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Abstract. Variational models for image and signal denoising are based on the minimization of
energy functionals consisting of a fidelity term together with higher-order regularization. In addition
to the choices of function spaces to measure fidelity and impose regularization, different scaling
exponents appear. In this note we present a few simple, yet novel, remarks on (i) the stability with
respect to deterministic noise perturbations, captured via oscillatory sequences converging weakly to
zero, and (ii) exact reconstruction.
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1. Introduction
In recent years, a wealth of research has been dedicated to the study of higher-

order regularized variational methods for image and signal denoising. The idea of
using a higher-order regularization to overcome ill-posedness in variational methods
associated with ill-posed inverse problems is well-known, and it dates back to Andrey
Tikhonov ([33]). Since the pioneering work of Rudin, Osher and Fatemi [31], much
attention has been devoted to TV -regularization in the context of image denoising.
Analytical work has mainly targeted the study of fast and efficient numerical
implementations and comparison with other models (see [11, 15, 17, 24, 25, 28] and
the references therein), the understanding of the structure of possible minimizers
(see [1, 2, 3, 4, 6, 7, 8, 13, 14, 16, 18, 19, 22, 27, 30, 34]), and the analysis of the
effects of TV -regularization in terms of edge, block, texture, and scale preservation
(see [20, 25, 27, 32]).

Here we will consider the following class of higher-order regularized variational
models for denoising. Given a noisy measured signal f : Ω→R in a domain Ω⊂Rd,
with

f =f0 +h (1.1)

where f0 is the undisturbed signal and h is a noise sample, we seek to reconstruct the
original signal f0, or at least a good approximation of it, from the measured signal f .
A standard technique for such problems is to minimize functionals of the form

J (u) := |u|αX +λ‖u−f‖βY , u : Ω→R , (1.2)

with X and Y Banach function spaces such that, typically, X ⊂Y, and α, β≥1. The
space Y is often a Lebesgue space Lp (Ω) for some 1≤p<∞, but it may also be a
normed space with a weaker norm such as the H−1 or the G-norm of Meyer (see [27]).
These weaker norms have proven to be successful when one wishes to retain textures
in images (see [25, 27, 28]). The most popular choices for the function space X include
the space BV (Ω) of functions of bounded variation, and Sobolev spaces W 2,k (Ω) for
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some k≥1. Having these examples in mind, we assume that X is equipped with a
norm ‖·‖X and a semi-norm |·|X , where the latter is sequentially lower semicontinuous
with respect to an appropriate weak convergence in X , and such that for some C>0

‖u‖X ≤C
(
|u|X +‖u‖Y

)
for all u∈X . (1.3)

The second term in (1.2) is called the fidelity term and it encourages minimizers to
stay close to the observed signal. The first term is intended to be a regularization
which should filter out (oscillatory) noisy parts of the observed image. The two terms
are weighted by a regularization parameter λ>0. The exponents α and β are usually
natural numbers. Typical examples of such functionals include the total variation
based regularization in the Rudin-Osher-Fatemi (ROF) model [31] on two-dimensional
bounded Lipschitz domains Ω⊂R2, namely

J (u) := |u|BV (Ω) +λ‖u−f‖2L2(Ω) , (1.4)

for u∈L1
loc (Ω), with the BV -semi-norm1 defined by (2.2), or variants with slightly

different fidelity terms, such as

J (u) := |u|BV (Ω) +λ‖u−f‖L2(Ω) , or J (u) := |u|BV (Ω) +λ‖u−f‖L1(Ω) . (1.5)

These functionals share a common feature: If we input for f a highly os-
cillatory perturbation of a clean image f0, minimization returns a signal which
is both close to f (the influence of the second term) in a way as to minimize
oscillations (the influence of the first term). Not surprisingly, numerical simulations
of minimizers for a noisy perturbation of clean images result in states closer to
the actual image than the measured signal. In this way, we say that the origi-
nal measured signal f has been denoised. We refer to the book of Chan and Shen
[17], and the references therein, for various examples and types of noise perturbations.

It is therefore natural to assess two properties of these variational problems. The
first is their stability with respect to weakly vanishing noise. Precisely, if

Jn (u) := |u|αX +λ‖u−f−hn‖βY and J (u) := |u|αX +λ‖u−f‖βY , (1.6)

where the sequence of noise {hn} converges to zero in some weak sense, then the min-
imizers of the disturbed functionals Jn should converge to minimizers of the undis-
turbed functional J . In fact, one would expect that {Jn} Γ−converges to J (see
Definition 2.2). The fact that functionals of type (1.2) are stable with respect to
small perturbations in the strong norm is easy to establish, and has been noted in
[1]. However, the paradigm of these variational problems is that minimization of the
regularization reduces highly oscillatory perturbations of the clean signal which one
often attributes to noise. Thus it is natural to consider perturbations which do not go
to zero in a strong sense but rather in a weak sense, for example increasing oscillations
between two fixed values. Surprisingly, this notion of stability with respect to weak
perturbations has rarely been addressed. In fact, we are aware of only [19] and [21]2.

A second property pertains to the existence of a class of clean simple signals
which remain invariant under energy minimization. As noted by Chan and Esedoḡlu

1Sometimes the regularization semi-norm |·|BV (Ω) is replaced by the full norm.
2Working in a Hilbert space setting, Eggermont, LaRiccia and Nashed consider weakly bounded

noise perturbations and prove some interetsing optimal error estimates (i.e. convergence rates for
minimizers).
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in [16] “It is in general desirable for image denoising algorithms to have a large class
of “noise-free” images that they leave invariant.” Therefore, we ask whether, the
model allows for the exact reconstruction of f0, i.e., the unique minimizer of J with
f =f0 is u=f0 for f0 in some class of signals and with λ sufficiently large.

In this note, we present a few simple, yet novel, remarks on these two properties.
The first set of remarks shows that a certain condition (which we refer to as a Brezis-
Lieb-type condition) on the fidelity norm is a natural condition for insuring this notion
of weak stability (see Section 3). In the second set, we remark that an elementary
comparison principle yields some well-known results concerning loss of contrast for
the original ROF and sufficient conditions for exact reconstruction. The latter are
based upon the existence of regularization-realizing vector fields (see Section 4).

2. Preliminaries In the sequel we will use C to denote a constant that may
vary from line to line, and from expression to expression. We let Ω⊂RN be an open
Lipschitz domain, and use the space of functions with bounded variation on Ω⊂RN
defined to be (see, for example, [5])

BV (Ω) :=
{
u∈L1 (Ω) : |u|BV (Ω)<∞

}
(2.1)

equipped with the norm ‖u‖BV (Ω) :=‖u‖L1(Ω) + |u|BV (Ω), where

|u|BV (Ω) := sup

{∫
Ω

u(x)Divφ(x)dx : φ∈C1
c

(
Ω;RN

)
,‖φ‖L∞(Ω)≤1

}
. (2.2)

We call ψ∈C1
c

(
Ω;RN

)
a TV-realizing vector-field for u∈BV (Ω) if ‖ψ‖L∞(Ω)≤1 and

|u|BV (Ω) =−
∫

Ω

u(x)Divψ (x)dx .

A sequence {un} in BV (Ω) is said to converge weakly* to u∈BV (Ω) if un→u in

L1 (Ω) and Dun
∗
⇀Du in Ω. Here Dun and Du denote the distributional derivatives

which are Radon measures, and
∗
⇀ stands for weak convergence of measures. It can

be shown that every sequence {un} with supn∈N‖un‖BV (Ω)<∞ admits a subsequence

{unk
} that weakly* converges to a function u∈BV (Ω) (see [5, Theorem 3.23]).
As in [27], we denote by G the dual space of the closure of BV in the Schwartz

class (see [27, Section 1.14] for a detailed discussion of this space and the associated
G-norm). Here, the Schwartz class S(Rn) is

S(Rn) :=

{
f ∈C∞(Rn) : sup

α,β∈Nn
0

sup
x∈Rn

|xαDβf(x)|<∞

}
.

It turns out that L2 (Ω)⊂G, and if f ∈BV (Ω) and g∈L2 (Ω) then (see [27, Lemma
3]) ∣∣∣∣∫

Ω

f (x)g (x)dx

∣∣∣∣≤‖f‖BV (Ω)‖g‖G . (2.3)

We will use the following result of Brezis and Lieb on weakly converging sequences
(see Theorem 1 in [10]).
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Lemma 2.1. Let {fn} be a sequence of measurable functions which are uniformly
bounded in Lp (Ω) for some 0<p<∞. If fn→f pointwise almost everywhere, then

lim
n→∞

{
‖fn‖pLp(Ω)−‖fn−f‖

p
Lp(Ω)

}
=‖f‖pLp(Ω) .

We recall the definition and fundamental property of Γ-convergence (see [9]).

Definition 2.2. A sequence of functionals Fn :X→ [−∞,+∞] defined on a metric

space X Γ-converges to F :X→ [−∞,∞], and we write Fn
Γ−→F , if

(i) (Lower bound) for every converging sequence {xn}, xn→x in X, one has F (x)≤
liminfn→∞Fn (xn),
and
(ii) (Upper bound) for every x∈X, there exists a sequence {xn} such that xn→x and
limsupn→∞Fn (xn) =F (x).

A consequence of Γ-convergence is (see [9]): If Fn
Γ−→F and if xn is a minimizer

of Fn with xn→x, then

x is a minimizer of F . (2.4)

3. Remarks on the Stability with Respect to Weak Perturbations We
address the stability of functionals of type (1.2) with respect to small weak3 perturba-
tions, i.e., we consider a sequence of signals {fn} such that fn=f0 +hn. We assume
that hn⇀0 weakly in Y. As a consequence of the Principle of Uniform Bound-
edness, supn‖hn‖Y ≤C, and we may restrict ourselves to (sub)sequences for which
limn→∞‖hn‖Y exists. Our analysis with a weak norm is similar in spirit to results
presented in [19] for a second-order problem (see [19, Theorem 4.5]).

3.1. The Brezis-Lieb Condition and Convergence of Minimizers In
this subsection, we consider sequences that converge with respect to some weak
topologies in X respectively Y such that the properties (H1)-(H3) below hold. We

use the notation “
X
⇀” for the appropriate weak convergence in the Banach space X ,

and ⇀ for weak convergence in Y. For example, if X is a reflexive Banach space,

then “
X
⇀” denotes the standard weak convergence in X , and if X =BV (Ω), then we

denote by “
X
⇀” the convergence with respect to the weak* topology (see Section 2),

and similarly for Y.

Here we make the following assumptions:
(H1) For every sequence {un}⊂X with supn‖un‖X ≤C there exists a subsequence

{unk
} and u∈X such that unk

X
⇀u in X . The semi-norm |·|X is sequentially

weakly lower semicontinuous.

(H2) Whenever un
X
⇀u in X , then un→u strongly in Y.

(H3) Brezis-Lieb-type condition on {hn}: The sequence of noise samples {hn} is
such that hn⇀0 in Y, and for every f ∈Y

‖f‖βY = lim
n→∞

(
‖f−hn‖βY−‖hn‖

β
Y

)
. (3.1)

3The fact that functionals (1.2) are stable with respect to small perturbations in the strong norm
has been noted in [1]. If a weak fidelity measure, such as Meyer’s G-norm or negative Besov-norms
(see [25, 27, 28]), is used, then the strong condition ‖hn‖Y→0 still allows for oscillatory sequences
which do not converge (even up to a subsequence) in any classical sense (see [27, Theorem 5]).
See [23] for an interesting error estimate with respect to the L2 norm in the context of bar code
reconstruction.
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The hypothesis (H2) requires a compact embedding of the regularization space into
the fidelity space. We first give two examples in which the Brezis-Lieb-type condition
is satisfied.

Example 3.1.
(i) Let

(
Y,(·, ·)Y

)
be a Hilbert space, and let β= 2. Then the Brezis-Lieb-type

condition (H3) is satisfied for all sequences hn⇀0 in Y, since

lim
n→∞

(
‖f−hn‖2Y−‖hn‖

2
Y

)
= lim
n→∞

(
‖f‖2Y+‖hn‖2Y−2(f,hn)Y−‖hn‖

2
Y

)
=‖f‖2Y .

(ii) Clearly, the Brezis-Lieb-type condition is satisfied if {hn} converges strongly.
It allows, however, for some more general sequences, in particular for con-
centration phenomena. For 1≤p<∞ let {hn}⊂Lp (Ω) converge weakly and
pointwise almost everywhere to 0. Then for all f ∈Lp (Ω), the sequence
{f−hn} converges weakly in Lp (Ω) and pointwise almost everywhere to f .
Applying the Brezis-Lieb Lemma (see Lemma 2.1) to fn :=f−hn, we observe
that

‖f‖pLp(Ω) = lim
n→∞

{
‖fn‖pLp(Ω)−‖f−fn‖

p
Lp(Ω)

}
= lim
n→∞

{
‖f−hn‖pLp(Ω)−‖hn‖

p
Lp(Ω)

}
,

and hence (H3) is satisfied. A typical example of such a sequence {hn} is

hn (x) :=

{
n−n2x 0≤x≤ 1

n ,

0 1
n ≤x≤1 .

In this subsection, define for n∈N

Jn (u) := |u|αX +λ‖u−f−hn‖βY and J (u) := |u|αX +λ‖u−f‖βY .

We note that hypotheses (H1)-(H3) immediately lead to the following Γ-convergence
result. Recall that we restrict ourselves to sequences of noise samples {hn} for which

limn→∞‖hn‖βY exists.

Theorem 3.2.
(i) Compactness: If (H1) holds, then for every sequence {un}⊂X with

supn∈NJn (un)<∞, there exists a subsequence (not relabeled) such that un
X
⇀

u in X .
(ii) Γ-limit: If (H1), (H2), (H3) hold, then setting

J̃ (u) := |u|αX +λ‖u−f‖βY+λ lim
n→∞

‖hn‖βY ,

we have Jn
Γ−→ J̃ with respect to the weak topology in X .

Proof. (i) By (1.3) we deduce that

‖un‖X ≤C
(
|un|X +‖un‖Y

)
≤C

(
|un|X +‖un−f−hn‖Y+‖f+hn‖Y

)
≤C

(
(Jn (un))

1/α
+(Jn (un))

1/β
+‖f+hn‖Y

)
≤C ,
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where the constants C depend on λ, f and {hn}. Thus, supn∈N‖un‖X <∞ and
compactness follows from (H1).
(ii) To establish the Γ-liminf of {Jn}, we note that by (H1) and the fact that α≥1,

liminf
n→∞

Jn (un) = liminf
n→∞

(
|un|αX +λ‖un−f−hn‖βY

)
≥|u|αX + λ liminf

n→∞
‖un−f−hn‖βY .

Moreover, since (
‖un−f−hn‖Y + ‖un−u‖Y

)β ≥ ‖u−f−hn‖βY ,
(H2), (H3), and the fact that β≥1 imply that

liminf
n→∞

‖un−f−hn‖βY ≥ liminf
n→∞

‖u−f−hn‖βY

=‖u−f‖βY + lim
n→∞

‖hn‖βY .

Concerning the limsup inequality, if u∈X , then setting un :=u for all n∈N, it
follows again from (H3) that

lim
n→∞

Jn (u) = |u|αX +λ lim
n→∞

‖u−f−hn‖βY = |u|αX +λ
(
‖u−f‖βY+ lim

n→∞
‖hn‖βY

)
,

and thus the constant sequence {u} is a recovery sequence.

The fundamental property (2.4) of Γ−Convergence, Theorem 3.2 yields the fol-
lowing corollary.

Corollary 3.3. If (H1), (H2) and (H3) hold, and if un is a minimizer of Jn, then

(up to a sub-sequence) un
X
⇀u in X and u is a minimizer of J . Additionally, the same

holds true if, in place of (H2), we assume that the sequence of minimizers {un} has a
subsequence that converges strongly in Y.

If we consider Lp-penalization in the non-Hilbert space case p 6= 2, the Brezis-
Lieb-type condition does not hold true for general weakly converging sequences. In
this case, we cannot expect convergence of minimizers in general. We give an example
for the widely used L1-penalization.

Example 3.4. Let f = 0, and let a sequence of noise samples {hn}⊂L1 (0,1) be given
by

hn (x) :=h(nx) with h(x) :=

{
2 0≤x≤ 1

3 ,

−1 1
3 <x<1 ,

where h is extended periodically to R with period 1. Consider the associated functionals

J (u) := |u|BV (0,1) +λ‖u‖L1(0,1) and Jn (u) := |u|BV (0,1) +λ‖u−hn‖L1(0,1) .

The Brezis-Lieb condition (H3) is not satisfied since, e.g., for the constant function
1∈L1 (0,1)

‖1‖L1(0,1) = 1 6= 1

3
= lim

{
‖1−hn‖L1(0,1)−‖hn‖L1(0,1)

}
.
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Clearly u= 0 is the unique minimizer of J . However, for any n∈N,

Jn (0) =λ‖hn‖L1(0,1) =λ

(
1

3
·2+

2

3
·1
)

=
4

3
λ ,

and

Jn (−1) =λ‖1+hn‖L1(0,1) =λ

(
1

3
·3+

2

3
·0
)

=λ<
4

3
λ=Jn (0) ,

so that u= 0 is not a minimizer for any n. Also, if un is the minimizer of Jn, then
there is no subsequence {unk

} with unk
→0 strongly in L1 (0,1), or else

Jnk
(unk

) = |unk
|BV (0,1) +λ‖unk

−hnk
‖L1(0,1)

≥λ
(
‖hnk

‖L1(0,1)−‖unk
‖L1(0,1)

)
≥λ
(

4

3
−‖unk

‖L1(0,1)

)
>λ

=Jnk
(−1)

for large enough nk ∈N, contradicting the minimality of unk
.

3.2. Convergence of Minimizers in the ROF Model Here we consider the
classical ROF model, i.e.,

J (u) := |u|BV (Ω) +λ‖u−f‖2L2(Ω) and Jn (u) = |u|BV (Ω) +λ‖u−f−hn‖2L2(Ω) .

Since J is strictly convex, there exists a unique minimizer of J in BV (Ω). The
results in Subsection 3.1 do not directly apply to the classical ROF since (H2) is not
satisfied. Under natural additional assumptions4, however, we obtain convergence
of minimizers also for ROF. We outline two natural conditions which ensure that
sequences {u∗n} of minimizers u∗n of Jn admit subsequences that converge strongly
in L2 (Ω) to a minimizer of J : In Proposition 3.6 we note that by restricting our
attention to bounded perturbations, the analogous result to Theorem 3.2 carries over.
Proposition 3.7 is based upon a more general condition involving the G−norm, and
its proof follows directly from arguments of Meyer (see [27, Section 1.14]).

For the first condition we will need the following auxiliary truncation lemma.

Lemma 3.5. Let Ω⊂R2 and let f ∈L∞ (Ω). Then the minimizer u∗ of J satisfies
u∗∈L∞ (Ω) and ‖u∗‖L∞(Ω)≤‖f‖L∞(Ω).

Proof. Given u∈BV (Ω) with ‖u‖L∞(Ω)>‖f‖L∞(Ω) (possibly ‖u‖L∞(Ω) =∞),

define ũ∈L∞ (Ω) pointwise almost everywhere by

ũ(x) :=


−‖f‖L∞(Ω) if u(x)≤−‖f‖L∞(Ω) ,

u(x) if −‖f‖L∞(Ω)≤u(x)≤‖f‖L∞(Ω) ,

‖f‖L∞(Ω) if ‖f‖L∞(Ω)≤u(x) .

4In general, we do not expect to find a strongly convergent subsequence. Consider f ≡0, Ω =R2,
and hn =nχB 1

n
(0), where χB 1

n
(0) denotes the characteristic function of the ball with radius 1

n
and

center 0∈R2. One can readily check that for large λ the minimizer u∗n of Jn is chn, where c=O(1)
as n→∞. Clearly, the sequence {u∗n} converges weakly in L2

(
R2

)
to u≡0 as n tends to infinity,

but there is no strongly converging subsequence.
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Clearly ‖ũ‖L∞(Ω)≤‖f‖L∞(Ω) and ‖ũ−f‖L2(Ω)<‖u−f‖L2(Ω). We claim that further

|ũ|BV (Ω)≤|u|BV (Ω), and hence J (ũ)<J (u). Indeed, let φε be mollifiers, and for a>0
consider

τa(t) :=


−a , if t≤−a
t , if −a≤ t≤a
a , if t≥a.

Let U ⊂Ω be such that |Du|(∂U) = 0. Then we have

|Du|(Ω)≥|Du|(U) = lim
ε→0

∫
U

|∇(φε ∗u)|≥ limsup
ε→0

∫
U

|∇(τa ◦(φε ∗u))|≥ |D(τa ◦u)|(U),

where the equality follows from Prop 3.7 in [5], and in the last inequality we used the
fact that τa ◦(φε ∗u)→ τa ◦u in L1(U) together with lower semicontinuity of the total
variation. Letting U↗Ω, we obtain |Du|(Ω)≥|D(τa ◦u)|(Ω). It follows that, if u∗ is
a minimizer of J , then u∗∈L∞ (Ω) and ‖u∗‖L∞(Ω)≤‖f‖L∞(Ω).

Proposition 3.6. If f ∈L∞ (Ω) and if the sequence of noise samples {hn} is uni-
formly bounded, i.e.,

sup
n∈N
‖hn‖L∞(Ω) <+∞,

and converges weakly to 0 in L2 (Ω), then minimizers of Jn converge to minimizers of
J weakly* in BV (Ω).

Proof. In view of Corollary 3.3 and Example 3.1, it remains to show that for a
sequence of minimizers {un} of Jn, there exists a subsequence that converges strongly
to u in L2 (Ω). By the compact embedding BV (Ω)⊂L1 (Ω), there exists a subsequence
(not relabeled) such that un→u strongly in L1 (Ω) for some u∈BV (Ω). By Lemma
3.5, supn‖un‖L∞(Ω)≤ supn‖f+hn‖L∞(Ω)<+∞, and thus u∈L∞(Ω) and

‖un−u‖2L2(Ω)≤‖un−u‖L∞(Ω)‖u−un‖L1(Ω)→0 .

Hence un→u strongly in L2 (Ω).

Proposition 3.7. Let f ∈L2 (Ω), and let {hn} be a sequence of noise samples such
that hn⇀0 in L2 (Ω) and ‖hn‖G→0. Let un∈BV (Ω) be a minimizer of Jn. Then

there exists a subsequence (not relabeled) {un} and u∈BV (Ω) such that un
∗
⇀u in

BV (Ω), and u is the minimizer of J .

Proof. By Theorem 3.2 (i), there exists a subsequence (not relabeled) such that

un
∗
⇀u for some u∈BV (Ω). For all v∈BV (Ω), we have Jn (un)≤Jn (v), i.e.,

|un|BV (Ω) +λ‖un−f‖2L2(Ω)−2λ(un,hn)L2(Ω)≤|v|BV (Ω) +λ‖v−f‖2L2(Ω)−2λ(v,hn)L2(Ω) .

By (2.3), we have (un,hn)L2(Ω)≤‖un‖BV (Ω)‖hn‖G, hence

|un|BV (Ω) (1−2λ‖hn‖G)−2λ‖un‖L1(Ω)‖hn‖G+λ‖un−f‖2L2(Ω)

≤ |v|BV (Ω) +λ‖v−f‖2L2(Ω)−2λ(v,hn)L2(Ω) .
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Since hn⇀0 in L2 (Ω), ‖hn‖G→0 and ‖un‖L1(Ω)→‖u‖L1(Ω), we may take liminfn→∞
above and use Fatou’s Lemma (after a possible extraction of a subsequence) to con-
clude that

|u|BV (Ω) +λ‖u−f‖2L2(Ω)≤|v|BV (Ω) +λ‖v−f‖2L2(Ω) .

Thus u is a minimizer of J .

So far, we proved convergence of minimizers of the disturbed functionals Jn to
minimizers of J , although in general a minimizer of J is not a minimizer of Jn.
However, in the ROF model the trivial minimizer has the following higher stability
property, which follows directly from [27, Lemma 4].

Proposition 3.8. If ‖f‖G<
1

2λ , then u≡0 is the minimizer of J , and for any
sequence {hn} with hn⇀0 weakly in L2 (Ω) and ‖hn‖G→0, there exists a n0∈N such
that, for all n≥n0, the function u≡0 is a minimizer of Jn, where

J (u) := |u|BV (Ω) +λ‖u−f‖2L2(Ω;Rd) , Jn (u) := |u|BV (Ω) +λ‖u−f−hn‖2L2(Ω) .

We note that the stability properties presented in Theorem 3.2, Corollary 3.3 and
Propositions 3.6 and 3.7 do not depend on the scaling exponent α>1 of the regular-
ization term. The higher stability of the trivial minimizer, however, depends heavily
on α, and fails in general if α>1. Indeed, set

hn(x) :=h(nx), where h(x) :=

{
−1 0≤x≤ 1

2 ,

+1 1
2 ≤x≤1,

and h is extended periodically to R with period 1, and consider

Jn (u) := |u|2BV (0,1) +λ‖u−hn‖2L2(0,1) .

Then Jn (0) =λ‖hn‖2L2(0,1) =λ. Now consider the competitor functions un (x) := cnhn

with cn := λ
n2+λ . We have

Jn (un) =
λ2n2

(n2 +λ)
2 +λ

n4

(n2 +λ)
2 =

λn2 +n4

(n2 +λ)
2λ<λ= J (0) ,

so that u≡0 is not a minimizer of Jn for any n∈N.

Remark 3.9. In this note we have modelled the noise by deterministic oscillatory
perturbations. Future developments, still within the scope of deterministic perturba-
tion, may consider other fidelity norms suitable for different noise samples. While L2

and L1 are well motivated by additive Gaussian or Laplace noise, current research in
this area uses different data fidelities motivated as log-likelihoods of statistical noise
models. For example, Poisson noise leads to a Kullback-Leibler divergence [26], while
signal-dependent noise leads to a weighted L2-norm [29]. An important direction
that this work may take is to move away from the deterministic setting and consider
stochastic noise perturbations.
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4. Remarks on the Invariance for Clean, Simple Signals - Exact Re-
construction We consider functionals J of the general form (1.2). We say that f is
exactly reconstructable for some λ>0, if the unique minimizer of J is f . Fix f ∈X .
We first note the following elementary comparison principle: f is a minimizer of
J , i.e. J (f)≤J (u) for all u 6=f , if and only if

|f |αX ≤|u|
α
X +λ‖u−f‖βY for all u 6=f ,

or, equivalently,

λ≥ sup
u6=f

|f |αX −|u|
α
X

‖u−f‖βY
. (4.1)

The inequality in (4.1) is strict if and only if f is the unique minimizer of J .

Proposition 4.1 (Scaling and the Failure of Exact Reconstructibility). If β>1
and |f |X 6= 0, then f is not exactly reconstructable for any finite λ>0.

Proof. For 0<ε<1 define the test functions uε := (1−ε)f . Then

sup
u 6=f

|f |αX −|u|
α
X

‖f−u‖βY
≥ sup

0<ε<1

(1−(1−ε)α) |f |αX
εβ ‖f‖βY

=∞ ,

since 1−(1−ε)α=O(ε) as ε→0.

Note that, as a consequence of this result, regardless of the choice of regulariza-
tion, only the trivial images with |f |X = 0 are invariant if one uses as fidelity norm
the L2-norm squared. We recall that in contrast, the L2-norm squared satisfies the
Brezis-Lieb condition, and hence yields stability of minimizers with respect to weak
perturbation. It is well-known that minimizers of the ROF functional (1.4) possess a
loss of contrast, and indeed the only clean image which is left invariant is f ≡0 (see
[16, 32]).

The next corollary addresses the borderline case β= 1. In particular, for Lp

fidelity terms it has been noted that a signal f is left invariant by energy minimization
(for λ sufficiently large) if and only if there exists a suitably regular, TV-realizing
vector field (see [27, 16, 30, 7, 18]). Let us first note here that the sufficiency of such
a vector field immediately follows from our comparison estimate (4.1). Let 1≤p<∞,
let Y :=Lp (Ω), and consider

J (λ) (u) := |u|X + λ‖u−f‖Lp(Ω) .

Here we use the notation J (λ) to highlight the dependence on the regularization
parameter λ. We set p∗ := p

p−1 if p 6= 1, and p∗=∞ if p= 1.

Corollary 4.2 (Exact Reconstruction and Regularization-realizing Vector
Fields). Suppose there is a function space F such that

|u|X = sup
φ∈F

∫
Ω

u(x)φ(x)dx for all u∈X .

If there exists a φf ∈F ∩Lp∗ (Ω) such that

|f |X =

∫
Ω

f (x)φf (x)dx ,
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then for λ≥‖φf‖Lp∗(Ω) the signal f is a minimizer of J (λ) among all u∈X .

Proof. For u∈X , using Hölder’s inequality we estimate

|f |X −|u|X
‖f−u‖Lp(Ω)

≤
∫

Ω
[(f (x)−u(x))φf (x)]dx

‖f−u‖Lp(Ω)

≤
‖f−u‖Lp(Ω)‖φf‖Lp∗(Ω)

‖f−u‖Lp(Ω)

=‖φf‖Lp∗(Ω) .

It now suffices to apply (4.1).

A well-studied special case of Corollary 4.2 is TV-regularization (see [27, 30,

16, 7, 18]), where X :=BV (Ω), F :=
{

Div(v) : v∈C1
c

(
Ω;RN

)
,‖v‖L∞(Ω)≤1

}
, and

Y :=L1 (Ω). Then f is reconstructable if there exists a vector field v∈L1 (Ω) with
Div(v)∈F such that

|f |BV (Ω) =

∫
Ω

fDivvdx. (4.2)

The existence of the associated vector field is often also a necessary condition,
(see [18, 30] for a proof using convex analysis). In fact, this regularization-realizing
condition can readily be formulated as a subgradient relation, and (4.2) is often used
as a source condition in error estimation (see [12]).

Lastly, we show how the comparison estimate (4.1) can be used, in the case
in which X :=BV (Ω), to gain insight into when a smooth signal is reconstructable
or not. Suppose that we are given a signal f ∈W 1,∞ (Ω), i.e., f ∈L1 (Ω) and its
first weak derivative exists in L∞ (Ω). Integration by parts in (4.2) implies that a
TV-realizing vector field exists if and only if there is a function g∈C1

c

(
Ω;RN

)
with

‖g‖L∞(Ω)≤1 and g= ∇f
|∇f | on the support of ∇f . If Ω⊂R then the existence of such

a function g∈C1
c (Ω;R) depends crucially on the points at which the derivative f ′

changes sign, i.e., the extremal points of f . In particular, any function f with a strict
local extremum is not reconstructable. We give an elementary proof of this statement
which also provides an explicit competitor for given λ<∞.

Corollary 4.3. Let Ω⊂R be closed, bounded and connected, and let f : Ω→R be
absolutely continuous. If f has a strict local extremum, then f is not a minimizer of
J (λ) for any 1≤p<∞ and any λ>0.

Proof. Fix p∈ [1,∞) and λ>0. Without loss of generality, we may assume that f
has a strict local minimum at x0 := 0, f (0) := 0, and f (x)>f(0) = 0 for all x∈ (−ε,ε).
Suppose first that x0 is an interior point of Ω. Since f is continuous at x0, for
n≥N , there are x∈ (−ε,0) and y∈ (0,ε) such that f(x) = 1

n and f(y) = 1
n . Define

yn := inf{y∈ (0,ε) : f(y) = 1
n}. Then by continuity of f we have yn>0, and yn→0+ as

n→∞. Analogously, set xn := sup{x∈ (−ε,0) : f(x) = 1
n}. Then xn<0, and xn→0−

as n→∞. Define the test functions

un (x) :=

{
f (x) x∈Ω\(xn,yn) ,
1
n x∈ (xn,yn) .
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We note that by construction,

‖f−un‖Lp(R) =

(∫ yn

xn

∣∣∣∣ 1n−f (x)

∣∣∣∣pdx)1/p

≤ 1

n
(yn−xn)

1/p
, (4.3)

and ∫ yn

xn

|f ′|dx≥
∣∣∣∣∫ yn

0

f ′ (x)dx

∣∣∣∣= 1

n
.

The latter implies

|f |BV (Ω)≥|un|BV (Ω) +
1

n
. (4.4)

Thus, by (4.4) and (4.3) we deduce that

sup
n≥N

|f |BV (R)−|un|BV (R)

‖f−un‖Lp(R)

≥ sup
n≥N

1/n

1/n(yn−xn)
1/p
≥ sup
n≥N

1

(yn−xn)
1/p

=∞ (4.5)

since xn→0 and yn→0. The claim follows in view of (4.1).
Suppose now that x0∈∂Ω. Without loss of generality, we may assume that x0 := 0,
(0,ε)⊂Ω, R−∩Ω =∅ and f (x)>f(0) for all x∈ (0,ε). Then there is a sequence {yn}
such that, for n≥N , we have 0<yn<ε, f (yn) = 1

n and f (x)< 1
n for all x∈ (0,yn).

We proceed as above. Define the test functions

un (x) :=

{
f (x) x∈Ω\(0,yn) ,
1
n x∈ (0,yn).

Then |f |BV (Ω)≥|un|BV (Ω) + 1
n and ‖f−un‖Lp(Ω)≤

1
ny

1/p
n , and we conclude as in (4.5).

We conclude by noting that in a series of papers (see [2, 3, 4]), Allard gives a
detailed analysis of properties of minimizers for total variation based functionals. In
particular, he proves a regularity result for the level sets and gives very restrictive
properties of the minimizers in the case in which the input signal is a characteristic
function. We note that Theorem 1.1 in [4] implies, as an easy corollary, that for L2-
squared fidelity no indicator function of a set of finite perimeter can be reconstructed
exactly. This fact is now also a consequence of Proposition 4.1. In cases where signals
f are not reconstructible (such as the case for ROF), an interesting question raised
in [27] is whether or not the minimizer is cf for c<1. This has recently been treated
in [8] where a connection is made to some interesting eigenvalue problems.
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