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Abstract. The average-distance problem is to find the best way to approximate
(or represent) a given measure µ on Rd by a one-dimensional object. In the penal-
ized form the problem can be stated as follows: given a finite, compactly supported,
positive Borel measure µ, minimize

E(Σ) =

∫
Rd

d(x,Σ)dµ(x) + λH1(Σ)

over the set of connected closed sets, Σ, where λ > 0, d(x,Σ) is the distance
from x to the set Σ, and H1 is the one-dimensional Hausdorff measure. Here we
provide, for any d ≥ 2, an example of a measure µ with smooth density, and convex,
compact support, such that the global minimizer of the functional is a rectifiable
curve which is not C1. We also provide a similar example for the constrained form
of the average-distance problem.

1. Introduction

Given a positive, compactly supported, Borel measure µ on Rd, d ≥ 2, λ > 0, and
Σ a nonempty subset of Rd consider

(1) E(Σ) =

∫
Rd
d(x,Σ)dµ(x) + λH1(Σ)

The average-distance problem is to minimize the functional over A = {Σ ⊂ Rd :
Σ− connected and compact}.

The problem was introduced by Buttazzo, Oudet, and Stepanov [3] and Buttazzo
and Stepanov [4]. They studied the problem in the constrained form, where instead
of H1 penalization one minimizes

(2) F (Σ) =

∫
Rd
d(x,Σ)dµ(x) over A1 := {Σ ∈ A : H1(Σ) ≤ `}.

Over the past few years there has been a significant progress on understanding of
the functional; some of which we outline below. An excellent overview article has
recently been written by Lemenant [8].

The problem has wide ranging applications. When interpreted as a simplified
description of designing the optimal public transportation network then µ represents
the distribution of passengers, and Σ is the network. The desire is to design the
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network that minimizes the total distance of passengers to the network. Another
related problem which can be reduced to the average-distance problem, studied in
[3], is when we think of passengers as workers that need to get to their workplace.
Then two measures are initially given, the distribution of where workers reside and
where they work. Again the goal is to find the optimal network that minimizes the
total transportation cost (traveling along the network is for free).

A related interpretation is that of finding the optimal irrigation network (the irri-
gation problem).

Another interpretation, whose application in a related setting is presently investi-
gated by Laurent and the author, is to find a good one dimensional representation
to a data cloud. Here µ represents the distribution of data points. One wishes to ap-
proximate the cloud by a one-dimensional object. The first term in (1) then charges
the errors in the approximation, while the second one penalizes the complexity of the
representation.

The existence of minimizers of E follows from the theorems of Blaschke and Gołąb
[4]. In this paper we investigate their regularity. It was shown in [4] that, at least for
d = 2, the minimizer is topologically a tree made of finitely many simple rectifiable
curves which meet at triple junctions (no more that three branches can meet at one
point). The authors also show that the minimizer is Ahlfors regular (which was
extended to higher dimensions by Paolini and Stepanov, [10]), but further regularity
of branches remained open. Recently Tilli [12] showed that every compact simple
C1,1 curve is a minimizer of the average-distance problem (in the constrained form
(27)) where µ is the characteristic function of a small tubular neighborhood of the
curve. This suggests that C1,1 is the best regularity for minimizers one can expect
(even if µ were smooth). Further criteria for regularity were established by Lemenant
[7].

Due to the presence of the H1 term one might expect that, if µ is a measure
with smooth density, Σ is at least C1. A recent paper by Buttazzo, Mainini, and
Stepanov [2] suggests that this may not be the case, and exhibits a measure µ which
is a characteristic function of a set in R2, for which there exists a stationary point
of E which has a corner. Furthermore the results on the blow-up of the problem by
Santambrogio and Tilli [11] support the possibility of corners. Here we prove that
minimizers which are not C1 are indeed possible. That is for any d ≥ 2 provide an
example of a measure µ with smooth density for which we prove that the minimizer
is a curve which has a corner, and is thus not C1. One of the difficulties in dealing
with global energy minimizers is that the functional is not convex. To be able to
treat them we introduce constructions and an approximation technique that may be
of independent interest.

Our approach is based on approximating the measure µ of our interest by particle
measures µn (i.e. the ones that have only atoms). For particle measures µn the
average-distance problem (1) has a discrete formulation that can be carefully ana-
lyzed. In particular the minimizers are trees with piecewise linear branches. Our
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starting point is the construction of a particle measure with three particles, µ̄, for
which we can show that the minimizer is a wedge (curve with exactly two line seg-
ments), see Figure 1. We then show that if µ̄ is smoothed out a bit then the minimizer
will still have a corner (even if we also add a smooth background measure of small
total mass, q, that makes the support of the perturbed measure convex). We denote
the smooth perturbed measure by µq,δ were δ is the smoothing parameter. To show
that a minimizer of E for µq,δ has a corner when δ and q are small, we consider
discrete approximations µq,δ,n of µq,δ. We show that the minimizers Σq,δ,n of E corre-
sponding to µq,δ,n have a corner whose opening is bounded from above independent of
n. We furthermore obtain appropriate estimates on the minimizers which guarantee
convergence as n→∞ to a minimizer Σq,δ of E corresponding to µq,δ and insure that
the corner remains in the limit.

1.1. Outline. In Section 2 we list some of the basic properties of the functional E
given in (1), in particular its continuity properties with respect to parameters and
scaling with respect to dilation of µ. In Section 3 we consider the energy (1) with
µ being a particle measure. We obtain conditions for criticality, information of the
projection of the measure µ onto the minimizer Σ, and appriory estimates on the
curvature (turning angle). The basic three-particle configuration, µ̄, for which the
minimizer is a wedge is also introduced. The construction of the counterexample is
carried out in Section 4. We introduce the perturbation and use elementary geometry
to obtain various geometric facts about the minimizer of the average-distance problem
corresponding to the discrete approximation of the perturbed measure: µq,δ,n. The
result of these efforts is that the minimizer must have a corner with a large turning
angle (jump in the tangent direction). Finally we take the limit n → ∞ to obtain
that the minimizer for µq,δ has a corner too. In Section 5 we use a scaling argument
to show that the minimizers of the constrained problem (2) can have corners too.

2. Properties of the functional

Let A be the set of compact connected subsets of Rd. Given Σ ∈ A, for y ∈ Σ we
define the region of influence of y,

(3) R(y) = {x ∈ Rd : (∀z ∈ Σ) d(x, z) ≥ d(x, y)}.
In the next two lemmas we study continuity properties of E with respect to de-

pendance on Σ and µ.

Lemma 1. For any µ ∈ PR and any λ > 0, the functional Eµ : A → R is lower
semicontinuous with respect to Hausdorff convergence.

Proof. Assume that Σn ∈ A converge to Σ in Hausdorff metric, dH . Gołąb’s theorem
(see [1]) gives the lower semicontinuity of the H1 measure. Thus it is enough to prove
the continuity of the first term of the energy. Note that for any x ∈ Rd

|d(x,Σn)− d(x,Σ)| ≤ dH(Σn,Σ).
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To illustrate why, assume that for some x

d(x,Σn) > d(x,Σ) + dH(Σn,Σ).

Considering y to be the closest point to x on Σ gives
d(x,Σn) > d(x, y) + inf

z∈Σn
d(y, z) ≥ d(x,Σn)

which is a contradiction. Thus∣∣∣∣∫
Rd
d(x,Σn)dµ(x)−

∫
Rd
d(x,Σ)dµ(x)

∣∣∣∣ ≤ dH(Σn,Σ)µ(Rd)

which implies the claim. �

Lemma 2. Consider Σ ∈ A and λ > 0. The mapping µ 7→ Eµ(Σ) is continuous with
respect to weak-∗ convergence of measures in PR.

Proof. We recall that the Wasserstein metric, dW , metrizes the weak-∗ convergence
of measures on the set of measures supported in B(0, R). Therefore if µn

∗−⇀ µ in PR
then dW (µn, µ)→ 0 as n→∞. Hence there exists a coupling (i.e. a transportation
plan), Πn between µ and µn such that∫

B(0,R)×B(0,R)

|x− y|2dΠn(x, y)→ 0 as n→∞.

Therefore∣∣∣∣∫
Rd
d(x,Σ)dµn(x)−

∫
Rd
d(x,Σ)dµ(x)

∣∣∣∣ =

∣∣∣∣∫
Rd×Rd

d(x,Σ)− d(y,Σ)dΠn(x, y)

∣∣∣∣
≤
∫
Rd×Rd

|x− y|dΠn(x, y)

≤
√
RdW (µn, µ)→ 0 as n→∞.

(4)

�

Lemma 3. If µn
∗−⇀ µ in the weak topology of measures in PR then Eµn

Γ−→ Eµ with
respect to Hausdorff convergence of sets on A.

Proof. To prove the Γ-convergence we need to show the following
• Lower-semicontinuity. Assume µn

∗−⇀ µ and Σn → Σ in Hausdorff metric as
n→∞. Then

lim inf
n→∞

Eµn(Σn) ≥ Eµ(Σ).

• Construction. Assume µn
∗−⇀ µ . For any Σ ∈ A there exists a sequence

Σn ∈ A, such that Σn → Σ in Hausdorff metric and

lim
n→∞

Eµn(Σn) = Eµ(Σ).
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The construction claim follows from Lemma 2 by taking Σn = Σ.
Let us consider the lower-semicontinuity. As before, µn

∗−⇀ µ implies dW (µn, µ)→ 0
as n→∞. As in the estimate (4)∣∣∣∣∫

Rd
d(x,Σn)dµn(x)−

∫
Rd
d(x,Σn)dµ(x)

∣∣∣∣ ≤ √RdW (µn, µ)→ 0 as n→∞.

We note that the bound does not depend on Σn. Therefore, using Lemma 1,

lim inf
n→∞

Eµn(Σn) = lim inf
n→∞

Eµ(Σn) ≥ Eµ(Σ).

�

Corollary 4. Assume that µn
∗−⇀ µ in PR and that Σn is a minimizer of Eµn. Then

along a subsequence Σn
dH−→ Σ where Σ is a minimizer of Eµ.

Proof. Since by Blaschke’s theorem (see [1]) the sequence Σn has a subsequence which
converges in Hausdorff metric the claim follows from the Γ convergence. �

Corollary 5. Assume Eµ has a unique minimizer Σ and that µn
∗−⇀ µ in PR. Then

for every ε > 0 there exists n0 such that for all n ≥ n0 any minimizer Σn of Eµn
satisfies dH(Σ,Σn) < ε.

Proof. Assume that the claim does not hold. Than there exists ε > 0 and a sequence
Σnk of minimizers of Eµnk such that for each k, dH(Σ,Σnk) ≥ ε. By relabeling,
we can assume nk = k for all k. By Blaschke’s theorem, there exists Σ̃ ∈ A such
that, along a subsequence, Σn → Σ̃ as n → ∞ in Hausdorff metric. We can again
assume that the subsequence is the whole sequence. Furthermore Σ̃ is connected
and thus belongs to A. We note that dH(Σ, Σ̃) ≥ ε. By the lower-semicontinuity
part in the Γ-convergence, Σ̃ is a minimizer of Eµ, which contradicts the uniqueness
assumption. �

Lemma 6. Let R > 0. Let γn : [0, 1] → B(0, R) be a sequence of Lipschitz curves
with constant-speed parameterization (i.e. |γ′n(s)| = length(γn) for a.e. s ∈ [0, 1]).
Assume that supn length(γn) and supn‖γ′n‖BV are finite. Then along a subsequence
γn converges to a Lipschitz curve γ in the sense that

γn → γ in Cα as n→∞, for any α ∈ [0, 1),

γ′n → γ′ in Lp as n→∞, for any p ∈ [1,∞), and

γ′′n
∗−⇀ γ′′ in the space of finite signed Borel measures as n→∞.

Proof. The constant-speed assumption and the uniform bound on the lengths imply
that ‖γ′n‖L∞ are uniformly bounded and thus there is a uniform bound on the Lips-
chitz norm for the curves. The fact that γn converges along a subsequence in Cα for
any α ∈ [0, 1) follows since the set of Lipschitz functions with values in B(0, R), is
compactly embedded in Cα. To obtain the convergence that holds for all α at the
same time one also uses a diagonalization argument.
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From the embedding theorem of BV spaces (see [1, 9]), it follows that for some
g ∈ BV ([0, 1],Rd), along a further subsequence, γ′n → g in L1 as n→∞ and γ′′n

∗−⇀ g′

in the space of signed measures as n→∞. Using the definition of the weak derivative
it follows that g = γ′. Since ‖γ′n‖L∞ are uniformly bound by interpolation it follows
that for all p ∈ [1,∞), γ′n → γ′ in Lp as n → ∞. Furthermore |γ′n| → |γ′| in L1 as
n→∞ and constant-speed assumption imply that and moreover |γ′(s)| = length(γ)
for a.e. s ∈ [0, 1] and in particular γ is a Lipschitz curve. �

2.1. Scaling of Eµ with respect to dilations of µ. Given a set A ⊂ Rd and r > 0
we define A

r
= {x : rx ∈ A}.

Given a measure µ and r > 0 we define the dilation of µ to scale r to be the
measure Drµ such that for any µ-measurable set A

Drµ(A) = µ

(
A

r

)
.

We note that since both terms of E are scale linearly with respect to length

Eµ(Σ) =
1

r
EDrµ(rΣ).

Therefore if Σ is a minimizer of Eµ then rΣ is a minimizer of EDrµ.

3. Discrete data

In this section we consider the case that µ is a discrete (or particle) measure:

(5) µ =
n∑
i=1

miδxi

where mi > 0 and xi ∈ Rd. The measures miδxi are called particles. We denote the
support of µ by X = {x1, . . . , xn}.

Lemma 7. If µ is discrete then every minimizer Σ is graph with straight edges.

Proof. Let ϕ : X → Σ be the mapping that assigns to each xi ∈ X a point on Σ which
is the closest to xi (if the closest point is nonunique, an arbitrary one is chosen). Let
yi = ϕ(xi) and Y = {y1, . . . , yn} (the points are not necessarily distinct). Let A be
the Steiner tree containing the set Y . The Steiner tree is the connected graph with
minimal total length of edges containing the vertices in Y (it can have other vertices
as well). We note that it is also the connected set of minimal H1 measure containing
Y . For further information on Steiner trees we refer to [5] and [6].

Furthermore note that E(A) ≤ E(Σ) with equality holding only if Σ is also a
Steiner tree, which proves the claim. We remark that Σ may be different than A
since Steiner trees are not necessarily unique. �
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Now that we know that Σ has straight edges, we can study it more carefully. We
define the vertices, V as the set of those points v in Σ for which there exists a point
x in X such that v is the closest point to x in Σ:

(6) V = {v ∈ Σ : (∃x ∈ X)(∀z ∈ Σ) d(x, v) ≤ d(x, z)}.

Note that Y ⊂ V and that it is possible that at a vertex of degree two the angle
is 180o. Since, by above the segments of Σ connecting the vertices must be line
segments, we define edges, S, as follows: for v, w ∈ V , {v, w} ∈ S is an edge if the
line segment [v, w] ⊆ Σ. We note that since Σ is made of finitely many line segments,
V must be finite. Thus we can write V = {v1, . . . , vm}. Since∫

Rd
d(x,Σ)dµ(x) =

n∑
i=1

mid(xi,Σ) =
n∑
i=1

mid(xi, V )

Σ must be connected the graph of minimal total length containing the vertices V .
That is Σ is a Steiner tree [5] for the set V too.

The following facts on Steiner trees are available in the classical paper by Gilbert
and Pollak [5].

Proposition 8. Let G = (V, S) be as above. Then

(i) G is a tree, that is it does not contain a closed loop.
(ii) If {u, v} and {v, w} are edges then the angle ∠uvw ≥ 120o.
(iii) The maximal degree of a vertex is three.
(iv) If v is a vertex of degree three then the angles between edges at v are 120o,
and thus all three edges belong to a 2-dimensional plane.

We call the vertices of degree one the endpoints, the ones of degree two corners,
and the ones of degree three triple junctions. Given j = 1, . . . ,m let Ij be the set
of indices of points in X for which vj is the closest point in V

Ij = {i ∈ {1, . . . , n} : (∀k = 1, . . .m) d(xi, vj) ≤ d(xi, vk)}
= {i ∈ {1, . . . , n} : (∀y ∈ Σ) d(xi, vj) ≤ d(xi, y)}.

(7)

If i ∈ Ij then we say that xi talks to vj. We say that a vertex vj is tied down if
for some i, vj = xi. We then say that vj is tied to xi. Note that if vj is tied to xi
then i ∈ Ij and Tij = mi. A vertex which is not tied down is called free. We show
below that if xi talks to vj and vj is free then xi cannot talk to any other vertex.

Consider an n by m matrix T such that

(8) Tij ≥ 0,
m∑
j=1

Tij = mi, and Tij > 0 implies i ∈ Ij
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Note that µ =
∑n

i=1

∑m
j=1 Tijδxi . We define σ to be the projection of µ onto the set

Σ, in the sense that the mass from µ is transported to a closest point on Σ. That is

(9) σ =
m∑
j=1

n∑
i=1

Tijδvj .

We note that thematrix T describes an optimal transportation plan between µ and
σ with respect to any of the transportation costs c(x, y) = |x − y|p, for p ≥ 1. We
claim that such matrix T exists. It is enough to consider mapping ϕ from the proof
of Lemma 7 and then define

Tij =

{
mi if ϕ(xi) = vj
0 otherwise.

We note that in this discrete setting

E(Σ) =
n∑
i=1

mid(xi,Σ) + λ
∑
{v,w}∈S

|v − w|

=
m∑
j=1

∑
i∈Ij

Tij|xi − vj|+ λ
∑

{vj ,vk}∈S

|vj − vk|
(10)

Lemma 9. Assume that Σ minimizes E for discrete µ defined in (5). Let V be the
set of vertices as defined in (7) and T be any matrix (transportation plan) satisfying
(8). For any vertex vj:

(i) If vj is an endpoint then let w be the vertex such that {vj, w} is an edge.
If vj is free then

(11)
∑
i∈Ij

Tij
xi − vj
|xi − vj|

+ λ
w − vj
|w − vj|

= 0

If vj is tied to xk then

(12)

∣∣∣∣∣∣
∑

i∈Ij ,i 6=k

Tij
xi − vj
|xi − vj|

+ λ
w − vj
|w − vj|

∣∣∣∣∣∣ ≤ mk

(ii) If vj is a corner then let {w1, vj} and {vj, w2} be the edges at the corner.
If vj is free then

(13)
∑
i∈Ij

Tij
xi − vj
|xi − vj|

+ λ

(
w1 − vj
|w1 − vj|

+
w2 − vj
|w2 − vj|

)
= 0

If vjis tied to xk then

(14)

∣∣∣∣∣∣
∑

i∈Ij ,i 6=k

Tij
xi − vj
|xi − vj|

+ λ

(
w1 − vj
|w1 − vj|

+
w2 − vj
|w2 − vj|

)∣∣∣∣∣∣ ≤ mk.
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(iii) If vj is a triple junction and if vj is free then

(15)
∑
i∈Ij

Tij
xi − vj
|xi − vj|

= 0.

If vj is tied to xk then

(16)

∣∣∣∣∣∣
∑
i∈Ij

Tij
xi − vj
|xi − vj|

∣∣∣∣∣∣ ≤ mk.

Proof. To prove (i) and (ii), consider now the configuration Σv which is obtained
from Σ just by changing the location of vj to v. Let Sv be the set of edges of the new
graph. Formulation (10) provides

E(Σv) ≤
∑
i∈Ij

Tij|xi − v|+ λ
∑

{v,vl}∈Sv

|v − vl|

+
m∑

l=1,l 6=j

∑
i∈Il

Til|xi − vl|+ λ
∑

{vk,vl}∈Sv

|vk − vl| =: F (v)

Note that F defined above maps Rd → R and that E(Σ) = F (vj).
If vj is a free vertex then F is a smooth function near vj. The minimality of Σ thus

implies that DF (vj) = 0. Straightforward computation of DF gives the conditions
(11) and (13).

If on the other hand vj is tied to xk for some k, xk = vj then recall that k ∈ Ij and
furthermore Tkj = mk. F is no longer smooth at vj but it still has a minimum at vj.
Therefore zero vector must belong to the subgradient of F at vj, that is 0 ∈ ∂F (vj).
Using that the subgradient at 0 of z 7→ |z| is B(0, 1) we conclude that 0 ∈ ∂F (vj)
if the conditions (12) and (14) hold at an endpoint and corner, respectively. More
precisely if we define

F̃ (v) =
∑

i∈Ij , i 6=k

Tij|xi − v|+ λ
∑

{v,vl}∈Sv

|v − vl|

Then, using vj = xk,

F (v) = mk|vj − v|+ F̃ (v) + const.

and hence
∂F (vj) = B(0,mk) +DF̃ (vj).

Therefore 0 ∈ ∂F (vj) if |DF̃ (vj)| ≤ mk.
Obtaining (15) and (16) is analogous, only that one also needs the fact that the

angles at triple junction are 120o, see Proposition 8. �

Corollary 10. Assume that conditions of the lemma are satisfied.
(i) In two dimensions, d = 2, if vj is a triple junction and is a free vertex then
Ij = ∅.
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(ii) If i talks to vj and vk (j 6= k) then both vj and vk are tied down. Conse-
quently if xi talks to vj and vj is free then Tij = mi. Furthermore m ≤ n.
(iii) If vj is a endpoint then

(17)
∑
i∈Ij

Tij ≥ λ.

Hence at every endpoint, the measure σ defined in (9) has an atom of the
mass at least equal to λ. Note that this gives an upper bound on the number of
endpoints. A further consequence is that if 2λ >

∑n
i=1mi then the minimizer

Σ is just a single point (which is then a vertex of degree zero).

Proof. To prove (i) assume that i ∈ vj. Then B(xi, |vj − xi|) ∩ Σ = ∅. But this
contradicts the fact that the angles at triple junction are 120o.

To prove (ii) assume that there exist i ∈ {1, . . . , n} and j, k distinct elements of
{1, . . . ,m} such that i ∈ Ij and i ∈ Ik. Let T be a matrix satisfying the condition
(8). For s ∈ (0, 1) consider the the matrix T (s) obtained from T by setting:

Tij(s) = mi(1− s), Tik = mis and Til = 0 if l 6∈ {j, k}.

Note that T (s) satisfies the condition (8).
We argue by contradiction: assume that vj is free. Let us consider first the case

that vj is an endpoint. Let w be the vertex for which {v, w} is an edge. The condition
(11) must be satisfied for T (s) for all s ∈ [0, 1]:

mi(1− s)
xi − vj
|xi − vj|

+
∑

l∈Ij ,l 6=i

Tlj
xl − vj
|xl − vj|

+ λ
w − vj
|w − vj|

= 0.

One arrives at a contradiction by taking the derivative in s.
The proofs for a corner and for a triple junction are analogous.
Let us explain why the above implies m ≤ n. By definition of V , for each vj ∈ V ,

Ij 6= ∅, that there is a particle talking to vj. We claim that for every vj there is a
particle talking only to vj. If vj is free then by above this is the case with any particle
in Ij. If vj is tied to xk then xk only talks to vj. Consequently there must be more
particles then vertices in V .

Let us now consider the claim of (iii). There are two cases. We first consider the
case that vj is free. Then (11) holds. Taking the inner product with w−vj

|w−vj | and using
(ii) above gives

−
∑
i∈Ij

mi
xi − vj
|xi − vj|

· w − vj
|w − vj|

= λ.

Thus ∑
i∈Ij

mi ≥
∑
i∈Ij

mi

∣∣∣∣ xi − vj|xi − vj|
· w − vj
|w − vj|

∣∣∣∣ ≥ λ.
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If vj is tied to xk for some k then the condition (12) gives∣∣∣∣∣∣
∑

i∈Ij ,i 6=k

Tij
xi − vj
|xi − vj|

· w − vj
|w − vj|

+ λ

∣∣∣∣∣∣ ≤ mk.

Thus
λ ≤ mk −

∑
i∈Ij ,i 6=k

Tij
xi − vj
|xi − vj|

· w − vj
|w − vj|

≤
∑
i∈Ij

Tij.

�

3.1. Turning angle. If v is a corner with adjacent vertices w1 and w2 then the
turning angle at v is TA(v) = π−∠w1vw2. Basically it describes the curvature at
v. For A ⊂ Σ, the turning angle of A, TA(A) =

∑
v∈A∩V TA(v). The total turning

angle, TTA = TA(Σ).

Lemma 11. If Σ is a minimizer of E and A ⊂ Σ.

(18) TA(A) ≤ π

2λ

∑
i∈∪{Ij : vj∈A}

mi.

Proof. Let us first consider the case that A is a single corner, A = {vj}. Let w1 and
w2 be the adjacent vertices. Let α be the half of the turning angle: TA(vj) = 2α.
Then ∠w1vjw2 = π − 2α. Let θ1 =

vj−w1

|vj−w1| and θ2 =
w2−vj
|w2−vj | . Elementary geometry

yields that |θ2 − θ1| = 2 sinα.
Analogously to the proof of statement (iii) of Corollary 10, that is by using condi-

tions (13) and (14) and taking inner product with θ2−θ1
|θ2−θ1| , one can show that

(19) 2λ sinα ≤
∑
i∈Ij

Tij.

Therefore

α ≤ max

{
π

2
, arcsin

(∑
i∈Ij Tij

2λ

)}
≤ π

2

∑
i∈Ij Tij

2λ

which establishes the claim.
For the general A ⊂ Σ it suffices to sum over the vertices it contains. �

3.2. Region of Influence. Given orthogonal unit vectors ξ and b and an angle
β ∈

[
0, π

2

]
, consider the wedge W , with bisector b and opening 2β, defined as follows:

(20) W (ξ, b, β) = {x ∈ Rd : |ξ · x| < b · x tan β}
By Jz1, . . . , zkK we denote the piecewise linear curve connecting the points z1, . . . , zk.

Given three points v1, v2, and v3 such that if they are collinear then v2 lies between
v1 and v3 consider Σ = Jv1, v2, v3K. If the points are collinear the region of influence
of v2, defined in (3), is the hyperplane passing through v2, orthogonal to v3 − v2. If
points are not collinear then let θi = vi+1−vi

|vi+1−vi| for i = 1, 2. The region of influence of
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H

v̄2

x̄1 x̄3

Σ

x̄2

α

L

Figure 1. The basic configuration.

v2 the translated wedge: R(v2) = v2 + W (ξ, b, β) where ξ = θ1+θ2
|θ1+θ2| , b = θ1−θ2

|θ1−θ2| and
β = TA(v2)/2. We denote the mapping above that outputs the Normal, Bisectris,
and Angle given non-collinear points v1, v2, v3 by (ξ, b, β) = NBA(v1, v2, v3). Then
we can write R(v2) = v2 +W (NBA(v1, v2, v3)).

We note that if Σ = Jv1, . . . , vmK then for all i = 2, . . . ,m − 1, if TA(vi) > 0
R(vi) ⊆ vi +W (NBA(vi−1, vi, vi+1)).

3.3. Basic Configuration. Here we describe the basic configuration µ̄, whose per-
turbation is used in the counterexample to regularity. While the construction is
rather flexible we choose a fixed configuration to make the number of parameters of
the system easier to manage.

Let m1 = m3 = 0.38, m2 = 0.24, and λ = 0.36. Let x̄1 = (−1, 0), x̄2 = (0, 1), and
x̄3 = (1, 0).

(21) µ̄ = m1δx̄1 +m2δx̄2 +m3δx̄3 .

Note that the total mass is one.
We now turn to characterizing the minimizer. We note that since λ is greater than

one third of the total mass the condition (17) implies that the minimizer can have at
most two endpoints. Thus the minimizer is either a point or a piecewise linear curve.
We reindex the vertices v1, . . . , vm if needed so that the minimizer is Jv1, . . . , vmK.

Let us note that for any point a ∈ R2, E({a}) > E(Jx̄1, a, x̄3K) and thus a point
cannot be a minimizer. Therefore a minimizer is a piecewise linear curve with either
one or two line segments. If it has two line segments then v2 6= x̄1 since then it
would violate angle condition (ii) of Proposition 8, since we know the minimizer
must stay in the convex hull of the support of µ̄. If v1 6= x̄1 and vm 6= x̄1 then
E(Jx̄1, v1, . . . , vmK) < E(Jv1, . . . , vmK) since m1 > λ. Analogously for x̄3. Therefore
x̄1 and x̄3 must be endpoints of any minimizer. So without loss of generality we can
set v1 = x̄1 and vm = x̄3. If Jv1, v2K were a minimizer then x̄2 would talk to (0, 0)
so (0, 0) would have to be a vertex of the graph (as we defined it (6)). But then the
condition (13) cannot hold. So the minimizer must be of the form [x̄1, v̄2, x̄3].
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The criticality condition (13) implies that the only minimizer is the symmetric
configuration, Σ, presented on Figure 1. Elementary geometry gives:

(22) v̄2 = (0, H), where H =
1

2
√

2
, L =

3

2
√

2
, and sinα =

1

3
.

4. Construction of the counterexample

We start with the basic configuration µ̄ defined in (21), which we now consider as
configuration in Rd by taking the values of coordinates from 3 to d to be zero.

To smooth out the basic configuration, we use a standard mollifier η. That is, let η
be smooth, radially symmetric, positive on B(0, 1), equal to zero outside of B(0, 1),
and such that

∫
Rd η(x)dx = 1. For δ > 0 let ηδ(z) = 1

δd
η( z

δ
). Let ρi,δ = mi ηδ( · − x̄i)

for i = 1, 2, 3 and let µδ be the measure with density ρ1,δ + ρ2,δ + ρ3,δ.
To have a measure with connected and convex support we introduce the background

measure µ̃ to be the measure with density η1.5. The smooth measure we consider is

µq,δ = (1− q)µδ + qµ̃.

Theorem 12. There exists δ > 0 and 1 > q > 0 such that there is a minimizer of
E for λ = 0.36 and µ = µq,δ which is a Lipschitz curve such that if one considers its
constant-speed parameterization γ : [0, 1]→ Rd (|γ′(s)| = length(γ) for a.e. s ∈ [0, 1])
then γ′ is an Rd valued BV function such that γ′′ has an atom of size at least 1 at
some s ∈ (0, 1). More precisely |γ′′({s})| ≥ 1.

Proof. Assume that ε satisfies the condition
(C1) 0 < ε < α

2000
.

Corollary 5 implies that for δ > 0 and q > 0 small enough any minimizer of Eµq,δ
lies within ε ball of Σ in Hausdorff metric. That is, we can impose
(C2) q > 0 and δ > 0 are small enough so that any minimizer Σq,δ of Eµq,δ satisfies

dH(Σq,δ,Σ) < ε
2
.

We also require:
(C3) q < 2λ

π
α

20000
.

(C4) δ < 0.1ε.
The condition (C3) controls the part of the turning angle which is due to the

background measure.
Step 1o Discrete approximation. Let µq,δ,n be an approximation of µq,δ which is a

particle measure such that the Wasserstein distance dW (µq,δ, µq,δ,n) < 1
n
and further-

more that there exists an optimal coupling such that all of the mass in the (1− q)ρi,δ
part of µq,δ is coupled with particles in B(x̄i, δ) for i = 1, 2, 3. This can be achieved
by, say, taking a fine square grid such that x̄1, x̄2, and x̄3 are cell centers and then
constructing µq,δ,n by taking the mass of µq,δ in each grid cell and concentrating it at
the center of the grid cell.

Due to Corollary 4, along a subsequence, minimizers, Σq,δ,n (if nonunique then any
minimizer can be chosen), converge in Hausdorff metric to a minimizer Σq,δ of Eµq,δ .
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B (x̄1, δ)

Σq ,δ,n Σq ,δ Σ

P

Cyl1

B (x̄3, δ)

Cyl2

Figure 2. Schematic illustration of minimizers of Eµ̄, Eµq,δ , and
Eµq,δ,n . Some lengths are distorted to achieve better clarity of the
illustration.

We can assume without loss of generality that the whole sequence converges and that
n is large enough so that

dH(Σq,δ,n,Σq,δ) <
ε

2
which implies, using (C2), that dH(Σq,δ,n,Σ) < ε.

Step 2o Control of the optimal coupling. We claim that particles of µq,δ,n which lie
in B(x̄2, δ) can only talk to points on Σq,δ,n which lie above (in the direction of e2)
the hyperplane P = {y : y · e2 = H − δ − ε

cosα
}.

To prove the claim consider xi ∈ B(x̄2, δ). Let x̃i be the projection of xi on the
coordinate axis in the direction of the vector e2. That is x̃i = (0, xi,2, 0, . . . , 0). Let
U = {z : d(z,Σ) < ε and z · e1 = 0}. We note that U ∩ Σq,δ,n 6= ∅. An elementary
geometry argument shows that the furthest point to x̃2 on U is (0, H− ε

cosα
, 0, . . . , 0).

Thus
d(xi,Σq,δ,n) ≤ d(xi, x̃i) + d(x̃i,Σq,δ,n) < δ + xi,2 −H +

ε

cosα
.

On the other hand
d(xi, P ) = xi,2 + δ −H +

ε

cosα
.

Step 3o Average tangent direction. Since Σq,δ,n has only two endpoints, and is
piecewise linear, it can be represented by a constant-speed parameterized curve γq,δ,n :
[0, 1] → Rd. Due to the closeness to Σ (by Step 1) there are points on Σq,δ,n which
are within ε of x̄1 and x̄3.

We claim that the endpoints of the curve must lie within 2ε of x̄1 and x̄3. For
if that was not the case then all of the mass in, say, B(x̄1, δ) would not talk to an
endpoint. But then there would not be enough available mass for the lower bound
on the mass talking to the endpoints (condition (17)) to be satisfied.
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We can require that γq,δ,n(0) lies close to x̄1. We define

θ(s) =
γ′q,δ,n(s)

|γ′q,δ,n(s)|
=

γ′q,δ,n(s)

length(γq,δ,n)
.

We note that θ ∈ BV ([0, 1],Rd). Let

θ̄1 =
v̄2 − x̄1

|v̄2 − x̄1|
and θ̄2 =

x̄3 − v̄2

|x̄3 − v̄2|
.

Let Cyl1 = {x ∈ Rd : d(x,Σ) < ε and (x − x̄1) · θ̄1 ∈ [2ε, L − 11ε]} and Cyl2 =
{x ∈ Rd : d(x,Σ) < ε and − (x − v̄2) · θ̄2 ∈ [2ε, L − 11ε]}, as shown on Figure 2.
Let s1,1,n be the first time γq,δ,n enters Cyl1 and s1,2.n the largest time γq,δ,n belongs
to Cyl1. Analogously s2,1,n and s2,2,n are the corresponding times for the domain
Cyl2. Let θi,avg =

γq,δ,n(si,2,n)−γq,δ,n(si,1,n)

|γq,δ,n(si,2,n)−γq,δ,n(si,1,n)| for i = 1, 2. We claim that ∠θ̄i θi,avg < 0.01α

for i = 1, 2. To see this, note that tan∠θ̄i θi,avg is less than twice the width of the
cylinder Cyli divided by its length: tan∠θ̄i θi,avg < 2ε

L−13ε
< 4ε

L
< 0.005α by (C1),

which implies the claim.

Step 4o Tangent at the end of the cylinders. The cylinders Cyl1 and Cyl2 were de-
fined so that they lie below the hyperplane P , as can be verified by simple trigonom-
etry. Step 2 then implies that no point that belongs to B(x̄i, δ) for i = 1, 2, 3 talks
to any point in the cylinders. Thus, using the turning angle estimate (18) and as-
sumption (C3), TA(Cyli ∩Σq,δ,n) ≤ πq

2λ
< α

100
. Therefore the tangent at the any point

in Cyli is close to the average tangent. Let

θ1 =
γ′q,δ,n(s1,2,n+)

length(γq,δ,n)
:= lim

s↘s1,2,n

γ′q,δ,n(s)

length(γq,δ,n)
and θ2 =

γ′q,δ,n(s2,1,n−)

length(γq,δ,n)

be the tangents as the curve exits Cyl1 and as it enters Cyl2. Then ∠θi θi,avg < 0.01α.
Combining with estimates of Step 3 we get

∠θ̄i θi ≤ ∠θ̄i θi,avg + ∠θi,avg θi < 0.02α for i = 1, 2.

Step 5o The turning angle at the first contact point. We now show that there exists
a vertex at which the turning angle is large (of size at least about α/2). This is
the key point of the argument. Let us relabel the vertices if necessary, so that their
indices are increasing along γq,δ,n as s increases. Let vj be the first vertex of γq,δ,n
that talks to any particle of µq,δ,n in B(x̄2, δ), as illustrated on Figure 3. The reason
that the turning angle has to be "large" is that the tangent cannot turn much prior
to vj (because the vertices talk to very little mass), but for vj to be able to talk to a
point in B(x̄2, δ) the tangent must turn by at least by about α. Thus it has to turn
by that amount precisely at vj.
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Σq,δ,n
Σ

Figure 3. Details of the configuration and relevant angles near the tip.

Here is the detailed argument. Let

θ− =
vj − vj−1

|vj − vj−1|
and θ+ =

vj+1 − vj
|vj+1 − vj|

.

Let sn be the time at which γq,δ,n(sn) = vj. Since points on γq,δ,n|[s1,2,n,sn) can only
talk to the background measure qµ̃, it follows from (18) that TA(γq,δ,n([s1,2,n, sn))) <
πq
2λ
< 0.01α. Combining with Step 4 implies

(23) ∠θ̄1θ− < 0.03α.

Let K = {x : d(x,Σ) < ε, x · e2 > H − δ − ε
cosα
}. From Step 2 follows that

vj ∈ K. Let y ∈ B(x̄2, δ). We can decompose vectors in Rd into the component in
the direction of e2 (vertical component) and the one in the orthogonal complement
of e2 (horizontal component). Elementary geometry implies using the assumptions
(C1) and (C4) that the horizontal distance between y and any point in K is less than
6ε+ 4δ < 7ε, while the vertical distance is greater than 1−H − ε− δ > 1

2
. Hence

(24) ∠(y − vj)e2 ≤ tan∠(y − vj)e2 < 14ε < 0.01α.

Using that ∠θ̄1 e2 = π
2
−α and ∠θ̄1θ− < 0.03α. We conclude that for all y ∈ B(x̄2, δ),

∠(y − vj)θ− ≤ ∠(y − vj)e2 + ∠e2 θ̄1 + ∠θ̄1θ− <
π

2
− 0.96α.
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Let Wj = W (NBA(vj−1, vj, vj+1)). Recall that R(vj) ⊆ Wj. Note that θ− is orthog-
onal to one side of the wedge Wj. Also note that by definition of vj, there exists
y ∈ Wj ∩B(x̄2, δ). Let 2β be the opening of the wedge. Then

TA(vj) = 2β ≥ π

2
− ∠θ−(y − vj) > 0.96α.

Step 6o Angle bisector estimate. As a consequence of the estimate we obtain that
TA(vj) > 1.88α.

The idea of this step is as follows: In the previous step we have shown that the
turning angle at vj is "large". The criticality condition (13) shows that vj is thus
talking to a large mass. Since the only large mass in the region of influence lies within
B(x̄2, δ) this implies that the bisector of the angle ∠vj−1vjvj+1 passes through, or close
to, B(x̄2, δ) which implies that the turning angle at vj is about 2α.

More precisely, let maux be the mass of the particle of µq,δ,n at vj if it is tied down
and zero otherwise. We note that maux ≤ q < 0.001α by (C3). Therefore using (13),
(14), and µq,δ,n =

∑
imiδxi one obtains∣∣∣∣∣∣

∑
i∈Ij ,xi 6=vj

Tij
xi − vj
|xi − vj|

∣∣∣∣∣∣ ≥ λ|θ+ − θ−| −maux ≥ λ

(
2 sin

TA(vj)

2

)
− 0.001α.

Using that TA(vj) > 0.96α and that sinα = 1
3
and λ = 0.36 we conclude that∑

i∈Ij Tij > 0.08.
Let I = {i ∈ Ij xi ∈ B(x̄2, δ)}, w1 =

∑
i∈I Tij

xi−vj
|xi−vj | , and w2 =

∑
i∈Ij\I Tij

xi−vj
|xi−vj | .

Since for all i ∈ I, ∠(xi − vj)(x̄2 − vj) < 0.01α we conclude that

|w1| ≥
∑
i∈I

Tij
xi − vj
|xi − vj|

· x̄2 − vj
|x̄2 − vj|

≥ 2

3

∑
i∈I

Tij > 0.05

and ∠w1(x̄2− vj) < 0.01α, where T is any matrix satisfying (8). By definition of w2:

|w2| ≤ q.

Therefore, using the sine theorem, sin∠((w1 + w2), w1) < q
0.05

. Conditions (13) and
(14) give

|w1 + w2 + λ(θ+ − θ−)| ≤ maux.

Thus, by sine theorem,

∠(w1 + w2)(−(θ+ − θ−)) ≤ maux

λ|θ+ − θ−|
<

3q

λ
,

where we used that |θ̄2 − θ̄1| = 2 sinα = 2/3 to obtain lower bound |θ+ − θ−| > 1/3.
Hence, using the condition (C3), ∠(θ− − θ+)w1 ≤ ∠(w1 +w2)w1 + 3q

λ
< π

2
q

0.05
+ 3q

λ
<
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0.01α. Hence for (ν, b, β) = NBA(vj−1, vj, vj+1) we conclude that ∠b(x̄2 − vj) ≤
∠bw1 + ∠w1(x̄2 − vj) < 0.02α. Therefore, by using the estimates (23) and (24),

∠bθ− ≤ ∠b(x̄2 − vj) + ∠(x̄2 − vj)e2 + ∠e2θ̄1 + ∠θ̄1θ− ≤
π

2
− 0.94α.

Therefore
TA(vj) = π − 2∠bθ− ≥ 1.88α.

Step 7o Symmetry argument. In Steps 5 and 6, we considered vj, the first vertex
of γq,δ,n which talks to any particle of µq,δ,n in B(x̄2, δ). The same arguments apply
if one considers the last vertex of γq,δ,n, denote it be vk (with k ≥ j), talking to any
particle of µq,δ,n in B(x̄2, δ). Thus TA(vk) ≥ 1.88α. We claim that k = j. For if one
assumes that k > j then

TA(γq,δ,n([s1,2,n, s2,1,n])) > 3.76α.

However by estimate 18

TA(γq,δ,n([s1,2,n, s2,1,n])) ≤ π

2λ
(m2 + q) <

π

0.72
· 0.25 < 3.3α

which contradicts the statement above. Therefore k must equal j. That is vj is the
only point on γq,δ,n talking to particles in B(x̄2, δ). Furthermore analogously to (23)
it holds that ∠θ̄2θ+ < 0.03α. Hence

TA(vj) = ∠θ−θ+ ≥ ∠θ̄1θ̄2 − ∠θ−θ̄1 − ∠θ+θ̄2 ≥ 2α− 0.03α− 0.03α = 1.94α.

Step 8o Convergence. By definition of the turning angle, using that γq,δ,n has
constant speed parameterization and that |γ′′q,δ,n| is a measure, for any k it holds
that:

(25) |γ′′q,δ,n|({tk,n}) = |γ′q,δ,n(tk,n+)− γ′q,δ,n(tk,n−)| = 2 length(γq,δ,n) sin
TA(vk)

2

where tk,n = γ−1
q,δ,n(vk). Therefore, using the estimate on the turning angle (18),

|γ′′q,δ,n|([s1,2,n, s2,1,n]\{sn}) ≤ length(γq,δ,n)TA(γq,δ,n([s1,2,n, s2,1,n]\{sn})

≤ length(γq,δ,n)
πq

2λ
< length(γq,δ,n) ∗ 0.01α.

(26)

Given that length(γq,δ,n) is uniformly bounded from above and below in n, that
distance between |γq,δ,n(s1,2,n) − γq,δ,n(s2,1,n)| ≥ d(Cyl1,Cyl2) > 0 and |γq,δ,n(sn) −
γq,δ,n(s1,2,n)| ≥ d(K,Cyl1) > 0 we conclude that along a subsequence s1,2,n → s1,
s2,1,n → s2, and sn → s as n → ∞ with 0 < s1 < s < s2 < 1. By relabeling we can
assume that the subsequence is the whole sequence.

Let an = γ′′q,δ,n({sn}) and ζn be such that γ′′q,δ,n = anδsn + ζn. From Step 7 and (25)
it follows that |an| > 2 length(γq,δ,n) sin 0.97α.
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From Lemma 6 it follows that along a subsequence γ′q,δ,n → γ′q,δ in L1 and γ′′q,δ,n
∗−⇀

γ′′q,δ in the space of signed measures as n→∞. Along a further subsequence an → a
as n→∞. By relabeling we can assume that the subsequence is the whole sequence.
The L1 convergence of gradients implies that length(γq,δ,n) → length(γq,δ) as n →
∞, and thus |a| ≥ 2 length(γq,δ) sin 0.97α. Furthermore anδsn

∗−⇀ aδs as n → ∞.
Consequently ζn

∗−⇀ ζ for some vector of measures ζ.
Let r > 0 be small enough so that [s−r, s+r] ⊂ (s1, s2). Then for all n large enough,

(26) implies |ζn|([s− r, s+ r]) < length(γq,δ,n) ∗ 0.01α. Therefore |ζ|((s− r, s+ r)) ≤
length(γq,δ) ∗ 0.01α.

Consequently |γ′′q,δ({s})| ≥ |a| − |ζ({s})| > length(γq,δ)(2 sin(0.97α) − 0.01α) >

2(L− 3ε)3
2

sinα > 3 sinα = 1. Therefore thus |γ′′q,δ| has an atom of size at least 1 at
s. �

5. The Constrained Problem

We now consider the original average-distance problem introduced in [3]. The task
is to minimize

(27) F (Σ) =

∫
Rd
d(x,Σ)dµ(x) over A1 := {Σ ∈ A : H1(Σ) ≤ 1}.

5.1. Construction of the counterexample. The existence of a measure µ for
which the minimizer (27) is a Lipschitz curve which has a corner follows from Theorem
12:

Corollary 13. There exists r > 0, δ > 0 and 1 > q > 0 such that there is a minimizer
of (27) for µ = Drµq,δ which is a Lipschitz curve such that if one considers its arc-
length parameterization γ : [0, 1]→ Rd then γ′ is an Rd valued BV function such that
γ′′ has an atom of size at least 1/3 at some s ∈ (0, 1). More precisely |γ′′({s})| ≥ 1/3.

Proof. Let λ = 0.36 and let µq,δ be as in the proof of Theorem 12. Let r = length(γq,δ).
Thus H1(1

r
Σq,δ) = 1 By the scaling discussed in Section 2.1, 1

r
Σq,δ is a minimizer of

EDrµq,δ . These facts imply that 1
r
Σq,δ is a minimizer of (27). We claim that r < 3. The

conclusion then follows from properties of Σq,δ established in the proof of Theorem
12.

To prove that r < 3 note that for energy (1) corresponding to µq,δ we have
E(Σq,δ) ≤ E(Σ) since Σq,δ is a minimizer. By assumption (C2)∫

d(x,Σq,δ)dµq,δ ≥
∫
d(x,Σ)− εdµq,δ =

∫
d(x,Σ)dµq,δ − ε.

Using (22), E(Σq,δ) ≤ E(Σ) implies

r = length(γq,δ) ≤ H1(Σ) +
ε

λ
= 2 · 3

2
√

2
+ 0.01 < 3.

�
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