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ABSTRACT. Given a finite measure µ with compact support, and λ > 0, the average-
distance problem, in the penalized formulation, is to minimize

(0.1) Eλµ(Σ) :=

∫
Rd

d(x,Σ)dµ(x) + λH1(Σ),

among pathwise connected, closed sets, Σ. Here d(x,Σ) is the distance from a point
to a set and H1 is the 1-Hausdorff measure. In a sense the problem is to find a one-
dimensional measure that best approximates µ. It is known that the minimizer Σ is topo-
logically a tree whose branches are rectifiable curves. The branches may not be C1, even
for measures µ with smooth density. Here we show a result on weak second-order reg-
ularity of branches. Namely we show that arc-length-parameterized branches have BV
derivatives and provide a priori estimates on the BV norm.

The technique we use is to approximate the measure µ, in the weak-∗ topology of mea-
sures, by discrete measures. Such approximation is also relevant for numerical compu-
tations. We prove the stability of the minimizers in appropriate spaces and also compare
the topologies of the minimizers corresponding to the approximations with the mini-
mizer corresponding to µ.

Keywords. nonlocal variational problem, average-distance problem, regularity
Classification. 49Q20, 49K10, 49Q10, 35B65

1. INTRODUCTION

The average-distance problem was introduced by Buttazzo, Oudet and Stepanov in
[1]. In the penalized formulation the problem takes the form

Problem 1.1. For d ≥ 2, given a finite compactly supported measure µ, and λ > 0, minimize

(1.1) Eλ
µ(Σ) =

∫
Rd

d(x,Σ)dµ(x) + λH1(Σ)

among pathwise connected, closed sets Σ.

We define the set of admissible candidates by

A := {Σ ⊆ Rd : Σ compact, pathwise connected, andH1(Σ) <∞}.

Date: January 8, 2013.
1



2 XIN YANG LU AND DEJAN SLEPČEV

For the future reference we denote the part of the energy functional which measures the
approximation error by

Fµ(Σ) :=

∫
Rd

d(x,Σ)dµ.

This problem has many applications: a simple one is
• µ is the distribution of passengers,
• Σ is a transport network.

In this case Fµ(Σ) is the average distance of passengers from the network, and H1(Σ)
is the cost to build such network. Minimizing Eλ

µ is determining the network with best
serves the passengers, under cost considerations.

An alternative interpretation is found in cloud data systems:
• µ is the distribution of data points,
• Σ is a one dimension object which approximates the data.

In this case Fµ(Σ) is the approximation error, while λH1(Σ) is the cost associated to the
complexity of such representation. Minimizing Eλ

µ is determining the best approxima-
tion, accounting for the complexity.

Existence of minimizers, follows from theorems of Blaschke and Gołąb, [1]. Geomet-
ric properties of minimizers were investigated by Buttazzo, Oudet and Stepanov [1],
Buttazzo and Stepanov [2, 3] (mainly in two dimensions) and by Paolini and Stepanov
[9] (for higher dimensions). Let us also add that Lemenant [6] provides an excellent re-
view of the current knowledge about average-distance problem. It has been proven that
minimizers are topologically trees with rectifiable branches. Furthermore no more than
three branches can meet at a point. Regarding the regularity of branches the following
results are available:

• In [1] it has been proven that minimizers are Ahlfors regular in two dimensional
domains. The result was extended to higher dimensional domains in [9],
• In [2] it has been proven that minimizers are union of Lipschitz curves; for the

penalized problem, it is easy to prove that this union if finite (e.g. using Theorem
3.4).
• In [12] it has been proven that regularity beyond C1,1 cannot be expected in the

general case.
• In [10] an explicit counterexample to C1 regularity for minimizers has been con-

structed.
We recall that in two dimensional domains, in the constrained formulation

min
H1(Σ)≤L

Fµ(Σ),

in [11] it has been proven that given a minimizer Σopt, which is finite union of Lipschitz
curves {γi}Ni=1 (as proven in [2]), each such curve γj is C1,1 away from the points where a
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positive mass projects, at which corners are possible. Moreover, in [7] which studies the
average-distance problem in two dimensions provides "tilt estimates" which are related
to our regularity estimates.

This paper aims to extend such regularity results, and prove that minimizers are finite
unions of Lipschitz curves with BV derivatives. More precisely we show that given an
arbitrary nonnegative finite measure with compact support, µ, and λ > 0, any solution
Σ ∈ argmin Eλ

µ is finite union of Lipschitz curves {γk}Nk=1 (without loss of generality
assume that all γk are arc-length parameterized), such that for any k = 1, . . . , N it holds

(1.2)
∑
k

‖γ′k‖TV ≤
1

λ
|µ(Rd)|,

where ‖ · ‖TV denotes the total variation.
In other words we provide an estimate on the total curvature of the curves that make

up Σ, where the curvature, κ = γ′′k is understood as the signed measure. The fact the the
total mass (times 1/λ) bounds the curvature is not surprising. To motivate it let us as-
sume that the minimizer Σ is a single smooth curve and that µ is absolutely continuous
with respect to Lebesgue measure. Let Π be the projection onto Σ (it is known that Π
has unique value almost everywhere). Then the first variation for the Problem 1.1 gives
that for any smooth vector field v : Σ→ Rd supported away from the endpoints of Σ

−
∫

Σ

κ · vdH1(Σ) =
1

λ

∫
Rd

(x− Π(x))

|x− Π(x)|
· v((Π(x))dµ(x).

Taking supremum over all v, as above, with |v| ≤ 1 implies (1.2).
The difficulties one faces in applying the reasoning above are that Σ is neither regular

nor a curve and that µ is not assumed to be absolutely continuous with respect to the
Lebesgue measure.

The approach used is based on approximating a measure µ by a sequence discrete
measures {µn}

∗
⇀µ, and analyzing the minimizers of Problem 1.1 with µ replaced by µn.

In addition to the estimate on the BV norm we prove a topological relation between
minimizers of Eλ

µn and minimizers of Eλ
µ , with λ > 0 arbitrarily given.

This paper is structured as follows:

• In Section 2 we recall the known results on the average-distance problem, intro-
duce the discrete approximations and prove a couple of preliminary results.
• In Section 3 we prove an upper bound on the number endpoints of minimizers

and analyze the behavior of endpoints in the approximation process. In particu-
lar we prove in Theorem 3.4 that if µn are discrete approximations of µ and Σn are
minimizers of Eλ

µn which converge to Σ, a minimizer of Eλ
µ , then each endpoint

of Σ is a limit of endpoints of Σn.
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• Section 4 is devoted to the topological comparison between minimizers for the
approximate problem and the minimizer corresponding to µ.
• In Section 5 we prove prove that minimizers of the average-distance problem are

finite union of Lipschitz curves withBV derivatives, and prove a priori estimates
on BV norms in Theorem 5.1.

2. PRELIMINARY RESULTS

We restrict our attention to probability measures, µ, purely for notational simplicity.
Given a probability measure µ and a compact set Σ, we need to find a "projection" of the
measure µ onto Σ. The issue is that for x ∈ Rd, the minimizer of |x − y| over y ∈ Σ is
in general not unique. In fact it has been proven by the authors in [8] that the ridge of
Σ (points having nonunique projection on Σ) is anHd−1-rectifiable set. If µ is absolutely
continuous with respect to the Lebesgue measure, µ� Ld, then the ridge is µ-negligible
and thus the projection Π : x 7→ argminy∈Σ |x− y| is unique µ-a.e. and one can define the
projection of µ onto Σ by σ = Π]µ (the push-forward of the measure).

However if µ is not absolutely continuous with respect to Lebesgue measure then
more care is needed.

Lemma 2.1. Let µ be a probability measure and Σ a compact set. There exists a probability
measure π on Rd × Σ such that the first marginal of π is µ (that is π(A × Rd) = µ(A) for any
Borel set A) and that for π-a.e. (x, y), |x− y| = minz∈Σ |x− z|.

We define σ, the projection of µ onto Σ, to be the second marginal of π. While π is
in general not unique, from the outset we choose one π and the corresponding σ. All
statements we make hold for any π chosen.

Proof. Let PΣ be the set of Borel probability measures on Σ. Consider the functional
σ 7→ dW (µ, σ) on PΣ, where dW is the Wasserstein distance. Since Σ is compact, PΣ

is sequentially compact with respect to weak-∗ convergence of measures. Given that
dW (µ, · ) is continuous on PΣ with respect to the weak-∗ convergence of measures we
conclude that there exists σ̄ ∈ PΣ minimizing the Wasserstein distance to µ. Let π be the
optimal transportation plan (for the quadratic cost) between µ and σ̄. We claim that π
has the desired properties.

Since, by definition, the first marginal of π is µ we only need to verify that for π-a.e.
(x, y), |x − y| = minz∈Σ |x − z|. Assume that this is not the case, that is that there exists
(x, y) ∈ suppπ and z ∈ Σ such that |x − y| > |x − z|. Let δ = (|x − y| − |x − z|)/3 and
U = B(x, δ)×(B(y, δ)∩Σ). Since (x, y) ∈ supp π, ε := π(U) > 0. Let πnew = π−π|U+εδ(x,z)

and let σnew the the second marginal of πnew. Then σnew ∈ PΣ and dW (µ, σnew) < dW (µ, σ̄)
which contradicts the fact that σ̄ is a minimizer. �

We introduce some notation and terminology:
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• The measure σ defined after the statement of Lemma 2.1 can have atoms. For
simplicity for y ∈ Σ we write σ(y) to mean σ({y}).
• Sometimes it is important to emphasize which µ and Σ the measure σ corre-

sponds to. Then we write σ(µ,Σ, A) for σ(A), where A is a measurable subset of
Σ.
• The order of a point y ∈ Σ is defined to be the number of pathwise connected

components of Σ\{y}. As we mentioned earlier if Σ is a minimizer of Eλ
µ then all

points on Σ are of order 1,2, or 3.
• Point y ∈ Σ of order one is called an endpoint. We show in Lemma 3.1 that for

any endpoint σ(µ,Σ, y) ≥ λ. We denote the set of endpoints of Σ by ext(Σ). A
point of order three is called a triple junction. A point y ∈ Σ is called a corner if it
is of order two and σ(µ,Σ, y) > 0.

We note that there is a simple bound on the length of the minimizers of Eλ
µ . Namely

if Σ is a minimizer of Eλ
µ then

(2.1) H1(Σ) ≤ 1

λ
diam supp(µ).

The reason is that for any z ∈ suppµ the minimality of Σ implies

λH1(Σ) ≤ Eλ
µ(Σ) ≤ Eλ

µ({z})

=

∫
Rd

d(y, {z})dµ(y) =

∫
supp(µ)

d(y, {z})dµ(y) ≤ diam supp(µ).

We recall the following facts on the average-distance problem. We refer to [10] for
further details.

(i) For any probability measure µ on Rd, and λ > 0, the functional Eλ
µ is lower semi-

continuous w.r.t. dH.
(ii) Given Σ ∈ A, and λ > 0, the mapping Σ 7→ Eλ

µ(Σ) is continuous w.r.t. weak-∗
convergence of measures.

(iii) If {µn}
∗
⇀µ in the space of probability measures on Rd, then for any λ > 0, Eλ

µn

Γ-converges to Eλ
µ w.r.t. Hausdorff convergence of sets of A.

(iv) Consider a sequence {µn}
∗
⇀µ in the space of probability measures on Rd, and for

any n choose Σn ∈ argmin Eλ
µn , then upon subsequence Σn

dH→Σ for some Σ ∈
argmin Eλ

µ .
(v) Given R > 0, consider a sequence {γn} : [0, 1] −→ B(0, R) of Lipschitz curves with

constant-speed parameterization, satisfying supH1(γn) <∞ and sup ‖γn‖BV <∞.
Then upon subsequence there exists a Lipschitz curve γ such that:
• {γn} → γ in Cα for any α ∈ [0, 1),
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• {γ′n} → γ′ in Lp for any p ∈ [1,∞),
• {γ′′n} → γ′′ in the space of signed finite Borel measures on Rd.

We also need a basic result on the nature of path connectedness of Σ. Given points
p, q ∈ Σ, the following terminilogy will be used:

• a “curve between p and q” is a continuous (not necessarily injective) mapping γ :
[0, 1] −→ Σ with γ(0) = p, γ(1) = q.
• a “path between p and q” is the image of a curve γ : [0, 1] −→ Σ with γ(0) = p,
γ(1) = q.

Lemma 2.2. Consider X ∈ A with Ld(∂X) = 0. Given distinct points p, q ∈ X there exists a
minimal (w.r.t. set inclusion) path connecting them. Moreover such path can be parameterized
by an injective curve.

Proof. Consider X ∈ A and p, q ∈ X as above. Since X is pathwise connected, there
exists a (continuous) mapping γ : [0, 1]→ X such that γ(0) = p and γ(1) = q. Define the
family

F := {S ⊆ X : p, q ∈ S, S compact path},
with the order “⊇”. Obviously F in non empty as it contains γ([0, 1]) in X , which is
compact. It is easy to check that (F ,⊇) satisfies hypothesis of Zorn’s lemma, as every
ascending chain {Si}i∈J (where J is a arbitrary set of indexes) has upper bound

⋂
i∈J

Si,

which is still an element of F . Thus there exists a maximal element S∗ ∈ F . This S∗ can
be parameterized by an injective curve: indeed given a non injective parameterization
γ : [0, 1] −→ S∗, with γ(0) = p, γ(1) = q, for which there exist 0 < t < s < 1 such that
γ(t) = γ(s) and γ([t, s]) ) γ(t), then γ([0, t]∪ [s, 1]) ∈ F would contradict the maximality
of S∗ unless it has the same image S∗ = γ([0, 1]). In this latter case γ([0, t] ∪ [s, 1])
can be used to parameterize S∗, and this argument can be repeated whenever γ is not
injective. �

In view of this result, the expression “injective path” will be used throughout the pa-
per to denote a path admitting an injective parameterization, while a “minimal path” be-
tween two distinct points always refers to a minimal, compact, injective path between
them. Notice that nothing is claimed about uniqueness of such minimal paths. We show
below that if the minimal path is not unique then the set contains a loop. Since the min-
imizers of Eλ

µ cannot contain loops, this implies that for minimizers the minimal path
between two points is unique.

Lemma 2.3. Assume X ∈ A with Ld(∂X) = 0 and p, q ∈ X are distinct points. If there exist
distinct minimal paths parameterized by

γ1, γ2 : [0, 1] −→ X, γ1(0) = γ2(0) = p, γ1(1) = γ2(1) = q,

then X contains a loop.
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Proof. Note that γ1([0, 1]) * γ2([0, 1]) and γ2([0, 1]) * γ1([0, 1]) since otherwise paths are
either not distinct or at least one is not minimal. Denote with Li := γi([0, 1]), i = 1, 2, and
the set L1 ∩ L2 is compact. Using Lemma 2.2 it can be assumed L1, L2 minimal injective
paths. By hypothesis neither L1 ⊆ L2 nor L2 ⊆ L1 holds, thus L1\L2 and L2\L1 are both
non empty sets, open in both L1 and L2 (obviously, if x ∈ L1\L2, dH({x}, L2) > 0, thus
there exists ε > 0 such that B(x, ε) ∩ L2 = ∅ and all points of L1 ∩ B(x, ε) do not belong
to L2).

Choose an arbitrary x ∈ L1\L2; as L1∩L2 is compact in L1, the difference L1\(L1∩L2)
is open in L1. As L1 is the continuous image of [0, 1] through an injective function, and
p, q ∈ L1 ∩ L2, x /∈ {p, q}. Denote with U the connected component of L1\L2 containing
x. Its boundary ∂U is composed by exactly 2 points y1, y2, as U is connected and γ1 is
injective. Without loss of generality assume γi : [0, 1] −→ Li, i = 1, 2 to be constant
speed parameterization, with γi(0) = p, γi(1) = q. Thus γ1(t) = x for some t ∈ (0, 1), and
γ((t1, t2)) = U for some t1 < t < t2. Injectivity implies γ1(t1) = y1 and γ1(t2) = y2. By
construction γ1(t1), γ1(t2) ∈ L2, as U is a connected component of L1\L2. Consequently
there exist s1 < s2 ∈ (0, 1) such that γ2(si) = γ1(ti), i = 1, 2. Both γ1([t1, t2]) and γ2([s1, s2])
are paths connecting those 2 points, and γ1((t1, t2))∩γ2((s1, s2)) = ∅ as otherwise would
contradict the connectedness of U . Thus γ1([t1, t2]) ∪ γ2([s1, s2]) is a loop. �

In view of Lemmas 2.2 and 2.3, it follows that given two points p, q ∈ Σ there exists a
unique minimal path A ⊆ between p and q.

2.1. Discrete approximations. We start by recalling the setup and some results from
[10].

Definition 2.4. Given points y1, . . . , yn ∈ Rd, a Steiner graph St(y1, . . . , yn) for the points is
a set of minimal length containing y1, . . . , yn.

We note that in general Steiner graph for the given set of points in not unique. Here
we list a few basic properties of Steiner graphs, their proofs and more on Steiner graphs
can be found in [4] and [5].

Proposition 2.5. Let G be a Steiner graph.
(i) G is a tree with straight edges,

(ii) The order of any point of G does not exceed 3,
(iii) If v ∈ G has order 3, then the edges intersecting in v are coplanar, forming 3 angles

measuring 2π/3 each.

The next definition is similar to the notion of curvature:

Definition 2.6. Given a graph with straight edges Σ and a vertex v ∈ Σ with degree 2, denote
by w1, w2 its neighbors. The turning angle at v is

TA(v) := π − ∠w1vw2.
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The turning angle for a subset A ⊆ Σ is defined to be the sum of all turning angles at vertices of
degree 2 which belong to A.

The following facts were established in [10].
(i) If µ is a discrete probability measure, then for any λ > 0, any Σ ∈ argmin Eλ

µ is a
Steiner graph for a set of points (which in general are not the points in the support
of µ).

(ii) Given a discrete probability measure, µ , λ > 0, Σ ∈ argmin Eλ
µ , then for any

endpoint v ∈ Σ it holds

(2.2) σ(µ,Σ, v) ≥ λ.

(iii) Given µ discrete probability measure, λ > 0, Σ ∈ argmin Eλ
µ , then any A ⊆ Σ

measurable
TA(A) ≤ π

2λ
σ(µ,Σ, A).

3. ENDPOINT ESTIMATES

We first establish an upper bound on the number of endpoints by proving a lower
bound on the mass that projects on each endpoint.

Lemma 3.1. Given a finite measure µ, a parameter λ > 0, and Σ ∈ argmin Eλ
µ , it holds

σ(µ,Σ, v) ≥ λ for any endpoint v ∈ Σ.

For discrete measures µ this is the result (2.2); here we prove it for general measures.

Proof. Choose an arbitrary endpoint v ∈ Σ, in [2] it has been proven that there exists
r = r(v) > 0 such that Σ\B(v, r) ∈ A. Clearly

d(x,Σ) ≤ d(x,Σ\B(v, r)) + r, H1(Σ\B(v, r)) ≤ H1(Σ)− r.
Integrating the first inequality gives Fµ(Σ\B(v, r))− Fµ(Σ) ≤ rσ(µ,Σ,Σ ∩ B(v, r)). The
minimality of Σ gives

Fµ + λH1(Σ) ≤ Fµ(Σ\B(v, r)) + λH1(Σ\B(v, r))

≤ Fµ + rσ(µ,Σ,Σ ∩B(v, r)) + λ(H1(Σ)− r),

and passing to the limit r → 0+ gives σ(µ,Σ, v) ≥ λ. �

We show that minimizers of the average-distance problem cannot contain loops. A
related result was shown in [1] for µ absolutely continuous with respect to Lebesgue
measure.

Lemma 3.2. Given a finite measure µ, a parameter λ > 0, and Σ ∈ argmin Eλ
µ , the set Σ does

not contain a loop.
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Proof. Suppose that Σ contains a loop E, and let ϕ : [0, 1] −→ E be a constant speed
parameterization, with ϕ(0) = ϕ(1) and injective in (0, 1). Choose an arbitrary (large)
N ∈ N, and partition E into N mutually disjoint measurable sets I1, · · · , IN , with Ij :=
ϕ([(j − 1)/N, j/N)). Clearly L1(Ij) = H1(E)/N for any j.

Denote with {Ck
j }k∈Jj the set of connected components of Σ\Ij with positive length

and not intersecting E - with Jj a suitable set of indexes. Then choosing N > 2/λ for at
least one index j0 it holds

σ(Ij0 ∪ {Ck
j0
}k∈Jj0 ) < λ/2.

Consider the competitor Σ′ defined in the following way:

(i) remove Ij0 from Σ,
(ii) for k ∈ Jj0 , choose pk ∈ Ck

j0
∩ Ij0 , and at least one such pk exists as Σ is connected;

noticing that ϕ(j0/N) ∈ Σ\Ij0 , denote with Tk(x) := x+ (ϕ(j0/N)− pk) the transla-
tion by the vector ϕ(j0/N) − pk, and replace Ck

j0
with Tk(Ck

j0
) in Σ\Ij0 . Repeat this

argument for any k ∈ Jj0 , and denote with Σ′ the resulting set. By construction
Σ′ ∈ A.

As σ(Ij) < λ/2, and each Tk is a translation by a vector ϕ(j0/N) − pk, and |ϕ(j0/N) −
pk| ≤ H1(E)/N , it follows Fµ(Σ′) ≤ Fµ(Σ) + λ

2
H1(E)
N

, while by construction H1(Σ′) ≤
H1(Σ)−H1(E)/N , contradicting the minimality of Σ. �

Lemma 3.3. Given a discrete measure µ a minimizer X ∈ argmin Eλ
µ with H1(X) > 0, and a

point p ∈ X , then each connected component of X\{p} must contain an endpoint of X .

Proof. First observe that X\{p} cannot be empty. Consider the family

F := {S ⊆ X : S simple curve with one endpoint at p}

ordered by inclusion.
This family cannot be empty: indeed as X 3 p, given another point X 3 q 6= p the

minimal path γ ⊆ X connecting q and p, which is obtained as the intersection of all
paths connecting q and p, is a simple curve. The family F satisfies conditions of Zorn’s
lemma: indeed for any ascending chain {Si}i∈J , the union

⋃
i∈J

Si is an upper bound.

Thus there exists a maximal element S∗, which is still a simple curve, compact (if this
is not the case one can consider the closure S∗, which is still an element of F), with
one endpoint in P , and the contains another endpoint: indeed choose a point q ∈ S∗

such that dS∗(p, q) is maximal, with dS∗ denoting the path distance on S∗, and if q has
order at least 2, then (using Menger n-Beinsatz) there exists another simple curve S ′
with endpoint in q, disjoint from S∗ in a neighborhood of q, and S∗ ∪ S ′ contradicts the
maximality of S∗. �
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The main result of this section deals with the relation of endpoints of minimizers
corresponding to discrete approximation of µ and the endpoints of a minimizer, Σ, cor-
responding to µ. Recall that by ext(Σ) we denote the set of endpoints of Σ.

Theorem 3.4. Let µ be a compactly supported probability measure. Given a sequence of proba-
bility measures {µn}

∗
⇀µ, with uniformly bounded support, for any n choose an element

Σn ∈ argmin Eλ
µn .

Then upon subsequence {Σn}
dH→Σ for some Σ ∈ argmin Eλ

µ .
By relabeling the indices we can assume that the subsequence is the whole sequence. Then for

any endpoint z ∈ ext(Σ) there exists a sequence of endpoints zn ∈ exp(Σn) such that zn → z as
n→∞. This in particular implies

lim inf
n→∞

] ext(Σn) ≥ ] ext(Σ).

This estimate is crucial in the next section, when we discuss the topological relation
between minimizers of Eλ

µ and minimizers of Eλ
µn , where µn is a discrete approximation

to µ.

Proof. By our assumptions there exists R > 0 such that for all n, suppµn ⊆ B(0, R).
Note that then Σn ⊆ B(0, R). Let us also note that by (2.1) the lengths H1(Σn) are
uniformly bounded. By Blaschke’s theorem, along a subsequence Σn

dH→Σ as n→∞. By
relabeling the subsequence we can assume that it is the whole sequence. The lower-
semicontinuity of the H1 with respect to Hausdorff metric proved by Gołąb and the
continuity of Fµ(Σ) in both µ (with respect to weak-∗ topology) and Σ (with respect to
Hasudorff metric) implies that Σ is a minimizer of Eλ

µ . Furthermore for any endpoint z
of Σ the convergence Σn to Σ in Hausdorff metric implies that there exists a sequence
zn ∈ Σn such that zn → z as n→∞.

If zn are all endpoints then there is nothing to prove. We start the discussion by
assuming that zn has a subsequence of points of order 2 (triple junctions are considered
later). By relabeling we can assume that all of zn ∈ Σn are of order 2. We denote by Σ′n
and Σ′′n the two connected components of Σn\{zn}. We also choose sequences {vn}, {xn}
both converging to z and such that vn ∈ Σ′n, xn ∈ Σ′′n for any n.

For set X ⊂ Rd let r(X) = supy∈X |y − z|. The following dichotomy applies:
(]) lim supn→∞min{r(Σ′n), r(Σ′′n)} = 0
(∗) There exists β > 0 and a subsequence {nk}k=1,2,... such that for all k large enough

min{r(Σ′nk
), r(Σ′′nk

)} ≥ β.
If (]) holds then, since by Lemma 3.3 both Σ′n and Σ′′n contain at least one endpoint,

there exists an endpoint, z̃n, at distance at most min{r(Σ′), r(Σ”)} to zn. Then z̃n → z as
n→∞ and thus z is still a limit of endpoints as desired.
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FIGURE 1. Σ is an example of double line.

What remains is to show that the case (∗) is impossible. This requires a detailed geo-
metric argument which we divide in several parts. If (∗) holds then, from Blaschke’s
compactness theorem, follows that along a further subsequence, which we relabel to be
the whole sequence, both connected components converge in dH, to sets with positive
length. More precisely

Σ′ := lim
n→∞

Σ′n ∪ {zn}, Σ′′ := lim
n→∞

Σ′′n ∪ {zn}

We observe that z ∈ Σ′ ∪ Σ′′ and that r(Σ′) ≥ β and r(Σ′′) ≥ β. Therefore H1(Σ′) ≥ β
andH1(Σ′′) ≥ β.

We claim that there exists a point besides z in Σ′∩Σ′′. The reason is that, if Σ′∩Σ′′ = {z}
then z could not be an endpoint, because as Σ does not contain loops, Σ\{z} cannot be
connected. Thus Σ′ and Σ′′ are connected components and so z is not of order one. So
let w ∈ Σ′ ∩Σ′′\{z}. Denote by Σ′z,w, Σ′′z,w two arbitrary minimal paths connecting z and
w in Σ′ and Σ′′ respectively. As Σ′z,w 6= Σ′′z,w would imply the existence of a loop (in view
of Lemma 2.3), Σ′z,w = Σ′′z,w must hold. Define α := H1(Σ′z,w).

It is possible to choose sequences {pn}, {qn} with pn ∈ Σ′n, qn ∈ Σ′′n, both converging
to w, and such that min{|pn − vn|, |qn − xn|} ≥ |z − w|/2 for any n. Notice that in all this
argument the condition “z is an endpoint of Σ” implies that z is an endpoint for any
subset of Σ containing it, including Σ′,Σ′′,Σ′z,w, and Σ′′z,w.

Definition 3.5. If Σn → Σ, a closed subset L ⊆ Σ is a “double line” if it is a minimal path
connecting distinct points v and w (in Σ) and there exist points {vn, xn, pn, qn} ⊆ Σn (where vn
may be equal to xn), satisfying

• vn → v, xn → v, pn → w, qn → w as n→∞,
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• the minimal path between pn and qn contains {vn, xn} for any n.

It can be shown that, since Σ does not contain any loops, that if Σ has a double line,
then it has a double line such that v is an endpoint. However we do not need this fact
in our arguments.

Notice that construction in case (∗) implies the presence of a double line in the limit
set Σ.

Lemma 3.6. Given a sequence of discrete probability measures {µn} converging to some prob-
ability measure µ w.r.t. weak-∗ topology, and a sequence of minimizers Σn ∈ argmin Eλ

µn

converging to Σ ∈ argmin Eλ
µ w.r.t. dH, then the set Σ cannot contain double lines.

Proof. The proof is done by contradiction: assume there exists a double line L ⊆ Σ. The
aim is to find a competitor Σ̃n contradicting the optimality of Σn.

From the definition of a double line there exists distinct points v, w ∈ L and distinct
points {vn, xn, pn, qn} ⊆ Σn for all n, satisfying

vn → v, xn → v, pn → w, qn → w as n→∞.

From the discussion above it is possible to choose these sequences such that there
exist disjoint curves γ′n, γ′′n : [0, 1] −→ Σn connecting pn to vn, and qn to xn respectively,
and their respective image L′n, L′′n both converge to L w.r.t. dH. Let Ln := L′n ∪L′′n. It also
holds that Σn\Ln ∪ L→ Σ w.r.t. dH as n→∞. By lower semicontinuity ofH1:

lim inf
n→∞

min{H1(L′n),H1(L′′n)} ≥ H1(L) ≥ dL(v, w) =: a > 0,

where dL denotes the path distance on L. It follows that lim infn→∞H1(Ln) ≥ 2H1(L) ≥
2a, i.e. for n sufficiently largeH1(Ln) ≥ 1.9H1(L) holds.

Choose ε > 0, and n sufficiently large such that

max{dH(Σn,Σ), dH(Ln, L), dH(Σn\Ln ∪ L,Σ), |pn − w|, |qn − w|, |vn − v|} < ε.

Denote with [x, y] the line segment with endpoints in x and y. Define

An := (Σn\Ln) ∪ [pn, w] ∪ [qn, w] ∪ [vn, v] ∪ [xn, v] ∪ L,

i.e. An is obtained from Σn by first removing Ln and then replacing it with line segments
[pn, w], [qn, w] [vn, v], [xn, v] and L. For any sets A,B ⊂ Rd we define

daH(A,B) = sup
b∈B

inf
a∈A
|a− b|.

Note that dH(A,B) = max{daH(A,B), daH(B,A)}. Then daH(Σn, [pn, w]) ≤ |pn − w| < ε,
and similarly daH(Σn, [qn, w]) < ε, daH(Σn, [vn, v]) < ε, daH(Σn, [xn, v]) < ε. Combining
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with dH(Σn\Ln ∪ L,Σ) < ε gives daH(An,Σn) < ε. Moreover it holds

H1(An) ≤ H1(Σn)−H1(Ln) + |pn − w|+ |qn − w|+ |vn, v|+ [xn, v] +H1(L)

≤ H1(Σn)−H1(Ln) +H1(L) + 4ε

≤ H1(Σn)− 0.9H1(L) + 3ε

≤ H1(Σn)− 0.9a+ 3ε.

(3.1)

The issue we still face is that An may not belong to A. Namely An may be disconnected
(for example if Ln contains triple junctions). Let Cn

0 be the connected component of An
containing L. Let Fn := {Cn

j }j∈I be the family of connected components of An, other
than Cn

0 . Since each connected component must contain an endpoint of Σn, by Lemma
3.1, I must be finite. We now translate these components so that they connect to L.
Consider an arbitrary Cn

j ∈ Fn. As Ln is the only set present in Σn but not present in
An, there exists a point snj ∈ Ln ∩ Cn

j . Define

Tθ : Rd −→ Rd, Tθ(x) := x+ θ

the translation by a vector θ, and let πL be the projection on L, i.e. for any x the point
πL(x) satisfies |x− πL(x)| = d(x, L) (if there is more than one minimizer, then πL(x) can
be chosen arbitrarily among these). Define

Σ̃n :=
(
An\

⋃
j∈I

Cn
j

)
∪
⋃
j∈I

TπL(snj )−snj (Cn
j ).

It is pathwise connected and compact by construction. Notice that dH(Ln, L) < ε implies
|snj−πL(snj )| < ε. Therefore daH(Σ̃n, An) ≤ ε, which combined with daH(An,Σn) < ε gives
daH(Σ̃n,Σn) ≤ 2ε. From |d(x, Σ̃n)−d(x,Σn)| ≤ daH(Σ̃n,Σn) ≤ 2ε, integrating on Rd yields

(3.2)
∣∣∣∣∫ d(x, Σ̃n)dµn −

∫
d(x,Σn)dµn

∣∣∣∣ ≤ µn(Rd)dH(Σ̃n,Σn) ≤ 2ε.

The last step involves estimating H1(Σ̃n): by construction Σ̃n is obtained from An by
first removing

⋃
j∈I C

n
j , then adding

⋃
j∈I TπL(snj )−snj (Cn

j ). Since by definition Cn
j ∩Cn

s = ∅
if j 6= s and

⋃
j∈I

Cn
j ⊆ Σn,

H1
(⋃
j∈I

Cn
j

)
=
∑
j∈I

H1(Cn
j ) ≤ H1(Σn) <∞.



14 XIN YANG LU AND DEJAN SLEPČEV

Analogously, considering that TπL(snj )−snj (Cn
j ) is the image of Cn

j through a translation,
H1(TπL(snj )−snj (Cn

j )) = H1(Cn
j ) for any j, thus

H1

(⋃
j∈I

TπL(snj )−snj (Cn
j )

)
= H1

(⋃
j∈I

Cn
j

)
=
∑
j∈I

H1(Cn
j ) ≤ H1(Σn) <∞.

Using (3.1) this gives

H1(Σ̃n) = H1(An) ≤ H1(Σn)− 0.9a+ 3ε.

Combining with (3.2) we conclude

Eλ
µn(Σ̃n) ≤ Eλ

µn(Σn) + 2ε− 0.9λa+ 3ελ,

which for ε sufficiently small contradicts the minimality of Σn. �

We return to the proof of Theorem 3.4. It remains to consider the case that an endpoint
z ∈ ext(Σ) is a limit of points zn ∈ Σn of order 3. We note that arbitrarily close to any
point of order 3 there exists a point of order 2. Thus z can be obtained as a limit of points
of order 2, which is the case considered above. �

4. TOPOLOGICAL "LOWER SEMICONTINUITY"

4.1. Topological relation. Given λ > 0 and a compactly supported probability measure
µ, consider a sequence of discrete probability measures {µn}

∗
⇀µ, and for any n choose a

minimizer Σn ∈ argminEλ
µn . Then upon subsequence Σn

dH→Σ ∈ argminEλ
µ . The aim of

the this section is to analyze topological relations between Σn (for n sufficiently large)
and Σ.

The main result is:

Theorem 4.1. Given λ > 0 and a compactly supported probability measure µ, consider a
sequence of discrete probability measures {µn}

∗
⇀µ, and for any n choose a minimizer Σn ∈

argmin Eλ
µn . Then, upon a subsequence, Σn

dH→Σ ∈ argmin Eλ
µ . Then then for all sufficiently

large n along the subsequence there exists a homeomorphism ϕn : Σ −→ Sn ⊆ Σn, for some
subset Sn ⊆ Σn.

Proof. The convergence of Σn along a subsequence follows from Theorem 3.4. We again
assume that the subsequence is the whole sequence. Let V be the set of all endpoints
and triple junctions of Σ. By Theorem 3.4, Σ and Σn contain at most 1/λ endpoints.
By induction on the number of triple junctions, it is easy to prove that in any tree the
number of endpoints is greater than the number of triple junctions. Thus the number of
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R

ϕ−1
n

Σn

Σ

ϕn

FIGURE 2. ϕn is an example of homeomorphism between Σ and a (proper)
subset of Σn. The part within the dashed rectangleR is not involved in the
homeomorphism.

triple junctions is also bounded by 1/λ. Hence V is a finite set. There exists c > 0 such
that

(4.1) c ≤ min
v,ṽ∈V,v 6=ṽ

|v − ṽ|.

Choose n sufficiently large such that dH(Σn,Σ) < c/2. From Theorem 3.4 it follows
that any endpoint v of Σ is limit of a sequence of endpoints {vn} of Σn. Such a sequence
may be nonunique; we fix one for each endpoint of Σ. By relabeling the sequence, it can
be assumed that for all endpoints v of Σ and corresponding sequence of endpoints vn of
Σn, and all n, |v − vn| < c/2.

Lemma 4.2. Let Σn and Σ be as above. If some sequences {yn} and {wn} in Σn converge to
distinct points y, w ∈ Σ then the sequence of minimal paths [yn, wn]Σn converges in dH to the
minimal path [y, w]Σ.

Here [y, w]Σ is the minimal path in Σ containing y and w. The existence of such mini-
mal path is ensured by Lemma 2.2.

Proof. Assume that this is not the case. Then there exists ε > 0 and a subsequence of
[yn, wn]Σn such that all paths in the subsequence are at distance at least ε from [y, w]Σ. By
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relabeling we can assume that this is the whole sequence. To obtain contradiction it is
enough to find a (further) subsequence which does converge to [y, w]Σ. By compactness
we know [yn, wn]Σn converges along a subsequence to some connected set A ⊂ Σ which
contains y and w. Since Σ is a tree, [y, w]Σ ⊆ A. Let us assume that L = A\[y, w]Σ 6= ∅.
Then there exists a sequence xn ∈ [yn, wn]Σn such that xn → x ∈ L as n → ∞. Let L′

be the connected component of L containing x. If L′ ∩ [y, w]Σ has two or more points
then Σ contains a loop, which contradicts the fact that Σ is a tree. Hence L′ ∩ [y, w]Σ is a
single point, denote it by p. Then p ∈ [y, x]Σ and p ∈ [x,w]Σ. Thus there exist sequences
pn ∈ [yn, xn]Σn and qn ∈ [xn, wn]Σn such that pn → p and qn → p as n → ∞. Thus Σ
contains a double line which contradicts Lemma 3.6. �

We return to the proof of the theorem.
Claim 1. Any triple junction z ∈ Σ can be obtained as limit of a sequence of triple

junctions zn ∈ Σn. If this is not the case, there exists a triple junction z ∈ Σ which
cannot be obtained as limit of triple junctions. Then there exists ε > 0 such that no
point in Σ ∩ B(z, ε) is a limit of a sequence of triple junctions. By making ε > 0 smaller
we can ensure that Σ ∩ B(z, ε)\{z} has exactly three connected components. Let w1,
w2, and w3 be elements of these connected components. Then there exist sequences
win ∈ Σn for i = 1, 2, 3 such that win → wi as n → ∞. By Lemma 4.2, for i, j ∈ {1, 2, 3}
distinct, [win, w

j
n]Σn → [wi, wj]Σ as n → ∞. Since [wi, wj]Σ ⊂ B(z, ε), none of [win, w

j
n]Σn

contains a triple junction (for n large enough). Hence one of the points has to lie on
the minimal path connecting the other two, say w2

n ∈ [w1
n, w

3
n]Σn for all n large enough

(along a subsequence). Thus w2 ∈ [w1, w3]Σ, which contradicts the fact that all three the
points lie in different connected components of Σ ∩B(z, ε)\{z}.

Similarly to the argument made for endpoints, we can assume that for any triple
junction z ∈ Σ, is a limit of a sequence of triple junctions {zn} such that |z − zn| <
c/2 for all n. This sequence may be nonunique, but we select one. From (4.1) follows
that sequences converging to distinct endpoints/triple junctions have no overlapping
elements. Let Vn be the set of endpoints and triple junctions of Σn which are in the
sequences (selected above) converging to elements of V .

Claim 2. If w1, w2 ∈ V are such that [w1, w2]Σ does not contain endpoints/triple junc-
tions besides w1 and w2 then for all n large enough [w1

n, w
2
n]Σn does not contain any

elements of Vn besides w1
n and w2

n. Assume that this is not the case: that along a subse-
quence Vn∩ [w1

n, w
2
n]Σn contains an element of Vn other than w1

n and w2
n. By considering a

further subsequence we can assume that it is always from the same sequence, say {w3
n}.

That is w3
n ∈ [w1

n, w
2
n]Σn for all n along a subsequence. As before we can assume that

the subsequence is the whole sequence. From Lemma 4.2 it follows that w3 ∈ [w1, w2]Σ.
Contradiction.
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We are finally ready to define the desired homeomorphism. Choose a function ϕn :
Σ −→ ϕn(Σ) ⊆ Σn such that:

(i) if an endpoint v ∈ Σ is limit of a sequence of endpoints {vn} with vn ∈ Vn then
ϕn(v) = vn,

(ii) if a triple junction z ∈ Σ is limit of a sequence of triple junctions {zn}with zn ∈ Vn,
then ϕn(z) = zn,

(iii) if w1, w2 ∈ V are such that [w1, w2]Σ does not contain endpoints/triple junctions
besides w1, w2, then define ϕn|[w1,w2]Σ as an arbitrary homeomorphism between
[w1, w2]Σ and [w1

n, w
2
n]Σn , where w1

n, w
2
n ∈ Vn and {w1

n} → w1, {w2
n} → w2, as n→∞.

The function ϕn : Σ → ϕn(Σ) ⊆ Σn is well defined, for n large enough, by Claim 2.
It is injective and continuous by construction. Since Σ is compact and ϕn is a bijection,
ϕ−1
n is continuous. Thus ϕn is a homeomorphism. �

5. BV ESTIMATES

The aim of this section is to prove a regularity result about minimizers of Problem 1.1.
In [1], [2] and [3] is has been proven that any minimizer Σ of Problem 1.1 is a countable
union of Lipschitz curves. Given that, by Theorem 3.4, the total mass arriving at each
endpoint is at least λ there exists at most 1/λ endpoints. Since the number of triple
junctions in a tree is less than the number of endpoints the number of curves, forming
the tree, is bounded by 1/λ. Thus Σ is a finite union of Lipschitz curves.

The main objective of this section is to prove the following regularity result:

Theorem 5.1. Given a compactly supported finite measure µ, and λ > 0, any Σ ∈ argmin Eλ
µ

is finite union of Lipschitz curves {γk}Nk=1 (without loss of generality assume that all γk are
arc-length parameterized), such that∑

k

‖γ′k‖TV ≤
1

λ
|µ(Rd)|,

where ‖ · ‖TV denotes the total variation.

Note that we do not assume that µ is a probability measure.
The proof uses a discrete approximation of µ; thus we start by proving the result for

discrete measures. Given unit vectors v1, and v2, the "angle between” v1 and v2 is defined
as the smallest α ≥ 0 such that

|v1 − v2| = 2 sin
α

2
.

Lemma 5.2. Given an arbitrary discrete measure µ, and λ > 0, any Σ ∈ argmin Eλ
µ is finite

union of Lipschitz curves {γk}Nk=1 (without loss of generality assume γk constant speed), such
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that
‖γ′k‖TV ≤

1

λ
σ(µ,Σ, γk)

where σ is defined after Lemma 2.1.

Proof. Let µ be a probability measure. The result for general measures follows by scal-
ing (See Section 2.1 in [10]). Consider an arbitrary minimizer Σ ∈ argmin Eλ

µ . From
[10] follows that minimizers are always Steiner graphs with finitely many vertices. As
Steiner graphs are trees, it follows that Σ is finite union of arc-length parameterized Lip-
schitz curves {γk}Nk=1, where each of these curves is union of line segments. Moreover,
the number of curves, N , is bounded by 1/λ. Choose an arbitrary k ∈ {1, · · · , N}. To
simplify notations define γ := γk and L := H1(γ). Let s1 < s2 < · · · < sm be the values
in [0, L] for which γ(si) is a corner.

From definition of total variation and the fact that the curve is piecewise linear

‖γ′‖TV ([0,L]) := sup
0=t0<t1<···<tM−1<tM=L

M−1∑
i=0

|γ′(ti+1)− γ′(ti)| =
m∑
j=1

|γ′(sj−)− γ′(sj+)|

where γ′(·−) and γ′(·+) denote the left and the right derivative respectively.
From the proof of Lemma 11 in [10] follows that

m∑
j=1

|γ′(sj−)− γ′(sj+)| ≤ 1

λ
σ(µ,Σ, γ).

We should note that Lemma 11 of [10] is stated for probability measures. However it is
straightforward to extend the proof to include arbitrary discrete measures, in particular
in the light of the scaling presented in Section 2.1 of [10].

The inequalities above imply the desired estimate on total variation. �

We remark that combining the estimate on the total variation above and the estimate
(2.1) onH1(Σ) we obtain an estimate on the BV norm

N∑
k=1

‖γk‖BV ≤
1

λ
(|µ(Rd)|+ diam suppµ).

Proof. (of Theorem 5.1) As in the proof of the lemma we assume that µ is a probability
measure, as the general result follows by scaling. In [1], [2] and [3] (to which we refer for
further details) it has been proven that minimizers of the average-distance functional are
at most countable unions of Lipschitz curves, for the constrained formulation. It easy
to notice that each minimizer Σ ∈ argmin Eλ

µ is a minimizer of minH1(X )≤H1(Σ) Fµ(X )

too. In Lemma 3.1 it has been proven that minimizer Σ ∈ argmin Eλ
µ has at most 1/λ

endpoints, thus Σ is finite union of Lipschitz curves.
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For BV regularity, consider an arbitrary minimizer Σ ∈ argmin Eλ
µ . If we consider

discrete approximations of µ and the corresponding minimizers Σ̃n then, as before, Σ̃n

converge along a subsequence to some Σ̃ ∈ argmin Eλ
µ . The problem, we need to over-

come, is that Σ̃ may be different from Σ, as the minimizer is not unique in general. Note
that if Σ ⊆ Σ̃ then there is no problem since the regularity of Σ̃ implies the regularity of
Σ.

Thus we modify the measure µ in such a way that Σ is still a minimizer of the energy
corresponding to the modified measure, but that ensures that any minimizer of the en-
ergy corresponding to the modified measure contains Σ. This is one of the key ideas of
the paper. In particular let ε > 0 and

µε := µ+ ε
1

H1(Σ)
H1
|Σ.

Note that Σ is the minimal (w.r.t. set inclusion) minimizer of Eλ
µε for any ε > 0, i.e. every

minimizer Σ′ ∈ argmin Eλ
µε contains Σ. Indeed, as Σ is already a minimizer of Eλ

µ , given
an arbitrary element Σ′ ∈ A it holds that Eλ

µ(Σ) ≤ Eλ
µ(Σ′). Hence if Σ′ is a minimizer of

Eλ
µε then

∫
Σ
d(x,Σ′)dH1

|Σ = 0 and thus Σ ⊆ Σ′.
Fix ε > 0, and choose an approximating sequence {µn}

∗
⇀µε, where µn is a discrete

measure with µn(Rd) = µε(Rd) = 1 + ε. For any n choose Σn ∈ argmin Eλ
µn . Upon a

subsequence (which we can assume to be the whole sequence), Σn
dH→Σ∗ ∈ argmin Eλ

µε ,
which implies Σ ⊆ Σ∗.

We know that Σ∗ is a union of Lipschitz curves {γ∗,i : i = 1, . . . , N} such that end-
points of all curves are either endpoints or triple junctions of Σ∗. By Lemma 4.2 and the
proof of Theorem 4.1 for each n large enough there exist curves, {γni : i = 1, . . . , N, n ≥
n0}, with disjoint interiors in Σn such that for each i, γni → γ∗,i in dH as n → ∞. Note
that Lemma 5.2 gives

(5.1)
N∑
i=1

‖(γni )′‖TV ≤
1 + ε

λ
.

Since the H1(Σn) are uniformly bounded
∑N

i=1 ‖(γni )′‖BV are also uniformly bounded.
The estimates of Lemma 5.2 and fact (v) from the introduction (which relies on the fact
that BV is compactly embedded in L1) imply that along a subsequence (γni )′ → γ′∗,i in
L1 as n→∞.

Since total variation is lower semicontinuous with respect to L1 convergence we con-
clude that for all i = 1, . . . , N

lim inf
n→∞

‖(γni )′‖TV ≥ ‖γ′∗,i‖TV .
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Combining with (5.1), and using the lower-semicontinuity ofH1 with respect to L1 con-
vergence of γni , we obtain

N∑
i=1

‖(γ∗,i)′‖TV ≤
1 + ε

λ
.

Since the curves that make up Σ are subsets of the curves that make up Σ∗ we conclude:
N∑
i=1

‖(γi)′‖TV ≤
1 + ε

λ
.

Taking ε→ 0 yields the desired result. �

Again by combining the estimate on the total variation above and the estimate (2.1)
onH1(Σ) one obtains

N∑
k=1

‖γk‖BV ≤
1

λ
(|µ(Rd)|+ diam suppµ).
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