differential structure of the manifold Γ and derives estimates on the first
and second fundamental forms.

2. Precise Statements of Results for L
We fix a bounded domain Ω ⊂ Rd which is simply connected with smooth boundary. Let ε �
1 be a small positive parameter. For a smooth, closed (compact and without boundary), oriented
d − 1 dimensional manifold Γ embedded in Rd, the ‘whiskered coordinates’ are defined in a tubular
neighborhood of Γ,

x = ϕ(s, z) := γ(s) + εzν(s), (2.1)

where γ : S ⊂ Rd−1 → Γ is the local parametrization of Γ and ν(s) is the outward unit normal. The
line segments

{
γ(s)× [−t, t]

∣∣s ∈ S
}

are the whiskers of length t of Γ, and the pair (s, z) form the local
whiskered coordinate system.

Definition 2.1. For any K, ` > 0 the family, GK,`, of “admissible interfaces” is comprised of closed
(compact and without boundary), oriented d− 1 dimensional manifolds Γ embedded in Rd, which are
far from self-intersection and with a smooth second fundamental form. More precisely,

(i) The W 4,∞(S) norm of the 2nd Fundamental form of Γ and its principal curvatures are bounded
by K.

(ii) Whiskers of length 3` < 1/K, in the unscaled distance, neither intersect each-other nor ∂Ω
(except when considering periodic boundary conditions).

(iii) The surface area, |Γ|, of Γ is bounded by K.
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For such Γ the change of variables x → (s, z) is a C4 (see Proposition 6.7) diffeomorphism on
the neighborhood,

Γ(l) :=
{
ϕ(s, z)

∣∣∣s ∈ S,−l/ε ≤ z ≤ l/ε
}
, (2.2)

for any 0 < l < 3`.

Definition 2.2. We say that a function f defined in Γ(2`) converges to f+ ∈ R at an O(1) rate if

sup
s
|f(s, z)− f+| ≤ Ce−m|z|, (2.3)

for constants C,m > 0 that are independent of ε > 0. If f converges to zero at an O(1) rate, then
we say that f is localized on the interface. If f converges to f+ at an O(1) rate, then its extension
to Ω is defined as the function equal to f+ in Ω\Γ(2`), and (η2(εz))f+ + η1(εz)f in Γ(2`), where
η1(ζ) : R 7→ R is a smooth cut-off function which is equal to 1 for |ζ| ≤ `, 0 for |ζ| ≥ 2` and
monotone between and η2 = 1 − η1. We use f to denote both f = f(s, z) on Γ(2`) and its extension
f = f(x) to Ω.

Given f, g ∈ L2(Γ(2`)), then for each s ∈ S the weighted inner product on the whisker at γ(s) is
defined

(f, g)J = (f, g)J(s) :=

∫ 2`/ε

−2`/ε

f(s, z)g(s, z)J̃(s, z)dz, (2.4)

where J(s, z) is the Jacobian of the map x = ϕ(s, z) and J̃ = J/J0 where J0 =
√

detg is the square-
root of the determinant of the first fundamental form of Γ, see (6.29). The associated norm is denoted
‖ · ‖J . For admissible interfaces ‖J‖L∞(Γ(2`)) is O(ε) and the ‖ · ‖J norm introduces a factor of ε1/2.
For each s ∈ S we also introduce the unscaled inner product

(f, g)0 = (f, g)0(s) :=

∫ 2`/ε

−2`/ε

f(s, z)g(s, z)dz, (2.5)

For f, g ∈ L2(Γ) we have the inner product

〈f, g〉Γ :=

∫
Γ

f(s)g(s)J0(s)ds. (2.6)

The Laplace-Beltrami eigenmodes are orthonormal in the 〈·, ·〉Γ inner product. Moreover if the support
of f, g is contained inside of Γ(2`), then we may change to whiskered coordinates in the inner product

(f, g)L2(Ω) =

∫
Γ

∫ 2`/ε

−2`/ε

f(s, z)g(s, z)J(s, z) dzds =

∫
Γ

(f, g)JJ0(s)ds = 〈(f, g)J , 1〉Γ. (2.7)

We consider two classes of operators which generalize those presented in the introduction.

2.1. Main Results for Unequal Depth Wells

The first class of operators generalizes the case of unequal-depth wells, and has potentials which
do not depend upon s to leading order. This class is comprised of the Sturm-Liouville operator
L0 : H2(−2`/ε, 2`/ε)→ L2(−2`/ε, 2`/ε), which acts on each whisker of Γ,

L0 := −∂2
z + q0(z; ε), (2.8)

where the potential q0 converges exponentially to 2q+ at an O(1) rate (see Definition 2.2), and has an
extension q0 = q0(x) defined on Ω. We define the “Cahn-Hilliard” extension of L0 to H2(Ω),

A := −ε2∆ + q(x; ε) (2.9)

and the functionalized operator

L := A2 + εq̃(x; ε) =
(
ε2∆− q(x; ε)

)2
+ εq̃(x; ε), (2.10)

in terms of the potential

q(x; ε) := q0(x; ε) + εq1(x; ε), (2.11)
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where both q1 and q̃ are localized on Γ. We use q to denote both q = q(s, z) on Γ(2`) and q = q(x), its
extension to Ω which equals 2q+ on Ω\Γ(2`). We assume the potentials q0 and q satisfy q0(x), q(x) > q+

when x ∈ Ω\Γ(`). In addition, we assume that q0, q1 and q̃ satisfy

sup
m≤4
‖∂mz q0‖L∞(Γ(2`)) + sup

|α|,m≤4

‖Dα
s ∂

m
z q1‖L∞(Γ(2`)) + ‖q̃‖L∞(Ω) ≤ C, (2.12)

where C is a constant independent of ε and Γ ∈ GK,l.
We consider the operator L acting on H4

n(Ω), which is H4(Ω) subject to natural boundary
conditions, that is either zero flux conditions

∇nu = ∇n∆u = 0, x ∈ ∂Ω, (2.13)

where n is the external normal to Ω, or periodic conditions with Ω = [0, L]d. For all u, v ∈ H2(Ω), the
bilinear form associated to L under natural boundary conditions is given by

B[u, v] := (Au,Av)L2(Ω) + ε(q̃u, v)L2(Ω). (2.14)

Our goal is to characterize a space, ZU , of asymptotically minimal dimension for which the bilinear
form is coercive on the orthogonal compliment. Indeed, restricting the bilinear form to act on Z⊥U
induces the constrained operator

LU := ΠUL, (2.15)

where ΠU is the L2 orthogonal projection onto Z⊥U . The constrained operator maps Z⊥U ⊂ H4(Ω) into
L2(Ω) and is self-adjoint. A key step is to show that its spectrum is uniformly bounded away from
zero.

The following assumption on L0 generalizes the case of unequal-depth wells considered in the
introduction.

Assumption 2.3. (A1) There exist ν0, λ > 0 independent of ε, such that L0, acting on H2([−`/ε, `/ε])
subject to Neumann boundary conditions, has r eigenvalues satisfying −λ ≤ λ0

i ≤ ν0 for 0 ≤ i ≤ r−1,
with the remainder of the spectrum of L0 bounded from below by ν0.

Remark: Unadorned constants C will depend only upon the admissible interface parameters K, ` and
the spectral bounds ν0, λ.

The Laplace-Beltrami operator ∆s : H2(Γ)→ L2(Γ) of the underlying surface, Γ, is defined by

∆s =
1√

detg

d−1∑
i=1

d−1∑
j=1

∂

∂si
gij
√

detg
∂

∂sj
= J−1

0 ∇s ·
(
g−1J0∇s

)
, (2.16)

where g is the first fundamental form of Γ and gij are the elements of g−1, see Section 5. The
eigenvalues {βj}∞j=0 of −∆s are non-negative, we denote the corresponding L2(S) orthonormalized
eigenfunctions by {Θj}j∈N+ , so that

−∆sΘj = βjΘj . (2.17)

Fixing U ≥ 0, then for each k = 0, · · · , r − 1 we denote by m(k) ≤ M(k) the natural numbers for
which

(λ0
k + ε2βj)

2 ≤ U, ∀ j ∈ [m(k),M(k)], (2.18)

where λ0
k is the k-th eigenvalue of L0. The wave numbers n in Figures 1 and 2 are related to j through

the well ordering of the numbers |n|2 for n ∈ Nd−1
+ . We also introduce the spaces

SU = span
{

Θj

∣∣ j = m(k), · · · ,M(k), and k = 0, · · · , r − 1
}
. (2.19)

Definition 2.4. For k = 0, · · · , r − 1, let ψk = η1J̃
−1/2ψ0

k denote the kth eigenfunction, ψ0
k, of L0

rescaled by the reduced Jacobian J̃ and the cut-off function η1, introduced in (6.32) and Definition 2.2
respectively. We define the basis elements

Zjk = Θj(s)ψk(s, z), (2.20)



Spectra of Functionalized Operators arising from hypersurfaces 9

and the slow space ZU , associated to the functionlized operator L,

ZU := span
{
Zj,k

∣∣∣ k = 0, · · · , r − 1 and j = m(k), · · · ,M(k)
}
, (2.21)

where m(k) and M(k) are defined in (2.18). The space Z⊥U is the orthogonal complement of ZU in
L2(Ω).

The following theorem characterizes the spectra and coercivity of the Cahn-Hilliard and func-
tionalized operators.

Theorem 2.5. (Coercivity for Unequal Depth Wells.) Fix Ω ⊂ Rd and K, ` > 0. For any admissible
interface Γ ∈ GK,` and operators A and L as defined in (2.10), with potentials q and q̃ satisfying (2.12)
and Assumption A1, there exists ε0, U, U0 > 0 such that the following results hold for all ε ∈ (0, ε0)
and U ∈ (εU, U0). The ground-state eigenvalue µ0 of L acting on H4

n(Ω) is bounded from below by

µ0 ≥ −Cε, (2.22)

where C > 0 is independent of ε. Moreover, there exists ρ > 0 such that the constrained operator
LU , defined in (2.15), induced by the slow space Z⊥U , defined in (2.21), has no spectrum below ρU ; in
particular the following coercivity estimates hold for all w ∈ Z⊥U ∩H4

n(Ω),

B[w,w] ≥ ρ2U2‖w‖2L2(Ω), (2.23)

‖Aw‖L2(Ω) ≥ max
{
ρU‖w‖L2(Ω), Cε

2‖w‖H2(Ω)

}
, (2.24)

‖A2w‖L2(Ω) ≥ max
{
ρ2U2‖w‖L2(Ω), ρU‖Aw‖L2(Ω)

}
. (2.25)

Here C is a positive constant independent of ε.

2.2. Main Results for Asymptotically Equal-Depth Wells

In the case of asymptotically equal-depth wells, the homoclinic profile φ(x) = φ(z(x); τ(s(x)), depends
upon the tilt parameter which may vary with position s along the interface. The second class of opera-
tors we consider incorporates this case by allowing the leading-order term in the potential q to depend
upon s. In particular, we consider a class of Sturm-Liouville operators L0[s] : H2(−2`/ε, 2`/ε) →
L2(−2`/ε, 2`/ε), which act on each whisker of Γ, with an s dependent potential q0 converging to a
common value 2q+ exponentially at O(1) rate (see Definition 2.2),

L0[s] := −∂2
z + q0(s, z; ε). (2.26)

The Cahn-Hilliad extension of L0[s] to Ω,

A := −ε2∆ + q(x; ε) (2.27)

and the functionalized operator

L := A2 + εq̃(x; ε) =
(
ε2∆− q(x; ε)

)2
+ εq̃(x; ε), (2.28)

depend upon the potential q which we assume takes the form

q(x; ε) = q(s, z; ε) = q0(s, z; ε) + εq1(s, z; ε). (2.29)

We use qi to denote both qi = qi(s, z) on Γ(2`) and qi = qi(x), the extension of qi to Ω. The potentials
q0 − 2q+, q1 and q̃ are localized on Γ and satisfy

sup
|α|≤4,m≤2

‖Dα
s ∂

m
z q0‖L∞(Γ(2`)) + sup

|α|,m≤2

‖Dα
s ∂

m
z q1‖L∞(Γ(2`)) + ‖q̃‖L∞(Ω) ≤ C, i = 0, 1, (2.30)

where C is a constant independent of ε and Γ ∈ GK,l. The Assumption A1 from the unequal-depth
wells case is replaced with

Assumption 2.6. (A2) There exist ν0, λ > 0 independent of ε and s, such that for ε sufficiently
small, the operator L0[s], acting on L2([−`/2, `/2]) subject to Neumann boundary conditions, has r
eigenvalues satisfying sups |λ0

i (s)| ≤ λε for 1 ≤ i ≤ r, with the remainder of the spectrum of L0

bounded from below by ν0.
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Given U ≥ 0, we denote by M = M(U) the natural number for which

ε4β2
j ≤ U, ∀ j ∈ [1,M ], (2.31)

and ε4β2
M+1 > U . We also define the space SU (now independent of k) as

SU = span{Θj}Mj=1, (2.32)

and the slow space ZU as,

ZU := span
{
Zj,k

∣∣∣ k = 0, · · · , r − 1 and j = 1, · · · ,M
}
, (2.33)

where the basis elements Zj,k are defined in (2.20).

Theorem 2.7. (Coercivity for Equal-Depth Wells.) Under the conditions of Theorem 2.5 with Assump-
tion A1 replaced with Assumption A2 and the potentials q and q̃ subject to the conditions of this
section, the conclusions of Theorem 2.5 hold for the operators A and L defined in (2.27) and (2.28)
over orthogonal compliment to the slow space, Z⊥U defined in (2.33).

2.3. Outline of the proof of Theorem 2.5

We consider the case of unequal-depth wells and remark that since L = A2 + O(ε), the coercivity

estimates involving A are a consequence of the coercivity estimate on B[w,w] = (Lw,w). For Ũ > 0
we introduce the set

XŨ := span
{

Ψi

∣∣∣ i = 0, · · ·NŨ
}
,

comprised of the eigenfunctions of L corresponding to the eigenvalues smaller than Ũ . For two values

of U and Ũ a key step is to bound the angle between ZU and XŨ . More precisely, we first establish the

lower bound (2.22) on L. Decomposing w ∈ Z⊥U as w = wX + wX⊥ where wX ∈ XŨ and wX⊥ ∈ X⊥Ũ ,

the L orthogonality of these spaces and the afore-mentioned lower bound yield the estimate

(Lw,w)L2(Ω) = B[w,w] = B[wX , wX ] +B[wX⊥ , wX⊥ ] ≥ Ũ‖wX⊥‖2L2(Ω) − εC‖wX‖
2
L2(Ω). (2.34)

If X⊥
Ũ

lies within a cone of aperture ᾱ > 0, independent of ε, about Z⊥U , that is if

‖wX⊥‖L2(Ω) ≥ ᾱ‖wX‖L2(Ω), (2.35)

for all w ∈ Z⊥U , then we obtain the L2 coercivity of L with the constant

Cα :=
Ũ ᾱ2 − εC

1 + ᾱ2
. (2.36)

To estimate ᾱ, in Proposition 4.1 we establish the bound

‖wX‖L2(Ω) ≤ α, (2.37)

for all w ∈ Z⊥U with ‖w‖L2(Ω) = 1, where

α :=

√
r(Ũ + εC)

U
+

√
Ũ

ν0
+

√
2Ũ

q+
+ εC, (2.38)

see (4.4). From the L2(Ω) orthogonality ‖w‖2L2(Ω) = ‖wX‖2L2(Ω) + ‖wX⊥‖2L2(Ω), the estimate (2.37)

yields (2.35) with constant ᾱ =
√
α−2 − 1. In particular, taking Ũ and U sufficiently larger than ε we

may discard O(ε) terms, and we have the lower bound Cα ≥ Ũ(1−α2). Subsequently, choosing rŨ/U
sufficiently small and while also taking U sufficiently small, in terms of ν0 and q+, yields α < 1

2 . That
is, there exists a ρ > 0, independent of ε < ε0, such that Cα > ρU for U ∈ (εU, U0) with U sufficiently
large and U0 sufficiently small. This establishes (2.23).
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The proof is encumbered by the differential structure associated to the manifold Γ, whose
properties are outlined in the Appendix. We handle this structure term-by-term, decomposing Ψ =
wX/‖wX‖L2(Ω) as Ψ = Ψ1 + Ψ2 where Ψ1 is supported inside Γ(2`), Ψ2 is supported outside Γ(`) and

Ψ1(s, z) =

r−1∑
k=0

bk(s)ψk(s, z)︸ ︷︷ ︸
ΨS

+

r−1∑
k=0

ck(s)ψk(s, z)︸ ︷︷ ︸
Ψ
S⊥

+Ψ⊥(x), (2.39)

where bk ∈ SU , ck ∈ S⊥U , and (Ψ⊥, ψk)J(s) = 0 for k = 0, . . . r − 1 and all s ∈ S. In the context
of Figure 1 (right), the k = 0, 1 parts of ΨS denote the projection of Ψ1 onto the function-space
corresponding to Λk,j which lie respectively inside of the dashed-blue boxes, while the k = 0, 1 parts
of (Ψ⊥S ) correspond to the projection on the spectra outside the dashed-blue box. In particular since
ΨS ∈ ZU we have (ΨS , w) = 0, while Ψ1 − ΨS ∈ Z⊥U . This decomposition is further elaborated in
section 3. To obtain the cone property we have to bound the inner product of the remaining terms

in the decomposition of Ψ with w. Since wX ∈ XŨ , we have, Ψ ∈ XŨ and hence B[Ψ,Ψ] ≤ Ũ . In

Proposition 3.4 we show that B[Ψ,Ψ] ≤ Ũ implies the mild, but necessary bounds

ε‖Ψ‖H1(Ω) + ε2‖Ψ‖H2(Ω) ≤ C. (2.40)

Using (2.39) to expand the bilinear form B[Ψ,Ψ], we bound the mixed terms B[ΨS ,ΨS⊥ ], B[ΨS ,Ψ
⊥],

and B[ΨS⊥ ,Ψ
⊥], by exploiting an approximate invariance, see Lemma 3.6, of the corresponding spaces

with respect to the operator L ∼ (L0 − ε2∆s)
2. In Proposition 3.5, we obtain lower bounds on

B[ΨS ,ΨS ] and B[Ψ2,Ψ2], establishing the inequality

B[Ψ⊥,Ψ⊥] + ‖AΨS⊥‖2L2(Ω) ≤ Ũ + Cε. (2.41)

In Proposition 3.8 we control the second term on the left-hand side. Specifically, since ck ∈ S⊥U , (2.41)
the minimax principle applied to the Laplace Beltrami operator and L imply that

Cε+ Ũ ≥ ‖AΨS⊥‖2L2(Ω ∼ ‖(L0 − ε2∆s)ΨS⊥‖2L2(Ω) ∼
r−1∑
k=0

∫
Γ

[(λ0
k − ε2∆s)ck]2J0ds ≥ U

r−1∑
k=0

‖ck‖2L2(Γ),

(2.42)
which affords cone-control on ΨS⊥ in (2.39). For Ψ⊥, on each whisker it follows readily from the
orthogonality of Ψ⊥ to the small eigenvalue eigenfunctions of L0 that

ν2
0‖Ψ⊥‖J ≤ (L2

0Ψ⊥,Ψ⊥)J +O(ε). (2.43)

However obtaining an upper bound on ‖Ψ⊥‖L2(Ω) requires exploiting the structure of the 2nd funda-
mental form, this is achieved in Proposition 3.9, where we establish the bound

B[Ψ⊥,Ψ⊥] ∼
∫

Γ

(L2
0Ψ⊥,Ψ⊥)JJ0ds. (2.44)

3. The Small Energy-Space Decomposition

In this section we prove Theorem 3.3 which characterizes the small energy functions Ψ ∈ H2(Ω)

satisfying B[Ψ,Ψ] ≤ Ũ , in particular for those Ψ ∈ XŨ . We also establish the cone-condition (2.35)
in Proposition 3.9.

On the domain Γ(`) the whiskered coordinates (6.37) and the form, (2.11), of the potential q
allows us to write the operator A as

A = −∂2
z − εκ(s, z)∂z + q0(z) + εq1(s, z)− ε2∆G, (3.1)

where ∆G, given in (6.22) is the extension of the Laplace-Beltrami operator off of Γ. The leading-order
terms of A are the (·, ·)0 self-adjoint form

L0 := −∂2
z + q0(z), (3.2)
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Operator Domain Description Eigenpairs

L0 = −∂2
z + q0(z) I` ⊂ R 1D Allen-Cahn Operator (ψ0

i , λ
0
i )

LJ = −∂2
z − εκ(s, z)∂z + q(s, z) I` ⊂ R 1D Symmetrized Allen-Cahn (ψai , λ

a
i )

L = L2
J + εq̃(s, z) I` ⊂ R 1D Functionalized

A = −ε2∆ + q(x) Ω ⊂ Rd Allen-Cahn Operator

L = A2 + εq̃(x) Ω ⊂ Rd Functionalized Operator (Ψi, µi)

Table 1. The operators, domains, and eigenpairs used in the text.

and the (·, ·)J self-adjoint form, which includes terms to first order in ε,

LJ [s] := −J̃−1 ∂

∂z
J̃
∂

∂z
+ q(s, z) = L0 − εκ(s, z)∂z + εq1(s, z), (3.3)

where we recall ∂zJ̃ = εκJ̃ . Similarly, we introduce the one-dimensional functionalized operator

L := L2
J + εq̃(s, z) = (L0 − εκ∂z + εq1)2 + εq̃, (3.4)

which contains the leading-order terms of L. Indeed, in the whiskered coordinate system,

L = A2 + εq̃ = L− ε2∆GLJ − ε2LJ∆G + ε4∆2
G. (3.5)

This proliferation of operators, each definded on different domains, is summarized in Tables 1 and 2.
Here I` denotes the interval (−2`/ε, 2`/ε), and the boundary conditions are natural for the appropriate
bilinear form. The operators LJ and L depend upon s ∈ S as a parameter, and for each fixed whisker
w(s) act on H2(I`). When viewed as operators on a fixed whisker, we will occasionally use ′ to represent
derivative with respect to the variable z.

Since the potential q0 in L0 converges to a constant 2q+ > 0 at an O(1) exponential rate, its
eigenfunctions satisfy the following classical estimates whose proof we omit.

Lemma 3.1. There exists m > 0 such that the eigenfunctions {ψ0
i }
r−1
i=0 of L0 are uniformly bounded by

C in H4(`) with respect to the ‖ · ‖0 norm, and moreover

sup
n≤4

∂nz ψ
0
i (±`/ε) = O(e−m/ε). (3.6)

Proposition 3.2. (Coercivity of LJ) Fix K, ` > 0 and let Γ ∈ GK,`. The set ΣnJ := {J̃−1/2ψ0
k}nk=0 is

an approximate basis for the first n eigenfunctions of LJ . That is, there exists a positive constant C
independent of ε and Γ ∈ GK,l such that for all ψ ∈ H1(I`) satisfying Neumann boundary conditions

and J̃-orthogonal to ΣnJ we have the bound

(LJψ,ψ)J
‖ψ‖2J

≥ λ0
n+1 − Cε. (3.7)

Proof. Inserting
√
J̃ u and

√
J̃ v into b0 and integrating by parts yields

b0[
√
J̃ u,

√
J̃ v] = ba[u, v] +

∫ 2`/ε

−2`/ε

[
1

4
J̃−1(J̃ ′)2 − 1

2
J̃ ′′ − εq1]uvdz. (3.8)

Fix s ∈ Γ and let ψ(s, z) ∈ H1(I`) and define ψ0 := J̃1/2ψ, so that by (3.8)

(LJψ,ψ)J = (L0ψ
0, ψ0)0 +

([
(1/2)J̃−1J̃ ′′ − (1/4)J̃−2(J̃ ′)2 + εq1

]
ψ,ψ

)
J
. (3.9)
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Operator Inner Product Bilinear Form

L0

∫ 2`/ε

−2`/ε
uvdz b0[u, v] =

∫ 2`/ε

−2`/ε
(u′v′ + q0uv)dz

LJ
∫ 2`/ε

−2`/ε
uvJ̃dz ba[u, v] =

∫ 2`/ε

−2`/ε
(u′v′ + quv)J̃dz

L
∫ 2`/ε

−2`/ε
uvJ̃dz b[u, v] =

∫ 2`/ε

−2`/ε
((LJu)(LJv) + εq̃uv) J̃dz

A
∫

Ω
uvdx Ba[u, v] =

∫
Ω

(ε2∇u · ∇v + quv)dx

L
∫

Ω
uvdx B[u, v] :=

∫
Ω

((Au)(Av) + εq̃uv)dx

Table 2. The operators, inner products for which they are self-adjoint, and associ-
ated bilinear forms used in the text.

The expansion (6.32) and the estimates on the reduced Jacobian in (6.40) of Proposition 6.7 imply
that there exists a constant C > 0 that depends only on K such that∥∥∥− (1/4)J̃−2(J̃ ′)2 + (1/2)J̃−1J̃ ′′

∥∥∥
L∞(Γ(2`))

≤ Cε2, (3.10)

while from (2.12), ‖q1‖L∞(Γ(2`)) ≤ C. Using (ψ0, ψ0
k)0 = (ψ, J̃−1/2ψ0

k)J = 0 for k = 0, . . . , n together
with the minimax characterization for eigenvalues of L0 gives

(LJψ,ψ)J ≥ (L0ψ
0, ψ0)0 − Cε‖ψ‖2J ≥ λ0

n+1‖ψ0‖20 − Cε‖ψ‖2J = (λ0
n+1 − Cε)‖ψ‖2J , (3.11)

where we used ‖ψ0‖0 = ‖J̃1/2ψ‖0 = ‖ψ‖J . �

We fix an admissible interface Γ ∈ GK,` and recall the cut-off function η1 introduced in Definition
2.2 and the decomposition of Ψ ∈ H2(Ω) into localized and delocalized parts, Ψ = Ψ1 + Ψ2, where
Ψ1 = Ψη1 is localized on Γ and Ψ2 = (1 − η1)Ψ. Recalling the definition (2.19) of the space SU , we
remark that if a ∈ H2(Γ) ∩ S⊥U , then for k = 0, · · · , r − 1 we have

‖(λ0
k − ε2∆s)a‖2L2(Γ) ≥ U‖a‖

2
L2(Γ). (3.12)

Recalling the J̃ normalized eigenfunction {ψk}r−1
k=0 introduced in Definition 2.4, we introduce the s

dependent coefficients ak(s) := (Ψ1, ψk)J = (J̃1/2Ψ1, ψ
0
k)0, and decompose Ψ on each whisker as

Ψ1 =
∑
k

ak(s)ψk(s, z) + Ψ⊥, (3.13)

where (ψk,Ψ
⊥)J = 0, for k = 0, . . . , r − 1 for each s ∈ S. The normalization ‖ψk‖J = 1 implies,

‖ak‖2L2(Γ) =

∫
Γ

(Ψ1, ψk)2
J J0ds ≤

∫
Γ

‖Ψ1‖2J J0ds ≤ ‖Ψ‖L2(Ω). (3.14)

Since the eigenfunctions ψ0
i do not depend on s the Jacobian bounds (6.40) yield the estimate

‖∆sak‖2L2(Γ) ≤ C‖Ψ1‖2H2(Ω). (3.15)

Moreover, we further decompose each ak into its projection onto SU ,

bk = PSUak :=

r−1∑
k=0

M(k)∑
i=m(k)

(ak,Θi)L2(Γ)Θi, (3.16)
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and the orthogonal complement

ck = (I − PSU )ak. (3.17)

Since bk ∈ SU and ck ∈ S⊥U are orthogonal we have

‖bk‖2L2(Γ) + ‖ck‖2L2(Γ) = ‖ak‖2L2(Γ) ≤ 1, (3.18)

while from the bounds (3.14) and (3.15) we get the estimate,

‖bk‖H2(Γ) + ‖ck‖H2(Γ) ≤ C‖Ψ1‖H2(Ω). (3.19)

Defining ΨS and ΨS⊥ as in (2.39) we have the decomposition

Ψ = Ψ1 + Ψ2 = ΨS + ΨS⊥ + Ψ⊥ + Ψ2, (3.20)

where (ψk,Ψ
⊥)J = 0, for k = 0, . . . , r − 1. Moreover the components ΨS ,ΨS⊥ , and Ψ⊥ are mutually

orthogonal and hence satisfy the estimate

‖ΨS‖2L2(Ω) + ‖ΨS⊥‖2L2(Ω) + ‖Ψ⊥‖2L2(Ω) = ‖Ψ1‖2L2(Ω) ≤ ‖Ψ‖
2
L2(Ω). (3.21)

In the next theorem we obtain bounds on ck, Ψ⊥, and Ψ2 from an upper bound on the full bilinear
form B[Ψ,Ψ], associated with L of (2.10),

B[u, v] := (Au,Av) + ε(q̃u, v). (3.22)

Theorem 3.3. Let U0 be a positive constant independent of ε. Assume Ψ ∈ H2(Ω) satisfies ‖Ψ‖L2(Ω) =
1 and ∂νΨ = 0 or periodic boundary conditions on ∂Ω, in addition to the bound

B[Ψ,Ψ] ≤ Ũ , (3.23)

for the bilinear form B given in (3.22) and some Ũ ∈ (0, U0). Then for any spectral cutoff value U ≥ 0,
Ψ admits the decomposition (3.20) where

ν2
0‖Ψ⊥‖2L2(Γ(2`)) + q2

+‖Ψ2‖2L2(Ω) ≤ Ũ + Cε, (3.24)

and
r−1∑
k=0

‖ck‖2L2(Γ) ≤
Ũ + Cε

U
. (3.25)

Remark: Recall that U represents the spectral cutoff bound in the construction of the spaces SU and
ZU , while the coefficients ck in the decomposition of Ψ represent the contribution to the small energy

functions by Laplace-Beltrami modes in S⊥U . The further we cut the spectrum above Ũ , smaller the

ratio Ũ
U , and consequently the smaller this contribution.
We present the proof in a series of propositions.

Proposition 3.4. Under the conditions of Theorem 3.3, there exist ε0, C > 0 such that for ε < ε0

ε‖Ψ‖H1(Ω) + ε‖Ψ⊥‖H1(Ω) + ε2‖Ψ‖H2(Ω) + ε2‖Ψ⊥‖H2(Ω) ≤ C, (3.26)

Moreover, Ψ⊥ is supported on Γ(2`) where it enjoys the estimates

‖∂zΨ⊥‖L2(Γ(2`)) + ‖∂zzΨ⊥‖L2(Γ(2`)) + ε‖∇sΨ⊥‖L2(Γ(2`)) + ε‖∂z∇sΨ⊥‖L2(Γ(2`)) ≤ C. (3.27)

Proof. Using the Neumann boundary conditions, an integration by parts yields the equality

(AΨ,Ψ)L2(Ω) =

∫
Ω

[ε2|∇Ψ|2 + qΨ2]dx, (3.28)

while from (3.23) and the definition of the bilinear form B in (3.22) we have

‖AΨ‖2L2(Ω) = B[Ψ,Ψ]− ε(q̃Ψ,Ψ) ≤ U0, (3.29)

for ε sufficiently small, since ‖q̃‖L∞(Ω) ≤ C and ‖Ψ‖L2(Ω) = 1. Using (3.28) and (3.29) gives

ε2‖∇Ψ‖2L2(Ω) = (AΨ,Ψ)L2(Ω) − (qΨ,Ψ)L2(Ω) ≤
√
U0 + C ≤ C, (3.30)
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which yields the estimate on ‖Ψ‖H1(Ω) in (3.26). To obtain the H2 bound we observe that

∆Ψ = −ε−2(AΨ + qΨ2), (3.31)

and from classical elliptic regularity (see [15]), we have the bound

‖Ψ‖H2(Ω) ≤ C
(
‖Ψ‖L2(Ω) + ε−2‖AΨ + q(x)Ψ2‖L2(Ω)

)
≤ Cε−2. (3.32)

The bounds on Ψ⊥ follow from applying (3.19) to Ψ⊥ = Ψ1 − ΨS − ΨS⊥ . The estimates (3.27) are
immediate consequences of (6.45). �

Proposition 3.5. Under the conditions of Theorem 3.3, there exist ε0, C, C1 > 0 such that for ε < ε0,

B[Ψ⊥,Ψ⊥] + ‖AΨS⊥‖2 + ‖AΨS‖2L2(Ω) +C1ε
4‖Ψ2‖2H2(Ω) + q+2ε2‖Ψ2‖2H1(Ω) + q2

+‖Ψ2‖2L2(Ω) ≤ Ũ +Cε.

(3.33)

Proof. Using the decomposition (2.39), we expand the bi-linear form B as

B[Ψ,Ψ] = B[ΨS ,ΨS ] +B[ΨS⊥ ,ΨS⊥ ] +B[Ψ⊥,Ψ⊥] +B[Ψ2,Ψ2] +

2B[ΨS ,Ψ
⊥
S ] + 2B[ΨS ,Ψ

⊥] + 2B[ΨS⊥ ,Ψ
⊥] + 2B[Ψ1,Ψ2]. (3.34)

The potentials q and q̃ are bounded in L∞(Ω), so (3.22) and (3.21) immediately imply,

B[ΨS⊥ ,ΨS⊥ ] +B[ΨS ,ΨS ] ≥ ‖AΨS⊥‖2L2(Ω) + ‖AΨS‖2L2(Ω) − Cε. (3.35)

To address the term B[Ψ1,Ψ2], we expand the Bilinear form

B[Ψ1,Ψ2] =

∫
Ω

(−ε2∆(η1Ψ) + qη1Ψ)(−ε2∆(η2Ψ) + qη2Ψ)dx+ ε

∫
Γ01

q̃η1η2Ψ2dx. (3.36)

The cut-off functions ηi = ηi(z) are smooth with O(1) derivatives in x. We distribute the derivatives,
and from the bounds (3.26) and (3.21) it is easy to see that

ε2‖ηi∆Ψ‖L2(Ω) + ε‖∇ηi · ∇Ψ‖L2(Ω) + ‖(∆ηi)Ψ)‖L2(Ω) + ‖qηiΨ‖L2(Ω) ≤ C,

for i = 1, 2, while the remaining term, with all derivatives on Ψ, is positive since η1η2 ≥ 0. This yields
the lower bound

B[Ψ1,Ψ2] =

∫
Ω

η1η2(−ε2∆Ψ + qΨ)2dx+O(ε) ≥ −Cε. (3.37)

�

We complete the proof of Proposition 3.5 via Lemmas 3.6 and 3.7 below. The first of these bounds
the cross-terms within Ψ1.

Lemma 3.6. Under the conditions of Theorem 3.3, there exist ε0, C > 0 such that for ε < ε0,∣∣∣B[ΨS ,ΨS⊥ ]
∣∣∣+
∣∣∣B[ΨS ,Ψ

⊥]
∣∣∣+
∣∣∣B[ΨS⊥ ,Ψ

⊥]
∣∣∣ ≤ Cε, (3.38)

Proof. We bound only the first term, the other two are handled with similar arguments. We recall
the definition (2.39) of ΨS , where bk are defined in (3.16). From (3.26), (3.18) and (3.19) we have the
estimate

sup
m=0,··· ,2

‖εmbk‖Hm(Γ) ≤ C. (3.39)

The J̃-normalized eigenfunctions of L0 satisfy,

L0ψk = L0(J̃−1/2ψ0
k) = λ0

kψk −
3

4
J̃−5/2(∂zJ̃)2ψ0

k +
1

2
J̃−3/2(∂2

z J̃)ψ0
k + J̃−3/2(∂zJ̃)(∂zψ

0
k). (3.40)

From the definition, (3.3), of LJ , the bounds on κ and J̃ in Proposition 6.7, the bounds (2.12) on q,
and the bounds (3.6) on ψ0

k, we write

LJψk = L0ψk − εκ∂zψk + εq1ψk = λ0
kψk + r1(s, z), (3.41)



16 Hayrapetyan and Promislow

where the residual r1 enjoys the bounds

sup
|α|≤4,i=0,1

sup
s
‖ziDα

s r1(s, z)‖J ≤ Cε. (3.42)

Similarly we may write the action of the functionalized 1D operator, L, defined in (3.4), on ψk in the
form

Lψk = L2
Jψk + εq̃ψk = (L0 − εκ∂z + εq1)LJψk + εq̃ψk = (λ0

k)2ψk + r2(s, z), (3.43)

where the residual r2 enjoys the same bounds as r1. From the expression (3.5) for L, we write its
action on bk(s)ψk(z, s) in the form

L(bkψk) = L(bkψk)− ε2∆GLJ(bkψk)− ε2LJ∆G(bkψk) + ε4∆2
G(bkψk). (3.44)

Recalling the form of ΨS from (2.39) and that the bilinear form B is induced by L, we have the
expansion

B[ΨS ,ΨS⊥ ] =

r−1∑
k=0

( I1k︷ ︸︸ ︷
(L(bkψk),ΨS⊥)L2(Ω)−ε2

I2k︷ ︸︸ ︷
(∆GLJ(bkψk),ΨS⊥)L2(Ω) +

−ε2

I3k︷ ︸︸ ︷
(LJ∆G(bkψk),ΨS⊥)L2(Ω) +ε4

I4k︷ ︸︸ ︷
(∆2

G(bkψk),ΨS⊥)L2(Ω)

)
(3.45)

We estimate each term individually. For I1 we observe that L(bkψk) = bkLψk which from (3.43) has
leading order term proportional to bkψk which is orthogonal to ΨS⊥ ; thus the leading order term in
I1k arises from the inner product of r2 with ΨS⊥ , which is O(ε). For I2, we use (6.23) of Proposition
6.6 to expand ∆G as

∆GLJ(bkψk) = ∆sLJ(bkψk) + εzDs,2(bkLJψk), (3.46)

where Ds,2 is the second order differential operator defined in (6.24) whose coefficients satisfy the
bounds (6.25). Combining (3.41) and (3.46) we find the leading order expression for I2,

I2k = λ0
k (ψk∆sbk,ΨS⊥)L2(Ω) = λ0

k

∫
Γ

(∆sbk)ck J0ds, (3.47)

where we used (2.7) in conjunction with the ψj-ψk orthonormality in the J̃ inner-product. However
bk ∈ SU which is invariant under ∆s, so that ∆sbk ∈ SU which is s-orthogonal to ΨS⊥ , that is

(∆sbk, cj)Γ = 0, (3.48)

for all j, k = 0, · · · , r− 1. The remaining terms in I2 are all one order of ε lower, and from the bounds
(3.39) as well as the estimates on ∆G, we find that I2k = O(ε). A similar estimate on I3k follows since
∆G commutes with LJ at leading order, while the estimates on I4k follow from (6.23) and the bounds
(3.39) on bk. Returning these estimates to (3.45) gives the first bound of (3.38). �

Lemma 3.7. Under the conditions of Theorem 3.3, there exists ε0, C1 > 0 such that for ε < ε0

B[Ψ2,Ψ2] ≥ C1ε
4‖Ψ2‖2H2(Ω) + 2q+ε

2‖Ψ2‖2H1(Ω) + q2
+‖Ψ2‖2L2(Ω). (3.49)

Proof. We first observe that Ψ2 is supported inside Ω\Γ(`). We distribute the derivatives in the bilinear
form and use Neumann boundary conditions to integrate by parts yielding

B[Ψ2,Ψ2] =

∫
Ω\Γ(`)

(
ε4|∆Ψ2|2dx+ 2ε2q|∇Ψ2|2dx+ 2ε2(∇q · ∇Ψ2)Ψ2dx+ q2Ψ2

2dx+ εq̃Ψ2
2

)
dx.(3.50)

In Ω\Γ(`), q > q+, and using Young’s Inequality we obtain,

B[Ψ2,Ψ2] ≥ ε4‖∆Ψ2‖2L2(Ω) + ε2
(

2q+ − ε‖∇q‖L∞(Ω\Γ(`))

)
‖∇Ψ2‖2L2(Ω)

+
(
q2
+ − ε‖∇q‖L∞(Ω\Γ(`)) − ε‖q̃‖L∞(Ω\Γ(`))

)
‖Ψ2‖2L2(Ω). (3.51)
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Elliptic regularity theory (see [15]) guarantees the existence of a constant C1 independent of ε such
that

‖∆Ψ2‖2L2(Ω) ≥ C1‖Ψ2‖2H2(Ω) − ‖Ψ2‖2L2(Ω). (3.52)

Returning this estimate to (3.51) and using (2.12) to bound q and q̃ yields (3.49) for ε sufficiently
small. �

Proposition 3.8. Under the conditions of Theorem 3.3, there exists ε0 > 0 such that for all ε < ε0 and
U > 0,

r−1∑
k=0

‖ck‖2L2(Γ) ≤
Ũ + εC

U
, (3.53)

where recall that ck ∈ S⊥U .

Proof. Following Lemma 3.6, from (3.41) and Proposition 6.6 we see at leading order that

AΨS⊥ =

r−1∑
k=0

[(λ0
k − ε2∆s)ck]ψk, (3.54)

where ΨS⊥ is as given in (2.39). Taking the L2(Ω) norm of both sides, recalling the bound (3.33),
changing the integral to the whiskered coordinates and using the ‖ · ‖J orthonormality of the {ψk} we
obtain

Cε+ Ũ ≥ ‖AΨS⊥‖2L2(Ω ≥
r−1∑
k=0

∫
Γ

[(λ0
k − ε2∆s)ck]2 J0ds− εC ≥ U

r−1∑
k=0

‖ck‖2L2(Γ) − εC, (3.55)

where in the last inequality we employed the lower bound (3.12) to ck ∈ S⊥U . �

Proposition 3.9. Under the conditions of Theorem 3.3, there exist ε0, C > 0 such that for ε < ε0

Ũ + Cε ≥ B[Ψ⊥,Ψ⊥] ≥
∫

Γ

(LJΨ⊥, LJΨ⊥)J J0ds+ ε4

∫
Γ

∫ 2`/ε

−2`/ε

(∆GΨ⊥)2Jdzds− Cε. (3.56)

Proof. Since the support of Ψ⊥ is contained in Γ(2`) we use the whiskered coordinate form (3.1) of
A to expand the bilinear form (3.22) as

B[Ψ⊥,Ψ⊥] =

∫
Γ

∫ 2`/ε

−2`/ε

(
(LJΨ⊥)2 + εq̃(Ψ⊥)2 + 2ε2

(
−LJΨ⊥

)
∆GΨ⊥ + ε4(∆GΨ)2

)
Jdzds. (3.57)

We bound the second and third terms from below. The uniform bound on the potential q̃ readily
imply ∫

Γ

∫ 2`/ε

−2`/ε

εq̃(Ψ⊥)2Jdzds ≥ −Cε. (3.58)

Addressing the third term on the right-hand side we use (3.3) and (6.22) to expand LJ and ∆G∫
Γ

∫ 2`/ε

−2`/ε

(
−LJΨ⊥

)
∆GΨ⊥Jdzds =

∫
Γ

∫ 2`/ε

−2`/ε

d∑
i,j=1

(( ∂
∂z
J̃
∂Ψ⊥

∂z

)
J̃−1 − qΨ⊥

)
∂

∂si

(
GijJ

∂Ψ⊥

∂sj

)
dzds,

(3.59)
where Gij are the components of the inverse of the metric tensor G. We recall that Ψ⊥ is localized
on Γ and Γ is closed, we integrate by parts in z and s, obtaining up to exponentially small terms∫

Γ

∫ 2`/ε

−2`/ε

(
−LJΨ⊥

)
∆GΨ⊥Jdzds = BG[Ψ⊥,Ψ⊥] +

∫
Γ

∫ 2`/ε

−2`/ε

d−1∑
i,j

[
(∂zG

ij)
∂2Ψ⊥

∂z∂si

∂Ψ⊥

∂sj
+

−∂si
(Jz
J

)
Gij

∂Ψ⊥

∂z

∂Ψ⊥

∂sj
+
∂q

∂si
Ψ⊥

∂Ψ⊥

∂sj
Gij
]
Jdzds

, (3.60)
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where the BG bilinear form is given by

BG[u, v] :=

∫
Γ

∫ 2`/ε

−2`/ε

∑
i,j

( ∂2u

∂z∂si

∂2v

∂z∂sj
+ q

∂u

∂sj

∂v

∂si

)
GijJdzds. (3.61)

The estimates (6.40) on the metric tensor G, the Jacobian J , and (3.26) on Ψ⊥ show that only the
BG term is leading order, in particular

2ε2

∫
Γ

∫ 2`/ε

−2`/ε

(
−LJΨ⊥

)
∆GΨ⊥Jdzds ≥ 2ε2BG[Ψ⊥,Ψ⊥]− Cε. (3.62)

To continue, from (6.41) we expand Gij in terms of the entries ϑij of the inverse Jacobian, and rewrite
BG as

BG[Ψ⊥] =
d−1∑
m

∫
Γ

[
(LJRm, Rm)J−

∫ 2`/ε

−2`/ε

(d−1∑
i=1

∂ϑmi
∂z

∂Ψ⊥

∂si

)2

− 2
d−1∑
i,j=1

ϑmj
∂ϑmi
∂z

∂Ψ⊥

∂si

∂2Ψ⊥

∂z∂sj

 J̃dz
]
J0ds,

(3.63)
where we have introduced

Rm(s, z) :=

d−1∑
i=1

ϑmi
∂Ψ⊥

∂si
. (3.64)

From the L∞ estimates (6.42) on ϑ and the L2 estimates (3.27) on Ψ⊥ we see that the middle term
is O(1), while the third term is O(ε−1). For the first term we decompose Rm as

Rm =

r−1∑
k=0

bmk(s)ψk(z) +R⊥m, (3.65)

where R⊥m is J̃-orthogonal to ΣrJ , as defined in Proposition 3.2, and bkm(s) is the projection of Rm(s, z)
onto ψk. We observe from (3.7) that∫

Γ

(LJRm, Rm)J J0ds ≥
r−1∑
k=0

∫
Γ

(λk0 − Cε)b2mk J0ds+ ν0‖R⊥m‖2L2(Γ(2`) ≥ −(λ+ Cε)

r−1∑
k=0

||bmk||2L2(Γ),

(3.66)
where ν0 > 1 from Assumption A1 is the lower bound on the spectrum of L0 above λ0

r and −λ < 0 is
the O(1) lower bound on the spectrum of L0. It remains to bound bmk,

||bmk||2L2(Γ) =

∫
Γ

(Rm, ψk)
2
J J0ds =

∫
Γ

(
d−1∑
i=1

(
ϑmi

∂Ψ⊥

∂si
, ψk

)
J

)2

J0ds

≤ C

∫
Γ

d−1∑
i=1

(ϑ0
mi(s))

2

(
∂Ψ⊥

∂si
, ψk

)2

J

J0ds+O(1), (3.67)

where we used (6.42) and the exponential decay of ψk to bound the ϑ1
mi integral. Substituting the

normalization ψk = J̃−1/2(s, z)ψ0
k(z) into the equality (Ψ⊥, ψk)J = 0, and taking the si derivative

yields the expression (
∂Ψ⊥

∂si
, ψk

)
J

= −1

2

(
Ψ⊥, ψk

J̃si
J̃

)
J

. (3.68)

However from (6.29) J̃si is O(ε) compared to J̃ , and we deduce that

||bkm||2L2(Γ) ≤ C‖Ψ
⊥‖2L2(Ω)

d−1∑
i=1

∫
Γ

‖ϑ0
mi‖2L∞

∥∥∥∥ψk JsiJ
∥∥∥∥2

J

J0ds+O(1) ≤ O(1). (3.69)
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Returning this estimate to (3.66) shows that∫
Γ

(LJR,R)Jds ≥ −C, (3.70)

and hence

BG[Ψ⊥,Ψ⊥] ≥ −Cε−1. (3.71)

Combining (3.71) with (3.62) and (3.58), permits us to bound each of the possibly negative terms
of (3.57) from below, yielding the second inequality of (3.56). The first inequality of (3.56) is a
consequence of (3.33). �

Proof of Theorem 3.3. We note that (3.33) of Proposition 3.5 implies the bound (3.24) on Ψ2. Next,

observe that Ψ⊥ is J̃-orthogonal to ΣrJ , as defined in Proposition 3.2. Applying Proposition 3.2 to Ψ⊥

yields

(LJΨ⊥,Ψ⊥)J ≥ (ν0 − Cε)‖Ψ⊥‖2J , (3.72)

where ν0 > 1 from Assumption A1 is the lower bound on the spectrum of L0 above λ0
r. Applying the

Cauchy inequality to the right-hand side of (3.72) and dividing both sides by ‖Ψ⊥‖J , gives

‖Ψ⊥‖J ≤
‖LJΨ⊥‖J
ν0 − Cε

, (3.73)

and the bound on Ψ⊥ in (3.24) follows by squaring both sides of (3.73), integrating over Γ and using
the bound (3.56) on (LJΨ⊥, LJΨ⊥)J ,

‖Ψ⊥‖2L2(Γ(2`)) =

∫
Γ

‖Ψ⊥‖2J J0ds ≤
1

(ν0 − Cε)2

∫
Γ

(LJΨ⊥, LJΨ⊥)J J0ds ≤
Ũ + Cε

(ν0 − Cε)2
. (3.74)

4. Coercivity of the Bilinear Form

We establish the coercivity results of Theorem 2.2 and 2.4 for the unequal-depth and asymptotically
equal-depth wells.

4.1. The case of unequal depth wells

As described in section 2.3, decomposing w ∈ Z⊥U as w = wX+wX⊥ , where wX ∈ XŨ and wX⊥ ∈ X⊥Ũ ,

we first characterize the angle between ZU and XŨ via the value of ᾱ in the following proposition.

Proposition 4.1. Fix U0 > 0 independent of ε and let U ∈ (0, U0). Then, there exist Ũ > 0, independent
of ε ∈ (0, ε0), such that X⊥

Ũ
lies within a cone of aperture ᾱ ∈ (0, 1), independent of ε, about Z⊥U .

That is

‖wX⊥‖L2(Ω) ≥ ᾱ‖wX‖L2(Ω), (4.1)

for all w ∈ Z⊥U .

Proof. As discussed in section 2.3, it is equivalent to show (2.37) for w ∈ Z⊥U satisfying ‖w‖L2(Ω) = 1.
Setting Ψ := wX/‖wX‖L2(Ω), we use the decomposition of Theorem 3.3 together with the identities
‖wX‖L2(Ω) = (w,Ψ)L2(Ω) and Ψ = Ψ1 + Ψ2 = η1Ψ1 + (1 + η1)Ψ2, where η1 is the cutoff function of
Definition 2.2, to obtain

‖wX‖L2(Ω) =
(
w,

r−1∑
k=0

η1bkψk

)
L2(Γ(2`))

+
(
w,

r−1∑
k=0

η1ckψk + η1Ψ⊥ + (1 + η1)Ψ2

)
L2(Ω)

, (4.2)

Since w ∈ ZU we may eliminate the first term we obtain

‖wX‖L2(Ω) =
(
w,

r−1∑
k=0

η1ckψk

)
L2(Γ(2`))

+
(
w, η1Ψ⊥

)
L2(Γ(2`))

+
(
w,Ψ2

)
L2(Ω)

+O(ε). (4.3)
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Estimates (3.24) and (3.25) on ck, Ψ⊥, and Ψ2 give

‖wX‖L2(Ω) ≤

√
r(Ũ + εC)

U
+

√
Ũ

ν0
+

√
2Ũ

q+
+ Cε =: α, (4.4)

and the result of the proposition follows for Ũ sufficiently small compared to ν0 and q+ and U
sufficiently large. �

Proof of Theorem 2.5. The lower bound on the eigenvalue µ0 follows readily from

µ0 = inf
‖u‖L2(Ω)=1

B[u, u] = inf
‖u‖L2(Ω)=1

[(Au,Au) + ε(q̃u, u)] ≥ −ε‖q̃‖L∞(Ω) ≥ −Cε. (4.5)

Proposition 4.1 gives the cone condition (2.35), which used in (2.34) gives (2.23) for ε sufficiently
small. To obtain the remaining coercivity estimates note that using the definition of B in (3.22)

‖Aw‖2L2(Ω) = B[w,w]− ε(q̃w, w), (4.6)

and the L2 bound in (2.24) follows from (2.23) and ‖q̃‖L∞(Ω) = O(1). The inequality

‖A2w‖L2(Ω)‖w‖L2(Ω) ≥ (A2w,w) = ‖Aw‖2L2(Ω), (4.7)

implies (2.25). To obtain the H2 coercivity in (2.25) we write ∆w in terms of Aw

∆w = − 1

ε2
Aw +

1

ε2
qw, (4.8)

and use elliptic regularity (see [15]) to obtain

‖w‖H2(Ω) ≤ C
(
‖w‖L2(Ω) + ‖∆w‖L2(Ω)

)
≤ C

(
‖w‖L2(Ω) + ε−2‖Aw‖+ ε−2‖q‖∞‖w‖L2(Ω)

)
. (4.9)

The H2 coercivity in (2.24) now follows from the L2 coercivity in (2.24).

4.2. Modifications for the case of Asymptotically Equal-Depth Wells

For asymptotically equal-depth wells, the potential q0 in the definition of the 1D operator L0 (see (2.8))
depends on the position, s, along the interface. However the negative eigenvalues of the operator L0

can only be asymptotically small. Indeed, below an O(1) cut-off, ν0, the each operator has r point
eigenvalues: λ0(s), . . . , λr−1(s) that are O(ε) uniformly in s.

The tighter bounds on the small spectrum of L0 are required to control the B[ΨS ,ΨS⊥ ] term
in Lemma 3.6, however they are also natural in light of the motivating example. In particular, due
to additional s dependence of eigenfunctions ψk of L0, we can no longer bound the I2k of (3.47) by
O(ε). However the additional assumptions open a more direct approach which eliminates the need for
Lemma 3.6 altogether. Indeed, we may initially replace the decomposition of Ψ = wX/‖wX‖L2(Ω) in
(2.39) with a simpler one. Writing Ψ = Ψ1 + Ψ2 where Ψ1 is supported inside Γ(2`), Ψ2 is supported
outside Γ(`) we merely break Ψ1 into two terms

Ψ1(s, z) =

r−1∑
k=0

ak(s)ψk(s, z) + Ψ⊥(x), (4.10)

where ak ∈ H2(Γ) is the full projection of Ψ1 onto ψk, i.e.

ak := (Ψ1, ψk)J , (4.11)

in particular its Laplace-Beltrami modes are not limited. Thus we have (Ψ⊥, ψk)J(s) = 0 for k =
0, . . . r−1 and all s ∈ S. In the context of Figure 2, we do not yet project Ψ1 onto the function-spaces
corresponding to Λk,j which lie inside and outside of the dashed-blue boxes – both can be treated
together.

In this case, Proposition 3.9 holds with Ψ⊥ replaced with Ψ1. The lower bound on (LJRm, Rm)J
in (3.63) (for which Rm(s, z) :=

∑d−1
i=1 ϑmi

∂Ψ1

∂si
) follows immediately from Proposition 3.2 since the
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spectrum of L0 is bounded from below by O(ε) in Assumption A2. As a result of Proposition 3.9, we
obtain, ∫

Γ

(LJΨ1,Ψ1)J J0ds+ ε4

∫
Γ

∫ 2`/ε

−2`/ε

(∆GΨ1)2Jdzds ≤ Ũ + Cε. (4.12)

To control the component of Ψ1 belonging to Z⊥U , at this point, we further decompose Ψ1 into its
projection onto ZU and the orthogonal complement as in (2.39), yielding

r−1∑
k=0

∫
Γ

λ2
k(s)b2k(s) J0ds+

r−1∑
k=0

∫
Γ

λ2
k(s)c2k(s) J0ds+

∫
Γ

(LJΨ⊥,Ψ⊥)J J0ds ≤ Ũ + Cε. (4.13)

Following the lines of argument in the proof of Theorem 3.3 gives the bounds on Ψ⊥ in (3.24). The
control of ck follows from the spectral bound in (2.31) as for ck ∈ S⊥U

‖ck‖2L2(Γ) ≤
1

U
ε4‖∆sck‖2 ≤

ε4

U
‖∆GΨ1‖2L2 +O(ε) ≤ Ũ + Cε

U
. (4.14)

This completes the proof of Proposition 3.9. Proposition 4.1 and Theorem 2.5 follow from Proposition
3.9 without any modifications in the proofs.

5. Approximately Invariant Spaces and Resolvent Estimates for L

For an admissible Γ, we have shown that the functionalized operator, L is coercive off of the space
ZU . We take the gradient operator G = Π0 for which the full operator L = Π0L is not self-adjoint;
however, we can symmetrize L. We define the space

YU := span{ZU , Y0}, (5.1)

where we introduce the element

Y0 := n0L1 = n0

(
q2 − 2ε2∆q + εq̃

)
, (5.2)

whose normalization n0 ∈ R is chosen to render Y0 of unit norm in L2(Ω). In particular from the
form (2.28) of L we see that up to exponentially small terms L1 = 4q2

+ off of Γε and hence n0 =

1/(4q2
+

√
|Ω|) +O(ε) and

Y0 =
1√
|Ω|

+O(ε|Γ|), (5.3)

in L2(Ω). We introduce ΠU , the L2-orthogonal projection onto YU , and its compliment, Π̃U := I−ΠU .

The key observation is that LΠ̃U = Π0LΠ̃U = LΠ̃U . Indeed,

Π0LΠ̃Uw = LΠ̃Uw − |Ω|−1
(
LΠ̃Uw, 1

)
L2

= LΠ̃Uw − n−1
0 |Ω|−1

(
w, Π̃UY0

)
L2

= LΠ̃Uw, (5.4)

since Y0 ∈ ker(Π̃U ). In particular the operator Π̃ULΠ̃U = Π̃ULΠ̃U is self adjoint.
The projection of w ∈ L2(Ω) onto YU can be written as

ΠUw := α0Y0 +
∑
jk

αjkZjk, (5.5)

where the coefficients are chosen so that Π̃Uw is orthogonal to YU . This amounts to satisfying the
equations

(w,Zj′k′)L2(Ω) = α0(Y0, Zj′k′)L2(Ω) +
∑
jk

αjk(Zjk, Zj′k′)L2(Ω), (5.6)

for j′ = m(k), · · · ,M(k) and k′ = 0, · · · , r − 1, in addition to

(w, Y0)L2(Ω) = α0(Y0, Y0)L2(Ω) +
∑
jk

αjk(Zjk, Y
†
0 )L2(Ω). (5.7)
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Lemma 5.1. If Γ ⊂ Rd is admissible and U0 > 0 is given by Theorem 2.5 (or Theorem 2.7), then for
all U < U0 the projection ΠU defined in (5.5) is well posed and there exist C± > 0, independent of ε,
such that the coefficients satisfy

C−‖ΠUw‖2L2(Ω) ≤ |α0|2 +

r−1∑
k=0

M(k)∑
j=m(k)

|αjk|2 ≤ C+‖ΠUw‖2L2(Ω). (5.8)

Proof. The well-posedness of the decomposition (5.5) is equivalent to the invertibility of the symmetric
matrix M with entries

Mn,n′ := (Zjk, Zj′k′)L2(Ω) =

∫
Γ

ΘjΘj′(s)J0(s)ds

∫ 2`/ε

−2`/ε

ψ0
k(z)ψ0

k′(z) dz +O(e−µ`/ε),(5.9)

Mn,0 = M0,n := (Zjk, Y0)L2(Ω) = n0

√
ε

∫
Γ

ΘjJ0(s)ds

∫ 2`/ε

−2`/ε

L1(s, z)ψ0
k(z) dz +O(e3/2), (5.10)

and M0,0 := (Y0, Y0)L2(Ω) = 1. Here the indices n = n(j, k) and n′ = n′(j′, k′) denote the enumeration
of Zjk and Zj′k′ in a linear ordering of the basis of YU which start with Y0 and run over k = 0, · · · , r−1
and j = m(k), · · · ,M(k). In particular, since the Laplace-Beltrami eigenmodes are J0-orthonormal
while the eigenfunctions {ψ0

k}
r−1
k=0 are L2(R) orthonormal we see that Mn,n′ = δn,n′ + O(e−µ`/ε).

In particular, up to exponentially small terms, detM = 1 − |M0|2 where M0 = (M1,0, · · · ,MN,0)t

comprises the first row of M, less the M0,0 entry. For k = 0, · · · , r − 1 we introduce

ρk(s) :=

∫ 2`/ε

−2`/ε

L1(s, z)ψ0
k(z) dz,

and observe that
Mn(jk),0 = n0

√
ε〈Θj , ρk〉Γ.

Since {Θj}∞j=0 is an orthonormal basis for L2(Γ) with this inner product, it follows that

M(k)∑
j=m(k)

M2
n(jk),0 ≤

∞∑
j=0

M2
n(jk),0 = n2

0ε‖ρk‖2L2(Γ).

In particular

detM = 1− n2
0ε

r−1∑
k=0

‖ρk‖2L2(Γ) = 1 +O(ε).

Indeed, M is a diagonally dominant perturbation of the N×N identity, and is bounded and boundedly
invertible, uniformly in ε < ε0; this establishes (5.8). �

The utility of the space YU as a decomposition of the flow of the full PDE is that it is ap-
proximately invariant under the action of L = Π0L, whose bilinear form is uniformly coercive when
restricted to Y⊥. The following results extend the coercivity of L to L in a meaningful way.

Theorem 5.2. Consider the operator L := Π0L where Γ is admissible and U0 is as given in Thoerem 2.5
(or Theorem 2.7), then for all U < U0 there exists C > 0, independent of ε, such that for all w ∈ YU ,
w⊥ ∈ Y⊥U we have the bounds

‖Π̃ULw‖L2(Ω) ≤ Cε‖w‖L2(Ω), (5.11)

‖ΠULw
⊥‖L2(Ω) ≤ Cε‖w⊥‖L2(Ω). (5.12)

Moreover given Cα ∈ (0, U0/2) then for all ε < ε0 and all U ∈ (Cα, U0) the operator LU := Π̃ULΠ̃U :
Y⊥U 7→ Y⊥U has no spectrum in the set {<λ < Cα}, and for λ on this set the resolvent satisfies the
bound

‖(LU − λ)−1w⊥‖L2(Ω) ≤
C

Cα −<λ
‖w⊥‖L2(Ω), (5.13)

for all w⊥ ∈ Y⊥U , where C is independent of the choice of ε and U .
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Proof. To establish (5.11) we remark that any w ∈ YU can be represented as in (5.5) where the

coefficients satisfy (5.8). We first observe that Π̃Uu is L2(Ω) orthogonal to Y0 for any u ∈ L2(Ω).
Since ‖Y0 − 4q2

+‖L2(Ω) = O(ε), there exists C > 0 such that

‖Π̃U (I −Π0)Lu‖L2(Ω) ≤ Cε
∣∣(Lu, 1)L2(Ω)

∣∣ ≤ Cε‖u‖L2(Ω). (5.14)

It is thus sufficient to establish (5.11) for Π̃UL. To this end we follow the proof of Lemma 3.6; using
the expression (3.5) for L we write its action on Zjk = Θjψk as

LZjk = LΘjψk − ε2∆GLJΘjψk − ε2LJ∆GΘjψk + ε4∆2
GΘjψk. (5.15)

However J̃ = ε+O(ε2) over the support of ψk so that ψk = ε−1/2ψ0
k +O(ε) in H4(R). In particular

from (3.4) we have

LΘjψk = λ2
kΘjψk +O(ε), (5.16)

and

LJΘjψk = λkΘjψk +O(ε). (5.17)

Similarly from (6.23) we see that

∆GΘjψk = βjΘjψk +O(ε‖Θj‖H2(Γ)). (5.18)

The projection Π̃U eliminates the leading order terms in (5.16)-(5.18) and we deduce that

‖Π̃ULZjk‖L2(Ω) ≤ C
(
ε+ ε3‖Θj‖H2(Γ) + ε5‖Θj‖H4(Γ)

)
. (5.19)

From the Laplace-Beltrami eigenvalue equation for Θj , we deduce that∫
Γ

(
(∇sΘj)

tg−1∇sΘj

)
J0(s)ds = βj

∫
Γ

Θ2
jJ0(s)ds = βj .

Since g−1 is uniformly elliptic, and J0 > 0 is bounded from below we have the estimate

‖Θj‖H1(Γ) ≤ C
√
βj .

From the Weyl asymptotics for eigenvalues of the Laplace Beltrami operator, [9], there exists c± > 0
such that

c+j
2/(d−1) ≥ βj ≥ c−j2/(d−1). (5.20)

In particular we see that j ≤ M(k) ≤ CU (d−1)/4ε−(d−1) so that βj ≤ C
√
Uε−2. This argument, and

similar ones for higher order derivatives show that ‖Θj‖Hl(Γ) ≤ Cεl, for l = 1, · · · , 4. In conjunction
with (5.19) these results show that

‖Π̃ULZjk‖L2(Ω) ≤ Cε. (5.21)

It remains to bound Π̃ULY0 = n0Π̃UL21. However from the bounds (2.12) we see that L21 = 16q4
+ +

O(ε) in L2(Ω) and since Y0 is also constant to O(ε) we have

||Π̃ULY0||L2(Ω) ≤ Cε. (5.22)

Together with (5.8), the bounds (5.21)-(5.22) yield (5.11). To establish (5.12) we recall that Π0Lw⊥ =
Lw⊥ and remark that

‖ΠULw⊥‖ = sup
w∈YU

(
w⊥, Π̃ULw

)
2
/‖w‖L2 ≤ Cε‖w⊥‖L2(Ω), (5.23)

where we used (5.11) to bound the last term.

Finally, since LU = Π̃ULΠ̃U = Π̃ULΠ̃U we see that LU is self-adjoint, and deduce from (2.23) of
Theorem 2.5 (or Theorem 2.7) that σ(LU ) lies to the right of Cα. Since the resolvent is bounded by
the inverse distance to the spectrum, the estimate (5.13) follows. �
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6. Appendix: Whiskered Coordinates and Bounds on the Fundamental Forms

This section lays out the necessary framework on the differential geometry of co-dimension one inter-
faces in Rd required for the proof of main results.

6.1. Weingarten Map and Fundamental Forms in Local Coordinates

To make the presentation self-contained we first summarize some definitions from differential geometry,
further background can be found in [31], for example. Let Γ be a d− 1 dimensional smooth manifold
embedded in Rd with a chosen orientation. Let S be an open set in Rd−1 and γ : S → Γ be a local
parametrization. Then the tangent space Tγ(s)Γ is defined as the image of TsS ∼= Rd−1 under the map

Dγ|s. Denote the unit sphere, ‖x‖ = 1, in Rd by Sd−1 and let {ei}di=1 denote the canonical basis of
Rd.

Definition 6.1. The Gauss map, ν : S→ Sd−1 maps points of S into unit normal vectors ν(s) orthog-
onal to Tγ(s)Γ.

Definition 6.2. The Weingarten map, A : Tγ(s)Γ→ Tγ(s)Γ is defined by

A = −Dν ◦ (Dγ)−1. (6.1)

Remark 6.3. The map Dν : TsS ∼= Rd−1 → Tγ(s)Γ since ∂ν
∂si

= (Dν)ei belongs to the tangent space

Tγ(s)Γ, as can be verified by differentiating ν(s) · ν(s) = 1 with respect to si.

Definition 6.4. For X,Y ∈ Tγ(s)Γ the k-th fundamental for of Γ is defined by〈
Ak−1X,Y

〉
, (6.2)

where the brackets represent the euclidean inner product in Rd.

Definition 6.5. The principal curvatures k1, . . . , kd−1 of Γ are defined as the eigenvalues of the
Weingarten map A.

From the definitions of Dγ and Dν we have

(Dγ)ei =
∂γ

∂si
, (6.3)

and

(Dν)ei =
∂ν

∂si
. (6.4)

It follows from the definition of Γ that Dγ is full-rank and so the vectors
{
∂γ
∂s1

, . . . ∂γ
∂sd−1

}
form a basis

for the tangent space Tγ(s)Γ. Assume that X,Y ∈ Tγ(s)Γ are given by

X =

d−1∑
i=1

ξi
∂γ

∂si
, Y =

d−1∑
j=1

ηj
∂γ

∂sj
. (6.5)

Then,

〈X,Y 〉 =

〈
d−1∑
i=1

ξi
∂γ

∂si
,

d−1∑
j=1

ηj
∂γ

∂sj

〉
=

d−1∑
i,j=1

ξiηjgij , (6.6)

where gij :=
〈
∂γ
∂si
, ∂γ∂sj

〉
, is the representation of the first fundamental form in local coordinates. In

addition, by definition, the Weingarten map A : ∂γ
∂si
→ − ∂ν

∂si
, so that

〈AX,Y 〉 =

〈
d−1∑
i=1

ξiA
∂γ

∂si
,

d−1∑
j=1

ηj
∂γ

∂sj

〉
= −

〈
d−1∑
i=1

ξi
∂ν

∂si
,

d−1∑
j=1

ηj
∂γ

∂sj

〉
=

d−1∑
i,j=1

ξiηjhij , (6.7)

where

hij := −
〈
∂ν

∂si
,
∂γ

∂sj

〉
=

〈
ν,

∂2γ

∂si∂sj

〉
, (6.8)
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is the representation of the second fundamental form in local coordinates. The last equality in (6.8)

results from differentiating the equality
〈
ν, ∂γ∂si

〉
= 0 with respect to sj . Similarly,

〈
A2X,Y

〉
=

d−1∑
i,j=1

ξiηjeij , (6.9)

where eij =
〈
∂ν
∂si
, ∂ν∂sj

〉
= −

〈
ν, ∂2ν

∂si∂sj

〉
, is the representation of the third fundamental form. In

addition if we write ∂ν
∂si

in the tangent basis as

∂ν

∂si
= −

d−1∑
j=1

∂γ

∂sj
hji , (6.10)

then referring to (6.8) we see that

hij =

d−1∑
j=1

〈
∂γ

∂sj
hji ,

∂γ

∂sj

〉
=

d−1∑
j=1

hjigij , and hji =
∑
k

hikg
kj , (6.11)

where gkj represents the elements of the inverse matrix of gij . The key relation (6.10) shows that hji
are the coefficients that express the linear variation of the normal vector in terms of the tangent basis.
Moreover,

AX =

d−1∑
i=1

ξiA
∂γ

∂si
= −

d−1∑
i=1

ξi
∂ν

∂si
=

d−1∑
i=1

ξihji
∂γ

∂si
, (6.12)

so that {hji} is the matrix representation of the linear operator A in the basis
{
∂γ
∂s1

, . . . ∂γ
∂sd−1

}
, and

ki is the ith eigenvalue of the matrix {hji}. The matrix operator norm of hji is then

‖{hji}‖ = max
1≤i≤d−1

ki. (6.13)

Finally, defining eji :=
∑
k eikg

kj , we use (6.10) to express eji in terms of the Weingarten matrix hji

eji =
∑
k

eikg
kj =

∑
k

〈
∂ν

∂si
,
∂ν

∂sk

〉
gkj =

∑
k,l,m

hlih
m
k

〈
∂γ

∂sl
,
∂γ

∂sm

〉
gkj

=
∑
k,l,m

hlih
m
k glmg

kj =
∑
k,l

hlihklg
kj =

∑
l

hlih
j
l . (6.14)

That is {eji} = {hji}2 and we bound the operator norm of {eji} by

‖{eji}‖ = max
1≤i≤d−1

k2
i . (6.15)

6.2. Whiskered Coordinates

We recall the whiskered coordinate system introduced in (2.1). We introduce the variables y =
(s1, . . . , sd−1, z) then x = ϕ(y) and ϕ−1 defines a chart for Γ(`). The gradient and the Laplace
operator in Rd can be written in the y- coordinates as

∇ix =

d∑
j=1

Gij
∂

∂yj
, i = 1, . . . d (6.16)

and

∆x =
1√

det(G)

d∑
i=1

d∑
j=1

∂

∂yi
Gij
√

det(G)
∂

∂yj
, (6.17)

where G is the metric tensor

Gij =

〈
∂x

∂yi
,
∂x

∂yj

〉
Rd
, (6.18)
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and Gij is the ij component of the inverse of the G. Letting J denote the Jacobian matrix for
ϕ = ϕ(s, z), we have,

G = JTJ, (6.19)

and consequently, det(G) = J2, where J = J(s, z) is the associated Jacobian.
With this G, in the whiskered variables the gradient and the Laplacian take the form,

∇ix =

d−1∑
j=1

Gij
∂

∂sj
for i = 1, . . . , d− 1, ∇dx = ε−2 ∂

∂z
, (6.20)

and

∆x = ε−2J−1 ∂

∂z
J
∂

∂z
+ ∆G, (6.21)

where ∆G is

∆G :=
1√

det(G)

d−1∑
i,j=1

∂

∂si
Gij
√

det(G)
∂

∂sj
= J−1

d−1∑
i,j=1

∂

∂si
GijJ

∂

∂sj
. (6.22)

On the interface Γ, where z = 0, ∆G reduces to the Laplace-Beltrami operator on Γ, defined in (2.16).

Proposition 6.6. Fix K > 0 and Γ ∈ GK,l. Let G be the metric tensor for the whiskered coordinates
defined in (6.18). Let ∆G be the laplacian in whiskered coordinates given in (6.22) and let ∆s be
the Laplace-Beltrami operator on the interface Γ. Then the following relationship holds between the
operators ∆G and ∆s

∆G = ∆s + εzDs,2, (6.23)

where

Ds,2 :=

d−1∑
i,j=1

dij(s, z)
∂2

∂si∂sj
+

d−1∑
j=1

dj(s, z)
∂

∂sj
, (6.24)

and

max
ij

(
‖∂mz dij‖L∞(Γ(2`)), ‖∂mz dj‖L∞(Γ(2`))

)
≤ Cεm, (6.25)

where the constant C is independent of ε and Γ ∈ GK,l.

Sketch of the Proof: Substituting the expansion

Gij =

〈
∂γ(s)

∂si
+ εz

∂ν(s)

∂si
,
∂γ(s)

∂sj
+ εz

∂ν(s)

∂sj

〉
= gij − 2εzhij + ε2z2eij , (6.26)

into (6.22) and using the bounds on the first and second fundamental forms afforded by Γ ∈ GK,`
yields the result.

To simplify the z derivatives in (6.21) we derive an expression for J in terms of the principal

curvatures {ki}d−1
i=1 of Γ. We first observe that identity (6.10) implies,

∂ϕ

∂si
=
∂γ

∂si
+ εz

∂ν

∂si
=
∂γ

∂si
− εz

d−1∑
j=1

∂γ

∂sj
hji . (6.27)

From (6.27) we see that the Jacobian matrix takes the form,

J =
(
∂γ
∂s1

∂γ
∂s2

... ∂γ
∂sd−1

ν

)(
Id−1−εzhji 0

0 ε

)
, (6.28)

where Id−1 is the (d − 1) × (d − 1) identity matrix. The determinant, J , of the Jacobian matrix, J,
satifies

J(s, z) = εJ0(s) det(Id−1 − εzhji ) = εJ0(s)

d−1∏
i=1

(1− εzki) = J0(s)

d∑
j=0

εj+1Kjz
j , (6.29)
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where

K0 = 1, Ki := (−1)i
∑

j1<···<ji

kj1 · · · kji , (6.30)

and J0 = det
(
∂γ
∂s1
· · · ∂γ

∂sd−1
ν
)

. However, since ∂γ
∂si
∈ Tγ(s) is orthogonal to the normal ν we find

J0 =

(
det

[(
∂γ

∂s1
· · · ∂γ

∂sd−1

)(
∂γ

∂s1
· · · ∂γ

∂sd−1

)T])1/2

=
√

det(g), (6.31)

where gij = 〈 ∂γ∂si ,
∂γ
∂sj
〉 is the metric tensor for Γ. In particular the reduced Jacobian, J̃ := J/J0, has

the expansion

J̃ = ε

d∑
j=0

εjKjz
j . (6.32)

Taking the z derivative of the product form of the Jacobian expression in (6.29) we obtain the
identity,

∂zJ = −ε2J0(s)

d−1∑
i=1

ki
∏
j 6=i

(1− εzkj) = εκJ, (6.33)

where the extended curvature

κ(s, z) := ∂zJ/(εJ) = −
d−1∑
i=1

ki
1− εzki

=

∞∑
j=0

κjε
jzj , (6.34)

is expressed in terms of the coefficients

κj(s) = −
d−1∑
i=1

kj+1
i (s) = −tr(Aj+1), (6.35)

where A is the Weingarten map. In particular,

H =

d−1∑
i=1

ki = −κ0, (6.36)

is the mean curvature.

We remark that the Jacobian remains smooth, in fact it is a polynomial of degree at most d in
z. However the extended curvature becomes singular when the whiskers intersect. Distributing the z
derivative in (6.21) and using the identity (6.34) yields the central result of this subsection, the local
decomposition of the Laplacian in the whiskered coordinates,

∆x = ε−2∂2
z + ε−1κ(s, z)∂z + ∆G. (6.37)

We call κ the extended mean curvature since κ = ∇x · ν is the Cartesian divergence of the normal to
Γ when the normal is extended off of Γ as a constant along whiskers.

We conclude the section with estimates on G, J , and κ.

Proposition 6.7.

G(s, z) =
(

G0(s,z) 0

0 ε2

)
(6.38)

and

G0(s, 0) = g(s), (6.39)

where g = {gij} is the first fundamental form (metric tensor) on Γ.
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In addition, if we fix K > 0 and ` ≤ 1
4K , then, for all m ∈ N there exists C > 0 such that for all

Γ ∈ GK,l and ε sufficiently small the following estimates hold for the metric tensor G, the Jacobian
J , and the extended mean curvature κ

sup
i,j≤d−1
m,|α|≤2

(
‖∂mz Gij‖L∞(Γ(2`)) + ‖∂mz Gij‖L∞(Γ(2`)) + ‖Dα

s ∂
m
z κ‖L∞(Γ(2`)) + ε−1‖Dα

s ∂
m
z J̃‖L∞(Γ(2`))

)
≤ Cεm.

(6.40)
Moreover, Gij has the following expansion

Gij =

d−1∑
m=1

ϑmiϑmj , (6.41)

where ϑij(s, z) = ϑ0
ij(s) + εzϑ1

ij(s, z) are the entries of the inverse Jacobian, ϑ = (JT )
−1

and

sup
i,j≤d−1

(
‖ϑ0

ij‖L∞(Γ(2`)) + ε−m‖∂mz ϑ1
ij‖L∞(Γ(2`))

)
≤ C. (6.42)

The constants in these estimates depend on K only.

Proof: The expression (6.38) comes from differentiating (2.1) with respect to z and si

∂ϕ

∂z
= εν,

∂ϕ

∂si
=
∂γ

∂si
+ εz

∂ν

∂si
∈ Tγ(s)Γ, (6.43)

(see Remark 6.3). To obtain (6.39) we observe that for i, j = 1, . . . , d− 1,

(G0)ij

∣∣∣
z=0

= Gij

∣∣∣
z=0

=

〈
∂ϕ

∂si
,
∂ϕ

∂sj

〉 ∣∣∣
z=0

=

〈
∂γ

∂si
,
∂γ

∂sj

〉
= gij . (6.44)

The remaining estimates follow from (6.29) and (6.34).

In particular detg = ε2 detG0. As a consequence of (2.1) we also have the following inequalities.

Proposition 6.8. For any function f(x) = f(s, z) and m = 1, 2,

‖∂mz f‖L2(Γ(2`)) ≤ εm‖f‖Hm(Γ(2`)) and ‖∂sif‖L2(Γ(2`)) ≤ C‖f‖H1(Γ(2`)). (6.45)
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