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Abstract

For certain martensitic phase transformations, one observes a close relation between the width of the
thermal hysteresis and the compatibility of two phases. This observation forms the basis of a theory of
hysteresis that assigns an important role to the microstructures in the transition layer and their energet-
ics (Zhang, James, Müller, Acta mat. 57(15):43324352, 2009). We study microstructures for almost
compatible phases in the context of nonlinear elasticity. Using a scalar valued ansatz we show that one
expects a transition from uniform to branched patterns for various typical models of the surface energy.
We subsequently consider needle-type transition layers and study quantitative differences between hard
and soft austenite, and between twins of different martensitic variants.

1 Introduction

The present work aims at a mathematical corroboration of microstructures of low hysteresis shape mem-
ory alloys and their energetics in the context of nonlinear elasticity. It has been conjectured and confirmed
experimentally that there is a universal relation between the width of the thermal hysteresis accompanying
cyclic martensitic phase transformations and the compatibility of the martensitic variants and the highly
symmetric austenite structure [22, 40, 56, 55, 49, 38]. Geometric compatibility between the austenite and
martensite phases is measured by the deviation of the middle eigenvalue λ2 of the transformation stretch
matrix from one. The compatibility condition λ2 = 1 is the condition that there can be a stress-free planar
interface separating pure austenite from a uniform variant of martensite, while for λ2 ̸= 1 a macroscopically
stress-free interface between austenite and martensite is often achieved by a fine scale mixture of multiple
martensitic variants [54, 6, 9]. The theory predicts that low hysteresis comes along with special microstruc-
tures. The latter were investigated using transmission electron microscopy [26, 27, 28, 25, 29].
The mathematical analysis proceeds from nonlinear elasticity theory [6, 7, 34]. The central goal is to de-
termine the microstructures in the transition layers and their energetics. The theoretical studies performed
so far support the experimental findings. This includes the analytical investigation of simplified transition
layers [56], numerical phase-field simulations in the context of geometrically linearized elasticity [44] and
the study of almost compatible twinned wedges [4].
The focus of the present work lies on two aspects. First, we aim at a qualitative understanding of the energy
in the transition layers in terms of the material parameters and the compatibility of the phases, and second,
we consider more quantitatively needle-type microstructures.
The text is organized as follows. In Section 2 we briefly recall the standard continuum model within the
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framework of continuum mechanics. In Section 3 we focus on quantitative properties of the energies of
austenite/martensite interfaces for almost compatible phases. The energy of the transition layer consists of
an elastic part, which we model in the context of geometrically non-linear elasticity, and a regularizing inter-
facial energy contribution. We restrict our studies to the case that the martensite phase is not harder than the
austenite phase. Depending on the material parameters, there are several scaling regimes of the minimal en-
ergy corresponding to different microstructures. The latter include uniform structures and branched patterns.
We employ a scalar-valued ansatz, which reduces the energy functional to a generalization of the classical
Kohn-Müller model [41, 42]. This allows us to build on techniques from [41, 42, 20] to rigorously analyze
the simplified problem while the behavior of the model problems turns out to be qualitatively different from
the one of the Kohn-Müller model. We compare different typical choices of surface energy terms involving
second order derivatives. The qualitative overall-behavior of the minimal energies in the physically relevant
parameter regime depends only slightly on the specific choice.
From Section 4 on, we deal with more quantitative properties of the energies. Throughout the text we con-
sider the alloy Ti50Ni39Pd11 as example, which was found to have λ2 almost equal to one [56]. In Section 4
we recall its crystallographic properties as far as they are employed later to simplify the analysis. Of partic-
ular concern are symmetries between the various twin systems involving different martensitic variants.
Sections 5 and 6 deal with a hierarchy of needle-type non-branching transition layers as they are often ob-
served in experiments, see, e.g., [19]. Section 5 addresses a conjecture raised in [56] concerning the effect
of different twin systems on the energy stored in the layers. Studies of a simplified layer structure led to
the observation that there is a variation of about two orders of magnitude which could explain why specific
combinations of variants are more likely to be observed than others [56, Sec. 6]. We reconsider the model
introduced in [56] and use the symmetries derived in Section 4 to show that the ansatz in [56] is too re-
strictive. A slight modification of the model reduces the effect significantly. If one allows for quite general
needle-type layer structures the dependence on the twin system is reduced even further, see Section 6.
In Section 6 we additionally study the influence of different boundary conditions at the austenite/martensite
interface on the values of the energies. For periodic, non-branching transition layers we compare the op-
timal shapes of the layers for hard and soft boundary conditions. The two types of boundary conditions
correspond to the relation between the elastic moduli of martensite and austenite. Hard boundary conditions
model a very rigid austenite phase, where the elastic modulus of austenite is much larger than the one of
martensite, while for soft boundary conditions the two moduli are similar. We study a model introduced in
[56, Sec. 8], and consider the energy minimization problem in the variational limit of compatible phases.
We show that allowing for soft boundary conditions does not yield more general needle-shapes of the mi-
nority phase. In particular, by studying extensions of functions of fractional Sobolev-regularity, we show
that in both cases needles are pinched at the interface, that is, the minority phase vanishes at the interface.
The limiting problems are solved approximately. We employ semi-analytically a Fourier-type ansatz, and
numerically we implement a finite element discretization. We compare the results for these two very differ-
ent approximations to obtain reliable quantitative insights into the energetics of the transition layers. The
values of the energies are found to be only moderately reduced by relaxing austenite, and to depend only
weakly on the twin systems. The optimal structures of the needles, however, vary greatly from twin system
to twin system.
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2 Notation and continuum model of nonlinear elasticity

Martensitic phase transformations have been studied within the framework of continuum mechanics. Through-
out the text, we use the continuum model of nonlinear elasticity described in [6, 7, 9, 50, 51, 5]. A homoge-
neous crystalline body in its stress-free reference configuration is identified with the domain Ω ⊂ R3 that it
occupies. At fixed temperature a deformation u : Ω → R3 requires elastic energy∫

Ω
ϕ (∇u) ,

where the stored-energy density ϕ : R3×3 → R is assumed to depend only on the deformation gradient ∇u,
and to be frame indifferent, that is, ϕ (RM) = ϕ (M) for all M ∈ R3×3 and all R ∈ SO (3). For a matrix
M ∈ R3×3 the set SO (3)M is called energy well.
We consider a basic framework of martensitic transformations. At high temperatures θ > θc the free energy
density ϕ has a unique minimizing energy well, SO (3). At low temperatures θ < θc, the energy density ϕ
has several minimizing wells SO (3)U i, i = 1, . . . , N , and a local minimum at the austenite well SO (3).
The positive-definite, symmetric, and symmetry-related deformation matrices U i describe the N variants of
martensite.
At temperatures close to θc, one often observes complex phase mixtures. To allow for such mixtures, we
generally assume that any two martensitic variants satisfy the crystallographic equations of martensite, i.e.,
for any two variants U i and U j there are A ∈ SO (3)U i and B ∈ SO (3)U j , vectors a, n, b and m ∈ R3,
and λ ∈ [0, 1] such that

B −A = a⊗ n and λB + (1− λ)A− I = b⊗m . (1)

These equations ensure that there are continuous functions with piecewise constant gradients A and B,
respectively, separated by twin planes with normal n. Further there can be macroscopically stress-free
austenite-twinned martensite interfaces with habit plane normal m, where λ corresponds to the volume
fraction of the B-variant in the martensite part, see Fig. 1. If the ordered eigenvalues of the transformation
stretch matrices are denoted by 0 ≤ λ1 ≤ λ2 ≤ λ3, then the volume fraction λ ≪ 1 of the minority phase
is related to the middle eigenvalue λ2 via [56, Eq. (35)]

λ ≈ 1

2
− 1

2

√
1− 4 |λ2 − 1|

|a2n2|
. (2)

During the last years there has been a growing interest in materials with λ2 close to 1. If λ2 = 1 there can
be an exact interface between austenite and one variant of martensite, i.e., Eq. (1) holds with λ = 0, see
[54, 6]. Here, we always deal with the case λ ∼ |λ2 − 1| ≪ 1 being small.
We focus on planar martensite/austenite interfaces where the martensite part consists of a heterogeneous
phase mixture of two variants A ∈ SO (3)U i and B ∈ SO (3)U j , i ̸= j satisfying the crystallographic
equations of martensite (1). Fig. 1 shows schematically the transition layer. In view of Eq. (6) the transition
layer is described in terms of the natural, in general non-orthogonal coordinates

x = x1n
⊥ + x2m

⊥ + x3e , (3)

where n⊥ and m⊥ lie in the plane spanned by m and n and satisfy

n⊥ · n = 0 = m⊥ ·m ,
∣∣∣n⊥

∣∣∣ = 1 =
∣∣∣m⊥

∣∣∣ and n⊥ ·m = m⊥ · n > 0 . (4)
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Figure 1: Schematic sketch of the interface (planar projection)

Further, we choose e perpendicular to both, m and n such that

|e| = 1 , and e · (m× n) > 0 . (5)

In particular,

Ae = Be = Ie = e . (6)

We put the origin at the martensite/austenite interface. We measure the length ℓ of the martensite part in
direction −m, the height h in direction n and the width w in direction e. We note that this notation differs
from the ones used in [56] by geometric factors m · n⊥ reflecting the possible non-orthogonality of the
coordinate system given in Eq. (3). The martensite part hence occupies the domain

Ω(M) :=

{
x1n

⊥ + x2m
⊥ + x3e : − ℓ

m · n⊥ ≤ x1 ≤ 0 , 0 ≤ x2 ≤
h

m · n⊥ , 0 ≤ x3 ≤ w

}
,

while the austenite part is

Ω(A) :=

{
x1n

⊥ + x2m
⊥ + x3e : 0 ≤ x1 ≤

L

m · n⊥ , 0 ≤ x2 ≤
h

m · n⊥ , 0 ≤ x3 ≤ w

}
.

Without loss of generality we set w = h = 1. The elastic energy contribution of a deformation y :
Ω(M) ∪ Ω(A) → R3 is given by

µ

∫
Ω(M)

ϕ (∇y) dx+ β

∫
Ω(A)

ϕ (∇y) dx (7)

with elastic moduli µ and β of martensite and austenite, respectively.
Several models have been suggested for the interfacial energy. Popular examples use the second derivatives
of the deformation (see [9] for a detailed discussion). The surface energy is then given by

κ

∫
Ω(M)∪Ω(A)

∣∣∇2y
∣∣2 dx or κ

∫
Ω(M)∪Ω(A)

∣∣∇2y
∣∣ dx , (8)

where κ denotes a typical interfacial energy per unit area. The total energy is given as the sum of the elastic
and the interfacial energy given in Eqs. (7) and (8).
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3 Ansatz and generalizations of the Kohn-Müller model

In this section, we focus on the scaling behavior of the minimal energy with respect to the length ℓ of the
martensite part, the volume fraction of the minority phase λ, the interfacial energy constant κ and the elastic
moduli µ and β. The austenite part is assumed to be infinitely long, i.e., L = ∞. Upper bounds for the
scaling behavior can be obtained by analyzing suitable test functions. For many similar variational problems
one observes a transition between a laminar regime and a branching regime where the laminar patterns refine
close to the interface [41, 42, 20, 17, 18]. We can construct test functions building on constructions from
[42] where a scalar-valued model problem is considered. The crystallographic equations (1) can be rewritten
as

B = I + b⊗m+ (1− λ)a⊗ n and A = I + b⊗m− λa⊗ n . (9)

Motivated by Eqs. (9) and (6) we make a simple ansatz for the deformation

y (x) =

{
(I + b⊗m)x− s (x, y)

(
n ·m⊥)a, x < 0

x− s (x, y)
(
n ·m⊥)a , x > 0

(10)

with some scalar-valued function s ∈ W 1,2
(
Ω(M) ∪ Ω(A)

)
that depends only on x and y, where x = x1 =

1
n⊥·mx ·m and y = x2 =

1
n⊥·mx · n. The deformation gradient is

∇y (x) =

{
I + b⊗m− (sxa⊗m+ sya⊗ n) , x < 0

I − (sxa⊗m+ sya⊗ n) , x > 0
,

where we denote by sz the partial derivative with respect to the variable z. We assume that the Helmholtz
free energy density grows quadratically away from the energy wells. Here and in the following we use the
notation ., ∼, & if a relation holds up to constants that may depend only on the crystallographic parameters.
The elastic energy contribution from the martensite part is estimated above by (recall that we assume that
the angle between m and n is non-degenerate)

µ

∫
Ω(M)

dist2 (I + b⊗m− (sxa⊗m+ sya⊗ n) , SO (3)A ∪ SO (3)B) dx

≤ µ

∫
Ω(M)

dist2 (I + b⊗m− (sxa⊗m+ sya⊗ n) , {A,B}) dx

. µ

∫
Ω(M)

(
s2x +min

{
|sy + 1− λ|2 , |sy − λ|2

})
dx ,

and similarly for the austenite part

β

∫
Ω(A)

dist2 (I − (sxa⊗m+ sya⊗ n) , SO (3)) dx . β

∫
Ω(A)

(
s2x + s2y

)
dx .

Thus the elastic energy is bounded above in terms of the scalar-valued ansatz function s, and by the choice
of the ansatz (10), the interfacial energy of y is also determined by s. For the remainder of this section, we
disregard any dependencies on the crystallographic parameters.
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(a) Same scaling regimes for original Kohn-Müller model J1,
and simplified Kohn-Müller functional J2 with relaxed con-
straint on the order parameter
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(b) Energy functional J3: Full anisotropic TV regularization
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(c) Energy functional J4: Full W 2,2-regularization

Figure 2: Comparison of minimal energy scaling regimes for various surface energy terms under the as-
sumption β & µ
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In [41, 42] it is discussed that an appropriate choice for the interfacial energy should involve a term |syy| in
the martensite part. The probably best studied model of this kind is introduced in [42] and reads

J (s) := β [s0]
2
H1/2(0,1) +

∫ 0

−ℓ

∫ 1

0
µs2x + κ |syy| dydx , (11)

where admissible s ∈ W 1,2 ((−ℓ, 0)× (0, 1)) satisfy sy ∈ BV ((−ℓ, 0)× (0, 1)), sy ∈ {λ,−1 + λ} almost
everywhere, and s0 (·) := s (0, ·) in the sense of trace. Here, the elastic energy of the austenite part is
estimated in terms of the trace norm on the interface (see, e.g., [20]). A discussion of fractional order
Sobolev norms is postponed to Section 6.3. The surface energy in (11) is given in terms of the BV-seminorm
of uy (x, ·) : (0, 1) → R which is defined by (see [3])∫ 1

0
|uyy| dy := sup

{∫ 1

0
uy (x, y)ϕ

′ (y) dy : ϕ ∈ C1
0 (0, 1)

}
.

The behavior of the minimal energy of J from (11) for equal volume fractions is studied in [20]. Usually the
elastic moduli µ and β of martensite and austenite, respectively, are expected to be of the same order, i.e.,
µ ∼ β. Sometimes one observes softening in the martensite, i.e., β & µ. The qualitative behavior for µ ∼ β
of the minimal energies of the model (11) has been found to differ greatly from the behavior for β ≫ µ, see
[42, 20]. We show that this phenomenon is only due to the strong constraint on the order parameter sy. If
this constraint is relaxed, then the qualitative behavior of the minimal energies is equal for all β & µ.
The functional J arises as simplification of a functional initially suggested in [41], which essentially reads

J1 (s) := β [s0]
2
H1/2(0,1) +

∫ 0

−ℓ

∫ 1

0
µdist2 (∇s,K) +

κ2

µ
|syy|2 dydx , (12)

and which is to be minimized among all s ∈ W 1,2 ((−ℓ, 0)× (0, 1)) with sy ∈ W 1,2 ((−ℓ, 0)× (0, 1)).
Here and in the following we use the short-hand notation

K :=

{(
0

−1 + λ

)
,

(
0
λ

)}
.

The surface energy term is weighted by κ2/µ in order to assign the parameters κ and µ the same physical
meanings as in the functional J . The functional J1 is addressed in Theorem 3.3.
We consider several variants of the above models and discuss in particular the influence of the choice of
the surface energy term. The essential qualitative difference between (12) and (11) lies in the set of ad-
missible functions. First, constant functions, which correspond to pure austenite, are not admissible in the
simplification (11). To overcome this issue, we relax the constraint and study the functional (see Theorem
3.1)

J2 (s) := β [s0]
2
H1/2(0,1) +

∫ 0

−ℓ

∫ 1

0
µdist2 (∇s,K) + κ |syy| dydx , (13)

where s ∈ W 1,2 ((−ℓ, 0)× (0, 1)) with sy ∈ BV ((−ℓ, 0)× (0, 1)). As remarked in [42] it suffices to add
a term in syy to regularize the problem. In Theorem 3.2, however, we show that the scaling behavior is
slightly different if one considers the full anisotropic total variation (TV) regularization

J3 (s) := µ

∫ 0

−ℓ

∫ 1

0
dist2 (∇s,K) dydx+ β

∫ ∞

0

∫ 1

0
|∇s|2 + κ

∫ ∞

−ℓ

∫ 1

0
(|sxx|+ |sxy|+ |syy|) dydx .
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(a) Branching: J2 (s) ∼ µ1/3κ2/3ℓ1/3λ2/3 (b) Truncated branching: J2 (s) ∼ (µκ)1/2 λ

Figure 3: Branched patterns. White regions correspond to sy = λ, black regions to sy = −1 + λ.

The functional J3 is to be minimized among all s ∈ W 1,2 ((−ℓ,∞)× (0, 1)) that additionally satisfy sx,
sy ∈ BV ((−ℓ,∞)× (0, 1)). The main difference between the functionals J3 and J2 is that for the func-
tional J3 an austenite / martensite interface always requires interfacial energy. In the functional (14) we
assume the same surface energy per unit area constant κ in the austenite part as in the martensite part. This
choice is only for the ease of notation and can easily be generalized.
Finally another difference between (11) and the original model (12) is the smoothness assumption on ad-
missible functions. Roughly speaking, in the original model (12) surface energy always comes along with
elastic energy. To complete the picture, in Theorem 3.4 we finally consider the fully regularized functional

J4 (s) := µ

∫ 0

−ℓ

∫ 1

0
dist2 (∇s,K) dydx+ β

∫ ∞

0

∫ 1

0
|∇s|2 dydx+

κ2

µ

(∫ ∞

−ℓ

∫ 1

0

∣∣D2s
∣∣2) dydx ,

(14)

which is minimized among all s ∈ W 2,2 ((−ℓ,∞)× (0, 1)).

Anisotropic BV-regularization

To start with, we consider the functional J2 as defined in Eq. (13), and prove upper and lower bounds for its
minimal energy in detail since for all the remaining functionals similar techniques can be applied.

Theorem 3.1 There are constants C1 and C2 > 0 such that for all 0 < µ . β, κ, ℓ > 0 and all 0 ≤ λ ≤ 1
2 ,

C1min J2 (s) ≤ min
{
µ1/3κ2/3ℓ1/3λ2/3 , (µκ)1/2 λ , µλ2 , µℓλ2

}
≤ C2min J2 (s) .

Proof: We set E := min J2 (s). The claim can be split into the following statements:

1. If ℓ ≤ 1 and κ ≤ µℓλ2, or if ℓ > 1 and κ ≤ µλ2

ℓ2
, then E ∼ µ1/3κ2/3ℓ1/3λ2/3.

2. If ℓ ≤ 1 and κ > µℓλ2, then E ∼ µℓλ2.

3. If ℓ > 1 and µλ2

ℓ2
≤ κ ≤ µλ2, then E ∼ (µκ)1/2 λ.

4. If ℓ > 1 and κ ≥ µλ2, then E ∼ µλ2.

We prove the upper bound first.
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1. Branching: The construction given in [42, Lemma 2.3] carries over to the case of unequal volume
fractions, see. Fig. 3(a). The interval (−ℓ, 0) is subdivided geometrically into intervals (xi, xi+1)
with xi = −θiℓ for i ∈ N and some 1

4 < θ < 1
2 . To define the test function s on the interval (x0, x1)

one chooses the function vλ : [0, 1]×
[
0, 12
]
→ R given by

vλ (x, y) =


(−1 + λ) y if 0 < y < λ

4 + λ
4x

−λ
4x− λ

4 + λy if λ
4 + λ

4x ≤ y ≤ 1
2 − λ

4 + λ
4x

1
2 − λ

2 + (−1 + λ) y if 1
2 − λ

4 + λ
4x ≤ y ≤ 1

2

, (15)

and extends it anti-periodically in direction y. For N ∈ N one sets

s (x, y) =
1

N
vλ

(
x− x1
x0 − x1

, Ny

)
. (16)

Then by construction sy ∈ {λ,−1 + λ} a.e., s (x, y + 1) = s (x, y), and s (x1, y) =
1
2s (x0, 2y). If

ℓ ≤ 1 and κ ≤ µℓλ2, or if ℓ > 1 and κ ≤ µλ2

ℓ2
we may choose N ∼ µ1/3λ2/3

ℓ2/3(1−θ)2/3κ1/3
which yields∫ x1

x0

∫ 1

0
µs2x + κ |syy| dydx ∼ µ

N2

λ2

ℓ (1− θ)
+Nκℓ (1− θ) ∼ µ1/3ℓ1/3 (1− θ)1/3 κ2/3λ2/3 .

As worked out in [42], the test function s is extended to the remaining intervals via

s (x, y) = 2−is
(
θ−ix, 2iy

)
if x ∈ [xi, xi+1] . (17)

Then sy ∈ {λ,−1 + λ} a.e., s (0, y) = 0 and J2 (s) . µ1/3κ2/3ℓ1/3λ2/3.

2. Constant functions: s (x, y) = 0. This corresponds to pure austenite. Here J2 (s) = µℓλ2.

3. Truncated branching: We construct a test function s as sketched in Fig. 3(b) on the infinite strip.
As the energy is an increasing function in the length ℓ this yields an upper bound. We use the Kohn-
Müller branching construction (see above) on (x, 0) × (0, 1) with x ∼

(µ
κ

)1/2
λ. The total energy

contribution of the function s on (x, 0)× (0, 1) is

J2 (s) |(x,0)×(0,1) ∼ µ1/3

((µ
κ

)1/2
λ

)1/3

κ2/3λ2/3 = (µκ)1/2 λ .

Note that the construction can be done in such a way that

s (x, y) =


(−1 + λ) y , 0 ≤ y ≤ λ

2

−λ
2 + λy , λ

2 ≤ y ≤ 1− λ
2

1− λ+ (−1 + λ) y , 1− λ
2 ≤ y ≤ 1

.

We introduce an interpolation region on (x− δ, x)× (0, 1), i.e., we set

s (x, y) =


(−1 + λ) y , 0 ≤ y ≤ λ

2δ (x− x) + λ
2

λy − λ
2δ (x− x)− λ

2 , λ
2δ (x− x) + λ

2 ≤ y ≤ λ
2δ (x− x) + 1− λ

2

(−1 + λ) y + λ
δ (x− x)− λ+ 1 , λ

2δ (x− x) + 1− λ
2 ≤ y ≤ 1

.
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Then the energy contribution from the interpolation region consists of elastic and surface energy and
is for δ ∼

(µ
κ

)1/2
λ estimated by

κδ + δµ
λ2

δ2
∼ (µκ)1/2 λ .

By construction s (x− δ, y) = λy, so that we can extend s constantly in x via

s (x, y) = s (x− δ, y) = λy for all −∞ < x < x− δ .

Hence the total energy of this test function is estimated by J2 (s) . (µκ)1/2 λ.

4. Linear interpolation: s (x, y) = −λxy for −1 ≤ x ≤ 0, and s (x, y) = λy for x ≤ −1. This
function possesses only elastic energy,

J2 (s) = µ

∫ 1

0

∫ 1

0
λ2y2 + λ2 (x− 1)2 dydx ∼ µλ2 .

To prove the lower bound we employ techniques from the proof of [20, Theorem 1] adapted to our situation.
Since β & µ we can bound the energy below by setting β = µ. Further, the energy is increasing as
function of ℓ. Hence to bound the energy below we may use any restriction of the energy to smaller domains(
−ℓ̃, 0

)
× (0, 1) for 0 ≤ ℓ̃ ≤ ℓ, i.e.,

J2 (s) ≥ µ [s0]
2
H1/2(0,1) +

∫ 0

−ℓ̃

∫ 1

0
µdist2 (∇s,K) + κ |syy| dydx .

For all 0 ≤ ℓ̃ ≤ ℓ and all 0 < t ≤ 1 there is an interval I = [y, y + t] ⊂ [0, 1] such that

EI := µ [s0]
2
H1/2(I) +

∫ 0

−ℓ̃

∫
I
µ dist2 (∇s,K) + κ |syy| ≤ 2tJ2 (s) .

By a Fubini-based argument there is a set M ⊂
(
−ℓ̃, 0

)
with positive measure such that for all x ∈ M∫

{x}×I
dist2 (∇s,K) dy . ℓ̃−1

∫
Ωt

dist2 (∇s,K) dydx and
∫
{x}×I

|syy| dy . ℓ̃−1

∫
Ωt

|syy| dydx , (18)

where Ωt :=
(
−ℓ̃, 0

)
× I . One of the following three subsets of M has positive measure:

M1 := {x ∈ M : |sy (x, y)− λ| ≤ |sy (x, y)− (−1 + λ)| for a.e. y ∈ I} ,

M2 := {x ∈ M : |sy (x, y)− λ| ≥ |sy (x, y)− (−1 + λ)| for a.e. y ∈ I} ,

M3 := {x ∈ M : ∃Y1, Y2 ⊂ I with positive measure s.t.

|sy − λ| ≤ |sy − (−1 + λ)| for all y ∈ Y1, and |sy − λ| ≥ |sy − (−1 + λ)| for all y ∈ Y2} .

(19)
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We consider the three possibilities separately. Assume that M1 has positive measure and fix x ∈ M1. Then
by definition of M1 we have with Eq. (18)

∫
{x}×I

∣∣∣∣∇s−
(

0
λ

)∣∣∣∣ = ∫
{x}×I

dist (∇s,K) ≤ t
1
2

(∫
{x}×I

dist2 (∇s,K)

) 1
2

.
(

t

µℓ̃
EI

) 1
2

.

By Poincaré’s inequality there is a constant s̄ ∈ R such that∫
{x}×I

|s (x, y)− λy + s̄| dy . t

∫
{x}×I

∣∣∣∣∇s−
(

0
λ

)∣∣∣∣ . ( t3

µℓ̃
EI

) 1
2

. (20)

For almost every x ∈ M1 (cf. [20, p. 473])

∥s0 (y)− s (x, y)∥L1(I) ≤ ∥∂xs∥L1((−ℓ̃,0)×I) ≤

(
ℓ̃t

µ

)1/2

E
1/2
I . (21)

Combining Eqs. (21) and (20) we find

∥s0 (y)− λy − s̄ (x)∥L1(I) ≤ ∥s0 (·)− s (x, ·)∥L1(I) + ∥s (x, y)− λy + s̄∥L1(I) .
(
ℓ̃t

µ
EI

) 1
2

+

(
t3

µℓ̃
EI

) 1
2

.

We use the following result [20, Lemma 1]: There is a universal constant c > 0 such that for any t > 0, any
s : (0, t) → R, and any s̄ ∈ R,

∥s (y)− y − s̄∥L1(0,t) + [s (y)]2H1/2(0,t) ≥ ct2 .

We multiply this uniform bound with λ2 and substitute s̃ = λs, and ŝ = λs̄. This yields the following
rescaled version: There is a universal constant c > 0 (from the above cited [20, Lemma 1]) such that for any
t > 0, and λ > 0, any s : (0, t) → R, and any s̄ ∈ R,

λ ∥s̃ (y)− λy − ŝ∥L1(0,t) + [s̃ (y)]2H1/2(0,t) ≥ cλ2t2 . (22)

This finally yields

λ2t2 . λ

(
ℓ̃t

µ
EI

) 1
2

+ λ

(
t3

µℓ̃
EI

) 1
2

+
1

µ
EI , (23)

and in particular

J2 (s) & min

{
µλ2t2

ℓ̃
, µℓ̃λ2, µtλ2

}
. (24)

If M2 has positive measure we can proceed analogously and obtain the greater lower bound (recall λ ≤ 1−λ)

J2 (s) & min

{
µ (1− λ)2 t2

ℓ̃
, µℓ̃ (1− λ)2 , µt (1− λ)2

}
.
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Suppose now that M3 has positive measure and fix x ∈ M3. Then there are two possibilities. Suppose
first that there is a set YM ⊂ I with |YM | > 0 such that dist (∇s (x, y) ,K) ≤ 1

4 for all y ∈ YM . In the
following we assume that |sy (x, y)− λ| ≤ 1

4 , the other cases being equivalent. By definition of M3 and
|λ− (−1 + λ)| = 1 we have

|sy (x, y)− sy (x, y2)| ≥
1

4
for all y ∈ YM and y2 ∈ Y2. Hence

1

4
≤
∫
{x}×I

|syy| dy . 1

ℓ̃

∫
Ωt

|syy| dy . 1

ℓ̃κ
EI ,

and therefore

J2 (s) &
ℓ̃κ

t
.

Otherwise, we have dist (∇s (x, y) ,K) > 1
4 for almost every y ∈ I . Then

t

16
≤
∫
{x}×I

dist2 (∇s,K) dy . 1

µℓ̃
EI ,

which implies

J2 (s) & µℓ̃ ≥ µℓ̃λ2 .

Putting things together, we obtain that for all 0 ≤ ℓ̃ ≤ ℓ and all 0 ≤ t ≤ 1,

J2 (s) & min

{
µλ2t2

ℓ̃
, µℓ̃λ2, µλ2t,

ℓ̃κ

t

}
. (25)

We consider the regimes identified at the beginning of the proof separately.

1. If ℓ ≤ 1 and κ ≤ µℓλ2, or if ℓ > 1 and κ ≤ µλ2

ℓ2
we choose ℓ̃ = ℓ and t = µ−1/3ℓ2/3κ1/3λ−2/3 ≤ 1,

which yields J2 (s) & µ1/3κ2/3ℓ1/3λ2/3.

2. If ℓ ≤ 1 and κ ≥ µℓλ2 we choose ℓ̃ = t = ℓ < 1 and find J2 (s) & µℓλ2.

3. If ℓ > 1 and µλ2

ℓ2
≤ κ ≤ µλ2 we choose ℓ̃ = µ1/2κ−1/2λ and t = 1 which gives J2 (s) & (µκ)1/2 λ.

4. If ℓ > 1 and κ ≥ µλ2 we choose ℓ̃ = t = 1 which yields J2 (s) & µλ2.

2

We now address the functional J3 as defined in Eq. (14) with the full anisotropic TV seminorm regulariza-
tion.

Theorem 3.2 There are constants C1 and C2 > 0 such that for all 0 < µ . β, κ, ℓ > 0 and all 0 ≤ λ ≤ 1
2 ,

C1min J3 (s) ≤ min
{
µℓλ2 , max

{
κλ, min

{
µλ2 , µ1/3κ2/3ℓ1/3λ2/3 , (µκ)1/2 λ

}}}
= min

{
µℓλ2,max

{
κλ, µλ2

}
, µ1/3κ2/3ℓ1/3λ2/3 , (µκ)1/2 λ

}
≤ C2min J3 (s) .

12



Proof: To prove the lower bound we observe that by trace theorem for all admissible functions s we have
J3 (s) & J2 (s). Hence Theorem 3.1 implies that

min J3 & min
{
µℓλ2 , µ1/3κ2/3ℓ1/3λ2/3 , (µκ)1/2 λ , µλ2 , µℓλ2

}
.

Therefore it suffices to show that J3 (s) & min
{
µℓλ2 , κλ

}
for all admissible s. Fix a constant c0 ≪ 1,

and consider an arbitrary admissible function s with J3 (s) ≤ c0µℓλ
2. We show that then J3 (s) ≥ Cκλ for

a constant C > 0 that depends only on c0. Again by a Fubini-based argument there is a set M ⊂ (−ℓ, 0)
with |M | > 0 such that for all x⋆ ∈ M∫ 1

0
dist2 (∇s (x⋆, y) ,K) dy ≤ c0λ

2 .

In particular, if we choose c0 ≪ 1 small, there is a c1 > 0 that depends only on c0 ≪ 1 such that for
x⋆ ∈ M ∫ 1

0
|sy (x⋆, y)| dy ≥ c1λ .

This implies∫ 0

−ℓ

∫ 1

0
|syx| dydx ≥

∫ 1

0

∣∣∣∣∫ 0

x⋆

syxdx

∣∣∣∣ dy ≥
∫ 1

0
|sy (x⋆, y)| dy −

∫ 1

0
|sy (0, y)| dy .

Finally we have (see [45, Theorem 15.15])∫ ∞

0

∫ 1

0
(|sxx|+ |sxy|+ |syy|) dydx &

∫ 1

0
|Trx=0 (sx)|+ |Trx=0 (sy)| dy , (26)

where Trx=0 (u) denotes the trace of u at the interface {x = 0}. Thus,

J3 (s) & κ

(∫ 0

−ℓ

∫ 1

0
|syx (x, y)| dydx+

∫ 1

0
|∇s (0, y)| dy

)
& κλ ,

which concludes the proof.
For the upper bound one uses the same type of functions as in the proof of Theorem 3.1, extended constantly
by 0 to the austenite part {x > 0}.

1. Finite branching: In case of full regularization, the branching constructions are not infinitely fine
but stop at some refinement level I . We use a variant of the construction from [42, Lemma 2.3]
that is described in detail in [15]. We briefly recall it to keep track of the additional parameter λ
and the slightly different regularization term. As above, one chooses θ ∈

(
1
4 ,

1
2

)
and N , I ∈ N

such that N ∼ µ1/3λ2/3κ−1/3ℓ−2/3, and θI ∼ κ2/3µ−2/3ℓ−2/3λ−1/3. In the relevant regime κ .
µλ2min

{
ℓ, 1

ℓ2

}
we have 1 . I . µ1/3ℓ1/3κ−1/3λ−1/3. The branching construction from [41] is

carried out on
(
−ℓ,−ℓθI

)
×(0, 1). On the remaining part we interpolate linearly between s

(
−ℓθI , y

)
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and s (0, y) = 0. The energy contribution from the branching construction is estimated above by

I−1∑
i=0

{
µ

∫ −ℓθi+1

−ℓθi

∫ 1

0
dist2 (∇s,K) dydx+ κ

∫ −ℓθi+1

−ℓθi

∫ 1

0
|syy|+ |sxx|+ |sxy| dydx

}

.
I−1∑
i=0

{
µλ2

(4θ)i ℓN2
+ κ (2θ)i ℓN +

κλ

(2θ)iNℓ
+ κλ

}

. µλ2

ℓN2
+ κℓN +

κλ

θINℓ
+ κλI ∼ µ1/3ℓ1/3κ2/3λ2/3 .

The interpolation layer yields the additional contributions to the elastic energy

µ

∫ 0

−ℓθi

∫ 1

0
s2xdydx . µλ2

(4θ)I N2ℓ
and

µ

∫ 0

−ℓθI

∫ 1

0
dist2 (sy, {λ,−1 + λ}) dydx . µ2IN

{∫ λ

2IN

0

∫ ℓθI

0
1dydx+

∫ 1−λ

2IN

0

∫ ℓθI

0
λdydx

}
∼ µλℓθI . µ1/3ℓ1/3κ2/3λ2/3 .

Analogously to the estimates for the branching construction, the additional contribution from the
regularization terms can be bounded by ∼ µ1/3ℓ1/3κ2/3λ2/3 + κλ . µ1/3ℓ1/3κ2/3λ2/3. For the
austenite part we have sx = sy = 0, and hence there is an additional contribution to the surface
energy at the interface,

∼ κλ

Nℓ (2θ)I
. µ1/3ℓ1/3κ2/3λ2/3 .

2. Constant functions: For s = 0, we have J3 (s) = µℓλ2.

3. Truncated finite branching: As above, for large ℓ, the finite branching construction is carried out on
(x̄, 0) × (0, 1) with x̄ ∼

(µ
κ

)1/2
λ. On the remaining part we use the interpolation described in the

proof of Theorem 3.1. By the above computations, for this test function, J3 (s) . (µκ)1/2 λ+ κλ. In
the relevant regime κ . µλ2 one has κλ . (κµ)1/2 λ.

4. Linear interpolation: For the function

s (x, y) =


0 , 0 ≤ x

−λxy , −1 ≤ x ≤ 0

λy , −1 ≤ x

we have J3 (s) . µλ2 + κλ . max
{
µλ2 , κλ

}
.

2
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Quadratic regularization

We consider the scaling regimes of the energy functionals J1 and J4 given in Eqs. (12) and (14), respectively.
We notice that the scaling regimes for J1 equal the ones for J2, cf. Theorem 3.1.

Theorem 3.3 There are constants C1, C2 > 0 such that for all 0 < µ . β, all κ, ℓ > 0, and all λ ≤ 1
2 ,

C1min J1 (s) ≤ min
{
µℓλ2 , µ1/3κ2/3ℓ1/3λ2/3 , µ1/2κ1/2λ , µλ2

}
≤ C2min J1 .

Proof: To prove the lower bound we proceed along the lines of the proof of Theorem 3.1. For all 0 ≤ ℓ̃ ≤ ℓ
and all 0 < t ≤ 1 there is an interval I = [y, y + t] ⊂ [0, 1] such that

EI := µ [s0]
2
H1/2(I) +

∫ 0

−ℓ̃

∫
I
µdist2 (∇s,K) +

κ2

µ
|syy|2 dydx ≤ 2tJ1 (s) .

By a Fubini-based argument, there is a set M ⊂
(
−ℓ̃, 0

)
with positive measure such that for all x ∈ M∫

{x}×I
dist2 (∇s,K) dy . ℓ̃−1

∫
Ωt

dist2 (∇s,K) dydx and
∫
{x}×I

|syy|2 . ℓ̃−1

∫
Ωt

|syy|2 dydx , (27)

where Ωt :=
(
−ℓ̃, 0

)
× I . Without restriction we may assume that for some fixed x ∈ M , the function

sy (x, ·) is continuous on I . We use the definitions of the sets Mi, i = 1, 2, 3 as given in Eq. (19). If M1 or
M2 has positive measure we proceed word by word as in the proof of Theorem 3.1 above and find

J1 (s) & min

{
µλ2t2

ℓ̃
, µℓ̃λ2 , µtλ2

}
.

Suppose now that M3 has positive measure and fix some x ∈ M3. If dist (∇s (x, y) ,K) > 1
4 for almost

every y ∈ I then it follows as in the proof of Theorem 3.1 that

J1 (s) & µℓ̃ ≥ µℓ̃λ2 .

Suppose now that there is YM ⊂ I with positive measure such that dist (∇s (x, y) ,K) ≤ 1
4 for all y ∈ YM .

By definition of M3 and continuity there is an interval I = (yℓ, yr) such that

dist (sy (x, y) ,Ky) >
1

4
for almost all y ∈ I , dist (sy (x, yℓ) ,Ky) =

1

4
and dist (sy (x, yr) ,Ky) ≥

3

8
,

where Ky := {λ , −1 + λ}. Hence∫
{x}×I

|syy|2 ≥
∫
{x}×I

|syy|2 &
1

|I|
and

∫
{x}×I

dist2 (∇s,K) & |I| .

Then by Eq. (27), we have

EI & ℓ̃

(
κ2

µ |I|
+ µ |I|

)
≥ κℓ̃ .
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Altogether, for all 0 < ℓ̃ ≤ ℓ and all 0 < t ≤ 1, the energy is bounded below by

J1 (s) & min

{
λ2t2

ℓ̃
, ℓ̃λ2, λ2t,

ℓ̃κ

t

}
,

and we conclude as in the proof of Theorem 3.1.

For the upper bound, we use essentially the same test functions as above: The constant and affine functions
as in the less smooth setting have energies bounded above by µℓλ2 and µλ2, respectively. The branching
construction from [42] is slightly adapted in order to ensure sy ∈ W 1,2 ((−ℓ, 0)× (0, 1)). An explicit mol-
lification in y of the branching construction for equal volume fractions can be found in [52]. We do not
recall the construction here to keep track of the additional parameters, but refer to the proof of Theorem 3.4
where we consider a function S for which J1 (S) ≤ J4 (S) . κ2/3λ2/3µ1/3ℓ1/3. We note that the truncated
branching construction can be smoothed analogously. 2

Finally, we consider the fully regularized smoothed functional J4 as given in Eq. (14).

Theorem 3.4 There are constants C1, C2 > 0 such that for all 0 < µ . β, all κ, ℓ > 0 and 0 < λ ≤ 1
2 ,

C1min J4 (s) ≤ min
{
µℓλ2,max

{
κλ2,min

{
µλ2 , µ1/3κ2/3ℓ1/3λ2/3 , (µκ)1/2 λ

}}}
≤ C2min J4 (s) .

Proof: To show the lower bound we first observe that J4 (s) & J1 (s) for all admissible s. Hence Theorem
3.3 implies that for all admissible s,

J4 (s) & min
{
µℓλ2 , µ1/3κ2/3ℓ1/3λ2/3 , (µκ)1/2 λ , µλ2

}
.

Therefore it suffices to show that the inequality J4 (s) & min
{
µℓλ2 , κλ2

}
holds for all admissible func-

tions s. We estimate the energy contributions from the austenite part below by trace theorem,

β

∫ ∞

0

∫ 1

0
|∇s|2 dydx+

κ2

µ

∫ ∞

0

∫ 1

0

∣∣∇2s
∣∣2 dydx

& κ

(
µ

κ

∫ ∞

0

∫ 1

0
|∇s|2 dydx+

κ

µ

∫ ∞

0

∫ 1

0

∣∣∇2s
∣∣2 dydx) & κ |s0|2H1(0,1) = κ

∫ 1

0
|Ds (0, y)|2 dy .

We fix some small constant c0 ≪ 1. If ∫ 1

0
|Ds (0, y)| dy > c0λ

then by the above estimate

J4 (s) ≥ κ

∫ 1

0
|Ds (0, y)|2 dy & κλ2 .

Otherwise, for c0 small enough, ∫ 1

0
dist (∇s (0, y) ,K) dy >

1

4
λ . (28)
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Suppose now that J4 (s) < c0µℓλ
2. Then there is a set M ⊂ (−ℓ, 0) with |M | > 0 and∫ 1

0
dist (∇s (x, y) ,K) dy ≤ 2c0λ for all x ∈ M .

We fix x0 ∈ (−ℓ, 0) such that∫ 1

0
dist (∇s (x0, y) ,K) dy ≤ 2c0λ and

∫ 1

0
(∇s (x, y) ,K) dy > 2c0λ for almost all x0 < x < 0 .

Notice that x0 < 0 in view of Eq. (28). Then

µ

∫ 0

−ℓ

∫ 1

0
dist2 (∇s (x, y) ,K) dydx ≥ µ

∫ 0

x0

∫ 1

0
dist2 (∇s (x, y) ,K) dydx & µ |x0|λ2 . (29)

On the other hand-side as in the proof of Theorem 3.2 we have
∫ 1
0 |sy (x0, y)| dy ≥ λ

4 and hence∫ 0

x0

∫ 1

0

∣∣D2s (x, y)
∣∣+ ∫ 1

0
|Ds (0, y)| dydx ≥ λ

4
.

Since
∫ 1
0 |Ds (0, y)| dy ≤ c0λ, this implies for c0 small enough,

κ2

µ

∫ 0

x0

∫ 1

0

∣∣D2s (x, y)
∣∣2 dydx & κ2λ2

µ |x0|
,

which with Eq. (29) finally yields

J4 (s) &
κ2λ2

µ |x0|
+ µλ2 |x0| ≥ κλ2 .

For the upper bound we use again the same type of test functions with slight modifications to satisfy the
smoothness conditions.

1. Smoothed linear interpolation: For δ > 0 we define

s (x, y) =


2λ
δ3
yx3 + 3λ

δ2
yx2 if − δ ≤ x ≤ 0

λy if x ≤ −δ

0 if x ≥ 0

.

Then v ∈ W 2,2 ((min {−δ,−ℓ} ,∞)× (0, 1)), and

J4 (s) .
µλ2

δ
+ µδλ2 +

κ2λ2

µ

(
1

δ
+

1

δ3

)
.

(a) If µλ2 ≤ κ ≤ µ we choose δ ∼ 1. Then J4 (s) ∼ µλ2 + κ2

µ λ2 . µλ2.

(b) If µ ≤ κ we choose δ ∼ κ
µ . Then J4 (s) . κλ2.
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2. Smoothed finite branching: We consider the case κ . µλ2min
{
ℓ, ℓ−2

}
. In [21] it is announced that

a mollification of the Kohn-Müller construction will appear in [16]. Again we fix some θ ∈
(
1
4 ,

1
2

)
,

and choose I , N ∈ N such that N ∼ µ1/3λ2/3κ−1/3ℓ−2/3, and θI ∼ κ2/3µ−2/3ℓ−2/3λ−1/3. Further
we choose a mollification parameter δ ∼ κ/µ. We note that these parameter choices imply that for all
i ≤ I ,

δ . λ

2iN
, δ . ℓθi and

λ

(2θ)i ℓN
<

λ

θI/2ℓN
∼ λ1/2 ≪ 1 . (30)

Let s ∈ W 1,2 ((−ℓ,∞)× (0, 1)) be the finite branching construction defined in the proof of Theorem
3.2, and define a W 1,2-extension of s to (−ℓ− δ,∞) × (−δ, 1 + δ) by extending s constantly in x
for x < −ℓ or x = 0, and antiperiodically in y for y < 0 or y > 1. We set S := Es ∗ ϕδ, where
ϕδ : R2 → R is a mollifier, i.e., ϕδ (x) =

1
δϕ
(
x
δ

)
with ϕ ∈ C∞

0 (B1 (0)) such that
∫
B1(0)

ϕ (y) dy = 1,
0 ≤ ϕ ≤ 1 and ϕ (x) = µ (|x|) for some µ : [0,∞) → R.
We collect the energy contributions separately. Since Es is piecewise affine, the partial derivatives Sx,
Sy differ from Esx, Esy only in δ-neighborhoods of the boundaries of the domain {y = 0 or y = 1}
and {x = −ℓ or x = 0}, the refinement boundaries

{
x = −ℓθi, i ≤ I

}
, and the twin boundaries where

the gradient of Es jumps. By definition of the convolution, we have a pointwise bound on Sx, i.e.,

µ

∫ −ℓθI

−ℓ

∫ 1

0
S2
x (x, y) dydx .

I−1∑
i=0

µℓθiλ2

(2θ)2i ℓ2N2
. κ2/3λ2/3µ1/3ℓ1/3 .

For Sy we consider the contribution from the δ-neighborhoods of the twin boundaries and the refine-
ment boundaries separately,

µ

∫ −ℓθI

−ℓ
dist2 (sy, {λ,−1 + λ}) dydx .

I−1∑
i=0

{
µ
(
ℓθi
)
δ
(
2iN

)
+ µδλ

}
. κ2/3λ2/3µ1/3ℓ1/3 ,

where the last step follows as for the unsmoothed finite branching construction in the proof of Theo-
rem 3.2. We consider the partial second derivatives separately. Again we expect contributions from
the twin boundaries and the refinement boundaries which we estimate above very roughly by

κ2

µ

∫ −ℓθI

−ℓ

∫ 1

0
Sxx (x, y) dydx .

I−1∑
i=0

κ2

µ

{(
2iN

) (
ℓθi
)
δ

λ2

(2θ)2i ℓ2N2δ2
+ δ

λ2

(2θ)2i ℓ2N2δ2

}

. κλ2

(2θ)I ℓN
+

κλ2

(2θ)2I ℓ2N2
. κλ2

θIℓN
+ κ . κ2/3λ2/3µ1/3ℓ1/3 .

Next, the estimates (30) imply that the slopes of the twin boundaries for all i ≤ I are bounded in
absolute value by ∼ 1. Hence,

κ2

µ

∫ −ℓθI

−ℓ

∫ 1

0
S2
yy (x, y) dydx . κ2

µ

I−1∑
i=0

{(
2iN

)
δ
(
ℓθi
) 1

δ2
+

κ2

µ

(
2iN

)
δ2

1

δ2

}
. κℓN + κλI ,
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which again is bounded above by κ2/3λ2/3µ1/3ℓ1/3 as spelled out for the finite branching construction.
Finally, since sx and sy are piecewise constant with the same jump set, by (30),∫ −ℓθI

−ℓ

∫ 1

0
S2
xy (x, y) dydx .

∫ −ℓθI

−ℓ

∫ 1

0
S2
yy (x, y) dydx ,

which concludes the estimates on
(
−ℓ,−ℓθI

)
× (0, 1). In the interpolation layer −ℓθI ≤ x ≤ δ we

proceed similarly as on the above treated intervals, and observe additionally (see proof of Theorem
3.2 and recall that δ . ℓθI )

µ

∫ δ

−ℓθI

∫ 1

0
dist2 (Sy, {λ,−1 + λ}) dydx . µℓθI

(
λ+ λ2

)
. µ1/3ℓ1/3κ2/3λ2/3 .

3. Truncated smoothed finite branching: The truncated branching construction can be mollified anal-
ogously.

2

4 An example of a low-hysteresis alloy

We now focus on more quantitative properties of the transition layers. As an example we consider the alloy
Ti50Ni39Pd11. This alloy undergoes a cubic to orthorhombic transformation. The six variants of martensite
are given by the transformation stretch matrices

U1 =

 λ2+λ3
2

λ2−λ3
2 0

λ2−λ3
2

λ2+λ3
2 0

0 0 λ1

 , U2 =

 λ2+λ3
2

λ3−λ2
2 0

λ3−λ2
2

λ2+λ3
2 0

0 0 λ1

 , U3 =

 λ2+λ3
2 0 λ2−λ3

2
0 λ1 0

λ2−λ3
2 0 λ2+λ3

2

 ,

U4 =

 λ2+λ3
2 0 λ3−λ2

2
0 λ1 0

λ3−λ2
2 0 λ2+λ3

2

 , U5 =

 λ1 0 0

0 λ2+λ3
2

λ2−λ3
2

0 λ2−λ3
2

λ2+λ3
2

 , U6 =

 λ1 0 0

0 λ2+λ3
2

λ3−λ2
2

0 λ3−λ2
2

λ2+λ3
2


(31)

with ordered eigenvalues λ1 ≤ λ2 ≤ λ3. The measured eigenvalues are [56, Tab. 1]

λ1 = 0.9280, λ2 = 1.0001, λ3 = 1.0674 ,

but following [56] we set the middle eigenvalue to λ2 = 1. Up to sign, there are two different habit plane
normals which we abbreviate by

pmm := (0.5005,−0.5005,−0.7064) and mpm := (−0.5005, 0.5005,−0.7064) . (32)

Throughout the text we refer to the habit plane with normal pmm as habit plane pmm, and similarly to the
one with normal mpm as habit plane mpm.
The six variants can pairwise form twins [9], and all variants are symmetry-related in the sense that for all
1 ≤ i, j ≤ 6 there are rotations Rij = RT

ij ∈ SO (3) such that U i = RijU jRij . As we aim at comparing
transition layers for the possible twin systems we make use of these symmetries to restrict the number of
different structures.
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4.1 Symmetries among the crystallographic parameters for different twin systems

In [56, Sec. 6] it is remarked that for cubic to orthorhombic transformations due to symmetries it suffices
to consider twin systems that consist of a fixed variant twinned with all other variants. In [30, Sec. 5.5]
symmetry relations between variants are invoked to restrict the discussion of uniqueness of simple laminates
to representative twin systems. We spell out the symmetries and their consequences explicitly to apply them
in the subsequent sections.
Suppose that the positive definite symmetric matrices V i, V ℓ, U i, U ℓ ∈ R3×3, U i /∈ SO (3)V i and
U ℓ /∈ SO (3)V ℓ have the following properties:

• There is a solution(
R̂i,Ri,ai,ni, bi,mi

)
∈ SO (3)× SO (3)× R3 × S2 × R3 × S2 (33)

of the crystallographic equations

RiU i − R̂iV i = ai ⊗ ni , and λRiU i + (1− λ) R̂iV i − I = bi ⊗mi (34)

where S2 :=
{
x ∈ R3 : |x| = 1

}
.

• There is an orthogonal transformation Q ∈ O (3) such that

QV i = V ℓQ , and QU i = U ℓQ . (35)

We note that we allow for general orthogonal matrices to simplify the notation later. The two assumptions
hold true for mot of the common crystallographic changes. If we define

R̂ℓ = QR̂iQ
T , Rℓ = QRiQ

T , aℓ = Qai , nℓ = Qni , bℓ = Qbi , mℓ = Qmi . (36)

Then (
R̂ℓ,Rℓ,aℓ,nℓ, bℓ,mℓ

)
∈ SO (3)× SO (3)× R3 × S2 × R3 × S2 (37)

and
RℓU ℓ − R̂ℓV ℓ = aℓ ⊗ nℓ , and λRℓU ℓ + (1− λ) R̂ℓV ℓ − I = bℓ ⊗mℓ .

Proposition 4.1 Assume that Eqs. (33), (34) and (35) hold. Suppose further that there is a 180◦-rotation
Di = DT

i ∈ SO (3) about some axis ei ∈ S2 such that U i = DiV iDi. Then U ℓ = DℓV ℓDℓ for
the 180◦-rotation Dℓ = DT

ℓ ∈ SO (3) about the axis eℓ = Qei ∈ S2. In particular, with the notation
introduced above the pair (aℓ,nℓ) describes a twin of the same crystallographic type as (ai,ni).

Proof: The 180◦-rotation is represented by the matrix Di = −I + 2ei ⊗ ei. By the commutator relations
given in Eq. (35) we find

U ℓ = QU iQ
T = QDiV iDiQ

T = Q (−I + 2ei ⊗ ei)
(
QTQ

)
V i (−I + 2ei ⊗ ei)Q

T

= (−I + 2 (Qei)⊗ (Qei))V ℓ (−I + 2 (Qei)⊗ (Qei)) =: DℓV ℓDℓ ,
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where Dℓ = DT
ℓ ∈ SO (3) describes a 180◦-rotation about the axis Qei.

If (ai,ni) describes a type I twin then ni ∈ {±ei} (see [9, Res. 5.2]). This implies nℓ ∈ {±Qei} =
{±eℓ}, i.e., (aℓ,nℓ) describes also a type I twin. On the other hand, if (ai,ni) describes a type II twin then
ai ∈ {±ρV iei} with ρ =

∣∣∣2(ei − V 2
i ei

|V iei|2

)∣∣∣ (see again [9, Res. 5.2]). Hence, aℓ = Qai = ±ρQV iei =

±ρV ℓeℓ, which implies that (aℓ,nℓ) describes a type II twin, as well. Finally, if (ai,ni) describes a
compound twin, that is, it can be described as both, a type I and a type II twin (corresponding to different
rotations Di), then the above arguments show that so does (aℓ,nℓ). 2

If the orthogonal transformation Q is symmetric, then many more quantities are also related via the orthog-
onal transformation. We collect them in the following remark as far as they will be needed later.

Remark 4.2 Under the assumptions (33), (34) and (35), suppose Q = QT and set Ai := R̂iV i = QAℓQ.
Then the following relations hold true:

A−T
ℓ mℓ = Q

(
A−T

i mi

)
, A−T

ℓ nℓ = Q
(
A−T

i ni

)
, n⊥

ℓ = Qn⊥
i , (38)

where n⊥ := − m·n√
1−(m·n)2

n+ 1√
1−(m·n)2

m. Due to orthogonality of Q scalar products are preserved,

i.e.,
xi · yi = xℓ · yℓ for all x,y ∈

{
a,n, b,m,A−Tm,A−Tn,n⊥

}
.

Example 4.3 In [30, Sec. 5.5] symmetries between twin systems involving different variants of martensite
are listed. As discussed above, these symmetries carry over to solution of the crystallographic equations.
It is found that for cubic to orthorhombic transformations there are up to orthogonal transformation only
five different structures of interfaces. With the notation introduced in Eq. (31), the five different structures
can be represented by a compound twin with variants 1/2, and the two type I and the two type II twins with
variants 1/3.

5 Piecewise affine needle-type microstructures

From now on, we focus on more quantitative properties of the energies of the transition layers. Experimen-
tally, one often observes needle-type structures, where the volume fraction of the minority phase drops to
zero close to the interface. We consider a hierarchy of needle-type models and compare the energies for
different twin systems and for different types of boundary conditions.
The first more quantitative question addresses the influence of the twin system on the energy. In [56] it has
been conjectured that there could be a significant variation of the energies. The conjecture is based on the
study of simplified transition layers. We reconsider the model introduced in [56] with a slight modification
to make it well-definite in the sense that the energy does not depend on the parametrization of the transition
layer. The values of the energy are then found to depend only weakly on the twin system while the optimal
structures vary greatly.
Given a solution to the crystallographic equations (1) with a quadruple S1 = (a,n,b,m), the sets of pa-
rameters

S2 = (−a,−n,b,m) , S3 = (a,n,−b,−m) and S4 = (−a,−n,−b,−m) (39)
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Figure 4: Piecewise affine transition layers

describe the same twin system. This observation corresponds to the fact that the map

R3 × R3 →
{
M ∈ R3×3 : rank (M) = 1

}
, (a, b) 7→ a⊗ b

is not one-to-one but two-to-one. The minimal energy of a transition layer should not depend on the choice
of the quadrupel of parameters from Eq. (39). This invariance requires some symmetry in the set of ad-
missible deformations. We briefly recall the setting studied in [56]. We fix a solution (a,n, b,m) of the
crystallographic equations. Recall that changing sign of n or m implies a reorientation of m⊥ or n⊥, re-
spectively. The piecewise affine test function introduced in [56, Eq. (14)] is pictured in Fig. 4(a), where the
linear interpolation matrix C in a triangle of height |α| is determined by the conditions of crystallographic
compatibility,

C = A+ λa⊗
[
n+

ϵ

α
(1− λ)m

]
= I + b⊗m+

ϵ

α
λ (1− λ)a⊗m . (40)

We note that the deformation is a special case of the ansatz (10). In contrast to [56], we allow for positive
and negative α. The formula for the matrix C depends on the choice of the solution Si, i = 1, . . . , 4. To
estimate the energy of the triangles, a linear elasticity theory is used. We linearize about A and introduce
a typical elastic modulus µ. The area of each triangle containing C is ϵ|α|

2mλ·n⊥
λ

. Hence the energy of one
triangle is (cf. [56, Eq. (20)] but recall that we allow for positive and negative α)

1

2
E = Ẽ =

ϵ |α|w
2m · n⊥

(
µ

2

∣∣∣∣12 [(CA−1 − I
)
+
(
CA−1 − I

)T ]∣∣∣∣2
)

=
ϵwµλ2

8m · n⊥

{
|α|
[(
a ·
(
A−Tn

))2
+ |a|2

∣∣A−Tn
∣∣2]+

+
|α|
α2

ϵ2 (1− λ)2
[(
a ·
(
A−Tm

))2
+ |a|2

∣∣A−Tm
∣∣2]

+
|α|
α

2ϵ (1− λ)
[(
a ·
(
A−Tn

)) (
a ·
(
A−Tm

))
+ |a|2

(
A−Tn

)
·
(
A−Tm

)]}
. (41)
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In the remaining sections of this text, we use E as energy in a super-isotropic setting. This definition differs
from the one used in [56] by a factor of 2. This factor comes from the choice of the elastic modulus, namely
the Young’s modulus or the shear modulus. There are two local minima of the energy at

α± = ±ϵ (1− λ)

√√√√(a ·
(
A−Tm

))2
+ |a|2

∣∣A−Tm
∣∣2(

a ·
(
A−Tn

))2
+ |a|2

∣∣A−Tn
∣∣2 . (42)

The positive solution α+ is the solution obtained in [56, Eq. (21)]. The energy in Eq. (41), however, depends
in general crucially on the sign of α. We consider a martensite plate of height h and width w. Then the local
minima of the total energy of the triangles are (cf. [56, Eq. (22)]

1

2
total energy of triangles = ϵwhµλ2 (1− λ) ξ± ,

where the geometric factors corresponding to α± are

ξ± =
1

4m · n⊥

(√((
a ·
(
A−Tm

))2
+ |a|2

∣∣A−Tm
∣∣2)((a ·

(
A−Tn

))2
+ |a|2

∣∣A−Tn
∣∣2)±

±
(
a ·
(
A−Tm

)) (
a ·
(
A−Tn

))
± |a|2

(
A−Tm

)
·
(
A−Tn

))
. (43)

Note that if we use another set of parameters Si, we end up with the same two local minimal values of the
energy. To be more precise, denoting with the index ± the sign of the corresponding α, we find ξ± for S1

and S4, and ξ∓ for S2 and S3.
The geometric factors in Eq. (43) involve only scalar products which are preserved under orthogonal trans-
formations. Suppose twin systems consisting of variants i/k and variants j/ℓ, respectively, such that there
is a symmetric orthogonal transformation Q with QU i = U jQ and QUk = U ℓQ. Then by Remark 4.2,
Aj = QAiQ, Bj = QBiQ, and Cj = QCiQ. Hence there is an energy-preserving one-to-one map

yi 7→ yj = QyiQ (44)

between the sets of piecewise affine transition layers involving variants i and ℓ with respect to corresponding
sets of crystallographic parameters, and in particular minimizers are mapped to minimizers, and minimal
energies coincide.
The geometry of the transition layer varies a lot between the twin systems. We collect the values for m ·
n⊥ > 0 for the representative twin systems in Tab. 1. A vanishing scalar product m·n⊥ = 0 corresponds to
a degenerate twin system with parallel habit and twin planes, while m · n⊥ = 1 corresponds to orthogonal
habit and twin planes.
As in all cases m ·n ̸= 0, we can distinguish the local minima by the sign of this scalar product m ·n. We
collect all possible local minimal values for the geometric factors according to Eq. (43) for Ti50Ni39Pd11 in
Table 1. We collect the four possible values for representative twin systems, i.e., compound twins and the
values for the four twin systems involving variants 1 and 3. Then all remaining values can be determined
using the symmetries studied in Section 4.1. Up to round-off errors we recover all values from [56, Table 4].
In some cases, however, they do not correspond to the global minima. There is still a remarkable variation
in the minimal geometric factors of almost an order of magnitude, and it also varies within a given twin type
but the variation is by far not as drastic as claimed in [56]. In the subsequent sections, it is shown that the
dependence becomes even weaker if we allow for more flexibility in the transition layers.
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Variants twin type habit plane m · n⊥ ξ × 103 [56, Tab. 4] ξ × 103

m · n ≥ 0 m · n < 0

1 and 2 compound either one 0.87 8.07 7.99 3.38

1 and 3 type I mpm 0.52 48.6 48.3 3.63
1 and 3 type II mpm 1.00 17.6 17.6 19.14

1 and 3 type I pmm 1.00 23.4 22.5 15.4
1 and 3 type II pmm 0.17 162 162.9 2.07

Table 1: Geometric factor ξ of the minimal energy for the piecewise affine transition layer from [56]. Bold
numbers highlight the minimal value of the energy. Values from [56] were computed using Mathematica,
the others using MATLAB.

5.1 Two-parameter ansatz allowing for asymptotic offset

We consider a class of more general piecewise affine transition layers where the interpolation layer allows
for two matrices that do not lie on the energy wells, see Fig. 4(b). This model in particular allows for an
asymptotic offset η, and we do not require that one of the twin boundaries remains straight up to the interface
which allows for symmetric and asymmetric needles. The model will serve as validation for our numerical
results in Sec. 6.4.
We proceed as in the previous section along the lines of [56, Sec. 5 and 6], but optimize the geometry with
respect to η and α. Here we may assume α > 0 if we account for the various orientations of the (n,m)-
plane, see Eq. (39). Note that reorientation comes along with the change η → −λ − η, where ηϵ denotes
the asymptotic offset of the lower needle boundary plane. To measure asymptotic symmetry of the needle,
we are hence mainly interested in the deviation of η from −λ

2 . The gradients C and D taking part in the
interpolation layer, are determined by the compatibility conditions

C = A+ λa⊗ n− 1

α
(1− λ) ηϵa⊗m and D = A− (η + λ) ϵ

α
a⊗m . (45)

The area of each triangle containing C is ϵα
2m·n⊥ , and the area of each triangle containing D is ϵα(1−λ)

2m·n⊥ .
As in [56, Sec. 6], we estimate the elastic energy of the transition layer in the context of linear elasticity.
Since we are only interested in the geometric factor of the energy, we compute the energy only up to a factor
depending on the elastic shear modulus and the width of the martensite plate. The geometric factor of the
energy of the triangles is

1

4

αϵ

2m · n⊥

(∣∣∣(CA−1 − I
)
+
(
CA−1 − I

)T ∣∣∣2 + (1− λ)
∣∣∣(DA−1 − I

)
+
(
DA−1 − I

)T ∣∣∣2)
=

1

4

αϵ

m · n⊥

(
(a · cλ)2 + |a|2 |cλ|2

)
+

1

4

ϵα

m · n⊥ (1− λ)
(
(a · dλ)

2 + |a|2 |dλ|2
)

, (46)

where cλ = λA−Tn− 1
α (1− λ) ηϵA−Tm, and dλ = −η+λ

α ϵA−Tm. We optimize the energy with respect
to the height of the trapezoid α > 0 and the offset η. We keep only the leading order term of the energy. We
put η̂ = η

λ , divide the energy by λ2 and evaluate at λ = 0. Then with

c0 = A−Tn− 1

α
η̂ϵA−Tm and d0 = − η̂ + 1

α
ϵA−Tm
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Variants Twin type Habit plane m · n > 0 m · n < 0
η̂+ E+ η̂− E− η̂+ E+ η̂− E−

1 and 2 compound either one −0.35 10.0 −0.65 11.4 −0.35 6.8 −0.65 5.4

1 and 3 type I pmm −0.57 31.1 −0.43 30.1 −0.57 23.0 −0.43 24.0
1 and 3 type I mpm −0.88 85.7 −0.12 51.5 −0.88 6.8 −0.12 41.0

1 and 3 type II pmm −0.98 317.9 −0.02 164.9 −0.98 4.1 −0.02 157.1
1 and 3 type II mpm −0.51 25.2 −0.49 25.2 −0.51 26.8 −0.49 26.7

Table 2: Geometric factors of the energy E± × 103 and the corresponding offset η̂± of the more general
piecewise affine transition layer according to Eqs. (48) and (49) for ϵ = 1. Bold numbers highlight the
minimal energy. Habit plane normals as defined in Eq. (32).

the geometric factor of the energy of the triangles is

1

4

αϵ

m · n⊥

(
(a · c0)2 + |a|2 |c0|2 + (a · d0)

2 + |a|2 |d0|2
)

=
1

4

ϵ

m · n⊥

(
ϵ2

α

(
2η̂2 + 2η̂ + 1

) ((
a ·A−Tm

)2
+ |a|2

∣∣A−Tm
∣∣2)+ (47)

+ α
((

a ·A−Tn
)2

+ |a|2
∣∣A−Tn

∣∣2)− 2η̂ϵ
((

a ·A−Tm
) (

a ·A−Tn
)
+ |a|2A−Tn ·A−Tm

))
.

The optimal α > 0 is

α = ϵ

√√√√√(2η̂2 + 2η̂ + 1)
((

a ·A−Tm
)2

+ |a|2
∣∣A−Tm

∣∣2)(
a ·A−Tn

)2
+ |a|2

∣∣A−Tn
∣∣2 . (48)

Inserting this α into the energy there are two optimal rescaled offsets η̂ symmetric around −1
2 , namely

η̂± = −1

2
± Y

2
√
2X − Y 2

, (49)

with the terms

X =
((

a ·A−Tm
)2

+ |a|2
∣∣A−Tm

∣∣2)((a ·A−Tn
)2

+ |a|2
∣∣A−Tn

∣∣2) ,

Y =
(
a ·A−Tm

) (
a ·A−Tn

)
+ |a|2A−Tm ·A−Tn .

The values for the optimal η̂ and the associated energies for representative twin systems for ϵ = 1 are
collected in Tab. 2. We observe again a wide variation of the geometric factors with respect of the choice
of the set of parameters. The twin systems leading to offsets η̂ far away from −1

2 are those for which
both geometric factors, the ones given in Tab. 2 and the ones from [56] vary strongly with a change of the
orientation, cf. Tab. 1.

6 General needle-type periodic non-branching transition layers

We consider a model for periodic non-branching transition layers that was introduced in [56, Sec. 8]. Gen-
eralizing the ansatz we allow for relaxation of the austenite, and aim at comparing hard and soft boundary
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Figure 5: Needle-type periodic non-branching transition layers

conditions. For soft boundary conditions we set µ = β = 1, and for hard boundary conditions µ = 1
and β = ∞. We briefly recall the parameters used to describe the transition layer where we essentially
follow the paths of [56, Sec. 8] and comment on the differences arising from relaxation of austenite. For
the derivation of the model we keep a fixed set of parameters (aλ,nλ, bλ,mλ), and we show later that the
minimal energy and the minimizer do not depend on the specific choice of sets of parameters from Eq. (39),
see Prop. 6.1.
We assume that there are two compatible variants of martensite represented by matrices A and B that satisfy
the crystallographic equations (1) with λ ≪ 1. As sketched in Fig. 5(a) the minority variant B is assumed
to occur as thin needles. Essentially following the approach from [56] we use the natural, in general non-
orthogonal coordinates given in Eq. (3), where we now place the origin at a middle point of the intersection
of the Bλ-needle with the interface. The twin boundaries are parameterized by Lipschitz functions F±

λ , i.e.,
the Bλ-layer defining the origin is confined by the two surfaces

x2 = F+
λ (x1) , x2 = F−

λ (x1) , x1 ≤ 0 with F+
λ ≥ F−

λ . (50)

We assume that F+ − F− ≤ ξ
2 . In terms of the deformation gradients, the transition layer is periodic in

x2-direction. We consider the periodic cell that consists of the Aλ-layer

Mλ :=
{
x ∈ R3 : −l < x1 < 0 , F+

λ (x1 ) < x2 < F−
λ (x1 ) + ξ , 0 < x3 < w

}
, (51)

the Bλ-layer

Bλ :=
{
x ∈ R3 : −l < x1 < 0 , F−

λ (x1 ) < x2 < F+
λ (x1 ) , 0 < x3 < w

}
, (52)

and the austenite part

A :=
{
x ∈ R3 : 0 < x1 < L , 0 < x2 < ξ , 0 < x3 < w

}
. (53)

We formulate the energy minimization problem in terms of the displacement. For a deformation yλ, the
associated displacement is

zλ = yλ − I . (54)
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Outside the transition layer for x1 ≤ −l the twin boundaries are planar. To explicitly describe the needle
bending an asymptotic offset parameter ηλ is introduced, that is (see [56, Eq.(47)])

zλ (x) = y
(M)
λ (x− ηλϵnλ)− x for x1 = −l with

F−
λ (−l) = ηλξ and F+

λ (−l) = (ηλ + λ) ξ (55)

where the deformation y
(M)
λ describes the martensite laminate and is given by (see [56, Eq. (39)])

y
(M)
λ (x) = (λBλ + (1− λ)Aλ)x+ ϵaλ

∫ 1
ϵ
x·nλ

0
χλ (s) ds with

χλ (s) =

{
1− λ , 0 ≤ s ≤ λ
−λ , λ ≤ s < 1

. (56)

Some studies on needle bending can be found in [11, 46]. Further, following [56, Eq. (49)] we assume
constant gradient in the Bλ-layers,

zλ (x) = x1 (Bλ − I)n⊥
λ + x2 (Bλ − I)m⊥

λ − ηλϵBλnλ

for F−
λ (x1) < x2 < F+

λ (x1) , x1 < 0 . (57)

If the martensitic variants are not compatible with austenite, that is, if λ2 ̸= 1, then there cannot be an exact
planar interface between one variant of martensite and pure austenite. Hence in the case of hard boundary
conditions β ≫ µ that is studied in [56] the condition that the gradient in the Bλ-needle is constant implies
that the needles are pinched at the interface, that is F+

λ (0) = F−
λ (0). In case of soft boundary conditions

β ∼ µ, however, there is no such restriction. In the following we set µ = β = 1.
By periodicity, Eq. (57) implies boundary conditions for the Aλ-layer, namely (see [56, Eq.(50)])

zλ

(
x1, F

+
λ (x1) , x3

)
= x1 (Bλ − I)n⊥ + F+

λ (x1) (Bλ − I)m⊥
λ − ηλϵBλnλ ,

zλ

(
x1, F

−
λ (x1) + ξ, x3

)
= x1 (Bλ − I)n⊥ + F−

λ (x1) (Bλ − I)m⊥
λ − ηλϵBλnλ for x1 < 0 .

In contrast to [56], we do not assume pure austenite for x1 ≥ 0 but only for x1 ≥ L := L
n⊥·m , that is,

yλ (x) = y
(A)
λ (x) = x− ηϵBλnλ . (58)

Motivated by Eq. (6) we again assume

∇zλ (x) e = 0 for all x (59)
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so that z can be considered as a function of x1 and x2. Let us summarize the boundary conditions:

F−
λ (−l) = ηλξ F+

λ (−l) = (ηλ + λ) ξ , ξ =
ϵ

m⊥
λ · nλ

F+
λ (x1) ≥ F−

λ (x1) for x1 ≤ 0,

z
(
x1, F

+
λ (x1)

)
= x1 (Bλ − I)n⊥

λ + F+
λ (x1) (Bλ − I)m⊥

λ − ηλϵBλnλ for x1 ≤ 0,

z
(
x1, F

−
λ (x1) + ξ

)
= x1 (Bλ − I)n⊥

λ + F−
λ (x1) (Bλ − I)m⊥

λ − ηλϵBλnλ for x1 ≤ 0 ,

zλ (−l , x2 ) = −l (Aλ − I)n⊥
λ + x2 (Aλ − I)m⊥

λ + ϵλaλ − ηλϵAλnλ

for (ηλ + λ) ξ < x2 < (ηλ + 1) ξ,

zλ (0, x2) = z
(0)
λ (x2) for F+

λ (0) < x2 < F−
λ (0) + ξ ,

zλ (0, x2) = x2 (Bλ − I)m⊥
λ − ηλϵBλnλ for 0 < x2 < F+

λ (0) ,

zλ (0, x2) = (x2 − ξ) (Bλ − I)m⊥
λ − ηλϵBλnλ for F−

λ (0) + ξ < x2 < ξ ,

zλ (L, x2) = c
(A)
λ = −ηϵBn for 0 < x2 < ξ ,

zλ (x1, 0) = zλ (x1, ξ) , for x1 > 0 . (60)

Formulation on the reference domain: Boundary conditions

To simplify the notation we introduce the function

z̃λ (x1, x2) = zλ (x1, x2) + ηλϵBλnλ −
{

x1 (A− I)n⊥
λ , x1 ≤ 0

0 , x1 ≥ 0
. (61)

Following [56, Sec. 8.2], we consider the energy minimization problem on a λ-independent reference do-
main. For the Aλ-layer, we follow [56, (56)] but keep track of the constants reflecting the non-orthogonality
of the natural coordinate system introduced in Eq. (3). For x ∈ R3 we set x̃j := x · ej , j = 1, 2, 3, where
{e1, e2, e3} denotes the standard basis in R3. We consider the transformation(

T
(M)
λ

)−1
:
{
x ∈ R3 : l ≤ x̃1 ≤ 0 , 0 ≤ x̃2 ≤ 1 , 0 ≤ x̃3 ≤ w

}
→ Mλ ,

(t1, t2, t3) = t1e1 + t2e2 + t3e3 7→ t1n
⊥ +

((
ξ −

(
F+
λ (t1)− F−

λ (t1)
))

t2 + F+
λ (t1)

)
m⊥ + t3e .

We refer to the transformed independent variables on the rectangle {−l ≤ x̃1 ≤ 0 , 0 ≤ x̃2 ≤ 1} as (t1, t2).
For the dependent variables, we make the change

u
(M)
λ (t1, t2) =

1

m⊥ · n
z̃

((
T
(M)
λ

)−1
(t1, t2)

)
.

As in [56, Eqs. (59)-(60)], the crystallographic equations yield for t1 = x1 < 0

∇y
(M)
λ (x1, x2) = Aλ + (uλ,1 (t1, t2)− gλuλ,2 (t1, t2))⊗mλ + (λaλ + hλuλ,2 (t1, t2))⊗ nλ ,

(62)
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where gλ (t1, t2) =
t2F

−′
λ (t1)+(1−t2)F

+′
λ (t1)

ξ−(F+
λ (t1)−F−

λ (t1))
, and hλ (t1, t2) = 1

ξ−(F+
λ (t1)−F−

λ (t1))
. The Dirichlet boundary

conditions for u(M)
λ are

u
(M)
λ (−l , t2 ) = ξ ((λ+ ηλ)− λt2) (1− λ)aλ , 0 < t2 < 1 ,

u
(M)
λ (t1, 0) = F+

λ (t1) (1− λ)aλ , −l < t1 < 0 ,

u
(M)
λ (t1, 1) = F−

λ (t1) (1− λ)aλ , −l < t1 < 0 ,

F+
λ (t1) ≥ F−

λ (t1) , −l < t1 < 0 . (63)

We note that the boundary conditions of u(M)
λ allow to recover the twin boundary curves F±

λ from u
(M)
λ in

the sense of traces on the upper and lower boundaries. We use this fact when studying the optimal shapes of
the needles. This property, however, strongly relies on the assumption of constant gradient in the Bλ-layer.
Suppose we allow for some relaxation, i.e., we introduce an additional free variable sλ to take part in the
minimization and instead of Eq. (57) set

zλ (x) = sλ (x1, x2) + x1 (Bλ − I)n⊥
λ + x2 (Bλ − I)m⊥

λ − ηλϵBλnλ

for F−
λ (x1) < x2 < F+

λ (x1) , x1 < 0 .

Then the function sλ enters the boundary conditions for the transformed function u on the reference domain:

u
(M)
λ (t1, 0) = F+

λ (t1) (1− λ)aλ +
1

m · n⊥sλ (x1, x2) , −l < t1 < 0

u
(M)
λ (t1, 1) = F−

λ (t1) (1− λ)aλ +
1

m · n⊥sλ (x1, x2) , −l < t1 < 0 .

If sλ depends only on x1, the width of the needle F+
λ (x1) − F−

λ (x1) is still recovered from the boundary
data. The offset ηλ, however, is not easily accessible.
We proceed analogously in the austenite part Aλ. We apply the transformation

T
(A)
λ : Aλ →

{
x ∈ R3 : 0 < x̃1 < L , 0 < x̃2 < 1 , 0 < x̃3 < w

}
x 7→ x1e1 +

1

ξ
x2e2 + x3e3 =

x ·m
m · n⊥e1 +

1

ξ

x · n
m · n⊥e2 + (x · e) e3 ,

and again refer to the transformed variables on the rectangle (0,L) × (0, 1) as (t1, t2). For the dependent
variables, we make the change

uλ (t1, t2) =
1

m · n⊥ z̃

((
T
(A)
λ

)−1
(t1, t2)

)
,

which implies

∇y
(A)
λ = I + uλ,1 ⊗mλ +

1

ξ
uλ,2 ⊗ nλ . (64)
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The Dirichlet boundary conditions for uλ in the austenite part are

u
(A)
λ (0, t2) = ξt2 (1− λ)aλ , 0 < t2 <

F+
λ (0)

ξ
,

u
(A)
λ (0, t2) = ξ (t2 − 1) (1− λ)aλ ,

F−
λ (0)

ξ
+ 1 < t2 < 1 ,

u
(A)
λ (t1, 0) = uλ (t1, 1) , 0 < t1 < L ,

u
(A)
λ (L, t2) = 0 , 0 < t2 < 1 . (65)

The gluing condition at t1 = 0 can be reformulated in the sense of traces

u
(A)
λ (0, t2) = u

(M)
λ

(
0,

ξt2 − F+
λ (0)

ξ + F−
λ (0)− F+

λ (0)

)
for

F+
λ (0)

ξ
< t2 <

F−
λ (0) + ξ

ξ
. (66)

The minimization problem

To formulate the minimization problem for the elastic energy on the reference domain we follow the paths
of [56, Sec. 8.4]. We study the leading order behavior of minimizing (or almost minimizing) deformations
for λ → 0, and hence consider sequences of sets of parameters {Aλ,Bλ,aλ,nλ, bλ,mλ} that satisfy the
crystallographic equations (1) with λ ≪ 1. The middle eigenvalue of Aλ satisfies λ2 = λ2 (λ). We assume
that the limit as λ → 0 is non-degenerate, i.e., I ̸= A0 where the middle eigenvalue of A0 satisfies λ2 = 1.
Further n0 ∦ m0, and a0 ̸= 0, and finally |Aλ −A0| ≤ Cλ as λ → 0.
The energy I (uλ) of an admissible function on the reference domain is defined as the elastic energy of
the corresponding deformation. Without restriction we may set the width of the specimen to w = 1. We
consider a sequence of free energy densities ϕλ such that there is a constant C > 0 independent of λ such
that

ϕλ (∇yλ (x)) ≥ C

{
dist2

(
∇yλA

−1
λ , SO (3)

)
if x1 < 0

dist2 (∇yλ, SO (3)) if x1 > 0
. (67)

In particular, ϕ depends on λ only via the matrices Aλ and Bλ. We note that this condition can easily be
relaxed if we assume that the second derivatives of ϕλ are uniformly bounded close to their wells. Motivated
by the scaling properties of the piecewise affine test functions we consider the rescaled energy functional

IcLλ

(
u(M),u(A)

)
:=

=


1
λ2

[∫ 0

−l

∫ 1

0
ϕλ (Aλ + (u,1 (t1, t2)− gλu,2 (t1, t2))⊗mλ + (λaλ + hλu,2 (t1, t2))⊗ nλ)J

(M)
λ +

+
∫ L
0

∫ 1
0 ϕλ

(
I + u,1 ⊗mλ + 1

ξu,2 ⊗ nλ

)
J
(A)
λ

]
if
(
u(M),u(A)

)
∈ Xλ

∞ else

(68)

where u := uλ. A pair
(
u
(M)
λ ,u

(A)
λ

)
is admissible for level λ, i.e.,

(
u
(M)
λ ,u

(A)
λ

)
∈ X cL

λ if the following
conditions hold:

1.
(
u
(M)
λ ,u

(A)
λ

)
∈ H1

(
(−l , 0 )× (0, 1) ;R3

)
×H1

(
(0, L)× (0, 1) ;R3

)
.
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2. There are Lipschitz functions F±
λ : (−l , 0 ) → R with Lipschitz constants cL satisfying 0 ≤ F+

λ (t1)−
F−
λ (t1) ≤ ϵ

2 point-wise for all −l < t1 < 0, and numbers ηλ ∈ R such that u(M)
λ satisfies the

boundary conditions (63), and u
(A)
λ satisfies (65). The gluing condition Eq. (66) holds.

In the following, we skip the upper index cL which corresponds to the uniform Lipschitz bound on the twin
boundaries. The limit problem for λ → 0 will turn out to be independent of this parameter.

Remark 6.1 Fix an admissible quadruple of parameters (aλ,nλ,bλ,mλ). Then there is an energy-preserving
one-to-one correspondence between the set of admissible functions Xλ defined by these parameters and the
sets of admissible functions X̃λ defined by one set of parameters obtained by changing signs as in Eq. (39).

Proof: We denote by X̃λ the set of admissible functions for the equivalent parameters
(
ãλ, ñλ, b̃λ, m̃λ

)
:=

(−aλ,−nλ, bλ,mλ) we define the map

F : Xλ → X̃λ ,
(
u
(M)
λ ,u

(A)
λ

)
7→
(
ũ
(M)
λ , ũ

(A)
λ

)
with ũ

(M/A)
λ (t1, t2) = u

(M/A)
λ (t1, 1− t2) .

Then ũ
(M)
λ and ũ

(A)
λ satisfy the Dirichlet boundary conditions (63) and (65) with F̃±

λ = −F∓
λ and η̃λ =

−λ− ηλ, the periodicity condition, and the gluing condition (66). For the coefficient functions we find

g̃λ (t1, t2) =
t2F̃

−′

λ (t1) + (1− t2) F̃
+′

λ (t1)

ξ −
(
F̃+
λ (t1)− F̃−

λ (t1)
) = −gλ (t1, 1− t2) ,

h̃λ (t1, t2) =
1

ξ −
(
F̃+
λ (t1)− F̃−

λ (t1)
) = hλ (t1, t2) = hλ (t1, 1− t2) .

Further, for the determinant of the Jacobian, J̃λ (t1, t2) = Jλ (t1, t2) = Jλ (t1, 1− t2), and hence the energy
of ũ is given by

Ĩλ

(
ũ(M), ũ(A)

)
= Iλ

(
u(M),u(A)

)
.

Similarly for
(
ãλ, ñλ, b̃λ, m̃λ

)
= (aλ,nλ,−bλ,−mλ) we define the map Xλ → X̃λ by

ũ
(M/A)
λ (t1, t2) = −u

(M/A)
λ (t1, 1− t2) .

Composing the two one-to-one maps yields an energy-preserving one-to-one map for the quadruple of pa-
rameters (−aλ,−nλ,−bλ,−mλ). 2

6.1 Computation of the Γ-limit for λ → 0

We now turn to the computation of the limit functional for λ → 0 of the sequence of energy functionals
defined in Eq. (68) in the sense of Γ-convergence [13, 24, 23, 2]. We start with a compactness result, which
characterizes weak limits of low energy deformations. We characterize the limits in the martensite and the
austenite part separately and show then that the two parts are connected at the interface.

31



Lemma 6.2 Suppose
{
u
(M)
λ ,u

(A)
λ

}
is a low energy sequence, that is, Iλ

(
u
(M)
λ ,u

(A)
λ

)
≤ C with a uniform

constant C independent of λ. Then for a subsequence (not relabeled) we have in the martensite part v(M)
λ :=

1
λu

(M)
λ ⇀ v

(M)
0 weakly in H1

(
(−l , 0 )× (0, 1) ;R3

)
. The limit function satisfies

v
(M)
0 (−l , t2 ) = ξ (1 + η − t2)a0 for 0 < t2 < 1 with some η ∈ R ,

v
(M)
0 (t1, 0) ∥a0∥v(M)

0 (t1, 1) and
(
v
(M)
0 (t1, 0)− v

(M)
0 (t1, 1)

)
· a0 ≥ 0 for − l < t1 < 0 .

Similarly for the austenite part v(A)
λ := 1

λu
(A)
λ ⇀ v

(A)
0 weakly in

(
H1 ((0,L)× (0, 1)) ;R3

)
. For the limit

function,

v
(A)
0 (t1, 0) = v

(A)
0 (t1, 1) for 0 < t1 < L , and v

(A)
0 (L, t2) = 0 for 0 < t2 < 1 .

Finally, v ∈ H1
(
(−l ,L)× (0, 1) ;R3

)
, where

v (t1, t2) =

{
v
(M)
0 (t1, t2) if t1 < 0

v
(A)
0 (t1, t2) if t1 > 0

. (69)

Proof: We follow closely the paths of [56, Sec. 8.4.2] and recall the arguments for completeness, pointing
out the modifications necessary due to relaxation of the austenite. By the assumptions on ϕλ, F±

λ , Aλ and
yλ, there is a constant C > 0 such that for all λ,

Cλ2 ≥
∫
Mλ

dist2
(
∇y

(M)
λ , SO (3)Aλ

)
dx , and Cλ2 ≥

∫
Aλ

dist2
(
∇y

(A)
λ , SO (3)

)
dx .

By the rigidity lemma [37, Theorem 3.1], there exist rotations R(M)
λ , R(A)

λ ∈ SO (3) and a constant C > 0,
which depends only on the uniform Lipschitz bounds of the domains, such that∫

Mλ

∣∣∣∇y
(M)
λ −R

(M)
λ Aλ

∣∣∣2 dx2dx1 ≤ Cλ2 , and
∫
Aλ

∣∣∣∇y
(A)
λ −R

(A)
λ

∣∣∣2 dx ≤ Cλ2 .

We consider the austenite part first and apply the arguments from [56, Sec. 8.4.2]. By assumption (59), we
may without loss of generality assume x3 = 0. Then for S(A) := {x ∈ Aλ : x1 = L , x3 = 0}, by trace
theorem there is a constant c(1)λ such that∫

S(A)

∣∣∣y(A)
λ (x)−R

(A)
λ x− c

(1)
λ

∣∣∣2 dA ≤ Cλ2 . (70)

We define x0 ∈ S(A) by x0 ·mλ =
(
n⊥
λ ·mλ

)
L = L and x0 ·nλ = ϵ

2 , and we denote the ball with center
x0 and radius r by B (x0, r). By the boundary condition (55), Eq. (70) turns into∫

{x·mλ=L}∩B(x0,r)

∣∣∣(I −R
(A)
λ

)
x− ηλϵBλnλ − c

(1)
λ

∣∣∣2 dA ≤ Cλ2 .
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If we put F λ := I −R
(A)
λ and choose r ≪ 1, by the symmetry of {x ·mλ = L} ∩B (x0, r) with respect

to x0,

Cλ2 ≥
(
F T

λF λ

)
·
∫
{x·mλ=L}∩B(x0,r)

(x− x0)⊗ (x− x0) dx+ 2r
∣∣∣F λx0 − ηλϵBλnλ − c

(1)
λ

∣∣∣2 .

Hence the two non-negative terms satisfy
∣∣∣F λx0 − ηλϵBλnλ − c

(1)
λ

∣∣∣2 ≤ Cλ2 and
(
F T

λF λ

)
·(I −mλ ⊗mλ) ≤

Cλ2, which implies∣∣∣I −R
(A)
λ

∣∣∣2 ≤ 2
(
I −R

(A)
λ

)T (
I −R

(A)
λ

)
· (I −mλ ⊗mλ) ≤ Cλ2 .

Putting things together, we finally have by triangle inequality∥∥∥∇y
(A)
λ − I

∥∥∥
L2((0,L)×(0,ξ);R3)

≤
∥∥∥∇y

(A)
λ −R

(A)
λ

∥∥∥
L2((0,L)×(0,ξ);R3)

+
∥∥∥R(A)

λ − I
∥∥∥
L2((0,L)×(0,ξ);R3)

≤ Cλ .

(71)

To derive estimates for the martensite part, we observe that by the uniform Lipschitz bounds on F±
λ , for any

δ > 0 there is for all λ ≤ λδ > 0,

Ωδ
Aλ

:=
{
x ∈ R3 : −l < x1 < 0 , F+

λ (x1 ) + δ < x2 < F−
λ (x1 ) + ξ − δ , 0 < x3 < 1

}
⊂ Mλ .

We make again use of assumption (59) and consider a part of the sliced interface, that is the subboundary

S(A/M) :=
{
x ∈ R3 : x1 = 0, F+ (0) + δ < x2 < F− (0) + ξ − δ , x3 = 0

}
.

By the trace theorem and the bound (71) there is a constant c(2)λ such that∫
S(A/M)

∣∣∣y(A)
λ (x)− I (x) + c

(2)
λ

∣∣∣2 dA ≤ Cλ2 , i.e.,
∥∥∥y(A)

λ − I + c
(2)
λ

∥∥∥
L2(S(A/M);R3)

≤ Cλ .

On the other hand, the trace theorem implies that there is a constant c(3)λ such that∥∥∥y(M)
λ (x)−R

(M)
λ Aλx+ c

(3)
λ

∥∥∥
L2(S(A/M);R3)

≤ Cλ .

By the triangle inequality,∥∥∥I −R
(M)
λ Aλ − c

(2)
λ + c

(3)
λ

∥∥∥
L2(S(A/M);R3)

≤
∥∥∥yλ − I + c

(2)
λ

∥∥∥
L2(S(A/M);R3)

+
∥∥∥yλ −R

(M)
λ Aλ + c

(3)
λ

∥∥∥
L2(S(A/M);R3)

≤ Cλ .

Following [56, Eqs. (71)-(79)], an analogous calculation as spelled out above for the austenite part shows∫
Mλ

|∇yλ −Aλ|2 dx2dx1 ≤ Cλ2 , and
∫
Mλ

|∇yλ −A0|2 dx2dx1 ≤ Cλ2 .
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The H1-bounds on the deformations yλ imply bounds for the functions v(A/M)
λ . By the Dirichlet boundary

condition at t1 = L, the gluing condition at t1 = 0, and the assumption that mλ ·n⊥
λ is uniformly bounded

away from zero, there is a constant C > 0 independent of λ such that∥∥∥v(M)
λ

∥∥∥
H1((−l,0)×(0,1))

≤ C and
∥∥∥v(A)

λ

∥∥∥
H1((0,L)×(0,1))

≤ C (72)

By trace theorem ηλ
λ is bounded and hence has a convergent subsequence such that v

(M)
0 (−l , t2 ) =

ξ (1 + η − t2)a0 for 0 < t2 < 1 with some limit η ∈ R. The remaining boundary conditions follow
similarly. By the boundary conditions (63), the bounds from Eq. (72) imply that

∥∥F±
λ

∥∥
L2(−ℓ,0)

≤ Cλ.

Hence by the uniform Lipschitz assumption
∥∥F±

λ

∥∥
L∞(−ℓ,0)

→ 0 for λ → 0 (cf. [56, Sec. 8.4.3 and 8.4.4]).
It remains to show that v ∈ H1 ((−l,L)× (0, 1)), where v is defined by Eq. (69). By Rellich’s lemma, the
trace functions v(M)

λ (0, ·) → v
(M)
0 (0, ·) and v

(A)
λ (0, ·) → v

(A)
0 (0, ·) converge strongly in L2

(
(0, 1) ;R3

)
,

and it suffices to show v
(M)
0 (0, t2) = v

(A)
0 (0, t2) in L2 (0, 1). We use the notation

ṽ
(M)
λ (0, t2) =

{
v
(M)
λ (0, t2) if t2 ∈ (0, 1)

0 else
,

and the abbreviations

aλ :=
ξ

ξ + F−
λ (0)− F+

λ (0)
, bλ := −

F+
λ (0)

ξ + F−
λ (0)− F+

λ (0)
, and Iλ :=

(
0,

F+
λ (0)

ξ

)
∪
(
F−
λ (0) + ξ

ξ
, 1

)
.

In particular aλ → 1, bλ → 0, and |Iλ| → 0 for λ → 0. Hence

lim
λ→0

∥∥∥v(M)
λ (0, ·)− v

(A)
λ (0, ·)

∥∥∥
L2(0,1)

≤ lim
λ→0

∥∥∥v(M)
λ (0, ·)− v

(M)
λ (0, aλ ·+bλ)

∥∥∥
L2(R)

+ lim
λ→0

∥∥∥v(M)
λ (0, ·)− v

(A)
λ (0, ·)

∥∥∥
L2(Iλ)

= 0 .

2

The Γ-limiting energy functional is characterized by the following theorem.

Theorem 6.3 Suppose
{
u
(M)
λ ,u

(A)
λ

}
is a low energy sequence, that is, Iλ

(
u
(M)
λ ,u

(A)
λ

)
≤ C with a

uniform constant C independent of λ.

1. Lower bound.

lim
λ→0

inf
1

λ2
Iλ

(
u
(M)
λ ,u

(A)
λ

)
≥

≥ ϵ

2

{∫ 0

−l

∫ 1

0

∂2ϕ (I)

∂F 2

(
G(M),G(M)

)
dx+

∫ L

0

∫ 1

0

∂2ϕ (I)

∂F 2

(
G(A),G(A)

)
dx

}
=: I (v) .(73)

where

G(M) := v,1 ⊗A−T
0 m0 +

(
a0 +

1

ξ
v,2

)
⊗A−T

0 n0 , G(A) = v,1 ⊗m0 +
1

ξ
v,2 ⊗ n0 .

The function v = v0 is defined piecewise by the weak limits of subsequences of v(M)
λ , and v

(A)
λ .
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2. Upper bound. Suppose that v ∈ H1
(
(−l ,L)× (0, 1) ;R3

)
satisfies the boundary conditions v (−l , t2 ) =

ξ (1 + η − t2)a0 for 0 < t2 < 1 with some η ∈ R, v (t1, 0) ∥a0∥v (t1, 1) and (v (t1, 0)− v (t1, 1)) ·
a0 ≥ 0 for −l < t1 < 0 ; v (t1, 0) = v (t1, 1) for 0 < t1 < L, and v (L, t2) = 0. Then there
exists a sequence

(
u
(M)
λ ,u

(A)
λ

)
∈ Xλ such that 1

λu
(M)
λ ⇀ v|(−l ,0 )×(0,1),

1
λu

(A)
λ ⇀ v|(0,L)×(0,1), and

Iλ

(
u
(M)
λ ,u

(A)
λ

)
→ I (v) where the functional I is defined by Eq. (73).

Proof: 1. Lower Bound. The limes inferior is superadditive, i.e., for arbitrary sequences aλ, bλ

lim
λ→0

inf (aλ + bλ) ≥ lim
λ→0

inf aλ + lim
λ→0

inf bλ .

Hence, to derive the lower bound for the sum of the elastic energies of the martensite and the austenite part,
the considerations from [56, Sec. 8.4.4], which are based on techniques from [37], can be applied to the
martensite and the austenite part independently. For completeness, we recall them briefly. For simplicity of
notation, we set Ω(M) := (−l , 0 ) × (0, 1), and Ω(A) := (0,L) × (0, 1). As

(
u
(M)
λ ,u

(A)
λ

)
is a low energy

sequence,

C ≥
∫
Ω(M)

ϕ
(
I + λG

(M)
λ

)
J
(M)
λ dt+

∫
Ω(A)

ϕ
(
I + λG

(A)
λ

)
J
(A)
λ dt

where

G
(M)
λ =

(
v
(M)
λ,1 − gλv

(M)
λ,2

)
⊗A−T

λ mλ +
(
aλ + hλv

(M)
λ,2

)
⊗A−T

λ nλ ,

J
(M)
λ =

(
ξ −

(
F+
λ − F−

λ

))
mλ · n⊥ , G

(A)
λ = v

(A)
λ,1 ⊗mλ +

1

ξ
v
(A)
λ,2 ⊗ nλ , J

(A)
λ = ϵ ,

with gλ (t1, t2) =
t2F

−′
λ (t1)+(1−t2)F

+′
λ (t1)

ξ−(F+
λ (t1)−F−

λ (t1))
and hλ (t1, t2) =

1
ξ−(F+

λ (t1)−F−
λ (t1))

. To do careful Taylor expan-

sions of the integrands in the spirit of [37] we denote by E
(M)
λ and E

(A)
λ the sets where G

(M)
λ and G

(A)
λ are

large, respectively, i.e.,

E
(M)
λ :=

{
x ∈ Ω(M) :

∣∣∣G(M)
λ (x)

∣∣∣ ≥ λ−1/2
}

,

and analogously for E(A)
λ . We use the place-holder j ∈ {A,M}. The Taylor expansions on Ω(j) \E(j)

λ read
(recall that I is a critical point for ϕ ∈ C2)

ϕ
(
I + λG

(j)
λ

)
=

1

2

∂2ϕ (I)

∂F 2

(
λG

(j)
λ , λG

(j)
λ

)
+ ω

(∣∣∣λG(j)
λ

∣∣∣) ∣∣∣λG(j)
λ

∣∣∣2 , (74)

where ω (s) → 0 as s → 0. Hence

1

λ2

∫
Ω(j)

ϕ
(
I + λG

(j)
λ

)
J
(j)
λ dt ≥

∫
Ω(j)\E(j)

λ

[
1

2

∂2ϕ (I)

∂F 2

(
G

(j)
λ ,G

(j)
λ

)
+ ω

(∣∣∣λG(j)
λ

∣∣∣) |Gλ|2
]
J
(j)
λ dt .
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By compactness, G(j)
λ is bounded uniformly in L2

(
Ω(j)

)
and ω

(∣∣∣λG(j)
λ

∣∣∣)→ 0 uniformly. Therefore,

lim
λ→0

inf
1

λ2

∫
Ω(j)

ϕ
(
I + λG

(j)
λ

)
J
(j)
λ dt ≥ lim

λ→0
inf

∫
Ω(j)\E(j)

λ

1

2

∂2ϕ (I)

∂F 2

(
G

(j)
λ ,G

(j)
λ

)
J
(j)
λ dt

= lim
λ→0

inf

∫
Ω(j)

1

2

∂2ϕ (I)

∂F 2

(
χ
Ω(j)\E(j)

λ

G
(j)
λ , χ

Ω(j)\E(j)
λ

G
(j)
λ

)
J
(j)
λ dt .

We have J
(M)
λ → ϵ and J

(A)
λ → ϵ uniformly on the respective Ω(j). Since χ

Ω(j)\E(j)
λ

converges boundedly

almost everywhere to χΩ(j) , we have χ
Ω(j)\E(j)

λ

G
(j)
λ ⇀ G(j) in L2

(
Ω(j)

)
. By the lower bound on ϕ,

lim
λ→0

inf
1

λ2

∑
j∈{M,A}

∫
Ω(j)

ϕ
(
I + λG

(j)
λ

)
J
(j)
λ dt ≥ ϵ

2

2∑
j∈{M,A}

∫
Ω(j)

∂2ϕ (I)

∂F 2

(
G(j),G(j)

)
dt .

Following [56, Eq. (95)-(98)], we can identify the weak limits

G(M) = v,1 ⊗A−T
0 m0 +

(
a0 +

1

ξ
v,2

)
⊗A−T

0 n , and G(A) = v,1 ⊗m0 +
1

ξ
v,2 ⊗ n .

2. Upper bound. To construct a recovery function we follow the paths of [56, Sec. 8.4.5] and extend the
construction to the austenite part. Suppose first the function v0 ∈ H1

(
(−l , 0 )× (0, 1) ;R3

)
is smooth in

the sense of C∞ and satisfies the limit boundary conditions given in the Theorem with some η ∈ R. We
define a sequence of linear transformations Lλ ∈ R3×3 satisfying Lλa0 = aλ and Lλ → I as λ → 0. We
define u(M)

λ := λLλv0|Ω(M) and u
(A)
λ := λLλv0|Ω(A) . By construction, u(M)

λ and u
(A)
λ satisfy the required

Dirichlet boundary conditions with ηλ = λη, and the gluing condition Eq. (66). Further, the associated
functions F±

λ are uniformly Lipschitz for small λ.
For general v0 ∈ H1

(
(−l , 0 )× (0, 1) ;R3

)
we use density of C∞ in H1. There is a sequence v(δ) ∈

C∞ ((−l , 0 )× (0, 1) ;R3
)

that satisfies the required boundary conditions and converges to v in H1 as

δ → 0. For v(δ) we find a recovery sequence v(δ)
λ as above. Then there is a diagonal sequence vλk(δ) → v0.

In both cases, convergence of the energies follows by Taylor’s formula (74) which now holds true on the
whole domains, using strong convergence. 2

6.2 The Γ-limit problem

We now turn to the discussion of the Γ-limit minimization problem for both, hard and for soft boundary
conditions. In the hard boundary case one assumes pure austenite up to the interface. In particular, there is
no elastic energy contribution from the austenite side. To be precise, we consider the hard boundary problem

min
v∈Ah

∫ 0

−l

∫ 1

0

1

2

∂2ϕ (I)

∂F 2

(
G(M),G(M)

)
ϵdt , (75)

where

G(M) := G(M) (v) = v,1 ⊗A−Tm+

(
a+

1

ξ
v,2

)
⊗A−Tn ∈ R3×3 . (76)
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The set of admissible functions is given by

Ah :=
{
v ∈ H1

(
(−l , 0 )× (0, 1) ;R3

)
: v (t1, 0) ∥a∥v (t1, 1) , (v (t1, 0)− v (t1, 1)) · a ≥ 0 ,

v (0, t2) = 0 , v (−l , t2 ) = ξ (1− t2 + η)a for some η ∈ R} . (77)

We refer to the optimization problem given by Eqs. (75)-(77) as (HBC). This minimization problem is
derived in [56] with ξ replaced by ϵ since there the volume factor n ·m⊥ is missing after transformation to
the reference domain. The soft boundary limit problem as derived in Section 6.1 reads

min
v∈As

∫ 0

−l

∫ 1

0

1

2

∂2ϕ (I)

∂F 2

(
G(M),G(M)

)
ϵdt+

∫ L

0

∫ 1

0

1

2

∂2ϕ (I)

∂F 2

(
G(A),G(A)

)
ϵdt (78)

with

G(M) = G(M) (v) = v,1 ⊗A−Tm+

(
a+

1

ξ
v,2

)
⊗A−Tn , and

G(A) = G(A) (v) = v,1 ⊗m+
1

ξ
v,2 ⊗ n . (79)

The set of admissible functions is

As :=
{
v ∈ H1

(
(−l ,L)× (0, 1) ;R3

)
: v (t1, 0) ∥a∥v (t1, 1) , (v (t1, 0)− v (t1, 1)) · a ≥ 0 for t1 < 0,

v (−l , t2 ) = ξ (1− t2 + η)a for some η ∈ R , v (t1, 0) = v (t1, 1) for t1 > 0 , v (L, t2) = 0} . (80)

We refer to the optimization problem given by Eqs. (78)-(80) as (SBC). From now on, for simplicity of
notation, we refer to the coordinates (t1, t2) as (x, y).
The sets of admissible functions Ah and As as given in Eqs. (77) and (80), respectively, are both convex,
closed and non-empty. For our examples we consider super-isotropic energy densities, i.e.,

1

2

∂2ϕ (I)

∂F 2 (M ,M) =
1

2

∂2ϕ (I)

∂F 2 (M ,M) = µ

∣∣∣∣M +MT

2

∣∣∣∣2 for all M ∈ R3×3 (81)

with Lamé’s second parameter µ. Then by Korn’s inequality there are unique solutions to (HBC) and (SBC),
respectively, see [31].

6.3 Needles are pinched

In this section we show that for any admissible function of the limit problem for hard, respectively soft
boundary conditions, the associated rescaled needles are pinched at the martensite/austenite interface in a
weak sense. More precisely, we show

f+ (·)− f− (·)√
|·|

∈ L2 (−l, 0) , (82)

where f+ (t1) = v (t1, 0) · a, and f− (t1) = v (t1, 1) · a. Roughly speaking the condition (82) says that for
small λ pinched needles are energetically more favorable than open laminates, see Fig. 6. Open laminates
are admissible only for soft but not for hard boundary conditions. Hence we expect qualitatively the same
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(a) Pinched needles (cf. Section 5) (b) Open laminates

Figure 6: For small λ pinched needles are energetically more favorable than open laminates.

needle structures for both types of boundary conditions, although in case of soft boundary conditions we
allow for more general structures.
To prove the condition (82) we consider more generally extensions of functions in fractional order Sobolev
spaces W s,p (Ω) for 1 < p < ∞ and 0 < s < 1 on Lipschitz domains Ω ⊂ RN , and prove a condition for
extensions to be in W s,p

(
RN
)
. The gluing condition characterizes possible extensions of fractional order

Sobolev functions. For a Lipschitz domain Ω ⊂ RN the Sobolev space W s,p (Ω) with 0 < s < 1 and
1 < p < ∞ is defined to consist of all functions u ∈ Lp (Ω) with finite semi-norm

[u]pW s,p(Ω) :=

∫
Ω

∫
Ω

|u (x)− u (y)|p

|x− y|N+sp
dxdy .

6.3.1 Extensions of fractional order Sobolev functions

In this section, we prove and apply the following lemma.

Lemma 6.4 Suppose F : RN−1 → R is a Lipschitz function. Naturally, F defines two Lipschitz domains

Ω+ =
{
x ∈ RN : xN ≥ F

(
x′)} , Ω− =

{
x ∈ RN : xN ≤ F

(
x′)} ,

where x′ = (x1, . . . , xN−1) ∈ RN−1. Let 1 < p < ∞ and 0 < s < 1. For f± ∈ W s,p (Ω±) we set

f (x) =

{
f+ (x) if x ∈ Ω+

f− (x) if x ∈ Ω−
.

Then f ∈ W s,p
(
RN
)

if and only if

|f+ (x′, xN )− f− (x′, 2F (x′)− xN )|
|xN − F (x′)|s

∈ Lp (Ω+) .

Lemma 6.4 contains several well-studied results. For H1/2 (R) with Ω+ = [0,∞) and Ω− = (−∞, 0], the
implication

f ∈ H1/2 (R) ⇒ |f (x)− f (−x)|√
|x|

∈ L2 (R)
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has been derived to define a generalized notion of continuity that does not involve point evaluations (see [53,
Lemma 33.1] and the references given there). Further in case of constant extension by zero, i.e., f− (x) = 0
for all x ∈ Ω− = RN \ Ω+, Lemma 6.4 reduces to the well-known statement (see e.g. [53, Lemma 37.1])

f ∈ W s,p
(
RN
)
⇔ |f+|

dists (·, ∂Ω+)
∈ Lp (Ω+) .

For Lipschitz domains Ω+ as in Lemma 6.4, the denominator |xN − F (x′)| is comparable to dist (·, ∂Ω),
see Lemma 6.7 for a quantitative statement. There is a close relation to fractional Hardy inequalities (see,
e.g., [39, 43, 48, 33] and the references therein). These integral inequalities state that for sp > 1 for all
u ∈ C∞

0 (Ω) on nicely bounded domains Ω ⊂ RN∫
Ω

|u (x)|p

dist (x, ∂Ω)sp
dx ≤ c

∫
Ω

∫
Ω

|u (x)− u (y)|p

|x− y|N+sp
dxdy .

A recent focus of research lies on the search of the optimal constant for such inequalities on simple domains
(see [35, 36, 10] and the references given there). The proof of Lemma 6.4 comes along with estimates. They
are, however, far from being optimal.
For the critical case sp = 1, in particular for s = 1

2 and p = 2, there are counter-examples to Hardy-type
inequalities on Lipschitz domains [32]. Lemma 6.4, however, holds true even in the critical case because
different spaces are considered. Hardy inequalities hold true for functions from W s,p

0 , that is the closure of
the space of compactly supported smooth functions. The subspace of functions in H1/2, however, whose
constant extension by zero lies again in H1/2 is not equal to H

1/2
0 = H1/2 (see [47, Theorem 11.7]). There

are even functions f ∈ H1/2 ∩ C
[
0, 12
]

with f (0) = 0 such that the extension to the negative axis by 0 is
not contained in H1/2. To have an example we consider f ∈ C∞ [0, 12], with f (0) = 0 given by

f (x) =
1√

− log (x)
.

We denote the radial-symmetric extension to the half unit ball in R2 by F (x) = f (|x|). Then

[F ]2
H1(B(0, 12))

=

∫
B(0, 12)

|∇F (x)|2 dx = c

∫ 1/2

0

dr

r (− log (r))3
= c

[
1

log2 (r)

]1/2
0

< ∞ ,

that is, F ∈ H1
(
B
(
0, 12
))

and hence by trace theorem f ∈ H1/2
(
0, 12
)
. The constant extension f ≡ 0 for

x < 0, however, is not an H1/2 function. The necessary condition from Lemma 6.4 is not satisfied,∫ 1/2

0

f2 (x)

x
dx = −

∫ 1/2

0

dx

x log (x)
= [− log |log (x)|]1/20 = ∞ .

Some properties of functions in H1/2 on intervals can be read-off directly from Lemma 6.4. For a < b and
0 < α ≤ 1, we denote the space of Hölder-continuous functions by (see [1, (1.29)])

Cα ([a, b]) := {f : [a, b] → R : ∃0 < K < ∞ s.t. for all x, y ∈ [a, b] : |f (x)− f (y)| ≤ K |x− y|α} .
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Remark 6.5 1. Assume 0 < α ≤ 1, and a < b < c. For f1 ∈ Cα [a, b] ∩ H1/2 ([a, b]) and f2 ∈
Cα [b, c] ∩H1/2 ([b, c]) let f be defined by

f (x) =

{
f1 (x) a < x < b

f2 (x) b < x < c
.

Then f ∈ H1/2 (a, c) if and only if f1 (b) = f2 (b).

2. The relation R ⊂ H1/2 (a, b)×H1/2 (a, b) defined by

(f, g) ∈ R :⇔ h(f,g) ∈ H1/2 (2a− b, b) , where h(f,g) (x) :=

{
f (2a− x) , 2a− b < x < a

g (x) , a < x < b

is an equivalence relation on H1/2 (a, b)×H1/2 (a, b).

These properties imply that in the limit λ = 0, the rescaled needles are pinched at the interface. Recall that
the needle boundaries are f+ (t1) = v (t1, 0) · a and f− (t1) = v (t1, 1) · a, for −l ≤ t1 ≤ 0.

Lemma 6.6 Let v ∈ Ah (see (77)) or v ∈ As (see (80)). Then

f+ (t1)− f− (t1)√
|t1|

∈ L2 (−l, 0) .

Proof: For hard boundary conditions, we have v ∈ H1 ((−l, 0)× (0, 1)), and therefore by trace theorem
on Lipschitz domains, g± ∈ H1/2 (−l, 1), where

g± (x) =

{
f± (x) x ≤ 0

0 = v (0, ·) · a x ≥ 0
.

By Remark 6.5, the pieced together function

f (x) =

{
f+ (x) x < 0

f− (−x) x > 0

lies in H1/2.The claim follows from Lemma 6.4.
In case of soft boundary conditions, the claim follows analogously using periodicity in the austenite, i.e.,
v (t1, 1) · a = v (t1, 0) · a for t1 > 0. 2

To prove Lemma 6.4, we need two geometric estimates.

Lemma 6.7 Let F : RN−1 → R be Lipschitz with Lipschitz constant L, and set

Ω− :=
{(

x′, xN
)
∈ RN : xN ≤ F

(
x′)} .

(i) For x ∈ Ω− we define the mirror point with respect to the graph of F by x := (x′, 2F (x′)− xN ).
Then for every x, y ∈ Ω−,

|x− y| ≥

√
1 + L2 − L

√
1 + L2

1 + L2 + L
√
1 + L2

|x− y| , (83)

and the constant is optimal, i.e., there is a function F with Lipschitz constant L and points x, y ∈ Ω−
such that in Eq. (83) equality holds.
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(ii) For all x ∈ RN \ Ω−,

dist (x,Ω−) ≥
1√

1 + L2

∣∣xN − F
(
x′)∣∣ .

Proof: (i) Without loss of generality, we may assume x = (0, 0), and F (0) > 0. For any y ∈ Ω−, y ̸= x,
we have to bound the ratio |x−y|

|x−y| below. For that, it suffices to consider a plane containing the points x, y
and x. Hence we consider only the two-dimensional situation.
Let y ∈ Ω− ⊂ R2. We may assume y1 > 0 by symmetry and y2 > F (0) since otherwise |y| = |x− y| ≤
|x− y| = |(0, 2F (0))− y|. Consider points y with fixed norm |y| = c, and y1 ≥ 0. Then by the cosine
theorem, the length |x− y| monotonically increases as y2 > 0 decreases. As y ∈ Ω− and x = (0, 0) ∈ Ω−,
the Lipschitz condition implies y2 ≤ F (0) + Ly1. Therefore, for all y ∈ Ω− with y ̸= x,

|x− y|
|x− y|

=
|x− y|
|y|

≥ min
y1≥0

|x− (y1, F (0) + Ly1)|
|(y1, F (0) + Ly1)|

≥

√
1 + L2 − L

√
1 + L2

1 + L2 + L
√
1 + L2

,

where the minimum is achieved for ycrit1 := F (0)√
1+L2

. Equality in Eq. (83) holds if ycrit1 ∈ Ω−, e.g., for affine
functions F (x) = 1 + Lx.
(ii) Without loss of generality, we may assume (x′, F (x′)) = 0, and xN > 0. By the Lipschitz assumption,
dist (x,Ω−) ≥ dist (x,K), where K =

{
z = (z′, zN ) ∈ RN : zN = L |z′|

}
. For z ∈ K we have∣∣x−

(
z′, L

∣∣z′∣∣)∣∣2 = ∣∣z′∣∣2 (1 + L2
)
− 2xNL

∣∣z′∣∣+ x2N ,

which is minimal for |z′| = LxN
1+L2 . Hence,

dist (x,Ω−) ≥
1√

1 + L2

∣∣xN − F
(
x′)∣∣ .

2

We now turn back to the gluing of functions from fractional Sobolev spaces on Lipschitz domains.
Proof: (Lemma 6.4) Suppose f ∈ W s,p

(
RN
)
. We proceed along the lines of [53, Lemma 33.1], where

the case s = 1
2 , p = 2 and N = 1 is studied. For a function u ∈ W 1,p

(
RN
)
, we denote the trace by

γ0u (x) = u (x′, F (x′)). By Hardy’s inequality [53, Lemma 13.5],∥∥∥∥u (x′, xN )− γ0u (x)

xN − F (x′)

∥∥∥∥
Lp(Ω+)

≤ p

p− 1
∥u∥W 1,p(Ω+) ,∥∥∥∥u (x′, xN )− γ0u (x)

xN − F (x′)

∥∥∥∥
Lp(Ω−)

=

∥∥∥∥u (x′, 2F (x′)− xN )− γ0u (x)

(2F (x′)− xN )− F (x′)

∥∥∥∥
Lp(Ω+)

≤ p

p− 1
∥u∥W 1,p(Ω−) ,

which yields ∥∥∥∥u (x′, xN )− u (x′, 2F (x′)− xN )

xN − F (x′)

∥∥∥∥
Lp(Ω+)

≤ 2p

p− 1
∥u∥W 1,p(RN ) .

Therefore, there are bounded operators

T1 : W
1,p
(
RN
)
→
(
Lp (Ω+) ,

dx

|xN − F (x′)|p
)

and T0 : L
p
(
RN
)
→ (Lp (Ω+) , dx)
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given by
Ti : u 7→ u

(
x′, xN

)
− u

(
x′, 2F

(
x′)− xN

)
, i = 0, 1 .

Hence by interpolation (see [43, Remark 5.31], [8, Cor. 4.13] and [53, Lemma 23.1]) there are for 0 < s < 1
bounded operators

Ts : W
s,p
(
RN
)
→
(
Lp (Ω+) ,

dx

|xN − F (x′)|sp
)

, u 7→ u
(
x′, xN

)
− u

(
x′, 2F

(
x′)− xN

)
.

Reformulated, we have∥∥∥∥ |u (x′, xN )− u (x′, 2F (x′)− xN )|
|xN − F (x′)|s

∥∥∥∥
Lp(Ω+)

< ∞ for all u ∈ W s,p
(
RN
)
.

To prove the other implication suppose f± ∈ W s,p (Ω±), and |f+(x′,xN )−f−(x′,2F (x′)−xN )|
|xN−F (x′)|s ∈ Lp (Ω+). We

have to bound the W s,p-seminorm which we decompose into

[f ]p
W s,p(RN )

= [f+]
p
W s,p(Ω+) + [f−]

p
W s,p(Ω−) + 2

∫
Ω+

∫
Ω−

|f+ (x)− f− (y)|p

|x− y|N+sp
dydx .

The last term is estimated by

2 · 2p
{∫

Ω+

∫
Ω−

|f+ (x)− f− (x)|p

|x− y|N+sp
dydx+

∫
Ω+

∫
Ω−

|f− (x)− f− (y)|p

|x− y|N+sp
dydx

}
, (84)

where x := (x′, 2F (x′)− xN ) denotes again the mirror point of x. We consider the two terms of Eq. (84)
separately. To see that the first term is bounded we adapt the computations done for constant extensions by
zero [53, Lemma 37.1]. We find with generic constants depending only on the space dimension N and the
Lipschitz constant L of F∫

Ω+

∫
Ω−

|f+ (x)− f− (x)|p

|x− y|N+sp
dydx =

∫
Ω+

|f+ (x)− f− (x)|p
∫
Ω−

1

|x− y|N+sp
dydx

≤
∫
Ω+

|f+ (x)− f− (x)|p
∫
RN\B(x,dist(x,Ω−))

1

|z|N+sp
dzdx

≤ cN

∫
Ω+

|f+ (x)− f− (x)|p
∫ ∞

dist(x,Ω−)

dr

r1+sp
dx = cN

∫
Ω+

|f+ (x)− f− (x)|p

distsp (x,Ω−)
dx

≤ cN,L

∫
Ω+

|f+ (x)− f− (x)|p

|xN − F (x′)|sp
dx < ∞ , (85)

where in the last step we used Lemma 6.7 (ii).
For the second term of Eq. (84) we have by Lemma 6.7 (i),∫

Ω+

∫
Ω−

|f− (x)− f− (y)|p

|x− y|N+sp
dydx =

∫
Ω−

∫
Ω−

|f− (x)− f− (y)|p

|x− y|N+sp
dydx ≤ cL [f−]

p
W s,p(Ω−) .

2
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6.4 Approximate solution of the limit problem

We now turn to the actual (approximate) solution of the Γ-limit minimization problem. We employ two
independent approaches to assess the validity of the results obtained. The techniques include a Fourier-type
expansion and a numerical implementation via finite elements. The main difference is the way the boundary
conditions and the inequality constraint are treated. The results for the various models studied in this and
the previous sections are compared below in Sec. 6.5. We consider as model case the alloy Ti50Ni39Pd11
introduced in Sec. 4, and implement the super-isotropic energy density given in Eq. (81). To compare the
geometric factors of the energies to those of the simple test functions we set ϵ = 1 and µ = 1. The reduction
by symmetry relations observed for the simplified model problems carry over to the Γ-limit problem, which
is made precise in the following lemma.

Lemma 6.8 Suppose two twin systems consisting of variants U i/V i and variants U ℓ/V ℓ, respectively.
Suppose further that variants are symmetry related in the sense of Section 4.1, i.e., there is a symmetric
orthogonal transformation Q such that

QV i = V ℓQ and QU i = U ℓQ .

Then the minimal values of the super-isotropic and the isotropic energies as given in Eq.(81) of the two
systems coincide for both, hard and soft boundary conditions, and the minimizers are symmetry related via

v
(min)
ℓ = Qv

(min)
i .

The analogous statement holds true for isotropic energy densities

1

2

∂2ϕ̃ (I)

∂F 2 (M ,M) =
1

2

∂2ϕ (I)

∂F 2 (M ,M) = µ

∣∣∣∣M +MT

2

∣∣∣∣2 + λ

2

(
tr

(
M +MT

2

))2

with Lamé’s parameters λ and µ.

Proof: For corresponding sets of crystallographic parameters there is a one-to-one correspondence between
the sets of admissible functions for the two twin systems induced by the orthogonal transformation Q.
Indeed, vi (t1, 0) ||ai holds if and only if vℓ (t1, 0) = Qvi (t1, 0) ||Qai = aℓ, and by orthogonality of Q

Qvi (t1, 0) ·Qai = vi (t1, 0) · ai ≥ vi (t1, 1) · ai = Qvi (t1, 1) ·Qai .

The remaining conditions follow similarly. Further, the energy is preserved under the orthogonal transfor-
mation, that is, Ei (vi) = Eℓ (Qvi), since for any vectors x, y, a, b ∈ R3 orthogonality of Q implies

|(Qx)⊗ (Qy) + (Qa)⊗ (Qb)|2 =
∣∣Q (x⊗ y + a⊗ b)QT

∣∣2 = |x⊗ y + a⊗ b|2 ,

and

tr [(Qx)⊗ (Qy) + (Qa)⊗ (Qb)] = tr
[
Q (Qx)⊗ (Qy) + (Qa)⊗ (Qb)QT

]
= tr [x⊗ y + a⊗ b] .

2
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6.4.1 Fourier-type ansatz

To get further insight into the interface-induced microstructures we semi-analytically compute approximate
solutions for the limiting variational problems. The deformation v in the transition layer is decomposed into

v (x, y) = w (x, y) + ξ (1− y + η)a (86)

where w is the modification relative to the homogeneous infinitely extended martensite. Admissible func-
tions w ∈ H1

(
(−l ,L)× (0, 1) ;R3

)
satisfy the boundary conditions

w (x, 0) ||a , w (x, 1) ||a , for x < 0 ; w (−l , y) = 0 , w (L, y) = −ξ (1− y + η)a ,

w (x, 0) = w (x, 1)− ξa , for x > 0 . (87)

In this section we disregard the inequality constraint (v (x, 0)− v (x, 1)) · a ≥ 0 for admissible deforma-
tions. For the examples considered here, the inequality condition turns out to be satisfied by the solution of
the unconstrained problem.
We proceed in three steps. We begin by discussing the martensite side describing the general ansatz for w,
deriving the resulting energy functional and the corresponding Euler-Lagrange equations for fixed values of
w at the interface. Subsequently, the latter are solved adapting (HBC). Finally we allow for (SBC).

Martensite side: Ansatz for deformation, energy functional and Euler-Lagrange equations

To do some formal back-of-the-envelope calculations, we assume the functions to be sufficiently smooth.
We interpolate the upper and lower boundary values with a linear polynomial. The linear interpolation can
be replaced by any homotopy between the boundary curves, see [57] for a brief discussion. Admissible
functions w : (−l , 0 )× (0, 1) → R3 can be represented as

w (x, y) =
(
(1− y) g− (x) + yg+ (x)

)
a+

∞∑
n=1

sin (nπy)wn (x) , (88)

where we use the notation

w(x, 0) =: g−(x)a , w(x, 1) =: g+(x)a and wn (x) = w(1)
n (x)a+ w(2)

n (x) b+ w(3)
n (x) c (89)

with an orthogonal basis {a, b, c} of R3. Note that f− = g++ηξ, and f+ = g−+ξ (1 + η). The ansatz (88)
is inserted into the functional, and the integration with respect to the variable y is carried out. This yields
a functional for the (generalized) coefficient functions g± and w

(ℓ)
n , see [57] for the detailed computations.

The variational problem is simplified by replacing the functions g± (x) with the linear combinations

ḡ (x) =
1

2

(
g+ (x) + g− (x)

)
and δg (x) =

1

2

(
g+ (x)− g− (x)

)
(90)

which describe the evolution of the center and the width of the transformed needles , respectively. The func-
tional does not depend on ḡ but only on its derivative ḡ′, i.e., the coordinate ḡ is cyclic and the corresponding
canonically conjugated “momentum” is an integral of the system of stationary conditions. The functional to
be considered is

I

(
(ḡ)′ (x) , (δg)′ (x) ,

{(
w(ℓ)
n

)′
(x)

}
; (ḡ) (x) , (δg) (x) ,

{
w(ℓ)
n (x)

})
=

=

∫ 1

0

∫ 0

−ℓ

1

2

∂2ϕ

∂M2

(
w,1 ⊗A−Tm+w,2 ⊗A−Tn,w,1 ⊗A−Tm+w,2 ⊗A−Tn

)
dy . (91)
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There is a matrix Q =
(
q
(ℓ,k)
ij

)
i,j=1,2;ℓ,k=1,...3

such that

1

2

∂2ϕ

∂M2

(
w,1 ⊗A−Tm+w,2 ⊗A−Tn,w,1 ⊗A−Tm+w,2 ⊗A−Tn

)
=

2∑
i,j=1

3∑
ℓ,k=1

q
(ℓ,k)
ij w

(ℓ)
,i w

(k)
,j .

(92)

The Euler-Lagrange equations associated to the functional (91) are given by a set of ordinary differential
equations with constant coefficients,

2q
(1,1)
11

3
(δg)′′ (x)−

3∑
ℓ=1

(
q
(1,ℓ)
11 + q

(ℓ,1)
11

) ∞∑
n=1

(1 + (−1)n)

nπ

(
w(ℓ)
n

)′′
(x)−

−2

3∑
ℓ=1

(
q
(1,ℓ)
12 + q

(ℓ,1)
21

) ∞∑
n=1

(1− (−1)n)

nπ

(
w(ℓ)
n

)′
(x) =

= 2

4q
(1,1)
22 −

(
q
(1,1)
12 + q

(1,1)
21

)2
q
(1,1)
11

 (δg) (x) +

+2
3∑

ℓ=1

(
q
(1,ℓ)
21 + q

(ℓ,1)
12 − q

(1,1)
12 + q

(1,1)
21

2q
(1,1)
11

(
q
(1,ℓ)
11 + q

(ℓ,1)
11

)) ∞∑
n=1

(1− (−1)n)

nπ

(
w(ℓ)
n

)′
(x) , (93)

and for ℓ = 1, . . . , 3 and n = 1, 2, . . .

−
(
q
(1,ℓ)
11 + q

(ℓ,1)
11

) (1 + (−1)n)

nπ
(δg)′′ (x) +

3∑
k=1

q
(ℓ,k)
11 (x)

(
w(k)
n

)′′
(x)

+ 2

(
q
(1,ℓ)
21 + q

(ℓ,1)
12 − q

(1,1)
12 + q

(1,1)
21

2q
(1,1)
11

(
q
(1,ℓ)
11 + q

(ℓ,1)
11

)) (1− (−1)n)

nπ
(δg)′ (x)−

−
3∑

k=1

(
q
(ℓ,k)
12 + q

(k,ℓ)
21

) ∞∑
m=1

(
1− (−1)n−m) mn

m2 − n2

(
w(k)
m

)′
(x) +

− 2
3∑

k=1

(
q
(1,ℓ)
11 + q

(ℓ,1)
11

)(
q
(1,k)
11 + q

(k,1)
11

)
4q

(1,1)
11

∞∑
m=1

(1− (−1)n)

nπ

(1− (−1)m)

mπ

(
w(k)
m

)′′
(x)

= −2

3∑
ℓ=1

(
q
(1,ℓ)
12 + q

(ℓ,1)
21

) ∞∑
n=1

(1− (−1)n)

nπ
(δg)′ (x)−

−
3∑

k=1

(
q
(k,ℓ)
12 + q

(ℓ,k)
21

) ∞∑
m=1

(
1− (−1)n−m) mn

n2 −m2

(
w(k)
m

)′
(x) +

+
3∑

k=1

(
q
(ℓ,k)
22 + q

(k,ℓ)
22

) π2n2

2
w(ℓ)
n (x) . (94)
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The needle tips are characterized in terms of the bending angles α and the opening angles θ. In the or-
thogonal reference coordinate system we use the standard basis e1, e2 and consider the boundary curves
γ± (x) = xe1 + f± (x) e2 with derivatives (γ±)

′
(x) = e1 + (f±)

′
(x) e2. The opening angle θ is hence

given by

cos θ =
1 + (f+)

′
(0) (f−)

′
(0)∣∣(γ+)′ (0)

∣∣ ∣∣(γ−)′ (0)
∣∣ . (95)

For the bending angle α in the orthogonal coordinate system, we parametrize the centerline of the needle as
Γ (x) = xe1 +

f+(x)+f−(x)
2 e2 with derivative Γ′ (x) = e1 + ḡ′ (x) e2. The bending angle is then obtained

from the scalar product of the tangent vector and the surface normal e1,

cosα =
1√

1 + (ḡ′ (0))2
. (96)

Approximate solution for hard boundary conditions

As a first step, we disregard the Fourier coefficients and consider the linear interpolation of the boundary
values only. This is a special case of the scalar-valued ansatz from Eq. (10) with the choice

s (x, y) = y
(
1 + f− (x)

)
+ (1− y) f+ (x) .

The homogeneous ODE (93) for δg is solved by

(δg) (x) = Aeκx +Be−κx ; κ =

√
3

q
(1,1)
11

√
4q

(1,1)
11 q

(1,1)
22 −

(
q
(1,1)
12 + q

(1,1)
21

)2
(97)

where the constants A and B are determined by the boundary conditions. By direct integration one obtains

ḡ (x) =
1

2 q
(1,1)
11

P (ḡ)x− q
(1,1)
12 + q

(1,1)
21

q
(1,1)
11 κ

{
Aeκx −Be−κx

}
+ C .

For large distance from the interface, i.e., for x → −∞ we assume the asymptotic behavior

g± (x) = ḡ (x)± (δg) (x) → 0 ,

from which we conclude B = P (ḡ) = C = 0. The boundary conditions g+ (0)− g− (0) = 2A = ξ imply

η = −1

ξ
g+ (0) = −A

ξ

(
1− q

(1,1)
12 + q

(1,1)
21

q
(1,1)
11 κ

)
= −1

2

(
1− q

(1,1)
12 + q

(1,1)
21

q
(1,1)
11 κ

)
. (98)

Within the simple approximation without Fourier coefficients the value of the energy is E = q11
3

(
ξ
2

)2
κ.

We next study the influence of the higher order Fourier coefficients and in particular account for the vector
character of the solution by including the transversal components. Including more Fourier coefficients leads
to a refinement of the needle shapes. We list the evolution of the energy, and the offset η for the various twin
systems in the Tables 3 and 4 below. We conclude: Incorporating more Fourier coefficients does not change
the offset η much. The refinement takes place only close to the interface.
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Euler-Lagrange equations for soft boundary conditions

We next turn to the problem of soft boundary conditions. The calculation proceeds in close analogy to the
one presented above. In the first step, we set up the variational expression. The main modification is now
that the latter consists of two parts. For the martensite part w(M) we stick to the ansatz given by Eq. (88)
while for the austenite part, that is for 0 < x < L and 0 < y < 1, we address the different boundary
conditions by the ansatz

w(A) (x, y) = g(A) (x) + ξ (y − 1− η)a+

∞∑
n=1

sin (nπy)w(A)
n (x) . (99)

The boundary conditions stated in Eq. (87) translate into boundary conditions for g(A) and the Fourier coef-
ficient functions

{
w

(A)
n

}
. Note that w(A) by construction satisfies the periodicity condition w(A) (x, 0) =

w(A) (x, 1)− ξa. The matching condition at x = 0 requires compatibility between w(M) and w(A), i.e.,

(ḡ (0)− (δg) (0))a = g− (0)a = g(A) (0) and w(A)
n (0) = w(M)

n (0) for all n .

Further for x → ∞ we assume g(A) (x) → 0 and w
(A)
n (x) → 0 for all n. For simplicity of notation

we suppress the super-indices (A) for the derivation of the stationary conditions. We proceed as for the
martensite part. There is a matrix P =

(
p
(k,ℓ)
ij

)
i,j=1,2;k,ℓ=1,...,3

such that

1

2

∂2ϕ (I)

∂M2

(
w,1 ⊗m+

(
1

ξ
w,2 − a

)
⊗ n,w,1 ⊗m+

(
1

ξ
w,2 − a

)
⊗ n

)
=

3∑
k,ℓ=1

p
(k,ℓ)
11

[(
g(k)

)′
(x) +

∞∑
n=1

sin (nπy)
(
w(k)
n

)′
(x)

][(
g(ℓ)
)′

(x) +

∞∑
m=1

sin (mπy)
(
w(ℓ)
m

)′
(x)

]
+

+

3∑
k,ℓ=1

p
(k,ℓ)
22 π2
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n,m=1

nm cos (nπy) cos (mπy)w(k)
n (x)w(ℓ)

m (x) +

+
3∑

k,ℓ=1

(
p
(k,ℓ)
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(ℓ,k)
21
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g(k)

)′
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n=1

sin (nπy)
(
w(k)
n

)′
(x)
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m=1

mπ cos (mπy)w(ℓ)
m (x) .

The stationary conditions again yield a system of ordinary differential equations with constant coefficients,

3∑
ℓ=1

{(
p
(k,ℓ)
11 + p

(ℓ,k)
11

)[(
g(ℓ)
)′′

(x) +
1

π

∞∑
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m

(
w(ℓ)
m
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(x)

]}
= 0 , k = 1, 2, 3 (100)

47



Variants twin type habit plane N = 0 N = 2 N = 4 N = 6 N = 8
HBC SBC HBC SBC HBC SBC HBC SBC

1 and 2 compound either one 3.0 2.7 2.4 2.7 2.3 2.6 2.3 2.6 2.2

1 and 3 type I mpm 7.6 5.2 4.7 4.9 4.3 4.9 4.2 4.8 4.1
1 and 3 type II mpm 10.6 9.6 8.8 9.5 8.3 9.5 8.1 9.5 8.0

1 and 3 type I pmm 10.7 9.7 8.8 9.5 8.4 9.5 8.2 9.5 8.1
1 and 3 type II pmm 10.6 4.3 3.8 3.8 3.4 3.7 3.2 3.6 3.1

Table 3: Variation of the energy ×103 with the number N of Fourier coefficients.

and for k = 1, 2, 3 and n = 1, 2, . . .
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n2 −m2

(
w(ℓ)
m

)′
(x)

}
.

(101)

Solution of the Euler-Lagrange equations for soft boundary conditions

As a first step, we again disregard the Fourier coefficients and consider the lowest order approximation given
by g. The Euler-Lagrange equations (100) reduce to

3∑
ℓ=1

(
p
(k,ℓ)
11 + p

(ℓ,k)
11

)(
g(ℓ)
)′′

(x) = 0 , k = 1, 2, 3 . (102)

If the coefficient matrix
(
p
(k,ℓ)
11 + p

(ℓ,k)
11

)
k,ℓ=1,2,3

is non-singular, the component functions of g are linear,

i.e., g(k) (x) = a(k)x + b(k) with some a(k), b(k) ∈ R. By the asymptotic saturation condition, there is
no energy contribution coming from the austenite part. The problem hence reduces to the hard boundary
problem solved above.

The variation of the physical parameters with the number of Fourier coefficients is again illustrated in Tab.s
3 to 5.

Discussion of the results

Linear interpolation without Fourier coefficients provides a first insight into the qualitative shape of the
transition layer. It allows for a first classification of twin systems with respect to the asymptotic offsets η
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Variants twin habit N = 0 N = 2 N = 4 N = 6 N = 8
type plane HBC SBC HBC SBC HBC SBC HBC SBC

1 and 2 comp. either −0.6 −0.60 −0.62 −0.60 −0.62 −0.60 −0.61 −0.60 −0.61

1 and 3 type I mpm −1.0 −0.82 −0.84 −0.81 −0.82 −0.80 −0.82 −0.80 −0.81
1 and 3 type II mpm −0.5 −0.51 −0.51 −0.51 −0.51 −0.51 −0.51 −0.51 −0.51

1 and 3 type I pmm −0.6 −0.54 −0.55 −0.54 −0.55 −0.54 −0.55 −0.54 −0.55
1 and 3 type II pmm −1.8 −1.02 −1.00 −0.96 −0.96 −0.94 −0.94 −0.93 −0.93

Table 4: Variation of the offset η with the number of Fourier coefficients.

Variants twin habit N = 0 N = 2 N = 4 N = 6 N = 8
type plane HBC SBC HBC SBC HBC SBC HBC SBC

1 and 2 compound either one 105◦ 121◦ 130◦ 125◦ 140◦ 126◦ 146◦ 126◦ 150◦

1 and 3 type I mpm 62◦ 101◦ 101◦ 105◦ 118◦ 103◦ 128◦ 100◦ 134◦

1 and 3 type II mpm 105◦ 119◦ 127◦ 125◦ 138◦ 128◦ 144◦ 130◦ 148◦

1 and 3 type I pmm 102◦ 116◦ 125◦ 122◦ 136◦ 125◦ 142◦ 127◦ 146◦

1 and 3 type II pmm 23◦ 43◦ 51◦ 60◦ 67◦ 70◦ 77◦ 76◦ 84◦

Table 5: Variation of the opening angle θ with the number of Fourier coefficients.

Variants twin habit N = 0 N = 2 N = 4 N = 6 N = 8
type plane HBC SBC HBC SBC HBC SBC HBC SBC

1 and 2 compound either one 19◦ 55◦ 55◦ 48◦ 55◦ 42◦ 55◦ 38◦ 55◦

1 and 3 type I mpm 41◦ 57◦ 47◦ 50◦ 49◦ 42◦ 49◦ 36◦ 49◦

1 and 3 type II mpm 2◦ 57◦ 57◦ 57◦ 57◦ 57◦ 57◦ 57◦ 57◦

1 and 3 type I pmm 8◦ 57◦ 57◦ 56◦ 57◦ 54◦ 56◦ 53◦ 56◦

1 and 3 type II pmm 44◦ 49◦ 49◦ 55◦ 51◦ 57◦ 51◦ 57◦ 51◦

Table 6: Variation of the bending angle α with the number of Fourier coefficients.

49



of the optimal needles. For the twin systems represented by compound twins consisting of variant 1 and 2,
type II twins containing variants 1 and 3 with habit plane normal mpm, and type I twins containing variants
1 and 3 with habit plane normal pmm, we find an asymptotic offset η ≈ −0.5. For the remaining twin
systems represented by type I twinned variants 1 and 3 with habit plane normal mpm and type II twinned
variants 1 and 3 with habit plane normal pmm, the simplest approximation within this Fourier ansatz pre-
dicts highly asymmetric needles with |η + 0.5| ≫ 0. This observation qualitatively agrees with the results
for the two-parameter optimization, see Tab. 2. This is in particular remarkable as the energy functional is
minimized among different sets of deformations with different analytic properties. One can, however, not
expect to capture the fine-scale behavior at the interfaces as reflected in the angles α and θ and the values
of the energy. The latter is considerably improved by including Fourier coefficients which provides a re-
fined description of the variation with y. The energy is found to converge rather fast for both, hard and soft
boundary conditions. Allowing for relaxation of the austenite decreases the energy by roughly 15% while
the overall shape of the needles is preserved.
The very local behavior at the interface, however, is not reliably captured as can be seen by the poor con-
vergence behavior of the opening and bending angles. To better understand the difficulties in certain cases,
we consider the eigenvalues for type II twin systems consisting of variants 1 and 3, see Fig. 7. Eigenvalues
with imaginary parts give rise to oscillatory behavior of the solution. The amplitude, however, is damped by
the real part. For the twin system with habit plane normal mpm, oscillatory solutions are strongly damped
which can be seen from the fact that for the complex eigenvalues with non-zero imaginary part, the absolute
values of the real parts are considerably larger than the smallest purely real eigenvalues. For the pathological
case with habit plane normal pmm, there are only two real eigenvalues and the complex eigenvalues have
very similar (even smaller) real parts. This could explain the overshooting observed in the figures of the
needles, cf. Fig. 11. Such a behavior is inevitably connected to unreliable slopes at the interface from which
the angles are deduced.
In conclusion, the Fourier-type ansatz as presented here is well-suited to get a quick back-of-the-envelope
classification of the twin systems. As will be discussed below, in many cases the solution agrees remarkably
well with the results obtained by a finite element approximation. The fine scale structure at the immediate
vicinity of the interface, however, is not easily accessible.
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(a) Variants 1 and 3, type II, habit plane pmm
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(b) Variants 1 and 3, type II, habit plane mpm

Figure 7: Eigenvalues for type II twins containing variants 1 and 3 for 32 Fourier coefficients. The blue
points refer to the eigenvalues of the martensite side while the red ones refer to the eigenvalues of the
austenite side.

50



6.4.2 Approximate solution via finite elements

A different approach to compute approximate solutions to the Γ-limiting variational problems is given by
a standard finite element method (FEM). We implement a discretization of Rayleigh-Ritz type (see e.g.
[12, 14]), i.e., we discretize the energy functional. Each component of the vector v = v (x, y) ∈ R3 is
discretized separately, i.e., for N ∈ N we make an ansatz of the form

vN (x, y) :=

v1N (x, y)
v2N (x, y)
v3N (x, y)

 =


∑N

n=1 v
1
nϕn(x, y)∑N

n=1 v
2
nϕn(x, y)∑N

n=1 v
1
nϕn(x, y)

 ,

where {ϕn}Nn=1 are piecewise linear C0-finite elements This leads to a finite dimensional quadratic opti-
mization problem which is solvable by standard methods. We explicitly incorporate the Dirichlet boundary
conditions and the inequality constraint on the corners of the respective triangles. In contrast to the Fourier
ansatz we do not assume an asymptotic boundary condition but implement the conditions as described in
Ah and As at some finite x1 = ℓ and x1 = L, see Eqs. (77) and (80). Since the inequality constraint is
affine, this is a conforming method. A detailed description of the implementation can be found in [57].
The computations are done on the domain [−10, 1]× [0, 1] (resp. [−10, 0]× [0, 1] in case of hard boundary
conditions) with a stepsize h = 0.05. The values of the geometric factors of the energy and the asymptotic
offset η for hard and soft boundary conditions are given in Tab. 7 and 8. Relaxation of austenite, that is
allowing for soft rather than hard boundary conditions lowers the energy by roughly 10 − 20%. In both
cases, the energies vary from twin system to twin system by about a factor of 3. To study the influence of
the length of the domain of definition, we consider the type II twin system 1/3 with habit plane pmm. In
Fig. 8 the convergence of the energy with increasing length of martensite (Fig. 8(a)), resp. and austenite
(Fig. 8(b)) is plotted. In both cases a rough step size 0.1 is used. In Fig. 8(b) the length of the martensite
part is constant 10. Increasing the length of the martensite domain decreases the energy in particular for
hard boundary conditions while for increasing length of austenite convergence seems to occur rapidly. This
again indicates that relaxation of the austenite lowers the energy only moderately.

6.5 Model hierarchy

We now turn to a comparison of the various approximate solutions for the minimization problem of the
elastic energy discussed in the previous sections. Tables 7 and 8 collect the results for the geometric factors
of the energies and the asymptotic offsets, respectively. The values obtained by Fourier-ansatz and FEM
agree in all cases very well within the numerical precision. Relaxation of austenite lowers the energy by
10− 20%. The piecewise affine layer from [56] gives reasonable estimates for the highly asymmetric case.
In particular, for the type II twin system 1/3 with habit plane normal pmm even the less restrictive models
yield a very similar shape for the optimal needle. As the model, however, intrinsically excludes symmetric
needles, it is not surprising that the optimal solution from [56] has remarkably higher energies than the ones
obtained by FEM and Fourier-ansatz for the compound twins, the type I twins 1/3 with habit plane pmm and
the type II twins 1/3 with habit plane mpm. In these cases, both FEM and Fourier yield almost symmetric
needles.
This shortcoming is overcome by the piecewise affine ansatz studied in Sec. 5.1. The latter leads to a two-
parameter ansatz space which allows for a straight-forward explicit solution of the minimization problem.
The optimal asymptotic offsets agree very well with the ones obtained by FEM and Fourier-ansatz and the
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Figure 8: Geometric factor of the energy ×103 for type II twin with variants 1 and 3, habit plane pmm as a
function of the length of the martensite and austenite part.

Variants Twin type Habit plane Piecewise affine HBC SBC
Sec. 5 [56] Sec. 5.1 Fourier FEM Fourier FEM

1 and 2 compound either one 6.8 5.4 2.6 2.6 2.2 2.2

1 and 3 type I mpm 7.3 6.8 4.8 5.0 4.1 4.5
1 and 3 type I pmm 30.8 23.0 9.5 8.0 8.1 6.6

1 and 3 type II mpm 35.2 25.2 9.5 9.6 8.0 6.8
1 and 3 type II pmm 4.1 4.1 3.6 3.9 3.1 3.8

Table 7: Comparison geometric factors of the energy ×103 for various approximations. Fourier-ansatz with
Nmax = 8 coefficients. FEM on [−10, 1]× [0, 1] with step size 0.05.

overall shapes of the needles look very similar, see Figs. 9 - 11, where the rescaled boundary curves f±

of the needles are plotted in the orthogonal reference coordinate system. In conclusion, all three models
allowing for a variable asymptotic offset yield very similar results for the offsets and the overall shapes of
the needles. Based on these considerations the simple two-parameter ansatz can be used to estimate the
asymptotic offsets, while for the values of the energies the full problem has to be considered.
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Figure 9: Comparison needles for FEM and Fourier. Compound twins with variants 1 and 2. Orthogonal
coordinate system. FEM computed with discretization 0.05 and martensite length 6. Fourier-ansatz with
Nmax = 8 vectorial coefficients.

Variants Twin type Habit plane Piecewise affine HBC SBC
Sec. 5 [56] Sec. 5.1 Fourier FEM Fourier FEM

1 and 2 compound either one −1.0 −0.7 −0.6 −0.6 −0.6 −0.6

1 and 3 type I mpm −1.0 −0.9 −0.8 −0.8 −0.8 −0.7
1 and 3 type I pmm −1.0 −0.6 −0.5 −0.6 −0.6 −0.6

1 and 3 type II mpm −1.0 −0.5 −0.5 −0.5 −0.5 −0.5
1 and 3 type II pmm −1.0 −1.0 −0.9 −1.0 −0.9 −0.9

Table 8: Comparison of the asymptotic offsets η for various approximations. Fourier-ansatz with Nmax = 8
coefficients. FEM on [−10, 1]× [0, 1] with step size 0.05.
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Figure 10: Comparison needles for FEM and Fourier. Type I twins with variants 1 and 3. Orthogonal
coordinate system. FEM computed with discretization 0.05 and martensite length 6. Fourier-ansatz with
Nmax = 8 vectorial coefficients.
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(a) Habit plane mpm. Hard boundary conditions.
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(d) Habit plane pmm. Soft boundary conditions.

Figure 11: Comparison needles for FEM and Fourier. Type II twins with variants 1 and 3. Orthogonal
coordinate system. FEM for habit plane mpm computed with discretization 0.05 and martensite length 6.
Fourier-ansatz for habit plane mpm with Nmax = 8 vectorial coefficients. FEM for habit plane pmm com-
puted with discretization 0.04 and martensite length 10. Fourier-ansatz for habit plane mpm with Nmax = 12
vectorial coefficients.
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