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Abstract. We consider a two dimensional particle diffusing in the presence of

a fast cellular flow confined to a finite domain. If the flow amplitude A is held
fixed, and the number of cells L2 → ∞, then problem homogenizes, and has

been well studied. Also well studied is the limit when L is fixed, and A→∞.

In this case the solution averages along stream lines. The double limit as both
the flow amplitude A → ∞ and the number of cells L2 → ∞ was recently

studied [9], one observes a sharp transition between the homogenization and

averaging regimes occurring at A ≈ L4. This paper numerically studies a few
theoretically unresolved aspects of this problem when both A and L are large

that were left open in [9] using the numerical method devised in [16]. Our

treatment of the numerical method uses recent developments in the theory of
modified equations for numerical integrators of SDEs [23].

1. Introduction

A passive tracer diffusing in the presence of a fast cellular flow obeys an SDE of
the form

(1.1) dX = Av(X) dt+ dWt.

Here A > 0 is the magnitude of the velocity (more precisely, A is the Péclet number),
and W is a standard (2D) Brownian motion. For simplicity and concreteness, we
assume

(1.2) v(x) = ∇⊥H def
=

(
−∂2H

∂1H

)
, where H(x1, x2)

def
=

1

2π
sin(2πx1) sin(2πx2).

Classical homogenization results [1,10,15] guarantee that on large time scales the
particle behaves like a Brownian motion, rescaled by an effective diffusion matrix.
That is, for t large, the law of Xt is comparable to the law of

√
DeffWt, where

Deff, the effective diffusivity, is a constant matrix. The effective diffusivity can be
obtained by solving a cell problem [4,5], and it’s asymptotic behaviour as A→∞ is

like
√
Ac0I, where I is the identity matrix and c0 > 0 is a constant (see [5,13,22]).

On shorter time scales the flow term is dominant, and a different behaviour
is observed. As A → ∞, drift rapidly transports the passive tracer along level
sets of H, and noise slowly diffuses the tracer across level sets. This results in
behaviour that is averaged on level sets (more precisely, on the Reeb graph of
the Hamiltonian), has been extensively studied by [7, 12] using the theory of large
deviations, and by [2, 19] using PDE methods.
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Recently the transition between the averaged and homogenized behaviour was
studied in [9], by confining the rapidly advected passive tracer confined to a large
domain Ω. The trajectories of X (confined to Ω) exhibit qualitatively different
behaviour dependent on the relative size of the Péclet number, A, to the domain
size, L. Theorem 1.3 in [9] shows that when A � L4, trajectories of X exit the
domain immediately after reaches a cell boundary, forcing ‘ballistic’ travel along
separatrices. On the other hand, when A � L4, the expected exit time of X
from Ω is comparable to that of the effective Brownian motion, suggesting that X
exhibits a homogenized behaviour.
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(b) Large amplitude

Figure 1. Trajectories of three realizations of the diffusion (1.1).

The different qualitative behaviour observed in [9] is nicely illustrated in Figure 1.
For a small Péclet number relative to the number of cells (precisely A = L = 10),
Figure 1(a) shows trajectories of X resembling that of an effective Brownian motion.
For a large Péclet number relative to the number of cells (precisely A = L4.5, L =
10), Figure 1(b) shows multiple trajectories of X which move ‘ballistically’ along
cell boundaries.

The aim of this paper is to numerically study two open questions that arise in [9].
The first question we study numerically is the critical case A ≈ L4. The methods
in [9] address the cases A � L4, and A � L4, however, are unable to address the
situation where A ≈ L4. Our numerical simulations (presented in Section 3) suggest
that in the critical case A ≈ L4 the law of the exit time of X appears identical
to the distribution of the effective Brownian motion. Consequently, one is led to
believe that A ≈ L4 might still be in the homogenization regime. This is of course
not contradictory to [9], because the precise results proved there involve logarithmic
corrections in the relationship between A and L (see Theorem 2.1, below).

Another implication of our numerics is regarding the time scale at which X ho-
mogenizes. Studying trajectories of X, we see that when A = L4, a very small
fraction trajectories travel ‘ballistically’ and exit a domain of size L almost imme-
diately (see [21] for a related anomalous diffusion effect). If we throw away this
ballistic trajectories, then the remainder behave exactly like an effective Brownian
motion. Specifically, in Section 3 we also compare the time these trajectories take
to exit a domain of size L, to the exit time of an effective Brownian motion and
find a remarkable agreement. It is of course well known that X behaves like an
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effective Brownian motion on large time scales. However, the observations above
suggest that for large A, the process X homogenizes on time scales of order 1.

The second question we study numerically is an issue left open in [9] when A�
L4. If we study the expected exit time of X from a disk, then [9, Proposition 1.5]
shows that as A,L → ∞, the expected exit time converges to the expected exit
time of an effective Brownian motion from the same disk. However, if we consider
the expected exit time of X from any other domain, then the results in [9] show
that as A,L → ∞, the expected exit time is only comparable to the expected exit
time of an effective Brownian motion, as A,L→∞. The failure to obtain an exact
limit is a non-trivial obstruction stemming from extraneous terms in the asymptotic
expansion. Our numerical simulations (presented in Section 4) suggest that despite
theoretical limitations, the expected exit time of X from a square is exactly the
expected exit time of the effective Brownian motion.

Finally, we remark on the numerical method used for our simulations. Equa-
tion (1.1) is stiff, and when A is large the standard Euler-Maruyama method re-
quires a time step which is too small to be practically useful. We instead use the
method developed in [16]. We conclude the paper, with a description of the nu-
merical method and a new, simpler, analysis of it based on [23], which extends the
theory of modified equations [20] to more general numerical integrators than the
Euler-Maruyama method.

1.1. Plan of this paper. In Section 2, we state a few results from [9], and provide
a brief heuristic explanation. In Section 3 we present our numerical results in the
critical regime A ≈ L4. In Section 4 we describe the issues in the homogenization
regime A � L4, that could not be addressed by the methods in [9], and present
our numerical results. Finally, we conclude the paper with a description of the
numerical method we used to perform our simulations.

2. The homogenization and averaging regimes

We devote this section to stating the results from [9] concerning the homoge-
nization and averaging regimes. Let τ be the exit time of X (defined in (1.1)) from

the domain Ω, and let τ̄(x)
def
= Exτ denote the expectation of τ . It is well known

(see for instance [14]) that the expected exit time from the domain Ω satisfies the
Poisson problem

(2.1)

{
−1

2
∆τ̄ +Av · ∇τ̄ = 1 in Ω,

τ̄ = 0 on ∂Ω,

The results in [9] concern the limit of τ̄ and the principal eigenvalue of the operator
−∆+Av ·∇, as both the Péclet number and the size of the domain Ω go to infinity.
We result for the expected exit time (stated below) shows that the limit of τ̄ is
either that of the homogenized equations, or that of the averaged equations with a
sharp transition at A ≈ L4.

Theorem 2.1 ([9]). Let Ω = (−L/2, L/2)2 be a square of side length L, and
τ̄ = τ̄A,L be the solution to (2.1).



4 GAUTAM IYER AND KONSTANTINOS C. ZYGALAKIS

(a) Suppose L→∞, and A = A(L) varies so that A ≈ L4−α, for some α ∈ (0, 4).
There exists a constant C = C(α) > 0, independent of A and L, such that

(2.2)
1

C

L2

√
A
τ̄(x) 6 C

L2

√
A
, whenever |x| 6 (1− δ)L

2

Consequently as L→∞, we have τ̄ →∞ uniformly on compact sets.
(b) On the other hand, suppose A → ∞, and L = L(A) varies so that A � L4

(more precisely, we need
√
A/(L2 logA logL)→∞). There exists a constant

C > 0, independent of A and L, such that

(2.3) τ̄(x)2 6 C
L2

√
A

logA logL, whenever H(x) = 0.

Consequently, if H(x) = 0, then τ̄(x) → 0 as A → ∞, and ‖τ̄‖L∞(D) is

bounded uniformly in A.

A heuristic explanation for the result in Theorem 2.1 can be obtained as follows.
First if A is much smaller than L (for instance, if A is fixed and L → ∞), then
we expect homogenization to work. Thus, Xt ≈

√
DeffWt, and so we expect τ̄ ≈

L2/Deff ≈ L2/
√
A away from ∂Ω, which is exactly the content of (2.2).

Next if A is much larger than L (for instance, if A → ∞ and L is fixed), then
we expect X to behave like a diffusion averaged on level sets of H. Since both the
boundary of the big domain Ω, and the boundary of every cell are on the same level
set of H, we expect the diffusion X to exit immediately from cell boundaries. This
is exactly equation (2.3), when X starts on cell boundaries.

The above argument also provides a intuitive explanation of why the transition
should occur at A ≈ L4. To see this, we first observe (2.3) and a standard argument
(see for instance [7, 19]) will quickly show that the time X takes to exit the big
domain Ω is comparable to the time the level set averaged diffusion takes takes
to exit one cell. Consequently, τ̄ ≈ O(1) on cell interiors. Now one would expect
that the transition between the homogenized and averaged regimes occurs when the
homogenized expected exit time L2/Deff is comparable to the averaged expected

exit time O(1). Since Deff ≈
√
A, we expect the transition to occur when L2 ≈

√
A,

as seen in Theorem 2.1.

3. Numerical results in the critical regime.

In this section we present our results for the exit time in the critical regime. We
begin with Figure 2, a plot of τ̄(L/2, L/2) vs L for values of L ranging from 10 to 80,
with A = L4 and the domain Ω to be a square of side length L (left) or a circle
of diameter L (right). The graph was computed using a Monte-Carlo simulation
using 10,000 realizations. The numerical method used is based on [16, 17], and is
described in Section 5.

To see that the mean exit time agrees with that of the homogenized process, we
recall that the asymptotic behaviour of the effective diffusion matrix is

Deff = Deff(A)
def
= lim

t→∞

EXt ⊗Xt

t
≈ c0
√
AI,

and we numerically compute c0 ≈ 0.6056. Now, the expected exit time of the
homogenized process

√
DeffW from the center of a circle of diameter L = A1/4

can be (analytically) computed to be 1/(8c0) ≈ 0.2064, which agrees well with
Figure 2(b). For the square of side length L, a numerical simulation shows the
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Figure 2. Expected exit time of X for different values of L, and
A = L4.

expected exit time of
√
DeffW from the center is 0.1473/c0 ≈ 0.2433, which agrees

well with Figure 2(a).
We now fix L = 40, A = L4 and consider the exit time τ of the process X

from the center of a square of side length L, and a circle of diameter L. We
know that with small probability, some trajectories of X will travel ballistically
along separatrices and exit the domain very quickly. To account for this, we ignore
all trajectories of X that exit the domain in time less than a small time threshold
(roughly 0.03 seconds). For the remaining trajectories, we compare the distribution
τ to τeff, the exit time of the effective Brownian motion

√
DeffW . Our results show

the distributions are almost identical, and are illustrated in Figure 3. Specifically,
Figure 3(a) shows the cumulative distribution functions of τ and τeff from a square
of side length 40, and Figure 3(b) shows the cumulative distribution functions of τ
and τeff from a circle of diameter 40.
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Figure 3. CDF for τ compared with the CDF of the exit time of
the effective Brownian motion.
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4. Numerical results in the homogenization regime

A fundamental question left unresolved by [9] is about the asymptotic profile of
τ̄ in any domain which is not a disk. This roughly translates to the question of
whether ‘homogenization works’ when the asymptotic profile is not quadratic. We
explain the theoretical obstruction, and our numerical findings in this section.

The proof of Theorem 2.1 in the homogenization regime (i.e. A � L4) uses an
asymptotic expansion. To carry this out, we rescale the domain to a square of
side length 1 which we denote by Ω1. Let ε = 1/L, and σ̄ = σ̄A,ε be the rescaled
function defined by σ̄(x) = ε2τ̄(x/ε). Then, σ̄ satisfies the equation

(4.1)

{
−1

2
∆σ̄ +

A

ε
v
(x
ε

)
· ∇σ̄ = 1 in Ω1

def
= (0, 1)2,

σ̄ = 0 on ∂Ω1,

Now consider a multi-scale expansion of an approximate solution σ̃ up to two
terms

σ̃(x) = σ0(x) + εσ1(x, y) + ε2σ2(x, y), where y =
x

ε
is the ‘fast’ variable.

The usual practice in homogenization [1, 15] is to choose σ0 to be a solution of
the effective problem, and then choose σ1, σ2 to be periodic, mean zero in the fast
variable and satisfy equations that balance the O(ε) and O(1) terms respectively.

While this works perfectly well for A fixed, the proofs in [9] will only work in an
exceptional situation if A→∞. To elaborate on this, choosing σ1, σ2 as described
above, we will obtain

− 1

2
∆σ̃ +

A

ε
v
(x
ε

)
· ∇σ̃ = −∆

(
σ0 + εσ1 + ε2σ2

)
+

A〈v · ∇xσ1〉 − 2ε∇x · ∇yσ2 + εAv · ∇xσ2,

where 〈·〉 denotes the average with respect to the fast variable. When A is fixed,
all terms with an ε are harmless, and the term A〈v · ∇xσ1〉 can be computed
explicitly [5,13]. When we additionally have A→∞, the presence of the term εAv ·
∇xσ2 is catastrophic! Fortunately this term identically vanishes, in the exceptional
situation that σ0 is quadratic. It is this exceptional situation that [9] heavily exploits
in the proof.

Observe that if one replaces Ω1 with B(0, 1) in (4.1), then σ0 must be quadratic

(explicitly, σ0 = 1
2 tr(Deff(A)) (1− |x|2), where Deff(A) is the effective diffusivity ma-

trix). In this case, the result in (2.2) can be considerably improved. For convenience,
we state the improved result in rescaled coordinates.

Theorem 4.1 ([9]). Suppose σ̄′ is the solution to (4.1) on B(0, 1), the disk of
radius 1. Suppose for some α > 0, A = O(1/ε4−α) as ε → 0. Then there exists
c = c(α) > 0, independent of A, ε such that for all ε sufficiently small,

(4.2) ‖σ̄ − σ0‖L∞ 6 c
ε

A1/4

where σ0 = σ0(A) is the solution of the effective problem

−∇ ·Deff(A)∇σ0 = 1 in B(0, 1) and σ0 = 0 on ∂B(0, 1).

Observe that Deff(A) = O(
√
A), and hence σ0 = O(1/

√
A) → 0; however the

right hand side of (4.2) is ε/A1/4 = o(1/
√
A) by assumption. This means that the

limiting profile of
√
Aσ̄ is exactly

√
Aσ0, which is finite and non-zero in the interior
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of B(0, 1). On the other hand, equation (2.2) provides only upper and lower bounds
for the limiting profile of σ̄.

We numerically confirm that (4.2) is valid in a situation where σ0 is not quadratic.
For this, we return to studying the (rescaled) expected exit time σ̄ on Ω1, the square
of side length 1. Figure 4(a) shows a slices of the graphs of σ̄ and σ0 along the
diagonal of the square Ω1. Figure 4(b) shows slices of the graphs of σ̄ and σ0 along
a horizontal line through the center. Figures 4(c) and 4(d) show the same slices on
a 1.5×2.5 rectangle, instead of the square Ω1. We observe a remarkable agreement
between σ̄ and τ̄0, suggesting that (4.2) is valid for general σ0, despite apparent
theoretical obstacles arising from the catastrophic εAv · ∇xσ2 term.
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Figure 4. Slices of the graphs of σ̄ and σ0 in a square (top) and
rectangle (bottom).
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5. Numerical Method

We conclude this paper with a description of the numerical method used for
our simulations. As mentioned earlier, the Euler-Maruyama is not suitable for our
purposes, and the method we use is that in [16]. We describe the method here, and
present a simplified analysis of it based on the theory of modified equations.
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We first rescale time by a factor of 1/A, and consider the process Yt
def
= Xt/A.

With this change, SDE (1.1) becomes

(5.1) dYt = v(Yt) dt+
1√
A
dW ′t ,

where W ′t =
√
AWt/A is a new Brownian motion.

Observe that for large A, the SDE (5.1) is a small random perturbation of the
Hamiltonian system

(5.2)
dY

dt
= v(Y ),

with Hamiltonian H (see equation (1.2)). So it is natural to look for numerical
schemes which respect features of the underlying deterministic dynamics [8]. The
scheme we use is based on the (deterministic) scheme in [17].

Define di, ei by

(5.3) d1 =

(
−1/2

1/2

)
, d2 =

(
−1/2
−1/2

)
, e1 = 2π

(
1
1

)
, e2 = 2π

(
1
−1

)
,

and observe

v =

2∑
i=1

vi, where vi(x) = dig(〈ei, x〉), and g(x) = sin(x).

Here 〈·, ·〉 denotes the standard inner product on R2.
The main idea behind the scheme in [17] is that each constituent vector field vi is

divergence free, and can be explicitly integrated. Namely, in view of the identities,

〈di, ei〉 = 〈di, dj〉 = 〈ei, ej〉 = 0, for i, j ∈ {1, 2}, with i 6= j,

we see

(5.4)
Żt(z) = vi(Zt(z))

& Z0(z) = z
⇐⇒ Zt(z) = z + tdig(〈ei, z〉).

In view of (5.4), using the Euler method to integrate each constituent field vi will
give an explicit, volume preserving, numerical integrator for v. Of course, volume
preserving integrators cannot also preserve the Hamiltonian unless they coincide
with the exact flow [3]. However, this numerical method preserves a modified
Hamiltonian (discussed later), preventing it from “spiraling outward”, which is
usually the difficulty encountered when the Euler method is used to integrate (5.2)
over long time intervals.

In the stochastic setting, we choose a sequence of independent random variables
(ξn) so that each ξn is a two dimensional normally distributed random variable
with mean 0 and covariance matrix I. Let ∆t > 0 be the time step, and y ∈ R2 be
the initial condition. We define Y n, an approximation to the solution of (5.1) at
time n∆t, by

(5.5)


Zn1 = Y n + ∆t d1g(〈Y n, e1〉), Zn2 = Zn1 + ∆t d2g(〈Zn1 , e2〉)

Y n+1 = Zn2 +

(
∆t

A

)1/2

ξn,

with Y 0 = y. It quickly follows from (5.4) that the map y 7→ Y n is (surely) volume
preserving for all n. Thus (5.5) gives us a volume preserving numerical scheme
for (5.1), whose inviscid counterpart does not spiral outward!
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5.1. A analysis of the method using modified equations. A simple analysis
of the qualitative features of our numerical scheme can be obtained using the theory
of modified equations for SDEs [20,23]. In particular, assume that equation (5.1) is
solved by a first order weak method, as for example the stochastic splitting method
(5.5). Then one looks for coefficients u1(x), σ1(x), such that (5.5) approximates

(5.6) dYt = [u(Yt) + ∆tu1(Yt)] dt+

[
1√
A

+ ∆tσ1(Yt)

]
dWt,

to second weak order. The coefficients u1, σ1 can calculated following [20], when
the numerical method used is the Euler-Maruyama method. For more complicated
numerical integrators a more general framework is developed in [23].

The underlying idea for calculating these coefficients is that u1, σ1 should be
chosen such that the ‘modified’ local error between the numerical method and the
solution of (5.6) should be one order higher than the ‘original’ local error between
the numerical method and the solution of (5.1). This is primarily accomplished
using weak stochastic Taylor expansions [18]. In our situation, u1 and σ1 can be
calculated using equation (3.9) in [23], which shows that (5.5) approximates

(5.7) dYt = ∇⊥H̃(Yt) dt+
1√
A

(
I − ∆t

2
∇v(Yt)

)
dWt

weakly to second order. Here v is our velocity field from (1.2), and H̃ is the modified
Hamiltonian defined by

(5.8) H̃ = H(x)

(
1 +

2π2∆t

A

)
+ ∆tH1(x),

where

(5.9) H1(x1, x2) =
1

16π2
(cos 4πx2 − cos 4πx1) .

Observe that the modified equation (5.7) is a random perturbation of a two di-

mensional Hamiltonian flow with a cellular Hamiltonian H̃. It is easy to see that as
long as ∆t = o(1), solutions to (5.7) approximate solutions to (5.1). Consequently,
this means our method will integrates (1.1) on the time interval [0, 1] in roughly
A steps. The Euler-Maruyama method, in contrast, will require roughly A2 steps.
Finally, we remark that when comparing the modified equation (5.7) with the one
that one gets from the deterministic analysis [8], the only extra term that appears

in H̃ is 2π2∆t
A H, which accounts for the presence of noise in the problem.
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[10] V. V. Jikov, S. M. Kozlov, and O. A. Olĕınik, Homogenization of differential operators and

integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A.
Yosifian [G. A. Iosif′yan]. MR1329546 (96h:35003b)

[11] A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion

equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 3, 309–
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